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Abstract

This paper develops a Markov chain Monte Carlo (MCMC) method for a class
of models that encompasses finite and countable mixtures of densities and mixtures
of experts with a variable number of mixture components. The method is shown to
maximize the expected probability of acceptance for cross-dimensional moves and
to minimize the asymptotic variance of sample average estimators under certain
restrictions. The method can be represented as a retrospective sampling algorithm
with an optimal choice of auxiliary priors and as a reversible jump algorithm with
optimal proposal distributions. The method is primarily motivated by and applied
to a Bayesian nonparametric model for conditional densities based on mixtures of
a variable number of experts. The mixture of experts model outperforms standard
parametric and nonparametric alternatives in out of sample performance compar-
isons in an application to Engel curve estimation. The proposed MCMC algorithm
makes estimation of this model practical.
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1 Introduction

Models with parameters of variable dimension play an important role in the Bayesian
approach to inference. First of all, model comparison can be naturally performed in
this framework. Second, many Bayesian non-parametric models, for example those based
on varying degree polynomials or mixtures of densities, can be formulated as variable
dimension models. The main approaches to MCMC estimation of such models are the
reversible jump MCMC (RIMCMC) (Green (1995)), the method of auxiliary prior distri-
butions (Carlin & Chib (1995)), and the birth-death process of Stephens (2000). These
approaches require selection of proposal distributions, birth distributions, or auxiliary
priors, which is a non-trivial task, especially, in complex models. The literature on choice
of efficient proposals for RIMCMC is not very large and the suggested proposals, while
quite sensible, appear to be mostly heuristically motivated (see a review in Section 4.1 of
a survey by Hastie & Green (2012)).

This paper develops optimal RIMCMC proposals of a certain type for models with a
nesting structure. The RIMCMC algorithm under consideration is restricted to move only
between the adjacent nested submodels without changing the parameters of the smaller
submodel. Under these restrictions, the optimal proposal simulates the parameters present
only in the larger submodel from their posterior distribution conditional on the parameters
in the smaller submodel. The idea is rather natural and it has appeared in the literature at
least in the form of centering the proposal distribution on the conditional posterior mode
(see a discussion of the conditional maximization approach in Brooks et al. (2003)). The
theoretical contribution of the present paper is to rigorously show that the conditional

posterior proposal is optimal in the sense that it maximizes the expected probability of



acceptance for between-submodel moves and minimizes the asymptotic variance of MCMC
sample average estimators under additional restrictions.

The proposed algorithm can also be represented as a combination of the auxiliary
priors approach of Carlin & Chib (1995) and retrospective sampling of Papaspiliopoulos
& Roberts (2008) with an optimal choice of auxiliary priors restricted to have a recursive
form. The auxiliary priors and retrospective sampling representation of the algorithm
was developed before the RIMCMC representation, and, hence, the former is presented
before the latter below.

The main motivation and application for the theoretical results described above is a
practical MCMC algorithm for estimation of a Bayesian nonparametric model for condi-
tional distributions. The model is a mixture of Gaussian regressions or experts with co-
variate dependent mixing weights and a variable number of mixture components. Related
mixture of experts models with a fixed or a pre-selected number of components demon-
strate excellent performance in applications and simulations (Jacobs, Jordan, Nowlan, &
Hinton (1991), Jordan & Xu (1995), Peng, Jacobs, & Tanner (1996), Wood, Jiang, &
Tanner (2002), Geweke & Keane (2007), Villani et al. (2009)). However, in the context
of nonparametric conditional density estimation, the frequentist properties of standard
Bayesian model selection procedures applied to choosing the number of components are
not understood. Moreover, model averaging, which in this context is equivalent to a
model with a varying number of mixture components, is the preferred option from the
Bayesian perspective. Norets & Pati (2017) show that under rather standard priors and
some regularity assumptions, the posterior in a model with a varying number of experts

contracts at an adaptive optimal rate up to a log factor; moreover, the rate is not affected



by the presence of irrelevant covariates in the model. Given these attractive asymptotic
guarantees, which do not appear to be currently available for other Bayesian nonpara-
metric models for conditional densities, and excellent performance in applications of the
related models, it seems important to develop reliable posterior simulation algorithms for
the model with a varying number of components.

RJMCMC proposals based on moment matching (Richardson & Green (1997)) have
been used in the literature to estimate mixtures of densities with a variable number of
components. However, it is not clear how to implement this approach when the mixing
weights depend on covariates. Carlin & Chib (1995) applied their auxiliary priors ap-
proach to mixtures of univariate normals with a small number of components where the
cross-dimensional moves change the parameters of all the mixture components simultane-
ously. It is not clear how to implement this approach for the nonparametric conditional
density model since the parameter vector is high-dimensional and constructing good aux-
iliary priors or proposals for the high-dimensional distributions with very complex shapes
is a daunting task. Thus, an algorithm based on the conditional posterior proposals
that changes parameters of only one mixture component in a cross-dimensional move is
developed here.

In the mixture of experts model, the conditional posterior proposals can be evaluated
up to normalizing constants that are difficult to compute precisely. Since the normal-
izing constants are required for computing acceptance probabilities, approximations to
conditional posteriors have to be used in the implementation of the algorithm for this
model. Posteriors for parameters of one mixture component conditional on the number

of components and the rest of the parameters are much better behaved than posteri-



ors for parameters of all or few mixture components as label switching is not an issue.
Quadratic approximations to the log of the conditional posterior appear to be adequate
in the considered applications. It is straightforward in principle to extend the algorithm
from changing parameters of only one mixture component at a time to two or more. How-
ever, finding good approximations to conditional posteriors for parameters of two or more
mixture components appears infeasible when covariates, especially multivariate ones, are
present in the model. Thus, the restriction of changing parameters of only one mixture
component in a cross-dimensional move is introduced not for theoretical convenience but
rather for feasibility of algorithm implementation.

The resulting “approximately” optimal RJIMCMC algorithm provides a feasible pos-
terior simulation method for an attractive Bayesian nonparametric model for conditional
densities for which the previous literature does not provide a feasible posterior simulator.

The practical performance of the proposed posterior simulator and the model are
evaluated in simulations and in an application to estimation of the Engel curve between
food expenditure share and total income. In simulations, the proposed MCMC algorithm
reliably explores the posterior distribution of the number of mixture components even
when the dimension of the parameter vector for each mixture component reaches 15. In
the application to the food expenditure and income data, the estimated mixture of experts
model outperforms standard parametric and nonparametric alternatives in out of sample
performance comparisons.

The proposed methodology also appears promising for developing posterior simula-
tors for other varying dimension models in which good proposals for the whole param-

eter vector are difficult to construct. An important class of such models are Bayesian



nonparametric models based on nonlinear transformations of polynomials or other basis
expansions with a prior on the number of basis functions.

The rest of the paper is organized as follows. A general model formulation and the
mixture of experts example are presented in Section 2. The auxiliary priors representation
of the MCMC algorithm is given in Section 3. Section 4 provides the RIMCMC represen-
tation. Theoretical results on the algorithm optimality are given in Section 5. A simple
illustration of the algorithm on a normal regression with a nonparametric prior on the
conditional mean is given in Section 6. An application to the mixture of experts model and
simulation results are presented in Section 7. Appendices contain proofs, implementation

details, and auxiliary figures.

2 Model description

In this paper, we are concerned with the following class of models. Suppose that for an
integer m, le = (91,02,. .. ,Hm) EO™ =0 X ---X @m C Rdm, 0100 = (91,92, .. .), and

Y € R% . Let the observables density satisfy the following restriction
p(Y[m, b)) = p(Y[m, 01,), (1)
so that m indexes a sequence of nested models. A prior is specified as follows
I1(01m[m)TT(m), (2)

where I1(61,,|m) is a density with respect to a o-finite dominating measure A™ = A\; X - - - X
A on the Borel o-field of R4, The support of II(m) can be equal to the set of positive

integers. This class of models encompasses finite and countable mixtures of densities



(McLachlan & Peel (2000), Fruhwirth-Schnatter (2006)) and mixtures of experts (Jacobs
et al. (1991), Jordan & Jacobs (1994)) with a varying number of mixture components
and models based on polynomials or other basis expansions with a prior on the degree of

polynomials (or more generally number of terms in the basis expansions).

2.1 Main Application: Mixture of Experts

The main motivation and application for the MCMC algorithm is a nonparametric model
for conditional densities from Norets & Pati (2017) based on mixtures of experts. Let
y; € R denote a dependent variable and z; = (1,2;1,...,7;0,) € R%*! denote a vec-
tor of covariates for observation ¢ = 1,...,n. It is assumed that the observations are
independently identically distributed. The marginal distribution of covariates is not of
interest and, thus, it is not modeled. The conditional density of y; given x; is modeled by

a mixture of normal linear regressions with the mixing weights that depend on covariates

m

p(yilzi;m, Oim) = Z%’(% m, O1m) - & (yi, 238, (hy - vy) 1) (3)
j=1
@ exp {—0.5 zld; hiVaji (i — le)Q}

fyj (Iﬁ“ m, 91m> == m P ,
Zk:l Q €XPp {—0-5 Zlil ha:lVa:kz(JEil - ,Ukl)2}

where ¢ denotes a normal density and 6,,, includes h, € Rflf and h, € R, as a part of 0,
and the sequences 8; € R=*! a; € Ry, pu; € R% v, e R™ v, € R, j=1,2,...,m.
A prior II(m)II(6y,,|m) specified in Section 7 completes the model setup.

The scale parameters (hy, by, V5, Vzj, j = 1,...,m) are not identified in the likelihood
of the model conditional on m and covariates, and proper priors must be used for the pos-
terior to be well defined. This specification of scale parameters is justified as follows. The

multiplicative part of the scale parameters that is common across all mixture components



(hy, hy) is introduced so that there is a sufficient prior probability on very small values
of scale parameters for all mixture components at the same time, which is required for
achieving the optimal posterior contraction rates at smooth data generating densities, see
Norets & Pati (2017) for more details. The parts of scale parameters that are specific to
mixture components, (vy;, Vs, j = 1,...,m), do not affect known asymptotic properties
of the model; they are introduced to improve flexibility and small sample performance of
the model when m is not large. Similar specifications of scale parameters for univariate

mixture models are used in textbooks, see, for example, Geweke (2005).

3 Recursive Auxiliary Priors for Drawing m

In this subsection, let us consider only the algorithm’s block for m. For many mixture
models, MCMC algorithms for simulating 6y, conditional on m are readily available (see
for example, Fruhwirth-Schnatter (2006), Peng et al. (1996), Geweke & Keane (2007),
and Villani et al. (2009)). Section 7 overviews the algorithm for simulating 6,,, for the
model (3) with details relegated to Appendix B.

For p(Y|m,61,,) and I1(0y,,|m)II(m) in (1), 0100 = (Oma1,Omae,--.), and an arbi-

trary distribution ﬁ(9m+1oo|m, O1m,Y), let us define a joint distribution
p(}/a 91007 m) = ﬁ(9m+1oo‘m7 elma Y) : p(Y]m, 91m> ' H(elm’m)ﬂ(m) (4)

Importantly, the posterior I1(m, 0;,,|Y") implied by this joint distribution is the same as
the one implied by p(Y |m, 61, )I1(A1,|m)I1(m) and it is not affected by II, which can be es-
tablished by integrating out 6,, 1 from (4). The auxiliary prior ﬂ(QmHOO]m, O1m, Y') can

only affect a posterior simulator for II(m, f1,,|Y). In what follows, we design II to facil-



itate posterior simulation from II(m, 61,,|Y") by retrospective sampling (Papaspiliopoulos

& Roberts (2008)). For densities 7y, (6n41|01m, YY) to be chosen below, let

o0}

ﬂ(eerloo,ma O1m,Y) = H Tt j (S ’91m+j7 Y). (5)

j=1
This recursive definition of IT implies a tractable expression for Metropolis-Hastings ac-
ceptance probabilities. Specifically, let us consider the Metropolis-within-Gibbs block for
ml|Y, 010, with the proposal Pr(m* = m + 1jm) = Pr(m* = m — 1lm) = 1/2. For a

proposal draw m* the acceptance probability is equal to min{1, a(m*, m)}, where

a(m*,m) = p(Y|m*, 01 ) IO |m*)II(m*)
(Y[, 01 )1 (B, ) T2

{m* =m+1}

’ (ﬁmwmﬂwlm,m

+ 1{m* =m — 1}7_1(0m|01m-1, Y)) : (6)

When m* =m + 1, 6,,,1 is simulated retrospectively from 7, (0,+1|601m,Y).

3.1 Choice of Auxiliary Prior

A simplistic choice of the auxiliary prior with 6; identically independently distributed
for all j € {1,...,00} leads to practically zero acceptance rates for m in the mixture of
experts application considered in this paper. Thus, the choice of 7, appears to be crucial

for feasibility of the algorithm. As shown below in Section 5,
7~"-m(em—i—1|01m7 Y) = p<9m+1|y7 m + 17 le) X p(Y’m + ]-7 01m+1)1_-[(6)1m+1|m + 1) (7)

is an optimal choice of 7,,,. The idea of using the conditional posterior p(6y,+1]Y, m+1, 61,,)
as a proposal for cross-dimensional MCMC moves is rather natural and it has appeared
in the literature in the form of centering a proposal for an RJIMCMC algorithm on the
conditional posterior mode (see a discussion of the conditional maximization approach

8



in Brooks et al. (2003)). In Section 5, it is shown that the conditional posterior pro-
posal maximizes the expected probability of acceptance for between-submodel moves and
minimizes the asymptotic variance of MCMC sample average estimators under additional
restrictions.

In some models, the conditional posterior p(6,,.1|Y,m + 1,6;,,) can be available in
closed form as in the normal regression with a nonparametric prior on the conditional
mean considered in Section 6. However, in general and in our main application to the
mixture of experts model, direct draws from p(6,,.1|Y,m + 1,0y,,) and, especially, the
normalization constant can be difficult to obtain. In this case, it is necessary to construct
approximations to p(€,,+1|Y,m + 1,01,,) with known normalization constants and from
which fast simulation is possible.

When 6, is one dimensional, as could be the case in models based on polynomials,
suitable approximations to conditional posteriors/optimal proposals can be constructed
from piece-wise linear approximations to the log of the unnormalized conditional posterior
on a grid, similarly to adaptive rejection Metropolis sampling within Gibbs algorithm
from Gilks et al. (1995). The resulting proposals would be piece-wise exponential with
analytical expressions for normalization constants and it is straightforward to simulate
from them.

When 6, is multidimensional, an approximation to p(6,,.1|Y, m+1, 61,,) can be given

by a Gaussian distribution with the mean equal to the conditional posterior mode

Omy1 = argmax p(Y'|m + 1, 0111) (011 |m + 1)

Om41



and the variance calculated from the Hessian

2

_ 0
1 = T 000 log[p(Y|m + 1, 01y 1) )IL(O1p g1 |m + 1)] o (8)

Om+1=0m 1
This approximation can be motivated by the Bernstein-von Mises (BVM) theorem on
the asymptotic normality of the posterior in well behaved or regular models, see, Cher-
nozhukov & Hong (2003) and Kleijn & van der Vaart (2012) for versions of the theorem
under misspecification that are more relevant here. The BVM theorem may fail to hold in
some scenarios, see, for example, Chen et al. (2014). Even when it fails, the approxima-
tions centered at the mode of the target distribution seem reasonable and I am not aware
of other possible approximations that would be feasible to obtain on every iteration of a
long MCMC run. Thus, this approach is used in the mixture of experts application with a
couple of simplifications. First, some of the cross derivatives in the Hessian are set to zero
to simplify the derivations and speed up computation. Second, for parameters restricted
to be positive, such as precision parameters, the corresponding cross-derivatives are set
to zero in Vrr_LJlrl and the proposal is given by a Gamma distribution with the shape and
rate parameters selected so that the mode and the variance of the Gamma distribution

match the corresponding components in (6,41, Vini1). Appendix B provides more details

on the algorithm implementation for the mixture of experts model.

3.2 Previous Literature

Papaspiliopoulos & Roberts (2008) developed retrospective sampling ideas in the context
of Dirichlet process mixtures. In those settings, the prior for all components of 6., does
affect the posterior, and, thus, choosing the prior to improve the MCMC performance is
not an option, in contrast to the settings considered here.

10



The birth-death process of Stephens (2000) is somewhat similar to the algorithm
developed here and more generally to an RJIMCMC that keeps the parameters of the
smaller model unchanged when cross-dimensional moves are attempted. Stephens (2000)
uses the same prior distribution for all 6;’s as a birth or proposal distribution, and such
proposals produce practically zero acceptance rates in the mixture of experts application.

Carlin & Chib (1995) introduced auxiliary prior distributions in the context of
Bayesian model averaging and comparison for a finite number of parametric models.
The algorithm proposed here can be thought of as an extension of ideas from Carlin &
Chib (1995) to infinite dimensional settings, which also exploits the structure of the prob-
lem and more recently developed restrospective sampling ideas. Carlin and Chib apply
their algorithm to finite mixture of normals models that can be set up as (1)-(2) with
a bounded support for m. However, they treat 6y, and 615 with m # m as two non-
overlapping vectors of parameters and for any given m, they introduce separate auxiliary
prior distributions for all 815 with m # m; these auxiliary prior distributions are chosen to
approximate I1(6y7|Y,m), where approximations are obtained from a posterior simulator
output for I1(614|Y,m). In principle, their approach if combined with retrospective sam-
pling could be used for estimation of the model in (1)-(2) with an unbounded support for
m. However, the posterior for mixture models has a large number of modes and obtaining
an approximation for I1(0;,;|Y, m) is a challenging problem, especially for larger values of
d - m. Hence, the need to develop an alternative algorithm for models with large/infinite

dimensions, which is addressed here.
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4 Reversible Jump Representation

The reversible jump MCMC (Green (1995)) is the most popular approach to simulation
from posterior for variable dimension models. In this section, it is shown that the al-
gorithm for drawing m described in Section 3 can also be formulated as an RIMCMC
algorithm. This RJIMCMC algorithm is restricted to move only between the adjacent
nested submodels without changing the parameters of the smaller submodel and it uses
Tm from Section 3 as a part of the proposal distribution for such cross-dimensional moves.
Thus, the results on the optimal choice of 7, presented in Section 5 below can be in-
terpreted as the results on the optimal proposal distribution for a class of RIMCMC
algorithms. This is noteworthy as the existing literature on choice of proposals for RJM-
CMC does not seem to contain rigorous optimality results (see, for example, Brooks et al.
(2003) and Hastie & Green (2012)).

The RIMCMC representation of the algorithm requires additional notation. Let us
denote the state space for the RIMCMC by X = U, {m} x ©™. Let () be a Markov
transition on X and for x,2" € X, f(x,2’) be a density of II(dz|Y)Q(x, dz") with respect
to a symmetric measure on X X X denoted by e. An RIJIMCMC update, also called
Metropolis-Hastings-Green update because it generalizes the Metropolis-Hastings update

to cross-dimensional settings, simulates a proposal ' ~ Q(z,-) that is accepted with

{1

The algorithm in Section 3 is obtained when Q((01,,m),-) draws (m/,0},,) as follows:

probability

m' =m — 1 and #,,, = 61,,—1 with probability 0.5, otherwise m" = m + 1 and 0},, =

12



(O1m, 0,1 1), where 6, ~ T (+|01m, Y) and 7, is defined in (5). The dominating measure

€ is defined by

(

i Amt1lz € Opgr : (2,2) € AldN™(x)  ifm' =m+1

e(m, Am', A) = 3 [ A il2 € Oy ¢ (2,2) € AJdN™ (z) it m/ =m — 1

0 ifm'£#m=+1

\

for Borel measurable A € ©™ and A’ € ©"'. Thus, € is essentially a product of a counting
measure on {(m,m’) : m,m’ € N,;m’ = m =+ 1} and a transition kernel \™@x{mm}  The

density

f(m, Oy, m’, 6,,) =0.5 - 1{m' =m+ 1,64, = 07, }1I(m, 01,,|Y )7 (6.,/101m, Y)

+0.5 - ]l{m’ =m — 1, le,l = Himfl}ﬂ(m, le\Y)

and the acceptance probability is given by (6).

5 Algorithm Optimality

In this section, an optimal choice of 7, is considered. Since at each MCMC iteration, m
can only be changed by 1, one can expect that higher acceptance rates for m* result in a
more efficient MCMC algorithm. Below, this intuition is made precise. First, Theorem 1
shows how 7,, can be chosen to maximize expected acceptance rates for m*. Then, The-
orem 2 shows that this choice minimizes asymptotic variance for MCMC sample average
estimators for a class of functions that depend on (m, 61,,_1).

Let us define the following conditional expected acceptance rates. The expected ac-

13



ceptance rate for m* = m + 1 conditional on (m, 0y,,) is

/ min{1, a(m*, m)}7m (0m11]01m, Y)dAm11(Omi1), (9)

and for m* = m — 1 conditional on (m, 6y,,_1) is

/ min{1, a(m*, m)}p(O V.1, Oy 1) (0. (10)

The use of the conditional posterior p(6,,|Y, m, 01,,_1) for taking the expectation in (10) is

motivated by the fact that the MCMC algorithm converges to the stationary distribution.

Theorem 1. 7}, (0,+1|01m, Y) = p(Omi1]Y, m~+1, b1.,) mazimizes the conditional expected

acceptance rates in (9) and (10).

The proof of the theorem is given in Appendix A.1. For m* = m + 1, 7}, tends to
produce proposals of 6,,,1 with high value of the numerator in a(m*, m), and one would
intuitively expect 7%, to work well in this case (this in fact was the original motivation for
trying the algorithm out even before its theoretical properties were obtained). The result
for m* = m — 1 seems more surprising. The mechanics of the proof are actually the same
for m* = m+ 1 and m* = m — 1, and they are about making a(m*, m) as close to 1 as
possible on average.

The results in Theorem 1 are of independent interest because, for complex models
with parameters of variable dimension, it could be hard to construct MCMC algorithms
that produce any accepted draws at all in a reasonable computing time. The theorem
also has more formal implications for algorithm optimality.

A standard criterion for MCMC algorithm optimality is the asymptotic variance of

sample averages. Let L= {g: X = R, [gdr =0, [ g*dm < co}. For a transition kernel

14



P with the stationary distribution 7 and g € L, let us define the asymptotic MCMC
variance as in Tierney (1998) by
v(g, P) = Jirilovarp (; g(Xi)> /n,
where X1, Xs,... is a Markov chain with the initial distribution 7 and transition P. A
transition kernel P can be called optimal if it minimizes v(g, P) for all g € L.
Here, an optimality result is obtained under additional restrictions on P and £. The
considered MCMC algorithms are indexed by # = {7,,, m = 1,2,...} and have the

following structure

P P
P(7) = ( et g ;m) P, (11)

where P,,,, denotes the Metropolis-Hastings-Green transition kernel described in Sec-
tion 4, Py, denotes the Gibbs transition kernel for 6,,|m, 01,,—1,Y, and Pp,,,_, denotes a
reversible transition kernel that updates 60y,, 1|m,6,,,Y", for example, a random sequence
scan Gibbs or Metropolis-within-Gibbs sampler for components of 01,,_1. The dependence

of P,y,,, on 7 is not reflected in the notation for brevity.

Theorem 2. For any & and any g € L that depends on (m, 01,,—1) but not on 6,

v(g, P(7%)) < v(g, P(7)),

*

where 7 is defined in Theorem 1.

The theorem is proved in Appendix A.2. The proof uses the fact that increasing off
diagonal transition probabilities of a reversible transition kernel with a fixed stationary
distribution decreases the asymptotic variance for any g € £ (this result, due to Peskun
(1973) and Tierney (1998), is formally presented in Appendix A.4).

15



The maximization of the expected acceptance rates for m*, as in Theorem 1, actually
reduces the off diagonal transition probabilities of P(7) when m stays the same (even
though other off diagonal probabilities increase). There appears to be no obvious way
to alter and/or combine (P, , Py, ., Pmg,, ) that would lead to increased probabilities of
all off diagonal transitions. Nevertheless, it is still possible to exploit the increased off
diagonal transition probabilities of events that involve a change in m. The key observation
here is that P(7) in (11) induces a Markov chain for (m,6y,,_1) (with 6,, excluded). For
this chain, all the off diagonal transition probabilities are maximized by 7, from Theorem
1. Moreover, the induced chain for (m, 0y, 1) is reversible and, thus, the claim of Theorem
2 holds.

An ideal optimality result would hold for functions that can depend not only on
(m, 01,—1) but on 6, as well, and it would not depend on a particular combination and
order of MCMC blocks in (11). Such a result appears to be difficult to obtain. Nev-
ertheless, the demonstrated optimality results provide useful guidelines for constructing
MCMUC algorithms and deliver an explanation for the good practical performance of the
approximate version of the algorithm implemented for the mixture of experts model. This
is especially the case if we take into account that results on MCMC optimality are scarce

and mostly restricted to discrete settings (see Chen (2013) for a survey).

6 Simple Illustration in Normal Regression

This section presents a very simple illustration of the proposed algorithm on a problem of

flexible estimation of the conditional mean. Let us model the distribution of a univariate
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y; conditional on a covariate x; by a normal distribution
yill‘i; 917717 m ~ N(Xilmel’ﬂn 1)7

where 0y, € R™ contains linear coefficients, X}!™ = (¢1(z), ..., ¥m(x;)), and ¥;(x;) is a
Legendre polynomial of order j — 1. While univariate Legendre polynomials are used in
this illustration, more generally, any basis and a multivariate z; can be accommodated
in the same fashion. It is also possible to model the variance of y; and correspondingly
extend the algorithm below, however, the variance is set to 1 here for simplicity. The

prior on the degree of the polynomial is
m(m = j) = [exp(4,,) — 1] -exp(=4,,j) - 1{m = 1}. (12)
Let us use a conditionally conjugate prior for the linear coefficients

7T<91m|m) = ¢(91m50 H71)7

Z1lmy) =1m

where ¢ is a multivariate normal density, 0,,, is a prior mean, and H,,, is a diagonal

Yim
precision matrix with a j’s diagonal element denoted by H ;. For this model, the posterior
distribution for (m,#6y,,) can be obtained in a closed form. While MCMC is not neces-
sary for estimation of this model, it does provide convenient settings for illustrating and
checking the algorithm as the simulation results can be compared with the closed form
expressions.

Let us denote the data by y = (y1, ..., yn)" and let us implicitly condition on covariates

hereinafter. Under a conditionally conjugate prior for 6y,,, all the relevant distributions

are available in closed form. The Gibbs sampler block for linear coefficients is normal,

T (Oral, y) = 001 Oum, H3L), (13)

17



where Hlm == ﬂlm + (le)/le; le = ((Xllm)la R (Xrlzm>/)l7 and
9_1771 - Hl_n%, [ﬂlmglm + (le)/y]

The conditional posterior (optimal proposal) is also normal,

W(9m+1|m+ 1791may) = ¢(‘9m+1§‘9m+1a[:[r;}|—1)7 (14)

where Hypq1 = H,,q + (X" Xm0 X+ g the last column of X! and

9m+1 = Hﬁ}#l[ﬂmﬂ-lgm—&-l + (Xerl)/(y - leelm)]

m

Finally, let us note that the likelihood is given by
p(ylm, O1m) = (2m) 7" exp[~0.5(y — X" 01,n)' (y — X" 01)] (15)

and that the marginal likelihood for m has a closed form expression

p(y|m, 01 )7 (01 |m)
7T((91m|7n7 y)

p(ylm) =

9

where the closed forms of the likelihood, prior, and posterior for #,,, conditional on m are
specified above.

MCMC algorithm:!

1. Simulate 6y, from 7(61,,|m,y) defined in (13).

2. Simulate the proposed m* from distribution (0.5,0.5) on (m + 1,m — 1).

(a) If m* = m + 1, simulate 6, from 7(6,,11/m + 1,61, y) defined in (14) and
U from a uniform on [0, 1]. If

exp(_ém)p(y’m + 1a elma Q:n—&—l_)as(e:mj-l? Qm—i—lvﬂm—&-l)
p(y|m, le)(b(@jn—i-l; Ot Hn_m}&-l)

!The Matlab code for the algorithm is available at https://www.brown.edu/Departments/

U<

Economics/Faculty/Andriy_Norets/papers/code_poly_regression.zip
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then accept the proposal (change the current state of the Markov chain from

(O1m,m) to ((O1m,05,,1),m*)). Return to step 1.

(b) If m* = m — 1, simulate U from a uniform on [0, 1]. If

p(ylm — 1,01 1)(Om; O, Hy,') - 1{m > 2}

U< =
eXp(_Am)p(y|m? 91m)¢(9ma an ﬂml)

then accept the proposal (change the current state of the Markov chain from

(01m,m) to (01m—1,m —1)). Return to step 1.

The performance of the estimation algorithm is illustrated on the following data:
1,...,n, n = 1000, and the

yilv; ~ N(2-2?exp(x;),1), z; = =1+ 2(i —1)/(n — 1), i =

prior hyper-parameters: A4, =1, 0, =0, H; =1 for all j. The simulated data, the true

conditional mean, and the posterior conditional mean are presented in Figure 1.

=x)

Y, E{Y|x

Figure 1: Simulated data (y;,x;), i 1,...,1000, with the true conditional mean

E(y;lx;) = 2 - 22 exp(x;) (dashed line) and the estimated conditional mean (solid line).
The trace plot of MCMC draws of m in Figure 2 suggests that the Markov chain for

exploring the posterior mixes well. The acceptance rate for m is 20%.
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Figure 2: MCMC draws of m from the posterior of the normal regression model with a
nonparametric prior on the conditional mean.

Figure 3 shows the prior for m, the posterior for m obtained from the MCMC draws,
and the posterior obtained from the closed form expression for the marginal likelihood.
The latter two probability mass functions essentially coincide, which confirms that the
algorithm is implemented correctly and convergence is attained in this application.

09r

Py O memc post pmf
081 O prior pmf
& exact post pmf

g 0.5
L 04
0.3
o
0zr o
0.1 o
0o - - . o A o o o
1 2 3 4 5 [} T 8 9
m

Figure 3: The prior and posterior of m for the normal regression model with a nonpara-
metric prior on the conditional mean.

The following section presents a more involved application of the proposed algorithm in
settings where other approaches do not seem to be available in the literature.
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7 Application to Mixture of Experts

In this section, the algorithm is applied to the mixture of experts model described in
Section 2.1. A discussion of prior specification, details of algorithm implementation, and
tests for correctness of the implemented algorithm are presented below. The last two
subsections evaluate the algorithm performance on simulated and real data.

Of course, it would be desirable to compare the algorithm with some benchmark
methods. Unfortunately, the literature does not seem to provide other feasible methods
for the mixture of a variable number of experts model. Specifically, the use of priors as
proposals as in the retrospective sampling (Papaspiliopoulos & Roberts (2008)) or birth-
death process (Stephens (2000)) does not deliver any accepted cross-dimensional moves.
It is obvious that using a good approximation to the posterior of the whole parameter
vector as a proposal would deliver a more efficient MCMC algorithm (Carlin & Chib
(1995) do that for a simpler and smaller model). However, it is not at all clear how one
could construct approximations to the complex shape posterior of the whole parameter

vector for the model considered here.

7.1 Prior Specification
The prior I1(6y,,|m)II(m) is specified as follows. For j =1,...,m,

md iid

N(B,Hy'), ny ~ N(p, H, ),

Vi S G(Ayy, By, Vaty ~ G(Ayar, Bu)y L =1, dy,

—ryYy) =

Bj ~

itd itd
(hy)'? = G(Apy, By, (hat)'? = G(Ap Bi), 1= 1, ds, (16)

hy»

; %j G(a/m,1),
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H(m = ;{;) o ¢~ Anklogk) o> 0,4, >0,

where G(A, B) stands for a Gamma distribution with shape A and rate B. Some of these
prior functional form assumptions are made so that asymptotic results in Norets & Pati
(2017) apply. Specifically, a gamma prior for (hy, h,) would not put sufficient mass in
the tails for the asymptotic results, and hence, the square of a gamma prior is used. The
division by m in G(a/m, 1) prior for a; is also required. The tail of the prior for m also

has to be essentially of the assumed form.

7.2 Overview of MCMC Algorithm

This subsection presents an overview of the MCMC algorithm for the conditional density
model. A complete description of the algorithm is provided in Appendix B. As is common
in the literature on MCMC for finite mixture models (Diebolt & Robert (1994)), latent
mixture allocation variables (s1, ..., s,) are added to facilitate the simulation from blocks
of the Metropolis-within-Gibbs for given m: y;|z;, s;,m, 01 ~ N((1;2:) Bs;y (hyVys;) ™)
and II(s; = j) = v;(@i;m, b1,,), where vj(x;;m, b1,,) is defined below (3). Then, Gibbs
sampler blocks for (s;, 5;,v,;) have standard distributions and are simulated directly.
The rest of the parameters are simulated by the Metropolis-within-Gibbs algorithm. The
Metropolis-within-Gibbs block for m described in Section 3 does not condition on the la-
tent mixture allocation variables. Therefore, the block for the mixture allocation variables
needs to be placed right after the block for m.

h

When the algorithm attempts to jump from m to m — 1 the m** component that

would be deleted in case of a successful jump is selected randomly from all the current
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mixture components. This is essentially a random label switching that does not affect the
stationary distribution of the chain and helps the chain not to get stuck when the m'"
component is important for explaining the data. More details are provided in Appendix

B.2

7.3 Tests for Correctness of the Algorithm Design and Imple-
mentation

The simulator is implemented in Matlab. The joint distribution tests proposed in Geweke
(2004) are used to check that the simulator is designed and implemented correctly. The
tests are based on a comparison of the prior distribution and the output of a successive
conditional simulator that simulates both data and parameters as follows. On each itera-
tion, the parameters are updated by the posterior simulator given the current data draw
and then the new data draw is obtained from the likelihood conditional on the current
parameter draw.

The resulting algorithm is a hybrid MCMC algorithm (or just a Gibbs sampler if direct
simulation rather than MCMC is used for the posterior simulator) for exploring the joint
prior distribution of parameters and data. If the data and posterior simulators are correct
then draws from the successive conditional simulator should be consistent with the prior
distribution, which can be checked by standard mean equality tests. Table 1 presents the
t-statistics from the mean equality tests for the parameters and their squares. As can

be seen from the table the hypotheses of mean equality are not rejected at conventional

2The Matlab code for the algorithm is available at https://www.brown.edu/Departments/

Economics/Faculty/Andriy_Norets/papers/code_mixture_experts.zip
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significance levels for all but one parameter, which indicates that there are no errors in
simulator design and implementation (the tests did help to find and correct a few errors

at the development stage).

Table 1: Joint Distribution Tests

Parameter t-stat | Parameter t-stat | Parameter t-stat
B -2.19 fi11 -1.17 - -0.17

8 1.99 11, 0.57 h2, -0.28
B2 -0.04 12 -0.56 Rao 0.90
32, 0.03 [13s 0.85 h2, 0.85
bis -1.60 f13 -1.73 Ra3 -0.37
B2 1.72 1113 1.20 h2, -0.38
B4 1.73 [414 -0.02 P4 -0.95
32, 1.75 1114 -0.03 h2, -1.41
Bis -0.05 Va1 -1.01 m -0.76

2 -0.11 v, -1.39 m? -0.81

hy -0.95 Vel2 037 | {m=1} 067

h? -0.80 V2 0.65 | 1{m=2) -0.53

vy -0.30 Va1s 0.14 | 1{m=3) -0.55

vy -0.07 V25 0.08 | 1{m=4) -0.36
Smia; 049 Vala 164 | 1{m=5) -0.71
Oy aj;)?  0.28 vi, -1.64 | 1{m=6) -0.52

Figure 9 in Appendix C compares the exact prior probability mass function for m and
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the probability mass function obtained from the successive conditional simulator. Figure

10 presents a trace plot of m.

7.4 Experiments on Simulated Data

This subsection describes the performance of the MCMC algorithm on simulated data
with different dimension of covariates. For a given d,, the covariates are generated from a
uniform distribution, z; = (2, ..., z4,) ~ U[0,1]%. The conditional distribution of the
outcome is a mixture of two normal distributions with nonlinear means, variances, and

mixing probabilities.
yilwi ~ eVEIG (5@ (o (2)) , 0591 () + (1 — e VE) @ (5 @ (=9 (), 0.1¢00(x:)) , (17)

where ¢y (z;) = 320w /KL, Vo) = S0 22%/d,, ¢(; 1, 0) is a normal density with
mean g and standard deviation o, and ® is standard normal cumulative distribution
function. The number of observations in each simulated dataset is 2000. The simulated
data for d, = 1 are shown in Figure 11 in Appendix C.

The average acceptance rates for m calculated from 100,000 MCMC iterations are

presented in Table 2. The corresponding MCMC trace plots are shown in Figure 12.

Table 2: Acceptance rates

d, dim(0,,) | Acceptance Rate, %
1 6 0.38

4 15 0.19

7 24 0.25

10 33 0.04
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As can be seen from the table, the acceptance rates tend to decline as the dimension of
0., increases. Nevertheless, the algorithm seems to provide reasonable descriptions of the
posterior distributions for m. A trace plot of the log likelihood evaluated at MCMC draws

of the parameters is shown in Figure 13.

7.5 Engel Curve Estimation

An Engel curve is a relationship between the fraction of income spent on a particular
good (or a category of goods) and the total income of a consumer or a household (Lewbel
(2008)). In empirical economics, Engel curves are often assumed to be linear or quadratic
up to an additive error term. In this section, the density of the fraction of food expenditure
conditional on the total income is estimated on the data from Battistin & Nadai (2015).
Battistin & Nadai (2015) use data from the 2010 wave of the Bank of Italy’s Survey on
Households Income and Wealth to create a sample of households in which the male is
between 25 and 56 years old, with the sample size of 2311 households. Battistin & Nadai
(2015) focus on possible measurement errors and instrumental variables specifications.
These issues are sidestepped in the present analysis. Instead, the assumptions of linear and
quadratic model specifications are evaluated in a comparison of out of sample predictive
performance of the Bayesian mixture of experts, linear and quadratic normal regressions,
and a cross-validated kernel estimator. The performance of the MCMC algorithm for the
mixture of experts is evaluated as well.

The prior hyperparameters in (16) for the mixture of experts model in this estimation
exercise are selected in an empirical Bayes fashion as follows. First, all the variables in the

dataset are standardized to have zero mean and unit variance. The prior mean for g; is set
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to the ordinary least squares (OLS) estimate and the prior variance to the variance of the
OLS estimator under homoskedasticity multiplied by 103. The prior mean and variance for
p; are set to (0, 1) to match the sample mean and variance of the standardized covariates.
To limit the variation of component specific scale parameters and help mitigate their lack
of likelihood identification the hyperparameters of the Gamma priors for (v, V) in
(16) are chosen so that they have mean 1 and variance 0.1. The hyperparameters of the
Gamma prior for hll/ ? are chosen so that it has the variance equal to 10 and the mean
equal to the inverse of the standard error of regression in the OLS. The hyperparameters
of the Gamma prior for h%f are chosen so that it has the variance equal to 10 and the
mean equal to 1 (or, more generally, the inverse of the sample standard deviation of the
corresponding covariate). Finally, a = 8 A, = 1, and 7 = 0. In the out of sample
prediction exercises, only the estimation part of the data (but not the prediction part) is
used to compute the hyperparameters as described above. The estimation results are not
very sensitive to moderate variations in prior hyperparameters around the values suggested
by the empirical Bayes procedure; however, moving prior means away from corresponding
data analogs and reducing the prior variances can result in estimation results that are
dominated by such a strong prior.

Figure 4 shows the raw data and the estimated posterior means of the conditional den-
sities and the conditional expectations. As can be seen from the figure, the distributions
of the food expenditure share conditional on the total expenditure are noticeably more
spread out and possibly multimodal for lower total expenditure households (such infor-

mation would not be readily available from just regression estimation). Also, it appears

that linear and quadratic specifications for the regression functions could be inferior to
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Figure 4: Observations on the food expenditure shares, y;, and the logarithm of
income, x;, i = 1,...,2311; predictive conditional densities p(y|x,y1,Z1,. .., Yn, Tn)
for z € {8.6,9.3,10.1,10.9,11.6} (solid colored lines) and the conditional expectation

E(y|z,y1, 21, ..., Yn, x,) (dashed black line).

Figure 5 shows the prior and the estimated posterior probability mass functions for m.
The posterior assigns the highest probability to m = 3, which suggests that just a few
mixture components provide adequate fit to the data.

Figures 6 shows a trace plot with the MCMC draws of m. Figure 7 shows a trace plot
of the log likelihood evaluated at the MCMC parameter draws. The log likelihood is a
label invariant function of all the parameters and also a measure of model fit, thus, it is

a convenient statistic for monitoring convergence. The trace plots in both figures suggest
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that the algorithm converges. The average acceptance rate for m in this MCMC run is
2.9% and the effective sample size is 330. A desktop with a 3.5GHz processor and 32GB

RAM takes about 5.4 seconds to perform 100 MCMC iterations.
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Figure 5: The prior and posterior distributions of the number of mixture components,
m, for the mixture of experts model estimated on food expenditure shares and total

expenditure data.

£ 5 mene ammssns - -

0 1 2 3 4 5 8 7 8 9 10
iteration w104

Figure 6: MCMC draws of m for the mixture of experts model estimated on food expen-

diture shares and income data.
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Figure 7: The log likelihood evaluated at MCMC draws of (m, 6y,,) for the mixture of

experts model estimated on food expenditure shares and income data.
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Figure 8: Marginal distributions for p(6,,|Y, m, 61,,—1) estimated from MCMC draws (solid

lines) and their normal approximations (dashed lines) for a fixed (m, 61,,_1).
As discussed in Section 3.1, the implementation of the MCMC algorithm uses approx-

imations to the optimal proposal p(0,,|Y,m,01,,—1). Figure 8 shows the marginals of
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the optimal proposal estimated by kernel smoothing (with default settings of ksdensity
function in Matlab) on draws of 6, from a version of the MCMC algorithm that keeps
(m, 01,,—1) fixed, and, thus, explores p(0,,|Y,m,601,,—1). The figure also shows the
corresponding normal approximations in dashed lines. The approximations appear to be
adequate in this application. The fixed value of (m,0;,,_1) is obtained as the last draw
from a 5000 iteration posterior simulator run, and, thus, it is approximately simulated
from p(m, 01,,-1|Y).

The out-of-sample predictions of the Bayesian mixture of experts and classical para-
metric and kernel estimators are evaluated in a Monte Carlo exercise. On each iteration
of the exercise, all the models are estimated on a randomly selected half of the observa-
tions and the predictive densities implied by the estimated models are evaluated on the
observations not used in estimation.

The log predictive densities for each model averaged over the 30 iterations are reported

in Table 3.

Table 3: Predictive performance

Method | Average of log predictive density
NP Bayes -1375

Kernel -1398

Linear -1444
Quadratic -1444

The length of MCMC runs for estimation of mixtures of experts in the Monte Carlo ex-
periment is 5000. The acceptance rates for these MCMC runs were between 2% and 7%.
The kernel conditional density estimation with cross-validated bandwidth selection (Hall
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et al. (2004)) was performed by R package np (Hayfield & Racine (2008)). The nonpara-
metric Bayesian model (NP Bayes in the table) outperforms the kernel estimator, which
in turn outperforms the linear and quadratic normal regressions. In line with the asymp-
totic results of Norets & Pati (2017), this comparison of predictive performance suggests
that a mixture of variable number of experts is an attractive model for nonparametric
estimation of conditional densities. The MCMC algorithm proposed in this paper makes

Bayesian estimation of this model practical.

8 Conclusion

The main objective of this research project is to develop a feasible posterior simulator for
a theoretically attractive Bayesian nonparametric model for conditional densities based
on mixtures of variable numbers of experts (Norets & Pati (2017)). After extensive ex-
perimentation with different proposals and methods, I have not managed to come up
with an alternative MCMC algorithm for this model with non-zero acceptance rates for
cross-dimensional moves. The success of the method in simulation experiments stimu-
lated my interest in its theoretical properties. The theoretical results developed in the
paper indeed show that the method is an approximation to an RIMCMC with a proposal
distribution that is optimal under the restriction of keeping the parameter values in the
smaller submodel unchanged when the cross-dimensional moves are attempted. It is worth
emphasizing that the restrictions under which the proposals are optimal and the use of
approximations to the optimal proposals are dictated by the feasibility of the method im-

plementation for the mixture of experts model. The implemented approximately optimal
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MCMC method reliably explores the posterior distribution for the mixture of a variable
number of experts model and the model outperforms standard parametric and nonpara-
metric alternatives in out of sample performance comparisons in the application to Engel
curve estimation.

The proposed methodology should also be useful for developing posterior simulators
for other varying dimension models with a nesting structure in which good proposals for

the whole parameter vector are difficult to construct.
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A Appendix. Proofs and Auxiliary Results

A.1 Proof of Theorem 1

First, observe that the problem of finding 7,, that maximizes the conditional acceptance

rates can be reformulated as follows

max / min {1, C'g{;)z) } g(2)dA(2), (18)

g

where ¢ > 0, and ¢ is restricted to be a density with respect to measure \. For m* = m+1,
f(-) denotes p(0,,+1|Y, m+1,64,,) as a function of 0,11, g(-) denotes 7, (0ry1]01m, Y) as a
function of 6,1, A denotes A, 11, and ¢ = p(Y, m+1,601,,)/p(Y, m, 01,,). For m* = m—1,
f(+) denotes p(6,,]Y, m,01,,—1) as a function of 6,,, g(-) denotes 7,1 (0m|01m—-1,Y) as a
function of 6,,, A denotes \,,, and ¢ = p(Y, m, 01—1)/p(Y,m — 1, 601,,_1).

Since min{g(2), cf(2)} = (9(2) + ¢f(2))/2 = |g(2) — cf(2)|/2 and [ g(2)dA(z) =1, the

problem in (18) is equivalent to

min / 19(2) — ef(2)|AA(2). (19)

For ¢ > 1, any ¢* with ¢*(2) < ¢f(2) for (A almost surely) all z solves (19). To see this
formally, consider g such that g(z) > c¢f(z) on Z*, A(ZT) > 0, and ¢(z) < cf(z) on
Z- =Z\Z", where Z is the domain for f and g. Let us define ¢'(z) = c¢f(z) on Z* and

d(z)=g(z)+7r-(cf(2) —g(2)) on Z~, where
r= [ = cronane [ [ ere) - sna)

Note that ¢’ is a density and r € (0,1) because [,,(g(z) — cf(2))d\(z) — [, (cf(z) —
g9(2))dN\(z) =1—c < 0. Also, |g(z) —cf(2)| > |¢'(2) — cf(2)| with a strict inequality on a
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set of A positive measure. Thus, the integral in (19) evaluated at g is strictly larger than
the integral evaluated at ¢’ < ¢f. For any g* < cf, [|g*(z) — cf(2)|d\(z) = ¢ — 1.

For ¢ < 1, an analogous argument with ¢'(z) = ¢f(z) on Z~, ¢'(2) = cf(2)+r-(g9(z) —
cf(z)) on Z*, and r = [(g(2) — cf(2))d\(2)/ [, (9(2) — c¢f(z))dA(z), shows that any g*
with ¢*(z) > c¢f(z) for (A almost surely) all z solves (19). For ¢ =1, g* = f is obviously
the solution. Thus, ¢* = f solves (18), and it is a unique solution that does not depend

on c.

A.2 Proof of Theorem 2
Let us define a transition kernel @ on U%_,{m} x ©™~1 by
Q((maelm—l)vm/ X A;n’fl) = P((mvelm—1)7m/ X A;n/fl X ®m')7 (20>

where A/, | is a measurable subset of @™ ~! and P is defined in (11) with dependence on 7
not reflected in the notation for brevity (Q(7) is used below whenever explicit dependence
on 7 is convenient). Note that P does not depend on 6,, as it starts from redrawing
Opn|m, 01,—1,Y, and Q is indeed a well defined transition kernel on U_ {m} x ™1
Note also that @ can be expressed as Q((m, 01,—1),m' x AL, 1) = Pp,, - P((m,01,-1), m' X
Al | X ©,,) as the multiplication by Fp,, from the left does not affect the transition for
(m,01,—1). Py, - P is a palindromic combination of reversible kernels and, thus, reversible
(see Section A.3). Therefore, Lemma 1 applies and @ is a reversible transition kernel.
Next, let us show that Q(7*) = Q(7), where “domination off diagonal” relation,
“>7, is defined in Section A.4. Since P, , Py, does not depend on 7, we can consider
only Q1 = Py, P, and it suffices to show that for any measurable sets A; C ©7,
je{m—2,m}, Q1((m,01m-1), {j+1}xA,) is maximized when 7 = 7* (for any measurable
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set A1 C O™ Q1((m, 011), {m} X A1 \ {O1m_1}) = 0 and j = m — 1 does not

need to be considered). For j =m, Q1((m,01,—1),{m + 1} x A,,) is equal

1
—/ Pr(m + 1 is accepted|m, 61,,)11(d0,,|m, 01m—1,Y),
2 A (01m—1)

where A, (01m-1) = {0m € On : (O1m-1,0m) € A} and Pr(m + 1 is accepted|m, 01,,) is
given by (9). By Theorem 1, (9) is maximized at 7*, and, thus, Q1 ((m, 01,m—1), {m+1} x

Ap,) is maximized at 7* as well. For j =m — 2, Q1((m, 01,,—1),{m — 1} X A,,,_2) is equal

1

ﬂAmz(elm2)§/A o )Pr(m — 1 is accepted|m, 01,,) I1(d0,,|m, O1m—1,Y),
m ({Vlm—1

where the integral is equal to (10). By Theorem 1, (10) is maximized at 7*, and, thus,
Q1((m, 01—1), {m — 1} x A,,_5) is maximized at 7* as well.

Since Q(7) is reversible for any 7 and Q(7*) = Q(7), the Peskun-Tierney theorem from
Section A.4 delivers v(g, Q(7*)) < v(g, Q(7)) for any g € L that depends on (m,61,, 1)

but not 6,,. The claim of the theorem follows since v(g, Q(7)) = v(g, P(7)) for such g.

A.3 Standard Facts About Reversibility

Transition kernel P is reversible with respect to 7 if w(dz) P(x, dy) = w(dy)P(y, dz). The
following elementary MCMC updates are reversible: a Metropolis-Hastings update on a
part of the parameter vector, a Gibbs sampler block, and a Metropolis-Hastings-Green
update. A mixture of reversible transition kernels is reversible. A palindromic combina-
tion of reversible transition kernels is reversible, for example, P, P, P, is reversible when
P, and P, are reversible. Combinations of reversible transition kernels such as a Gibbs

sampler with a fixed order of blocks are not reversible in general. A random sequence
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scan Gibbs or Metropolis-within-Gibbs sampler is reversible. A detailed presentation of

these facts can be found in Geyer (2005).

A.4 Peskun-Tierney Theorem

The earliest fundamental result in the literature on optimal MCMC is due to Peskun
(1973), who shows that increasing the off-diagonal elements in a reversible Markov tran-
sition matrix with a fixed stationary distribution reduces v(g, P). Tierney (1998) extends
this result to Markov chains on general state space. For transition kernels P; and P,
with invariant distribution 7, P; is said to dominate P, off the diagonal, P, > P, if
Pi(x, A\ {z}) > Py(x, A\ {z}) for any measurable A and 7 almost all z. Theorem 4 in

Tierney (1998): When P; and P, are reversible, P, = P, implies v(g, P;) < v(g, P,).

A.5 Auxiliary Results

Lemma 1. If a transition kernel P on U_ {m} x ©™ is reversible with respect to some
7 and P does not depend on 0,,, then Q((m,01,—1),m' x Al , ) = P((m,01,-1),m" X
Al X ©p,) is a reversible transition kernel on US_;{m} x ©™ ! with respect to

ﬂ-(mv Hlm—l) = f 7T(m7 le—lv dem)

Proof. The reversibility of P is equivalent to

/ P((m,01,_1),m' x A)dr(m,01,,) = / P((m/,0,,_1),m x A)dr(m/,0},,).
{m}xA {m/}x A

Setting A = A,,_1 x 0,, and A" = A, | x O, immediately implies the reversibility of

Q. O
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B Appendix. MCMC Algorithm for Mixture of Ex-

perts Model

This Appendix presents a detailed description of the MCMC algorithm for the mixture of
experts model introduced in Section 2.1. The likelihood function for this model is given

by

p(Y|X; m, 91m) = H P(?Ji‘%’; m, 91m)

=1

where p(y;|x;; m, 01,,) is defined in (3). As mentioned in the algorithm overview in Section

7.2, it is convenient to introduce latent mixture allocation variables s = (s1,...,s,) with

p(Y, 5| X;m, 01) = | | p(yilSis i3 m, 010) (55|25 m, 014, (21)

—.

Il
—

()

¢ (yia x;BSiv (hy ’ Vysi)_l) Vs; (xi; m, 01m>

Il

I
—

]

The prior distribution II(6y,,|m)II(m) is specified in Section 7.1. To pin down the param-
eterization and transformations of the Gamma distributions note that the prior density
of v,; is proportional to

A, —1
Vyi ' eXP{_EuyVyj}

and the prior density of h,, is proportional to

By exp{ =By, b))}

The Metropolis-within-Gibbs blocks for all the parameters and latent variables are pre-

sented next.

41



Metropolis-within-Gibbs blocks
Block for s;

For each i = 1,...,n, the latent mixture allocation variable s; has a multinomial distri-

bution on (1,...,m) with the probabilities proportional to
PT(Si = j’Y’a Xama elma Sfi) X 7‘7('7;17 m, elm) ' (b (3/17 x;’ﬁja (hy ’ Vy]')il) ) j = 17 N2

Block for j3;

Forj=1,...,m,

p (ﬁ]’}/? S, X7 m, (91m \ {ﬁ]}) X p(}/v S‘X; m, elm)H(elm’m)

and with the normal conditionally conjugate prior it is also a normal distribution

N(Bj,]:.fﬁ_jl), with precision Hg; = Hy + hyvy; > 2,7}, and mean f3; = Ffﬁ_jl(ﬂﬁ@ +

1 8;=7]

hyvy, Zi:si:j TiYi)-
Block for v,;
Forj=1,...,m,
p (Y, 8, X m, O \ {ry;}) o< p(Y, 8| Xm0, 01 ) TL(O1 [ 2)

and with the conditionally conjugate gamma prior, it is a gamma distribution
G(Ayyj’ Byyj>’ where Ayyj = Ayy -+ 0.5 Zz 1{51 = ]} and Byyj = Euy + O5hy Zi:si:j(yi —

i 6;)?.
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Block for h,

The density of the Gibbs sampler block for h, satisfies
p (hylY, s, X, m, 01, \ {hy}) x p(Y, s|X;m,01,) - 11(01,,|m)

o iy exp{=0.5hy >y = i) vys.} By exp{—hy/2B,, ). (22)
i=1

As described in Section 7.1, the prior for h, (h}/ 2~ G(Ay,, By,)) is not conditionally

conjugate, which is required for good asymptotic properties. Hence, a Metropolis-within-
Gibbs step is used for this block. Specifically, the Metropolis-Hastings proposal distribu-
tion is G(Apy, Buy), with Ay, = (4,,+n)/2 and By, = 0.5, (y; — 255, )*1ys,, motivated
by the functional form of the likelihood part and the polynomial part of the prior in (22).

A proposed draw h; is accepted with probability min{1, exp(—B,,, ((h;)"/? — (h,)*/?))}.

Blocks for h,,v,;, 1t

Gibbs sampler block distributions for h,, v,;, and p; do not have a known form and
can only be evaluated up to a normalization constant. Hence, random walk Metropolis-
Hastings within Gibbs steps are used for each of these blocks. For a block index b, 61,, =
(Ormp, Orm,—b) and b1 € {hy, Vaj, iy, 5 = 1,...,m}. Then, for the current parameter
draw 0y, and latent variables s the proposal distribution for 67, ; is N(O1mpy H(O1mp) ™)

centered at the current value 6y,,; and the precision

02

HOp) = ——
(O1m.0) 001,100},

log[p(}/a 8|X7 m, Hlm)H(01m|m>]7

which is motivated by asymptotic normal approximations to the conditional posterior.

The acceptance probability is

min { p(Y7 S|X7 m, eim,m 91m7—b)H(eikm,b’ 01m,—b|m)¢<01m,b; gim,w H<0Tm,b)71) }

p(}/a S|X7 m, Hlm)H(01m|m)¢(eim,b’ elm,ba H(91m7b)_1)
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where ¢ is the multivariate normal density. Note that the proposal precision in the
numerator, H (07, ,), needs to be recomputed at the proposed value 07, ,. If H(01,,3) is
not positive definite then it is replaced by a diagonal matrix with the absolute values of
the second derivatives on the diagonal; this does not happen often in simulations.

If a proposed draw 6], , is outside of the parameter support (a negative component
in h,, for example), then it is automatically rejected as the prior density is zero at such
values; this does not happen often in simulations.

An alternative independence chain algorithm for this type of blocks with the normal
proposal centered at the conditional posterior mode found by a Newton method takes
more time but does not lead to any substantial reduction in serial correlation of MCMC

draws. Therefore, the described random walk approach is used in simulations.

Block for o;

The simulation of (ai,...,aq,,) is performed in two steps: (i) simulate & =
(a1/ D75 a1/ D050 o) and (i) simulate > 7", «;. The reason for this is that
the posterior of Z;n:l a; conditional on & is equal to its prior, G(a, 1), and the likelihood
of the model depends on (a4, ..., a,,) only through its normalized version &. Therefore,
to simulate (v, ..., qy,), @ is simulated first from the random walk within the Gibbs step
as described above for (hg, V), p1;), and then Y77 a; is simulated from G(a,1). Note
that the implied prior for & that is used in the random walk within the Gibbs algorithm

is equal to the Dirichlet distribution with the parameter (a/m, ..., a/m).
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Block for Label Switching

Simulate j; from a uniform distribution on {1,...,m} and set 6iepp = Opn, 65, = 60;,, and
0, = Otemp-

The purpose of this block is to ameliorate the well known problem of insufficient label
switching in MCMC algorithms for mixture models (Geweke (2007)) and how it interacts
with jumps from m to m — 1 here. For a fixed m, an MCMC algorithm can get stuck
in one of the m! symmetric posterior modes and produce little if any label switching. If
the m'" mixture component happens to be a very important one then the algorithm is
very unlikely to ever jump from m to m — 1. Random label switching simply resolves this
issue.

Note that a random permutation of the labels is a Markov transition that preserves the
target posterior distribution as the likelihood and prior are invariant to label switching. If
this permutation is performed so that the resulting Markov transition is reversible (e.g.,
as described above, or more generally the distribution on permutations should be such
that any permutation has the same probability as its inverse), then, the theoretical results
presented in the paper are not affected in any way if such a reversible Markov transition

is added to the algorithm in a reversible fashion.

Block for m

As mentioned in Section 7.2, mixture allocation variables s;, ¢ = 1, ..., n are marginalized
out and not present in the conditioning set of the block for m.
The proposed draw m* is equal to m + 1 or m — 1 with probabilities (1/2,1/2). For

m* =m—+1, 0,41 is simulated from 7,,,(0,,11|01m, Y"), which is described precisely below,
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and m* is accepted with probability min{1, a(m + 1,m)}, where

p(Y|m + ]_, 6’1m+1)H(91m+1|m + l)H(m + 1)
P(Y [, 01 )T (O [ 1) TL(m) o (O 42101, V)

a(m+1,m) =

Proposed m* = m — 1 is accepted with probability min{1, a(m — 1,m)}, where

a(m —1,m) = p(Y[m = 1, 61n )01 1[m — DTI(m — 1)1 (0|61, Y)
p(Y'|m, 01,,)TL(01,, | )T (m)
When m = 1, m* = m—1 is immediately rejected as the prior probability of m* = 0 is zero

and it enters the numerator of the acceptance probability. The approximately optimal

proposal, T, (0mi1|0im, Y), is constructed as follows. First, the mode of the conditional

posterior, Oy,11 = (Fm+1, Bnt1, Zym+1s Vam+1, Gm1), is obtained

Om+1 = argmaxlog[p(Y| X, m + 1, 01,,11) (01 11|m + 1)].

Omt1
The maximization is performed by a Newton method.
To increase the computation speed and avoid calculations of cross-derivatives, the
parameter subvectors fim+1, Bmi1s Vym+1, Vem+ik, and 41 are set to be indepen-

dent in the proposal. The proposal variance for each parameter subvector 0,41, €

{tm+1, Bmt1s Vym+1, Cmt1s Vgm1k, K =1,...,d,} is obtained from the Hessians
o2 -
Vg1 = — 90 20 log[p(Y|X,m + 1, 01541)I1(01ms1|m + 1))
m+1,08Ym41b Om+1=0m+1

For 0,415 € {ftm+1, Bm+1}, the proposal is normal with mean émH,b and variance V1.
For Opi1p € {Vym+1s @mits Vomsrks kB = 1,...,d,}, the proposal is Gamma with mode
Ommy1 and variance V.1, (using a truncated normal instead of a Gamma proposal for
these parameters leads to a slightly worse algorithm performance).

The Newton method for finding the mode 6,,.; sets cross subvector derivatives

00011100, 1 4 to zero for bl # b2, so that the Hessian is block diagonal.
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C Appendix. Additional Figures

C.1 Figures for Joint Distribution tests in Section 7.3
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Figure 9: The exact prior probability mass function for m and the one obtained from the

successive conditional simulator of the joint distribution test.
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Figure 10: MCMC draws of m from the successive conditional simulator of the joint

distribution test.
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C.2 Figures for Simulated Data Experiments in Section 7.4

251

10

Figure 12: MCMC draws of m for simulated datasets with different dimension of covari-

ates, d, € {1,4,7}
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Figure 13: The log likelihood evaluated at MCMC draws of parameters, simulated data,

d, =1.
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