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In another work [S. Huang and K. R. Brown, Phys. Rev. Lett. 127, 090505 (2021)] we introduced syndrome
extraction methods for Calderbank-Shor-Steane quantum error-correction codes that interpolate between the
well-known Shor and Steane syndrome extraction methods. Here we provide detailed proofs of the main
theorems and show that up to gate ordering there is a one-to-one correspondence between extraction gadgets and
partitions of the parity check matrix. Operationally, all the circuits in our framework can be obtained by merging
ancilla qubits of Shor error correction with certain rules, which enables us to design fault-tolerant syndrome
extraction circuits for given specific codes. We then apply our construction to the toric code and provide a detailed
analysis of the time overhead of fault tolerance. In particular, we construct a syndrome extraction family whose
time overhead smoothly varies from Shor to Steane error correction. To understand the potential advantage, we
consider two simplified error models: no errors on the ancilla block and uncorrelated errors on the ancilla block.
We study the threshold behavior of the family for both error models and show its potential advantage for quantum
architectures with long coherence times.
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I. INTRODUCTION

The theory of quantum error correction [1–10] opens
the path towards large-scale quantum computation. Stabilizer
codes are a conventional choice of quantum error-correcting
codes [7,8,11], where error correction is performed con-
ditional on the measurement outcomes of a set of code
stabilizers, also known as the error syndrome bit string.
The syndrome extraction circuits need to be fault tolerant
[9,12–18] as the act of measuring syndromes also introduces
extra errors in the quantum system.

The first fault-tolerant syndrome extraction scheme was
proposed by Shor [9,10]. In Shor’s scheme, each syndrome
bit is extracted from the data qubits to a verified ancilla cat
state by transversal two-qubit gates. As transversal operations
limit the error propagation, no high-weight correlated errors
can occur on the data qubits if the cat states are verified by
postselection. The value of the syndrome bit is the parity of
the transversal measurement outcome of the cat state. As any
measurement error will flip the syndrome bit, for a stabilizer
code of distance d , one needs to repeat the syndrome extrac-
tion for O(d2) rounds to guarantee fault tolerance. Utilizing
the information of the code structure, the time overhead can
be significantly reduced on particular codes [19–24].

Optimizing Shor’s scheme is an active area of research
building off substantial progress since its invention. For ex-
ample, for low-weight stabilizers, ancilla postselection could
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be avoided by decoding the ancilla cat states [16,25,26]. On
specific stabilizer codes, the space overhead can be reduced
by allowing nontransversal data-ancilla interactions that pre-
serve the code distance [19,26–32]. The time overhead can
also be reduced by careful choice of sequential extractions
[23,24]. Notably, as an alternative to cat-state measurements,
flag error-correction gadgets [16–18,30] circumvent the need
of ancilla postselection for arbitrary stabilizer codes, while
having a low-qubit overhead for low-distance codes or high-
distance codes with low-weight stabilizer measurements.

The extraction gadgets for Shor’s scheme are arguably
the smallest. As a tradeoff, a large number of two-qubit
gates are applied between data and ancilla qubits. For many
quantum devices, two-qubit gates are usually the most chal-
lenging operations to implement with high fidelity [33,34].
To minimize the data-ancilla interaction, Steane [13] and
Knill [15] suggested the use of transversal two-qubit gates
to transfer the errors from the data block to an ancilla code
block and then measurement of the ancilla block to gain error
information. Steane’s scheme is specialized for Calderbank-
Shor-Steane (CSS) codes [5,6] and needs two separate rounds
of transversal two-qubit gates for extracting the X - and Z-type
stabilizers, respectively. Knill’s scheme works for arbitrary
stabilizer codes and only needs one round of the transversal
gate to extract all the stabilizers. Using a constant number
of Steane or Knill syndrome extractions, an arbitrary logical
Clifford circuit can be implemented fault tolerantly in O(1)
steps [35]. Both Steane’s and Knill’s schemes are single shot,
i.e., no repetition of measurements is required. Indeed, each
data qubit is touched by O(1) two-qubit gates. However, com-
paring to a cat state, the ancilla blocks for both Steane’s and
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Knill’s schemes are much harder to prepare, as they are as
large as the data block [14,36–39].

A natural question to raise is whether it is possible to bal-
ance the complexities of ancilla preparation and data-ancilla
interaction. In Ref. [40] we gave a positive answer for CSS
codes and in this companion paper we elaborate on the theory
behind the method and present additional numerical details.
We have generated a family of extraction circuits including
Shor’s and Steane’s constructions as its two extremes. This
family increases the complexity of ancilla construction in
exchange for reducing the number of two-qubit gates between
data and ancilla qubits required to fault-tolerantly measure the
error. Applying our construction on the toric code, we are
able to use a single ancilla block to measure the plaquette
operators (Z-stabilizer elements) inside any connected sub-
lattice. In particular, one can partition the L × L toric lattice
into patches, each of which contains m × m plaquettes. Shor’s
and Steane’s schemes correspond to the special cases m = 1
and m = L, respectively. Moreover, by offsetting the partition
periodically, one can achieve fault tolerance within O(L/m)
measurement rounds. Indeed, the parameter m simultaneously
controls the ancilla-block size and the time overhead of fault
tolerance. Our result is compatible with the fact that Shor’s
and Steane’s schemes require O(L) and O(1) measurement
rounds on the toric code, respectively.

Our paper is organized as follows. In Sec. II we review the
essential background and present our notation. In Sec. III we
discuss the construction of our family of extraction circuits. In
particular, a subfamily called transversal gadgets is proposed.
In Sec. IV we discuss the application of transversal gadgets on
the toric code and analyze the time overhead of fault-tolerant
syndrome measurements. We conclude with a summary and
discussion in Sec. V.

II. BACKGROUND

A. Linear codes

We start by developing our notation for connecting sets
and binary vector spaces. Given a set �, we can define a
vector space V� where each vector corresponds to a finite
subset A ⊆ �, and vector addition is defined as the symmetric
difference of two finite subsets of �, i.e., for any two finite
subsets A,B ⊆ � we define A + B := (A ∪ B) \ (A ∩ B). The
symmetric difference yields A + A = ∅ and as a result V� is a
binary vector space. For convenience, each element w ∈ � is
associated with two other meanings: a subset {w} ⊆ � and
indeed a vector {w} ∈ V�. We can then simplify the equa-
tion A = ∑

w∈A{w} as A = ∑
w∈A w for every A ∈ V�. As a

result, we have

V� =
{∑

v∈A
v

∣∣∣∣∣A ⊆ �, |A| < ∞
}

= F2[�], (1)

i.e., V� is the binary vector space spanned by the set �,
denoted by F2[�]. The cardinality of a finite subset A ⊆ �,
|A|, is also referred to as the weight of the vector A ∈ F2[�].

The (standard) inner product of F2[�] is an
F2-bilinear form

〈·, ·〉� : F2[�] × F2[�] → F2

such that for any a, b ∈ �, 〈a, b〉� = 1 if and only if a = b.
Two vectors φ,ψ ∈ F2[�] are said to be orthogonal if and
only if 〈φ,ψ〉� = 0. More generally, two vector subspaces
V,W ⊆ F2[�] are said to be orthogonal (denoted by V⊥W )
if we have 〈v,w〉� = 0 for every v ∈ V and w ∈ W .

Let � and � be two sets and M : F2[�] → F2[�] be a
linear map. The kernel and image of M are denoted by ker M
and im M, respectively. When � and � are finite, the trans-
pose of M is defined to be a linear map MT : F2[�] → F2[�]
such that

〈a,MTb〉� = 〈Ma, b〉�
for every a ∈ � and b ∈ �. In other words, under the stan-
dard bases � and �, the matrix MT is the transpose of the
matrix M. We also define the transpose of a vector φ ∈ F2[�],
denoted by φT, as the map

ψ �→ φTψ := 〈φ,ψ〉�. (2)

We now briefly discuss linear codes. Let � be a set of n
classical bits. A linear code on � is a subspace C ⊆ F2[�].
The vectors of C are called codewords. A parity-check matrix
H of C is a linear map from F2[�] to some other F2-vector
space, Fm

2 , such that C ⊆ ker H . In this work, we are not
required to have C = ker H . The dual code of C is defined by

C⊥ := {v ∈ F2[�] : cTv = 0 ∀ c ∈ C}. (3)

Note that C⊥ ⊇ im HT. This is because for each x ∈ Fm
2

we have

cTHTx = (Hc)Tx = 0 (4)

for every c ∈ C.

B. CSS stabilizer codes

Let � be a set of n qubits. The state space of the quantum
system � is denoted by H� = C[F2[�]] ∼= C2n . The Pauli
group on � is denoted by P�. For each qubit q ∈ �, the
Pauli X and Z operators on Hq are denoted by Xq and Zq,
respectively. For each subset ψ ⊆ �, the X -type and Z-type
operators supporting on ψ are defined by

X [ψ] :=
⊗
q∈�

XψTq
q ∈ P� (5)

and

Z[ψ] :=
⊗
q∈�

ZψTq
q ∈ P�, (6)

respectively. Note that X 0
q = Z0

q = 1q.
A quantum code on � is a subspace CQ ⊆ H�. A logical

operator of CQ is an operator L on H� such that L(CQ) ⊆ CQ.
A stabilizer code on � is defined by an Abelian subgroup
S ⊆ P� such that every operator P ∈ S has eigenvalues ±1
and −1H�

/∈ S. The corresponding code space CQ is the com-
mon +1 eigenspace of all the operators in S. In particular, if
dim CQ = 1, the unique state in CQ (up to a constant) is said
to be a stabilizer state. If S = SX ⊕ SZ , where elements in SX

(SZ ) are all X type (Z type), we say that S = SX ⊕ SZ is a
Calderbank-Shor-Steane code [5,6] and SX and SZ are the X
and Z stabilizers, respectively. We can represent SX and SZ by
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two binary vector subspaces

CX := {ψ ∈ F2[�] : X [ψ] ∈ SX } ∼= SX (7)

and

CZ := {ψ ∈ F2[�] : Z[ψ] ∈ SZ} ∼= SZ , (8)

respectively. Note that for any ψ, φ ⊆ �, X [ψ] and Z[φ]
commute with each other if and only if ψ and φ are orthog-
onal. As S = SX ⊕ SZ is Abelian, we must have CX⊥CZ . In
this paper, we prefer the binary vector space representation of
CSS codes and use the notation CX⊥CZ to denote a CSS code.

For a CSS code CX⊥CZ with a codespace CQ ⊆ H�, the
dimension of CQ is 2k , where

k = n − dim CX − dim CZ . (9)

Thus we say that CX⊥CZ encodes k logical qubits. For any
vector ψ ∈ C⊥

Z , X [ψ] commutes with any stabilizer and hence
must be a logical operator. Similarly, for any φ ∈ C⊥

X , Z[φ]
is a logical operator. In fact, we can always find k vec-
tors ψ1, . . . , ψk ∈ C⊥

Z and another k vectors φ1, . . . , φk ∈ C⊥
X

such that ψT
i φ j = δi j . Defining X̄i := X [ψi] and Z̄ j := Z[φ j],

we have

X̄iZ̄ j = (−1)δi j Z̄ j X̄i. (10)

Indeed, X̄i and Z̄i can be regarded as the logical Pauli X and Z
operators of the ith logical qubit, respectively.

III. SYNDROME EXTRACTIONS FOR CSS CODES

On a stabilizer code, the errors are detected by measuring
the stabilizer elements. For CSS codes, it is natural to measure
the Z- and X -stabilizer elements so that the X errors (bit flips)
and the Z errors (phase flips) can be handled separately. Here
we are regarding a Y error as the combination of an X error
and a Z error. In this paper, we focus on Z-stabilizer measure-
ments, since an analysis of X -stabilizer measurements would
be the same up to a Hadamard transform.

Let CX⊥CZ be a CSS code on a set of data qubits D with a
codespace CQ ⊆ HD. Suppose we have an X error X [ψ] (ψ ⊆
D) and we are measuring the Z-stabilizer elements {Z[φb]}b∈B,
where φb ∈ CZ and B is a finite set of syndrome bits. For each
syndrome bit b ∈ B, the outcome of the measurement Z[φb] is
determined by the value φT

b ψ ∈ F2. The binary vector

Hψ :=
∑
b∈B

bφT
b ψ ∈ F2[B] (11)

is called the syndrome. The map H = ∑
b∈B bφ

T
b is called

a Z-check matrix of the CSS code CX⊥CZ . Note that we
do not require the condition im HT = CZ . However, we do
require that im HT ⊆ CZ , as HT = ∑

b∈B φbbT maps every
b ∈ B to φb ∈ CZ .

If we are at the end of the computation, the syndrome of a
Z-check matrix H can be obtained by measuring all qubits of
D in the Z basis: If D is measured to be in the state |ψ〉 ∈ HD,
where ψ ∈ F2[D], then the syndrome is simply Hψ . In the
intermediate steps, however, we are not allowed to measure
the data qubits directly, as the single-qubit Z measurements
anticommute with the X -stabilizer elements. A general idea
shared by both Shor’s and Steane’s syndrome extraction pro-
tocols is to transfer the X errors to a set of ancilla qubits A
by CNOT gates: As the CNOT gate propagates the X errors on

the control qubit to the target qubit, we can perform CNOT

gates with controls in D and targets in A and then apply
Z measurements on all ancilla qubits to detect these errors.
Of course, this is far from being a valid construction. In the
following, we explore the necessary and sufficient conditions
for a valid extraction circuit. To simplify our problem, we do
not initially consider the challenge of fault tolerance.

As a first step, we encode the information of the CNOT gates
by a matrix � : F2[D] → F2[A], where for each data qubit d ∈
D and ancilla qubit a ∈ A, aT�d = 1 if and only if a CNOT

gate with control d and target a is applied. As these CNOT

gates commute with each other and we do not consider the
fault-tolerance properties, the order of these CNOT gates does
not matter. The product of all CNOT gates is denoted by U� .
One can easily verify the identities

U�X [ψ]X [ψ ′] = X [ψ]X [ψ ′ + �ψ]U�, (12)

U�Z[φ]Z[φ′] = Z[φ + �Tφ′]Z[φ′]U�, (13)

where ψ, φ ∈ F2[D] and ψ ′, φ′ ∈ F2[A].
Suppose the ancilla block A is prepared in a state |anc〉.

When there are no errors on the data block D, the action ofU�

is required to be trivial, i.e., for any code state |ω〉 ∈ CQ, we
should have

U�|ω〉|anc〉 = |ω〉|anc〉. (14)

Note that the code space CQ is spanned by

{Z[φ]|+k〉 : φ ∈ C⊥
X }, (15)

where |+k〉, the logical |+k〉 state, is the CSS stabilizer state
of C⊥

Z ⊥CZ . This is true because we have enumerated all the
logical Z-type operators. From (13), Z[φ] commutes with U�

for any φ ⊆ D. Thus (14) can be simplified as

U�|+k〉|anc〉 = |+k〉|anc〉. (16)

Let X [ψ] (ψ ⊆ D) be an X error on a codeword |ω〉 ∈ CQ.
From (12) we have

U� (X [ψ]|ω〉)|anc〉 = (X [ψ]|ω〉)(X [�ψ]|anc〉). (17)

If |anc〉 has a nontrivial Z stabilizer represented by C̃Z ⊆
F2[A], fixing a Z-check matrix H̃ : F2[A] → F2[B] with
im H̃T ⊆ C̃Z , the syndrome of H̃ will be H̃�ψ ∈ F2[B]. If
H = H̃�, we can obtain Hψ = H̃�ψ , the syndrome of H , by
measuring all qubits of A in the Z basis. One could naturally
ask the following question.

Question 1. Given two matrices H̃ : F2[A] → F2[B] and
� : F2[D] → F2[A] such that H = H̃� is a Z-check ma-
trix of CX⊥CZ , can we find a state |anc〉 ∈ HA such that
U�|+k〉|anc〉 = |+k〉|anc〉 and Z[φ]|anc〉 = |anc〉 for every
φ ∈ im H̃T? In other words, can the circuit

D

UΓ

|anc〉
extract the syndrome of H?
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Suppose we already have a satisfying ancilla state |anc〉 for
a given H̃ and �. In (17), if we take ψ ∈ C⊥

Z and combine (16),
we will have

|+k〉 ⊗ (X [�ψ]|anc〉) = |+k〉 ⊗ |anc〉,
i.e., X [�ψ]|anc〉 = |anc〉. Using C̃X ⊆ F2[A] to represent the
X stabilizer of |anc〉, X [�ψ]|anc〉 = |anc〉 is equivalent as
�ψ ∈ C̃X . Therefore, we must have

�(C⊥
Z ) ⊆ C̃X . (18)

On the other hand, let C̃Z ⊆ F2[A] represents the Z-stabilizer
group of |anc〉. For every φ ∈ C̃Z we have

|+k〉|anc〉 = U�|+k〉(Z[φ]|anc〉) = (Z[�Tφ]|+k〉)|anc〉.
Therefore, �Tφ ∈ CZ and hence

�T(C̃Z ) ⊆ CZ . (19)

The conditions (18) and (19) imply thatU� preserves the CSS
stabilizer group

(C⊥
Z ⊕ C̃X )⊥(CZ ⊕ C̃Z ). (20)

If C̃X = C̃⊥
Z , i.e., |anc〉 is a CSS stabilizer state and hence

|+k〉|anc〉 is the stabilizer state of (20), the condition (16)
must hold.

Our problem now becomes finding a CSS stabilizer state
|anc〉 with X and Z stabilizers C̃X and C̃Z (C̃X = C̃⊥

Z ), respec-
tively, satisfying (18), (19), and the condition im H̃T ⊆ C̃Z . A
natural strategy is to minimize C̃Z and maximize C̃X = C̃⊥

Z .
The minimal choice of C̃Z is just im H̃T as required. The
following lemma shows that C̃Z = im H̃T and C̃X = ker H̃
always satisfy (18) and (19).

Lemma 1. �T(im H̃T ) ⊆ CZ and �(C⊥
Z ) ⊆ ker H̃ .

Proof. The first part follows from a direct calculation

�T(im H̃T ) = �TH̃T(F2[B]) = im HT ⊆ CZ .

The latter part is also straightforward: For any ψ ∈ C⊥
Z , we

have H̃�ψ = Hψ = 0. Thus �ψ ∈ ker H̃ .
From the discussion above, we can conclude that given a

Z-check matrix H of CX⊥CZ , any decomposition H = H̃�

corresponds a valid gadget extracting the syndrome of H . All
the information of the gadget is determined by H̃ and �, which
allows us to define a gadget in an abstract way.

Definition 1 ( Z-extraction gadgets). A Z-extraction gadget
of a CSS code CX⊥CZ on the block D is a tuple (A,B, H̃ , �),
where A is the set of ancilla qubits, B is the set of syndrome
bits, and H̃ : F2[A] → F2[B] and � : F2[D] → F2[A] are two
matrices such that H = H̃� is a Z-check matrix of CX⊥CZ .
Here H , H̃ , and � are referred to as the data check matrix,
ancilla check matrix, and gate matrix, respectively. The ancilla
block A is prepared in the CSS state of ker H̃⊥im H̃T, while
the gate applied between D and A is U� .

If we apply two gadgets G1 = (A1,B1, H̃1, �1) and G2 =
(A2,B2, H̃2, �2), we can view them as a united gadget G =
(A,B, H̃ , �) such that A = A1 ∪ A2 and B = B1 ∪ B2. The
gate matrix � and the ancilla check matrix H̃ are defined by

� =
(

�1

�2

)
(21)

and

H̃ =
(
H̃1 0
0 H̃2

)
, (22)

respectively. The total parity check matrix

H = H̃� =
(
H̃1�1

H̃2�2

)
. (23)

We say that G is a sum of G1 and G2, denoted by G = G1 ⊕ G2.
We now review Shor’s and Steane’s constructions in

our notation.
Example 1 (Shor’s scheme). In Shor’s scheme [9,10],

each syndrome bit b ∈ B corresponding to the Z-stabilizer
element Z[φb] (φb ⊆ D) is extracted by a separate gadget
Gb = (Ab, {b}, H̃b, �b) such that �T

b H̃
T
b b = φb. The whole

gadget is therefore G = ⊕
b∈B Gb and we say that G is a

Shor-style gadget.
The simplest choice of Gb is to set Ab = {a} to have

one ancilla qubit a, and H̃T
b b = a and �T

b a = φb. Since
im H̃T

b
∼= F2 and ker H̃b = 0, the ancilla qubit a is stabilized

by the single-qubit Pauli Z operator. This is known as the
bare-ancilla gadget. If all the Gb are bare ancilla, the gate
matrix and the data check matrix of G are identical, while the
ancilla check matrix is the identity matrix of dimension |B|.

Another choice of Gb is to set |Ab| = |φb|. We fix a set
bijection γ : Ab ↔ φb and define the gate matrix �b by �T

b a =
γ (a) for every a ∈ Ab. The ancilla check matrix is defined by
H̃T
b b = Ab ∈ F2[Ab]. One can verify that the ancilla state is

the cat state |+|φb|〉 + |−|φb|〉. This is known as the cat-state
gadget.

Example 2 (Steane’s scheme). In Steane’s scheme [13],
all the Z-stabilizer elements are extracted by one ancilla
block. The ancilla block A is a set identical to the data block
D. The gate matrix � is an identity matrix under the standard
bases, and the ancilla check matrix H̃ is identical to the data
check matrix H . The ancilla state is the CSS stabilizer state of
C⊥
Z ⊥CZ , which is the logical |+k〉 state, where k is the number

of logical qubits.
Shor’s scheme benefits from having small transversal cat-

state gadgets with ancilla blocks whose sizes are defined by
the weight of the measured stabilizers, |Ab| = |φb|. If the
stabilizers are measured in a serial manner, one only needs a
number of ancilla qubits equal to the highest-weight stabilizer
maxb(|φb|). Parallel syndrome measurement is desirable and
one will need F ancilla qubits where F = ∑

b∈B |φb|. If each
one of the n data qubits interacts on average with f measured
stabilizers, then we can also write F = f n. Measurements
need to be repeated T times until errors due to measurement
can be distinguished from errors on the data; T can scale
as O(d2) [9,23,24] in the worst case, but scales as O(d ) for
topological codes [19].

Steane’s scheme requires large ancilla-block size equal to
the data block. However, only one block is needed for Z
extraction. The total number of ancilla qubits is just n, which
is less than the f n needed for the parallel Shor scheme. In
addition, Steane’s scheme is a single-shot method, so T is
constant. The cost of Steane’s scheme is the preparation and
verification of the ancilla block, which becomes challenging
as the code distance increases. However, if we can prepare
the ancilla, it greatly reduces the number of interactions
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between the data block and the ancilla block before correction
is applied.

Our goal is to construct gadgets other than Shor- and
Steane-style ones that result in simplified ancilla blocks
compared to Steane’s and fewer interactions between data
and ancilla than Shor’s. Conceptually, we can start with
Shor ancilla blocks and merge ancilla blocks in a way that
removes ancilla qubits. We now describe this procedure in
detail.

We start from Shor’s cat-state syndrome measurement cir-
cuit, denoted by G = (A,B, H̃ , �). For every ancilla qubit
a ∈ A, it interacts with exactly one data qubit and transfers
the error to exactly one syndrome bit, i.e., |�Ta| = |H̃a| = 1.
In matrix language, each row of � and each column of H̃
contains exactly one nontrivial entry. We construct gadgets by
applying a series of steps, each of which is described by one
of the following operations.

(i) Pick two ancillas a1, a2 ∈ A with �Ta1 = �Ta2. Merge
a1 and a2 as one ancilla qubit a. Update � by adding a row
aT� = aT1 � and deleting the rows aT1 � and aT2 �. Update H̃
by adding a column H̃a = H̃ (a1 + a2) and then deleting the
columns H̃a1 and H̃a2.

(ii) Pick two ancillas a1, a2 ∈ A with H̃a1 = H̃a2. Merge
a1 and a2 as one ancilla qubit a. Update � by adding a row
aT� = aT1 � + aT2 � and then deleting the rows aT1 � and aT2 �.
Update H̃ by adding a column H̃a = H̃a1 and then deleting
H̃a1 and H̃a2.

It is easy to check that the updated H̃ and � satisfy the
condition H = H̃�. If we only apply (i), each row of � will
always have exactly 1 nontrivial entry. Indeed, the gadget will
be transversal on the ancilla. Assuming the ancilla block can
be fault-tolerantly prepared by postselection so that no corre-
lated errors can occur, a transversal gadget will not introduce
correlated errors to the data block. If we keep doing (i), we
will eventually obtain Steane’s scheme. On the other hand,
if we only apply (ii), we make the cat states smaller and
introduce nontransversal interactions. The extreme case where
no ancilla can be further merged is the bare-ancilla scheme.

By allowing both types of ancilla merging, we can generate
a large number of gadgets. In fact, arguably, all the gadgets
can be generated in this way. To see this, for any gadget
G = (A,B, H̃ , �) we can split each ancilla qubit a ∈ A into
|�Ta| × |H̃a| ancilla qubits: With each data qubit q ∈ �Ta
and syndrome bit b ∈ H̃a ⊆ B, we associate an ancilla qubit
to pass the X error on q to b. The obtained gadget is Shor’s
cat-state syndrome measurement scheme, and the reverse
of the splitting provides us the merging steps from Shor’s
scheme to G.

However, such an argument has a few exceptions. First,
if |�Ta| = 0 or |H̃a| = 0, a will be split into 0 qubits so
that the process is irreversible. Second, for each data qubit
q and each syndrome bit b, the number of ancilla qubits
connecting them after splitting, whose parity is bTHq, can
be more than 1. In contrast, for Shor’s scheme, there must
be exactly bTHq ∈ {0, 1} ancilla qubits. To handle these ex-
ceptions, we can introduce pairs of redundant ancilla qubits
to Shor’s scheme before merging: Each pair of ancilla qubits
passes the error on the same data qubit to the same syndrome
bit. After merging, we can add ancilla qubits that only connect
syndrome bits. Of course, we can add ancilla qubits that only

connect data qubits as well. These ancilla qubits, however, are
not helpful for gaining error information.

The tradeoffs of two merging operations are different: Op-
eration (i) reduces the number of CNOT gates between data
and ancillas while making the ancilla block more entangled;
(ii) simplifies the ancilla-block preparation while taking the
risk of introducing correlated errors and breaking fault tol-
erance. If we wish to have postselection-free ancillas, the
stabilizer generators of the ancilla block should have weight
no more than 3 so that the residual error of each single er-
ror in the preparation circuit can be reduced to a weight-1
error. Bare ancillas, Bell states, and three-qubit Greenberger-
Horne-Zeilinger states are example states that satisfy this
requirement. More generally, any CSS state equivalent to a
one-dimensional cluster state (up to Hadamard gates) can
be directly prepared. To preserve the code distance, the cor-
related errors introduced by these simple gadgets need to
be handled by either a well-designed decoder or modifica-
tions to the decoding circuits, such as flag qubits [16,18,30]
and DiVincenzo-Aliferis ancilla decoding [25]. However, as
the matrix decomposition H = H̃� inherits the code struc-
ture from H , the detailed fault-tolerance design will be
code specific.

In Fig. 1 we illustrate how to obtain syndrome extraction
methods for Steane’s seven-qubit code by applying merging
operations on Shor’s scheme. Instead of applying only one
type of operation, we can apply both. As an example, we apply
(i) on Shor’s scheme twice to obtain a transversal gadget (re-
ferred to as scheme A in Fig. 1) and then apply (ii) five times
to obtain a non-fault-tolerant circuit (referred to as scheme
B) whose ancilla state can be prepared without verification.
As Steane’s code has distance 3, one can apply a DiVincenzo-
Aliferis decoding circuit [25] to make scheme B fault tolerant.
The details of the protocol are given in Appendix A.

When measurement errors are being considered, the use
of different extraction gadgets will lead to different decod-
ing problem details. In the next section, as an example, we
will study the behavior of transversal gadgets on Kitaev’s
toric code [4] thoroughly. In particular, we will show that
by switching between different gadgets, the time overhead of
fault tolerance can be reduced without increasing the ancilla
complexity.

IV. BLOCK EXTRACTIONS OF THE TORIC CODE

We briefly review the construction of the toric code [4]. A
toric code is a CSS code defined on an L × L periodic lattice
on the torus. The lattice has a set V of L2 vertices, a set E of
2L2 edges, and a set F of L2 faces. Define the boundary map

∂ : F2[F ] �→ F2[E ],

F � f �→ {e ∈ E |e borders f } (24)

and the coboundary map

δ : F2[V ] �→ F2[E ],

V � v �→ {e ∈ E |e is incident to v}. (25)

For each f ∈ F and v ∈ V , since |∂ f ∩ δv| = 0 or 2, we must
have 〈∂ f , δv〉E = 0. Indeed, im δ⊥ im ∂ . Taking CX = im δ

and CZ = im ∂ , CX⊥CZ is a well-defined CSS code on the
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FIG. 1. For the Steane [[7,1,3]] code, we show how to construct syndrome extraction circuits by merging ancilla qubits in Shor’s scheme. In
the circuit diagram, the labeled sets of the data qubits, ancilla qubits, and syndrome bits are {1, . . . , 7}, {1′, . . . , 12′}, and {a, b, c}, respectively.
The syndrome bits can be determined by a collective measurement of the labeled qubit outputs. Two ancilla qubits can be merged if they
(i) talk to the same set of data qubits or (ii) contribute to the same set of syndrome bits. If we repeat application of rule (i), we will eventually
obtain Steane’s scheme. Bare-ancilla extraction is the limit for applying rule (ii) only. For example, we demonstrate scheme A, a transversal
gadget obtained by applying (i) to Shor’s scheme twice, and scheme B, obtained by applying (ii) on scheme A five times. We illustrate the
matrix decomposition description H = H̃� of these gadgets. Empty elements in H̃ are zeros, which are not shown to emphasize the block
structure. The Z- and X -stabilizer generators are generated from im H̃T and ker H̃ , respectively. We note that the ancilla state for scheme B is
(|000〉 + |111〉) ⊗ (|00〉 + |11〉), which can be directly prepared without verification. However, as the circuit is not transversal on the ancilla
block, we will require a DiVincenzo-Aliferis decoding circuit [25] to achieve fault tolerance. The details are given in Appendix A.

edge set E . A nontrivial logical Z-type (X -type) operator is
represented by a noncontractible loop (cut) on the torus, which
has minimum length L. In other words, the toric code has
distance L. The Z- and X -check matrices of the toric code

are ∂T and δT, respectively. A Z-extraction gadget is therefore
represented by a decomposition ∂T = ∂̃Tγ T, or ∂ = γ ∂̃ . The
matrices ∂̃T and γ T are the ancilla check and gate matrices,
respectively.
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The Shor-style extraction gadget, denoted by
(Ẽ0,F, ∂̃T

0 , γ T
0 ), can be understood as cutting the torus into

L2 disjoint square faces. The set Ẽ0 contains the 4L2 edges of
these squares. For two edges ẽ1, ẽ2 ∈ Ẽ0, if they were the same
edge γ0ẽ1 = γ0ẽ2 ∈ E before the torus was cut, we can glue
the two edges back, which corresponds to a type-(i) merging
of ancilla qubits ẽ1 and ẽ2. Therefore, any transversal gadgets
can be constructed by cutting the torus along some chosen
edges. If we do not make any cut, the gadget will be Steane
style; if we choose to cut along all edges, we will obtain the
Shor-style gadget. In general, we will obtain a new topological
space, with an edge set Ẽ and a boundary map ∂̃ : F2[F ] →
F2[Ẽ ]. The map γ : F2[Ẽ ] → F2[E ] maps an edge ẽ ∈ Ẽ back
to its corresponding edge e ∈ E on the torus. The boundary
of the space is ∂̃F ⊆ Ẽ . Here, as a reminder, F is viewed as
an F2-vector. If we cut along an edge e ∈ E so that |γ Te| = 2,
we must have γ Te ⊆ ∂̃F . If we cut the torus into several
connected components so that the face set F is decomposed
as F = ⋃

i Fi, where each Fi is the face set of a component,
then the gadget (Ẽ ,F, ∂̃T, γ T ) can be decomposed as

(Ẽ ,F, ∂̃T, γ T ) =
⊕
i

(Ẽi,Fi, (∂̃|Fi )T, (γ |Ẽi
)T ), (26)

where each Ẽi := ⋃
f∈Fi ∂̃ f is the set of edges of the compo-

nent Fi, ∂̃|Fi is the restriction of ∂̃ on Fi, and γ |Ẽi
is the restric-

tion of γ on Ẽi. That is, the ancilla block Ẽ is decomposed as
subblocks Ẽi, and two different blocks are not entangled.

A. Errors in space-time

We now describe our model of fault-tolerant error correc-
tion following the presentation in Ref. [40]. As X and Z errors
can be corrected separately, we can ignore the Z errors on the
data qubits and the X -stabilizer measurements. Suppose our
computation starts from time 0 and never ends. We extract
the Z-check matrix ∂ at every positive integer time. For ev-
ery t ∈ Z+, each data qubit could have an X error at time
t − 1

2 , and the measurement outcome of each ancilla qubit
at time t could have a classical bit-flip error. For now, we
ignore the data errors between two CNOT gates in the same
extraction round.

Suppose the transversal gadget applied at time t ∈ N is
Gt = (Ẽt ,F, ∂̃T

t , γ T
t ), where γt ∂̃t = ∂ . An X error on the data

qubit e ∈ E at time t − 1
2 is denoted by the pair (e, t ). The

measurement error on the ancilla qubit ẽ ∈ Ẽt at time t ∈ T
is denoted by the pair (ẽ, t ). The set of all single data-qubit
errors, denoted by D, is

D = E × N, (27)

while the set of measurement errors, denoted by M, is

M =
⊔
t∈N

Ẽt :=
⋃
t∈N

Ẽt × {t}. (28)

An error history is defined to be a finite subset ψ ⊆ D ∪ M, or
equivalently a vector ψ ∈ F2[D ∪ M]. The evaluation of data
errors at time t − 1

2 (t ∈ N) is a map

Dt : F2[D ∪ M] �→ F2[E ],

ψ �→ {e : (e, t ) ∈ ψ ∩ D}. (29)

For later convenience, the time coordinates of the errors are
discarded. Similarly, the evaluation of measurement errors at
time t is a map

Mt : F2[D ∪ M] �→ F2[Ẽt ],

ψ �→ {ẽ : (ẽ, t ) ∈ ψ ∩ M}. (30)

The data error propagating to the ancilla block Ẽt is the
accumulation of all data errors before time t , which can be
evaluated by the map

D̄t :=
∑
t ′�t

Dt ′ . (31)

In particular, we define D̄ := ∑
t∈N Dt . The syndrome at time

t can therefore be evaluated by the map

σt = ∂̃T
t (γ T

t D̄t + Mt ) = ∂TD̄t + ∂̃T
t Mt . (32)

We can take the difference of the syndrome sequence {σt }t∈N ,

�t := σt − σt−1

= ∂TD̄t + ∂̃T
t Mt − ∂TD̄t−1 − ∂̃T

t−1Mt−1

= ∂T(D̄t − D̄t−1) + ∂̃T
t Mt − ∂̃T

t−1Mt−1

= ∂TDt + ∂̃T
t Mt − ∂̃T

t−1Mt−1

= ∂TDt + ∂̃T
t Mt + ∂̃T

t−1Mt−1. (33)

In the above calculation, we set σ0 = 0, D̄0 = 0, and M0 = 0
for convenience. We can see that the data error Dt only con-
tributes to �t , while the measurement error Mt contributes to
both �t and �t+1. The syndrome history is defined as a map


 : F2[D ∪ M] �→ F2[F × N],

ψ �→
⊔
t∈N

�tψ. (34)

We now analyze the behavior of each single error. For each
data error (e, t ), one can verify that


(e, t ) = (∂Te) × {t} = { f1, f2} × {t}, (35)

where f1, f2 ∈ F are the two faces sharing e as their borders.
For each measurement error (ẽ, t ) ∈ M, where ẽ ∈ Ẽt , one can
verify that


(ẽ, t ) = (∂̃T
t ẽ) × {t, t + 1}. (36)

If ẽ ∈ ∂̃tF , i.e., ẽ is an split edge, ∂̃T
t ẽ has only one face and

we say that (ẽ, t ) is a type-I error. Otherwise, |∂̃T
t ẽ| = 2 and

(ẽ, t ) is said to be a type-II error. The set of type-I errors,
denoted by M1, is

M1 =
⊔
t∈N

∂̃tF, (37)

while the set of type-II errors is denoted by M2 = M − M1.
The syndrome bit flips can be viewed as defects in the (2 +

1)-dimensional lattice: Each data error creates two defects in
the same time slice: Each type-I error creates two defects on
the same location, but in two consecutive time slices, and each
type-II error creates four defects. We give an example of the
effect of different error types in Fig. 2. If Gt is a Shor-style
gadget, all measurement errors at time t will be of type I, and
the data and measurement errors are referred to as spacelike
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FIG. 2. Example of toric code syndrome extraction via our transversal gadget construction. At time t , a verified ancilla block consisting of
13 faces is used to extract the syndrome bits (face operators) in the gray region via transversal CNOT gates. (a) A bit-flip data error creates a
pair of defects at time t . (b) A measurement error on the boundary of the ancilla block (type-I error) creates a defect at time t and another one
at t + 1. (c) A measurement error in the bulk of the ancilla block (type-II error) creates a defect pair at time t and another pair at time t + 1.

and timelike errors, respectively [19]. If Gt is a Steane-
style gadget, however, all measurement errors at time t will
be of type II.

B. Minimum-weight perfect matching decoder

Given an error history ψ ∈ F2[D ∪ M] with observed syn-
drome history 
ψ ∈ F2[F × N], a decoder

Dec : F2[F × N] → F2[D ∪ M] (38)

will take 
ψ as the input and output an estimation of error
history ψ ′ = Dec(
ψ ) such that 
ψ ′ = 
ψ . The optimal
choice of the decoder is the minimum-weight-error (MWE)
decoder DecMWE defined by

DecMWE(
ψ ) = argmin
ψ ′=
ψ |ψ ′|. (39)

If the gadgets are all Shor style so that M = M1, the decoding
problem can be visualized by a decoder graph G with vertex
set F × N and edge set D ∪ M1: Each ( f , t ) ∈ F × N is a
vertex and each error ψ ∈ D ∪ M1 is an edge connecting the
two vertices (defects) in 
ψ . The error histories are also
called error chains, as they can be visualized as sums of chains
in G. Note that the map 
 evaluates the boundary of a given
error chain. Decoding a syndrome 
ψ is essentially finding
an error chain ψ ′ whose boundary coincides with 
ψ . As an
error chain ψ always matches the defects in 
ψ into pairs, the

MWE decoder returns a minimum-weight perfect matching
(MWPM) of the defects [19,27,41].

The existence of type-II errors complicates our problem, as
they create four defects instead of two. We have to use hyper-
edges to represent these errors in the decoder (hyper)graph.
Although we can still use a MWE decoder, the geometric
meaning will be less clear. Notice that for any type-II error
(ẽ, t ) ∈ M2 is equivalent to two data errors (γt ẽ, t ) + (γt ẽ, t +
1) ∈ F2[D]. As an approximation, we can pretend that the
type-II errors do not exist and use the MWPM decoder

DecMWPM : F2[F × N] → F2[D ∪ M1]

on the decoder graph with an edge set D ∪ M1. For conve-
nience, we define a map

� : F2[D ∪ M] → F2[D ∪ M1], (40)

D ∪ M1 � ψ �→ ψ,

M2 � (ẽ, t ) �→ (γt ẽ, t ) + (γt ẽ, t + 1)

that projects all the errors onto the decoder graph. For each
error history ψ ∈ F2[D ∪ M], the MWPM decoder will regard
it as an error chain �ψ on the decoder graph with total length
|�ψ | = |ψ | + |ψ ∩ M2|, or more explicitly

|ψ ∩ D| + |ψ ∩ M1| + 2|ψ ∩ M2|.

FIG. 3. Decoder graphs of the toric code. The syndrome bits are vertices, the data errors are horizontal edges, and the type-I measurement
errors are vertical edges. (a) The decoder graph of the Shor error correction is a homogeneous three-dimensional lattice. (b) The decoder graph
of the Steane error correction is a stack of two-dimensional lattices. Different layers are not connected. (c) Decoder graph of block extraction.
The ancilla blocks when aligned lead to timelike correlations between direct repeated measurements. (d) By offsetting the ancilla blocks, the
timelike correlations require spacelike errors in order to correlate defects from top to bottom. The images in (c) and (d) have been reproduced
from Ref. [40].
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Indeed, the MWPM decoder can only guarantee that

|DecMWPM(
ψ )| � |�ψ | = |ψ | + |ψ ∩ M2|. (41)

However, as shown below, DecMWPM can preserve the code
distance L.

Theorem 1. If |ψ | < L/2, DecMWPM will correct ψ without
introducing a logical error.

Proof. Let ψ ′ = DecMWPM(
ψ ). By applying the correc-
tion ψ ′, the data error will become an undetectable error
D̄(ψ + ψ ′). Since the toric code has distance L, it suffices
to show that |D̄(ψ + ψ ′)| < L.

From (41) and the fact that |ψ ′ ∩ D| � |ψ ′|, we obtain
|ψ ′ ∩ D| � |ψ | + |ψ ∩ M2|. Moreover,

|ψ ′ ∩ D| + |ψ ∩ D|
� |ψ | + |ψ ∩ D| + |ψ ∩ M2|
� 2|ψ | < L. (42)

The theorem is proved by combining (42) and the fact that

|D̄(ψ + ψ ′)| � |ψ ′ ∩ D| + |ψ ∩ D|. (43)

C. Fault-tolerant error correction in finite time

In practice, the circuit will always end in some finite time
T . All the errors and defects can only occur before T . Indeed,
the MWPM decoder will have a finite decoder graph of size
O(TL2). As the MWPM algorithm runs in polynomial time to
the input size, for the purpose of reliable quantum memory, we
can delay the decoding until the end of the circuit execution.
However, this will be impractical for quantum computation
tasks with non-Clifford gates [42]. Instead, we need to process
the syndrome bits and correct the errors as soon as possible.
As the information provided by the latest syndrome bits is
always unreliable, they will be processed only when further
syndrome bits are gathered. For example, we can divide the
time axis by some chosen time

1 = t1 < t2 < · · · < ti < · · · .

In the ith round of error correction, we decode the syndrome
bits in the time interval [ti, ti+2) but only correct the errors
in [ti − 1

2 , ti+1 − 1
2 ); then we discard the syndrome bits in

[ti, ti+1) while keeping the syndrome bits in [ti+1, ti+2) for the
next round of correction. Note that the syndrome bits at time
ti+1 need to be updated. This is known as the overlapping
recovery method [19,23]. The details are formally described
in Procedure 1, for which we define

ψ[t, t ′] = {(e, t ′′) ∈ ψ |t � t ′′ < t ′} (44)

and


[t, t ′]ψ =
⊔

t�t ′′<t ′
�t ′′ψ (45)

for convenience.

Procedure 1 Overlapping recovery.

1:i ← 1.

2: Use MWPM to find an error history ψ ′ such that


[ti, ti+2](�ψ + ψ ′) = 0.

3: ψ ← ψ + ψ ′[ti, ti+1]. // Correct the error history. In practice,

this is equivalent to applying error correction on the data qubits

and updating the syndrome at time ti+1.

4: i ← i + 1, goto 2.

In the ith iteration of Procedure 1, the decoder graph for
MWPM only contains the vertices (syndrome bits) and edges
(errors) in [ti − 1

2 , ti+2 − 1
2 ). In particular, the type-I errors at

time ti+2 − 1 will become open edges, i.e., edges connecting
to the time boundary. The defects not only can be paired with
each other, but also can be fused with the time boundary so
that its lifetime is extended to the next round. Intuitively, if
the distance from time slice ti to ti+1 on the decoder graph,
denoted by d (ti, ti+1), is too small, it would be too easy for
the decoder to fuse a defect at time ti to the time boundary.
As a consequence, errors can hardly be corrected. If we use
the Shor-style gadget all the time, we will have d (ti, ti+1) =
|ti+1 − ti|, and it has been shown that |ti+1 − ti| = O(L) suf-
fices for fault tolerance [19]. Naturally, the result should be
generalized as d (ti, ti+1) = O(L) for arbitrary choices of gad-
gets. To show this, we prove the following.

Theorem 2. In the ith round of error correction, if the
correction ψ ′ creates a propagating error, i.e., �ψ + ψ ′ con-
tains a path from the time slice ti to the time slice ti+1, then
|ψ[ti, ti+1]| � 1

2 [d (ti, ti+1) − L].
Proof. Suppose �ψ + ψ ′ contains a path P1 from a ver-

tex ( f1, ti ) to some vertex ( f2, ti+1), where f1, f2 ∈ F . Then
�ψ + ψ ′ must contain another path P2 from a vertex ( f ′

1, ti )
to a vertex ( f ′

2, ti+1), where f ′
1, f

′
2 ∈ F and P1 ∩ P2 = ∅. We

must have

|Pi| = |�ψ ∩ Pi| + |ψ ′ ∩ Pi|. (46)

Let P3 be the shortest path from ( f1, ti ) to ( f ′
1, ti ) and P4 be

the shortest path from ( f2, ti+1) to ( f ′
2, ti+1). We must have

|P3|, |P4| � L. Consider the cycle C = P1 + P2 + P3 + P4. By
the definition of MWPM decoder, |ψ ′| � |ψ ′ +C|, which is
equivalent to

|ψ ′ ∩C| � |C| − |ψ ′ ∩C|. (47)

Combining |ψ ′ ∩C| � |ψ ′ ∩ P1| + |ψ ′ ∩ P2|, (46), and (47),
we have

|ψ ′ ∩ P1| + |ψ ′ ∩ P2|
� |�ψ ∩ P1| + |�ψ ∩ P2| + |P3| + |P4|
� |�ψ ∩ P1| + |�ψ ∩ P2| + 2L. (48)

Adding |�ψ ∩ P1| + |�ψ ∩ P2| to both side of (48) and com-
bining (46), we obtain

2(|�ψ ∩ P1| + |�ψ ∩ P2| + L) � |P1| + |P2|. (49)
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Therefore,

|�ψ[ti, ti+1]| � |�ψ ∩ P1| + |�ψ ∩ P2|
� 1

2 (|P1| + |P2| − 2L)

� d (ti, ti+1) − L. (50)

Finally, as |�ψ[ti, ti+1]| � 2|ψ[ti, ti+1]|, we have

|ψ[ti, ti+1]| � 1
2 [d (ti, ti+1) − L]. (51)

Given the gadgets {Gt }t∈N , we can choose the time slices
{ti}i∈N such that d (ti, ti+1) � αL = O(L) for some constant
α � 1. By Theorem 2, to make a propagating error happen,
the system should have at least � (α−1)L

2 � errors. As � L
2 � �

� (α−1)L
2 � errors can already lead to a logical error, assuming

the errors are independent, the probability of a propagating
error is negligible compared to that of a logical error.

Now we can move from these theorems to comparing dif-
ferent transversal gadgets by visualizing their decoder graph
in time and space. The Shor gadget leads to a uniform
three-dimensional lattice decoder graph where the vertices
are syndrome bits as shown in Fig. 3(a). As proved above,
we need the time dimension to be comparable to the space
dimension. Steane-style syndrome extraction is capable of
single-shot error correction [14]. In our method, this is clear
from the lack of timelike edges in the decoder graph in
Fig. 3(b). What intermediate schemes with block decoding
generate are decoder graphs that only have timelike edges on
the edges of the block.

We create the blocks by partitioning the L × L toric code
into m × m blocks, where m divides L. We then use a small
m × m surface-code ancilla block with 2m(m + 1) ancilla
qubits. At the edges of the blocks, there are timelike bound-
aries as shown in Fig. 3(c).

In this picture, it is clear that we can reduce timelike edges
by shifting the pattern of blocks. To simplify the shifting,
we choose m = 3k for an integer k. At every time step, we
shift the position of the blocks up and to the right by k as
shown in Fig. 3(d). By construction, the error gadgets repeat
every three steps, Gt = Gt+3, and we can verify that d (t, t +
3) = �(m). This enables us to achieve fault tolerance with
|ti+1 − ti| = O(L/m).

D. Numerical results

We test our methods using numerical simulations as de-
scribed in Ref. [40]. In Appendix B we include the raw data
of the simulation used to determine the thresholds in [40].
We reproduce the details of the numerical method below for
convenience. We also expand the simulations to consider the
case with no ancilla-block error.

We study the circuit-level performance of our fault-tolerant
error-correction schemes by Monte Carlo simulations. The
X - and Z-syndrome extractions are applied alternatively. Our
error model is parametrized by a single error parameter p and
consists of three parts.

(i) Gate errors. With probability p, each two-qubit CNOT

gate is followed by a Pauli error drawn uniformly at random
from the set {I,X,Y,Z}⊗2 \ {I ⊗ I}.

(ii)Measurement errors. With probability 2p/3, a measure-
ment outcome in either the Z or X basis is flipped.

TABLE I. Comparison of thresholds when p1 = p. These results
are also presented in Ref. [40]. For Shor and Steane ancilla, there is
no offset strategy.

Method

Shor Block extraction

Strategy Cat Bare m = 3 m = 6 m = 9 m = 12 Steane

offset 0.68 0.89 1.04 1.13
aligned 0.57 0.83 0.74 0.89 0.97 1.04 2.05

(iii) Preparation errors. Ancilla preparation can lead to
correlated errors that need to be removed through verifica-
tion or syndrome measurement decoding. Here we assume
a simple error model where the complicated ancilla blocks
are generated perfectly and then each qubit undergoes an
independent depolarizing channel with probability p1, which
we set to either p or 0.

We further simplify by ignoring idling errors, which
enables us to avoid complications due to scheduling. Compar-
ison of these syndrome extraction methods for practical appli-
cation would require a detailed multiparameter error model,
a procedure for ancilla generation and verification, and the
connectivity constraints of the quantum processor. To acceler-
ate our simulation, instead of the standard MWPM decoding
algorithm, we use a weighted variant of the union-find decoder
[43,44]. For the surface code with bare ancilla, weighted
union-find relative to MWPM decreases the threshold from
0.72% to 0.62% for a standard depolarizing error model with
idling errors [44]. Tables I and II compare our block extrac-
tion schemes and Shor’s and Steane’s schemes for the two
cases p1 = p and p1 = 0, respectively. In our noise model,
the thresholds of transversal-gadget extraction is lower (up-
per) bounded by that of Shor’s cat-state extraction (Steane’s
method). For block extraction, we fix the ancilla-block size m
when L → ∞. In this case, we will still need O(L) rounds of
extractions even if we offset the blocks. However, we observe
that offsetting the blocks yields different threshold values than
aligning them. This makes sense as the two strategies provide
different decoder graph symmetries. When m gets larger, the
offset version starts to yield higher threshold values. We also
calculate the threshold of the conventional bare-ancilla extrac-
tion scheme [41] for a comparison.

V. CONCLUSION

An ideal fault-tolerant syndrome extraction circuit would
have minimal interaction with the data, easy to prepare ancilla
blocks, and require a small number of measurement rounds

TABLE II. Comparison of thresholds when p1 = 0. For Shor and
Steane ancilla, there is no offset strategy.

Method

Shor Block extraction

Strategy Cat Bare m = 3 m = 6 m = 9 m = 12 Steane

offset 1.15 1.48 1.73 1.89
aligned 0.91 0.86 1.2 1.46 1.6 1.71 3.12
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to make a decision. In this work, we have shown a family
of extraction circuits that produces methods between Shor’s
[9] and Steane’s [13] schemes. These circuits allow us to
trade off the complexity of ancilla-block preparation for re-
duced interactions with the data. Furthermore, by shifting the
choice of ancilla blocks in time, we can reduce the num-
ber of measurement rounds to achieve fault tolerance while
maintaining constant ancilla-block complexity. Specifically
for the toric code of distance L, we can use offset blocks of
size O(m2) to achieve fault tolerance in O(L/m) rounds, as
presented in Ref. [40].

When ancilla postselections are allowed, we found that
our error-correction schemes could yield higher thresholds
for certain error models assuming negligible idling errors
and independent ancilla errors. For a more realistic threshold
estimation, we need to choose a specific ancilla preparation
protocol. For the toric code example, the ancilla blocks inherit
the toric code structure and one can use the bare-ancilla ex-
traction circuit with postselections to prepare them [41]. There
also exist protocols for preparing a general CSS stabilizer
state by state distillations without leaving any correlated errors
[39]. The detailed simulation of these preparation protocols is
beyond the scope of this work and the utility strongly depends
on the physical error model.

We have presented the toric code as an example because it
is well studied and enables us to separate the advantages and
disadvantages of our methods from advantages and disadvan-
tages of new codes. The toric code allows for fault-tolerant
syndrome extraction with bare ancilla on a nearest-neighbor
two-dimensional lattice. Our methods are not a natural choice
for the toric code, because the methods require the architec-
ture to break out of two dimensions and also creates new
challenges for generating ancilla blocks. On the other hand,
we know that finite-rate quantum error-correction codes are
not compatible with Euclidean two-dimensional architectures.
We hope that our framework will enable the development of
high-threshold fault-tolerant extraction circuits for these more
qubit efficient codes.

There are a number of directions for further study.
Codes that typically use Shor-style extraction, such as two-
dimensional color codes [30,45], can be decoded with ancilla
blocks to improve the threshold. Concatenated codes that have
high thresholds with postselected Knill or Steane schemes
[15,46] also have high ancilla rejection rates and block meth-
ods can examine trading a reduced threshold for less ancilla
verification. The non-fault-tolerant schemes developed here
can be made fault tolerant using flag methods [17,18,30].
The time optimization and the choice of ancilla blocks can
be analyzed using the framework recently applied to Shor-
style extraction [23,24]. Finally, these methods need to be
tested in the face of more realistic errors as experimental
systems approach the complexity capable of generating and
utilizing large ancilla blocks.
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APPENDIX A: FAULT-TOLERANT ERROR CORRECTION
VIA SCHEME B

In this Appendix we provide a fault-tolerant error-
correction protocol based on scheme B in Fig. 1. Our protocol
is an adaptive flagged circuit [16,47]. The extraction circuit for
Z stabilizers is described in Fig. 4. The extraction circuit of X
stabilizers is identical, up to a Hadamard transformation. A
DiVincenzo-Aliferis decoding circuit is applied before ancilla
measurement. As a result, in addition to the syndrome bits,
we also obtain two flags f1,Z ( f1,X ) and f2,Z ( f2,X ) in the Z
(X ) stabilizer measurement circuit. The flag fi,Z ( fi,X ) can

Nontrivial

FIG. 4. Adaptive fault-tolerant error-correction circuit, using scheme B in Fig. 1. Here, only the extraction of the Z stabilizer is
demonstrated. The circuit for X -stabilizer extraction is identical up to a Hadamard transformation. We keep running the flagged circuit
(scheme B) until a nontrivial syndrome is observed or some flags are raised. We then measure the syndrome again via an unflagged
(bare-ancilla) circuit and decode the errors using the new syndrome and the flags in the previous flagged round.
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TABLE III. Lookup table decoder when no flags are on. If the
flag f1,X is raised, we change the correction for aZbZcZ = 001 to
X2X3. If the flag f2,X is raised, we change the correction for aZbZcZ =
010 to X3X4.

aZbZcZ Correction aZbZcZ Correction

000 none 110 X2

100 X1 101 X4

010 X5 011 X6

001 X7 111 X3

be used to detect Z (X ) errors on the ancilla block, which
could propagate to the data block as weight-2 Z (X ) errors.
We repeatedly execute the scheme B circuit until we observe
a nontrivial outcome. As we have detected at least one error
and we cannot correct any two errors for a distance-3 code,
we can use the bare-ancilla circuit to extract the syndrome

bits aZ , bZ , and cZ (aX , bX , and cX ), as shown in Fig. 4. We
use Table III to decode the X errors based on the syndromes
measured in the unflagged circuit when no flags were raised.
However, if f1,X ( f1,Z ) is flagged and the syndrome aZbZcZ
(aXbX cX ) is 001, the most probable error should be X2X3

(Z2Z3) instead of X7 (Z7). Similarly, if f2,X ( f2,Z ) is flagged, we
need to change the correction for the syndrome 010 to X3X4

(Z3Z4). The flags tell us to expect correlations and decode
appropriately.

APPENDIX B: SIMULATION DATA

In this Appendix we present the simulated data for a series
of syndrome extraction methods in Figs. 5–10. The decoder
used is the weighted union-find decoder [44] and for the
bare ancilla, cat decoders, and m × m block decoders we
repeat the extraction for L rounds. For Steane’s scheme, we
compare the extraction method for T = 2, 5, and 8 rounds
regardless of L.

FIG. 5. Threshold behavior of Shor error correction with (a) p1 = p, a cat state; (b) p1 = 0, a cat state; (c) p1 = p, a bare ancilla; and
(d) p1 = 0, a bare ancilla, where p1 is the preparation error rate. The syndrome extraction is repeated for L noisy rounds and one ideal round.
Each data point is obtained from 104 trials.
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FIG. 6. Threshold behavior of aligned block syndrome extraction with p1 = p and block sizes (a) m = 3, (b) m = 6, (c) m = 9, and
(d) m = 12. We repeat the syndrome extraction for L rounds. Each data point is obtained from 104 trials.

FIG. 7. Threshold behavior of aligned block syndrome extraction with p1 = 0 and block sizes (a) m = 3, (b) m = 6, (c) m = 9, and
(d) m = 12. We repeat the syndrome extraction for L rounds. Each data point is obtained from 104 trials.
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FIG. 8. Threshold behavior of offset block syndrome extraction with p1 = p and block sizes (a) m = 3, (b) m = 6, (c) m = 9, and (d) m =
12. We repeat the syndrome extraction for L rounds. Each data point is obtained from 104 trials.

FIG. 9. Threshold behavior of offset block syndrome extraction with p1 = 0 and block sizes (a) m = 3, (b) m = 6, (c) m = 9, and (d) m =
12. We repeat the syndrome extraction for L rounds. Each data point is obtained from 104 trials.
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FIG. 10. Threshold behavior of Steane error correction for (a)–(c) p1 = p and (d)–(f) p1 = 0. As Steane EC is single shot, the number of
syndrome measurement rounds T is set to be finite. Each data point is obtained from 104 trials. We estimate the threshold for (a) and (d) T = 2,
(b) and (e) T = 5, and (c) and (f) T = 8 and do not find a decrease of the threshold values.
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