IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 12, DECEMBER 2020

Correspondence

16163

Intelligent and Reliable Deep Learning LSTM Neural
Networks-Based OFDM-DCSK Demodulation Design

Lin Zhang **, Senior Member, IEEE, Haotian Zhang **,
Yuan Jiang ', Member, IEEE,
and Zhiqiang Wu*“, Senior Member, IEEE

Abstract—Chaos communications have widely been applied to provide
secure, and anti-jamming transmissions by exploiting the irregular chaotic
behavior. However, the real-valued chaotic sequences imposed on the infor-
mation induce interferences to the user data, thereby leading to reliability
performance degradations. To address this issue, in this paper, we propose
to utilize the intelligent, and feature extraction capability of the deep
neural network (DNN) to learn the transmission patterns to demodulate
the received signals. In our design, we propose to construct the long short-
term memory (LSTM) unit-aided intelligent DNN-based deep learning
(DL) demodulator for orthogonal frequency division multiplexing-aided
differential chaos shift keying (OFDM-DCSK) systems. After learning,
and extracting features of information-bearing chaotic transmissions at
the training stage, the received signals can be recovered efficiently, and
reliably at the deployment stage. Thanks to the recursive LSTM-aided DL
design, correlations between information-bearing chaotic modulated sig-
nals can be exploited to enhance reliability performances. Simulation results
demonstrate with the proposed DL demodulation design, the intelligent
OFDM-DCSK system can achieve more reliable performances over additive
white Gaussian noise (AWGN) channel, and fading channels compared with
benchmark systems.

Index Terms—Bit error rate, deep learning (DL), long short-term
memory (LSTM) network, orthogonal frequency division multiplexing-
aided differential chaos shift keying (OFDM-DCSK), reliability.

1. INTRODUCTION

Chaos-based communications are capable of resisting jamming to
enhance the security performances for wireless systems. By exploiting
the irregular non-linear chaotic behavior to hide the determinism,
chaotic sequences have been applied to modulate user data in practical
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systems such as ultra-wide-band (UWB) communication systems and
power line communication systems [1], [2].

Chaotic modulation methods are usually classified into two types,
i.e., coherent and non-coherent schemes. In contrast, non-coherent
chaotic systems have attracted more research interests since no compli-
cated chaotic synchronization circuits are required. Differential chaos
shift keying (DCSK) [3] is one of the non-coherent modulation methods
that can achieve better reliability performances than the counterpart
correlation delay shift keying (CDSK) [4] scheme. In order to improve
the spectral efficiency and remove the delay line of DCSK systems,
the orthogonal frequency division multiplexing-aided DCSK (OFDM-
DCSK) scheme has been proposed [5].

Although chaotic systems provide the advantages of enhanced se-
curity and anti-jamming capabilities, the real-valued chaotic sequences
used for the information-bearing induce interferences to signals, which
bring the issue of the reliability degradations [6]. In order to enhance the
reliability performances, several research works have been performed
to improve the transceiver structures. [7], [8] proposed to reduce the
noise at the receiver via allowing the same reference signal shared
by multiple information bits or transmitting multiple reference chaotic
signals. Similarly, [9] presented a scheme to allocate more subcarriers
for reference signals to utilize the diversity gain reducing the bit error
rate (BER), but at the cost of lower energy and spectral efficiencies.
In our recent research work [10], we proposed to demodulate the
reference chaotic signals iteratively, which does not require to modify
the transmitter structure but the complexity is relatively high.

Different from traditional demodulation methods utilizing time or
frequency resources to improve reliability performances, in this paper,
we propose to exploit the feature extraction capability of deep neural
network (DNN) for reliability enhancements. Thanks to the powerful
ability of pattern recognition from data sets, DNN has been employed
in various communication applications to improve the reliability, flex-
ibility and efficiency. For example, in the physical layer, DNN has
been applied to implement demodulation [11], channel estimation [12],
modulation recognition [13] and end-to-end communication [14], etc.
Furthermore, in higher layers, DNN has been applied in the routing
decision making for software defined networks [15], [16] and the
resource allocation [17] in cognitive radio networks. However, few
research works have been done to extract the deterministic feature
hidden behind the chaotic modulated signals.

In our design, we propose to replace the conventional correlator
for demodulations [5], [6] with the DNN-aided deep learning (DL)
demodulation module. To the best of our knowledge, this is the first
work to apply DL to intelligently recover received signals for chaotic
communications. With the aid of the long short-term memory (LSTM)
network, we first construct the DNN architecture to learn the infor-
mation transmission pattern at the training stage with OFDM-DCSK
symbol samples. Subsequently, at the online deployment stage, after
performing equalization and fast Fourier transform (FFT) operations,
both the reference chaotic sequence and information-bearing chaotic
modulated symbols act as the inputs to the LSTM-based DNN for
information recovery.

Notably, the DL-aided OFDM-DCSK demodulators do not require
to modify the transmitter structure, and it will not affect the security
as well as energy efficiency. Besides, they can adapt to time changing
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Fig. 1. The transmitter structure.

conditions and extract information transmission patterns intelligently.
Thus, the proposed DL demodulators could be easily integrated with
existing OFDM-DCSK transmitters. Simulation results demonstrate
that the proposed design achieves better BER performances than coun-
terpart systems over additive white Gaussian noise (AWGN) channel
and fading channels.

Briefly, the main contributions include: (1) we propose a novel
intelligent DL-aided OFDM-DCSK demodulator with no requirement
for modifying the transmitter structure; (2) we construct the LSTM
based DNN module to learn and extract the information transmission
patterns by exploiting the memory cells in LSTM units to formulate
the correlation relationship between received chaotic signals; (3) the
proposed design could achieve the intelligent information delivery
with adaptability to time-changing channel conditions and enhanced
reliability, while keeping satisfactory security and energy efficiency
performances.

II. DL OFDM-DCSK TRANSCEIVER

In this section, we will present the DL-aided OFDM-DCSK
transceiver structure. As shown in Fig. 1, at the transmitter which
has the same structure as that given in [10], user data bits are firstly
modulated by the binary phase shift keying (BPSK) scheme, while
the chaos generator uses the antisymmetric cubic map to generate the
chaotic sequence with more complex dynamic properties [18], which
can be expressed as x4 = 496?c — 3z, with 0 < k < K — 1, where
—1 <z, < 1denotes the kth chip, K is the length, and the initial value
Zo 1s uniformly distributed between O and 1.

Then, after the serial to parallel (S/P) conversion, the nth (0 < n <
N — 1) BPSK symbol is modulated by the kth chaotic chip as

Cn,k = dnxk’ (1)

where d; to dy_; represent the BPSK user data symbols, dy = 1,
thus ¢y, = x5, which means only the reference chaotic symbols are
delivered to the receiver.

Subsequently, the inverse fast Fourier transform (IFFT) operations
are performed over N available subcarriers, and the resultant ¢th (0 <
i < N — 1) OFDM symbol in the kth chip time slot, which is denoted
by s; ., is expressed as

| N
S2mn

Sik = = Cn,kej N 17 (2)

e

where j is the imaginary unit with j2 = —1. After the parallel to

serial (P/S) conversion and adding the cyclic prefix (CP), signals are
transmitted over the channels.

At the receiver, we propose an intelligent LSTM network based
DNN-aided demodulator to replace the traditional correlated demod-
ulator. Without loss of generality, we assume perfect channel state
information is known. As shown in Fig. 2, after removing the CP,
equalization, and S/P conversions, fast Fourier transform (FFT) op-
erations are performed. The resultant nth information-bearing chaotic
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Fig. 3. The architecture of LSTM-based DNN for the DL demodulator.

modulated symbol in the kth chip slot, which is denoted by ¢, 1, could
be retrieved from the received symbol r; j, as

1 = 2
e = — ripe IR 3)
k \/ﬁ ZZ:; Wk
Next, ¢/, 1 acts as the inputs to the intelligent LSTM demodulator
to recover the BPSK data based on the parameter set learned from the
training. More details about the intelligent demodulator design will be
described in detail as follows.

III. LSTM-BASED DEEP LEARNING DEMODULATOR

In this section, we propose an LSTM-based DNN, then we present
the training procedure and analyze the complexity.

A. Architecture of LSTM-Based DL Demodulator

Figure 3 illustrates the proposed architecture of an LSTM-based
DNN. At the bottom layer, the LSTM unit performs nonlinear op-
erations recursively on inputs and to capture the temporal dynamic
behavior of the input data. The resultant output vector is fed back as
the input vector and buffered to input to the next layer.

To be more explicit, at the first time slot, set the initial
value a_; = {0,...,0,...,0}. Then a_; is combined with y, =
{c0,0,---+C0k,--,C0,x—1} to act as the input vectors to generate
the vector ay. Subsequently, a, is fed back and combined with y;
to produce a;. Similar procedure is carried out with a,,_; and y,, =
{dn0s- s nky - n i1} till all the received data are processed
and input to DNN. Notably, since a, only contains the received refer-
ence chaotic sequence and no user data is delivered via ay, it is no need
to input a, to the next layer, thus the remaining a;, ..., ay_; will act
as inputs for further processing. Besides, the input data in the complex
domain are divided into the real part and the imaginary part, both of
which are concatenated into one vector before processed by the DNN.

Next, the N — 1 information-bearing output vectors from the LSTM
unit are processed by the network constituted by two fully connected
(FC) layers and a batch normalization (BN) layer which is used to
mitigate the vanishing and exploding gradient problem and to accelerate
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Fig. 4. The structure of an LSTM unit.

the convergence. In addition, FC layers are employed to perform further
nonlinear operations and calculate the probability of each BPSK sym-
bol carried by the information-bearing chaotic sequences. The output
probability vector p’, (1 < ¢ < N — 1) contains two elements p’, , and
P'4.1» which respectively represents the probability that the transmitted
BPSK symbol is ++ 1 or —1. Then by identifying the index of the
largest element of p’,, the proposed DNN will output the BPSK data
estimates from y, (1 < ¢ < N — 1). Notably, when ¢ = 0, y, is the
reference chaotic sequence, hence no BPSK symbol is delivered.

More details about how LSTM unit, FC layers and BN layer work
are provided as follows.

B. Operation Principles of DNN Layers

1) LSTM Unit: AsshowninFig. 4, attime n, with the input vectors
yn» and a,,_; obtained at time n — 1, the output vector a,, is calculated
as follows [19]:

£, = sigmoid(Wg¢ - [an_1,yn] + bs), (4a)
¢, = tanh(W - [a,_1,y,] + be), (4b)
i, = sigmoid(Wj - [a,_1,yn] + bi), (4¢)
c,=f,0¢c, 1 +1i, ®C,, (4d)
0, = sigmoid(Wo - [a,_1,yn] + bo), (4e)
a, = o, O tanh(c,), (4f)

where f,, is Forget Gate controls what memory in the cell ¢ should
be forgotten at time n, sigmoid(-) and tanh(-) are the sigmoid and
tanh activation function, respectively, W¢, bg, W, b, Wi, by, W,
b, are all parameters that are learnt and obtained through the neural
network training, [a,,_, y,] is the vector constituted by a,,_; and y,,
and ® means the element-wise product operation. Meanwhile, ¢,, is the
optional update value generated from the inputs at time n. In addition,
i,, represents Input Gate, which controls what values in ¢,, should be
used to calculate c,,.

Then with (4d), f,,, ¢,, and i,, are used to recursively generate c,,.
0,, is Output Gate which controls what values in tanh(c,,) should be
the output result. At last, we could obtain the output a,, of the LSTM
unit from o,, and c,,. The operations presented above are repetitively
carried out till all the input data in a specific period have been processed
by the proposed DNN.

Notably, we can notice from Figs. 4 and (4a)—(4f) that the out-
put of the LSTM unit is not only related to the current external
input but also dependent on the parameters stored at the previous
time slot, which matches the characteristics of OFDM-DCSK sys-
tems that the information-bearing chaotic sequences are correlated to
each other due to the usage of the same reference chaotic sequence
[€0,0,Co,15 - - -5 Co,ic—1]. Accordingly, with the aid of LSTM units, in
DL-based chaotic demodulators, the correlations between information-
bearing chaotic sequences delivered over different subcarriers could be
utilized to enhance the BER performances.
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2) FC Layer: By applying FC layers, the output of the LSTM unit
can be further processed, and thus the capacity of the neural network
can be improved. Note that our proposed DNN employs two FC layers
as shown in Fig. 3. Let « denote the index of the FC layer, i.e., o =
1,2, then for input vector z, of the ath FC layer, the output vector
z', is calculated as z'y = 0,(W,, - z, + b,,), where W, and b,, are
parameters of the ath FC layer that are learnt and obtained through
training, and o, (-) is the activation function applied in the ath FC
layer.

More explicitly, when a =1, z, = a, and a'y = 0(W; -a, +
b;), while the rectified linear unit (ReLU) activation function
ReLU (aq,.) = max(0, aq,,)is employed, where a,,, denotes the uth
element of a,. Additionally, when o = 2, we have z, = p,, z'y =
p’,. Moreover, the softmax activation function softmax(zq,.) =

e*q,u

e is employed, which enables the last FC layer to learn
eV
zq,v€2zq

to calculate the probability of each BPSK symbol, and to output the
probability vector for further estimation of received symbols.

3) BN Layer: In this layer, the input vector is standardized, thus
the output vector would have zero mean and unit variance, which
is beneficial to increase the gradient when using back propagation
algorithm during neural network training. For example, when the
input vector has relatively smaller value, the gradient of the sigmoid
activation function will be larger, while the standardization can help
adjust the value of vectors in the area where the activation functions
such as sigmoid, tanh and softmax have high gradients. As a result,
the vanishing and exploding gradient problem can be mitigated and the
convergence process can be accelerated.

More explicitly, as shown in Fig. 3, the input vector of the BN layer
is a’4, then the output vector p, can be calculated as follows [20]:
a'y —mean(a’y)

Pg = %)

var(a'y) + €’
where mean(a’y)) and var(a’,)) are the mean and variance value of
the input vector, respectively, which are estimated during the training
and then directly used at the deployment stage. ¢ = 1072 is an extremely
small constant used to prevent the denominator from equalling to zero.

C. Training Procedures

At the offline training stage, DNN calculates the derivative with
respect to variable parameters, which are updated by using the back
propagation algorithm. Along with the updating, the differences be-
tween the samples and outputs will decrease gradually and converge to
a specific threshold.

More explicitly, let d = [dy,dy, .. .,dN,l]T denote BPSK sym-
bol samples, where (-)° represents the transposition operation,
andy,, = [n0,n1s- - c’mK,.]T ,(0 <n < N — 1) represent re-
ceived chaotic sequence samples. After the training, we can formulate
and establish the mapping from y,, to the estimates d with the objective
of minimizing the differences between d and d based on the categorical
cross entropy loss function.

D. Complexity Analysis

Finally, we analyze the computational complexity of the LSTM-
based demodulator. Similar to the computational complexity analysis
presented in [21] and [22], with considerations that the training is
carried out offline, we only evaluate the complexity at the online
deployment stage when the intelligent demodulator provides estimates
for users.

Let Lpstvm denote the output dimension of the LSTM layer
and Lpc, represent the output dimension of the first FC layer,
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TABLE I
PARAMETER SETTINGS OF EACH LAYER IN THE PROPOSED DNN
Layer Output dimensions Number of Trainable Parameters
K = K=16 | K =32 K=8] K=16 | K =32

Input 16 32 64 0 0 0
LSTM 19 38 71 2812 10944 44044
Ist FC 17 38 69 340 1482 5382

BN 17 38 69 0 0 0
2nd FC 2 2 2 36 78 140

the computational complexity will be O(NK Ly srar + NL? gy +
NLpstymLrci) per OFDM-DCSK symbol, which is dependent on
the value of L g1 and L pey. Since the demodulation performances
are also related to these two parameters, there would be a trade-off
between the complexity and reliability. For example, if the dimensions
of each layer remain invariant, i.e., L g7y and Lgc; are constants,
then the complexity would be O(NK). In this case, the complexity
of the proposed system is at the same level as that of conventional
correlation demodulators, whose complexity is also O(N K) [5]. How-
ever, if Lpsry and Lpc; are set as being about 2 K to achieve
better reliability performances as shown in the following section, the
complexity would become O (N K?), which s higher than conventional
correlators.

IV. SIMULATIONS AND ANALYSIS

This section provides simulation results to validate our design.
Table I presents the parameter settings of the DNN for simulations,
wherein the output dimensions are determined by the dimension of
input vectors with considerations of the capacity of the DNN. Then, the
number of trainable parameters could be determined. As an example,
when applying the PyTorch DL framework, let / and O respectively
denote the input dimension and the output dimension, then the number
of trainable parameters could be calculated as 4(I + O)O + 80 for the
LSTM based bottom layer and /O + O for FC layers. Notably, since
the input layer only acts as an entrance for the data, while the BN layer
only performs the standardization operation, thus no training is needed
to learn the expected mappings in these two layers. Hence no trainable
parameters are needed and the number of parameters are O for both the
input layer and the BN layer.

When training DNN, the value of Ej, /Ny is set as 10 dB for AWGN
channel and 20 dB for others, while for the Rician fading channel, the
Rician factor is set as 1. In each epoch, 120 thousand BPSK symbols
are generated randomly, modulated and pass through simulated AWGN
or fading channels to provide the samples of training set, and the
BPSK symbols themselves are used as the answers. In addition, the
batchsize is set as 20, the categorical cross-entropy and the Adam
algorithm [23] are employed as the loss function and the optimization
algorithm respectively, and the learning rate is firstly set as 0.01 and
gradually decreases until 1073 if the training loss does not decrease in an
epoch. Besides, the Intel Core 15-7300HQ is used for the computations.

Figure 5 compares reliability performances, wherein the proposed
intelligent demodulator and the benchmark OFDM-DCSK system [5]
share the same transmitters, while the OFDM-BPSK system [24] does
not use chaotic modulations and hence no chaotic interferences are
induced. From Figs. 5(a) to 5(f), we could observe that the proposed
system provides more reliable performances than the OFDM-DCSK
system. Especially when transmitted over fading channels, more sub-
stantial performance gain can be attained thanks to the intelligent
learning capability. By contrast, the OFDM-DCSK system has the
worst reliability performances. Besides, even when compared with the
OFDM-BPSK system [6], the proposed intelligent demodulator still
can achieve better reliability performances at higher Ej, /N, over fading
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Fig.5. BER performance comparisons over AWGN channel, Rayleigh fading
channel and Rician fading channel when N = 4,8, 16 and K = 8, 16, 32. (a)
AWGN, N = 4.(b) AWGN, K = 16. (c) Rayleigh fading, N = 4. (d) Rayleigh
fading, K = 16. (e) Rician fading, N = 4. (f) Rician fading, K = 16.

channels. It is worth mentioning that when no multiplicative channel
gain is provided or Ej, /Ny is smaller, the performance gain becomes
smaller since the DL demodulator could not extract information trans-
mission features well and the learning capability becomes weak.

Furthermore, considering that K and N have impacts on system
performances including the security, data rate, energy efficiency as well
as the reliability [6], we investigate the performances of the proposed
design with different K and N, and compare them with benchmarks.
We could notice that similar to OFDM-DCSK systems, the proposed
intelligent system achieves better BER performances with larger N or
smaller K, thanks to relatively weaker interferences.

V. CONCLUSION

In this paper, we propose an LSTM-aided DNN to construct an
intelligent demodulator for OFDM-DCSK systems for more reliable
transmissions. In our design, we construct a recursive LSTM unit to
formulate the correlations between chaotic modulated OFDM-DCSK
signals. Then, we compose an LSTM-aided DNN by connecting two
FC layers with one BN layer inserted between them. After the offline
training, the proposed DL demodulator can utilize the formulated
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parameter set and the network structure to retrieve the information.
Simulation results over AWGN and fading channels demonstrate that
the intelligent demodulator outperforms the benchmark OFDM-DCSK
systems. Moreover, our design can achieve even better reliability per-
formances than OFDM-BPSK systems at higher E}, /N, over fading
channels. Therefore, our design can provide more reliable and adaptable
services while retaining the high-security benefit brought by chaotic
communications.
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