
Obstacles to Depth Compression of Neural

Networks

Will Burstein and John Wilmes

Brandeis University, Waltham, Massachusetts, USA
{wburstein, wilmes}@brandeis.edu

Abstract. Massive neural network models are often preferred over smaller
models for their more favorable optimization landscapes during training.
However, since the cost of evaluating a model grows with the size, it
is desirable to obtain an equivalent compressed neural network model
before deploying it for prediction. The best-studied tools for compress-
ing neural networks obtain models with broadly similar architectures,
including the depth of the model. No guarantees have been available
for obtaining compressed models with substantially reduced depth. In
this paper, we present fundamental obstacles to any algorithm achiev-
ing depth compression of neural networks. In particular, we show that
depth compression is as hard as learning the input distribution, ruling
out guarantees for most existing approaches. Furthermore, even when
the input distribution is of a known, simple form, we show that there are
no local algorithms for depth compression.

1 Introduction

Perhaps the clearest trend of the past decade of deep learning has been the ever-
increasing size of neural network (NN) models, fueled by advances in hardware
acceleration, larger datasets, and improved optimization techniques.

It may be practical to train models on datacenter scale computational re-
sources, but it is still desirable to obtain models that can be deployed to more
modest hardware for inference tasks. In particular, for inference tasks on individ-
ual user data where low latency is important, deploying models onto smartphones
or similarly constrained hardware may be necessary. Even in cases where infer-
ence tasks can be performed within data centers, the cost of evaluating a model,
including its environmental impact, may still be significant if many real-time
inference requests must be satisfied.

While small models are desirable at the time of inference, there are equally
good reasons at training time for the rapid growth in scale of neural network
models. Although depth-3 neural networks are already “universal models” in
terms of their representational power, much deeper networks are empirically
observed to have desirable optimization characteristics. In practice, good gen-
eralization performance is often easier to elicit from massive, very deep neural
network models.



2 Will Burstein and John Wilmes

In order to combine the benefits of massively overparameterized models at
training time with the computational efficiency of smaller models for inference, it
is therefore desirable to convert large models to smaller ones before deployment.
This is the task of model compression.

A classic approach to model compression task is pruning, i.e., zeroing out
entries in the weight matrices of a NN. Some of the earliest work on this idea
used information about second derivatives of the NN to find appropriate weights
to trim [23,17]. A simpler idea is to simply drop all entries in the weight matrices
below some threshold, and then retrain the network (keeping all dropped entries
zero) [16]. A more sophisticated approach is to incorporate the pruning into the
training [31]. A second but conceptually related approach to model compres-
sion is via low-rank factorization. Following the observation that many neural
networks trained on real-world data have approximately low-rank weight matri-
ces [8], several works have sought to compress NNs by replacing weight matrices
with low-rank approximations [19,9,29].

Both the pruning and low-rank factorization approaches preserve the overall
network architecture while reducing the complexity of the weight matrices, as
measured in terms of either their sparsity or rank. These techniques can therefore
reduce the number of parameters in the model, providing some improvement in
the cost of inference, but they leave the depth of the network unchanged. Unfor-
tuantely, the depth of a network is a crucial hyperparameter for determining the
cost of inference. Evaluation of a single layer of a neural network is amenable
to parallelization, and graphics hardware is particularly good at accelerating
this computation. By contrast, evaluating a deep neural network is inherently
sequential.

Thus, algorithms for neural network model compression that substantially
reduce depth are highly desirable. Unfortunately, depth compression has been
much less studied than pruning or low-rank compression techniques. The workhorse
technique is a specialization of the “student–teacher” learning framework. In this
approach, a pretrained “teacher” network is used to train a “student” network
with an entirely different architecture [4,1]. The teacher network gives access to
finer features than the ultimate network output, such as the relative certainties
the teacher network assigns to possible outputs [18], or the intermediate-layer
representations [25]. However, provable guarantees for the accuracy of student
networks relative to their teachers remain elusive.

The goal of this paper is to initiate the study of provable guarantees for depth
compression. We obtain the first nontrivial lower bounds for the problem, illus-
trating two fundamental obstacles to any depth compression algorithm. First,
we give a general reduction from the problem of depth compression to the prob-
lem of learning the input distribution. This allows us to lift distribution-learning
lower bounds to the setting of depth compression. Second, even when the input
distribution is known and well-behaved, we rule out a natural class of divide-
and-conquer approaches for depth compression, showing that “local” algorithms
cannot in general achieve any nontrivial compression guarantees. Finally, we



Obstacles to Depth Compression of Neural Networks 3

conduct experiments illustrating how existing depth compression techniques fail
in general.

Our ultimate goal is for positive algorithmic guarantees, and the present
results are motivated by the philosophy that lower bounds can serve as a guide-
posts for what may be algorithmically feasible. Indeed, our lower bounds and
experiments together outline a set of plausible assumptions under which provable
guarantees for depth compression may be achieved (see Section 5).

2 Learning and Compression

Let f : R
n → R

k be a map, and let H be a family of maps h : R
n → R

k

(the hypothesis space). An (ε,H)-compression of f over a distribution D on
R

n is a a map h ∈ H which is ε-close to f in mean-squared error, i.e., such
that Ex∼D‖f(x) − h(x)‖2 < ε.1 Let D be a family of distributions on R

n. A
(randomized) algorithm for the (f,H,D) compression problem takes as input
the explicit neural network representation of f , and some number m of samples
from a fixed but unknown distribution D ∈ D, and produces a map h : Rn → R

k,
with the guarantee that for any ε > 0 if m ≥ poly(1/ε, 1/δ, size(f)) then h is an
(ε,H)-compression of f over D. where h is a random variable of the samples and
the algorithm’s internal randomness. The algorithm is efficient if it runs in time
poly(1/ε, 1/δ, size(f)). We will study (f,H,D) compression problems where f
is an explicit deep neural network model and H is a family of much shallower
neural networks.

Thus, the compression problem is similar to a PAC learning problem, with the
additional explicit input of an improper2 representation f of the target concept,
and with the distribution-free assumption relaxed. There are well known exam-
ples where proper learning is NP-hard, although improper learning is tractable—
for example, 3-term DNFs can be efficiently learned improperly as 3-term CNFs,
but are NP-hard to learn properly. Here, we consider a different problem: both
proper and improper learning may be hard, but transforming an improper model
into a proper model (the compression problem) may still be tractable. As a sim-
ple example, learning noisy parities from random samples is widely believed to
be hard, but with query access (as from some improper representation), the par-
ity can be recovered using the Goldreich-Levin algorithm. The additional input
of an improper representation is therefore essential to the complexity of the com-
pression problem, and hardness results for learning do not directly transfer to
the compression setting. Nevertheless, we will show in this paper how hardness
results for learning can be used to obtain hardness results for neural network
depth compression problems.

1 In typical applications, f itself will be an approximation of some concept g known
only through labeled examples, and the real goal is find an approximation of g in
H. To simplify our discussion, we will not attempt to find a compression of f which
appoximates this concept g better than f does itself, and so g can be safely ignored.

2 “Improper” in the sense of not belonging to the hypothesis class H.



4 Will Burstein and John Wilmes

In order to have a sensible compression problem, in addition to bounding the
depth of networks in H, we must insist that their total size be bounded by some
polynomial in the size of f . The most obvious measure of neural network size is
perhaps the total number of neurons. However, we will instead use a finer-grained
measurement that accounts for the magnitude of the weights in the network:

Definition 1. Let d ≥ 1, Λ > 0. Define NNΛ,d to be the set of d-layer neural
networks using 1-Lipschitz activation functions and with each weight matrix W
having Frobenius norm bounded by Λ. That is, f : Rn → R

k belongs to NNΛ,d if
there exist integers ℓ0, . . . , ℓd with ℓ0 = n and ℓd = k, and maps gi : R

ℓi−1 → R
ℓi

for 1 ≤ i ≤ d of the form gi(x) = σ(Wx + b), where W ∈ R
ℓi×ℓi−1 satisfies

‖W‖F ≤ Λ, and b ∈ R
ℓi , and σ : R → R is a 1-Lipschitz map applied component-

wise, such that

f = gd ◦ gd−1 ◦ · · · ◦ g1 .

The maps gi are called the layers of f .

For example, a neural network f : Rn → R with ReLU activations, a single
hidden layer of m neurons, and bounded entries in its weight matrices, would
belong to NNO(mn),2.

We will give lower bounds for compression problems conditioned on well-
known complexity hypotheses, as well as unconditionally in the statistical query
framework, which we now review. For computational problems over a distribu-
tion D (e.g., supervised learning of a concept), classical algorithms receive as
input some number of samples from D. Often, these samples are used only to
estimate the means of various random variables over the distribution D: for ex-
ample, training a neural network by gradient descent requires labeled examples
only in order to estimate the expected gradient at various points in parameter
space. When an algorithm is formulated so that it does not require any access
to D other than to query the expected value of bounded random variables over
the distribution, it is called a statistical query (SQ) algorithm. The study of
SQ algorithms was initiated be Kearns in 1993 [20], and has become an ex-
tremely powerful tool for algorithmic analysis [14,2,10,6]. The vast majority of
computational problems known to admit efficient algorithms in fact admit ef-
ficient SQ algorithms. Unconditional lower bounds for SQ algorithms are also
available, in particular characterizing the complexity of learning neural network
models [30,27].

Formally, given some distribution D over a set X, let vSTATD(τ) be an or-
acle that, when presented with query φ : X → [0, 1], returns a value v satisfying
|√v −

√

Ex∼D(φ(x))| < τ [12]. A statistical query algorithm for a computa-
tional problem over a distribution D is a randomized algorithm that accesses D
only via queries to an oracle vSTATD(τ). Simulating vSTATD(τ) by estimat-
ing Ex∼D(φ(x)) from samples in general requires Ω(1/τ) samples from D. We
therefore define the total complexity of a statistical query algorithm using the
vSTATD(τ) oracle to be max{1/τ, d} where d is the number of queries performed
by the algorithm.



Obstacles to Depth Compression of Neural Networks 5

Theorem 1. For any Λ, d > 2 there exists f ∈ NNΛ,d and a family D of distri-
butions such that

1. for every D ∈ D, there exists a (lossless) (0,NNΛ,3)-compression of f over
D,

2. but the total complexity of (f,NNΛ,d−1,D)-compression is exp(Ω(Λ)).

Similar statements can be made for general (not necessarily SQ) algorithms,
under some reasonable complexity hypotheses. For example, in the Learning Par-
ities with Noise (LPN) problem, a learning algorithm is given access to examples
x ∈ {±1}n drawn from the uniform distribution on the hypercube, and labeled
according to some unknown parity function h : {±1}n → {±1}, with these labels
randomly flipped with noise rate η. The algorithm’s task is to find a function
which is ε-close to h. The problem is notoriously difficult and its intractability
has been frequently assumed [3,13,21,22].
LPN Hypothesis. For any constants 0 < η, ε < 1/2, there is no poly(n)-time
algorithm solving the LPN problem with noise rate η to accuracy ε.

Theorem 2. For any ε > 0 and Λ, d > 2 there exists f ∈ NNΛ,d and a family
D of distributions such that, under the LPN hypothesis,

1. for every D ∈ D, there exists a (ε,NNΛ,3)-compression of f over D,
2. but (f,NNΛ,d−1,D)-compression does not admit a polynomial-time algorithm.

The theorems above show that regardless of how the improper representation
f is used, compression is hard unless the input distribution is known. When the
distribution is known, compression algorithms that achieve guarantees beyond
those available for standard supervised learning problems must rely nontrivially
on the improper representation f .

Existing algorithms for NN depth compression make quite coarse use of the
improper representation. One of the foundational works on model compression [4]
proposes to compress massive ensemble models to smaller NN models simply by
training the smaller model by gradient descent on data labeled by the ensemble
model (along with a simple method for augmenting the set of unlabeled data in
the case when insufficient unlabeled data is available). The same approach has
empirically seen some success for compressing deep NN models to shallower ar-
chitectures [1]. The most successful family of techniques has been the knowledge
distillation approach of [18]. In its original formulation for classification prob-
lems, the deep representation f is assumed to have a final softmax layer; rather
than training a shallow student network directly on labels generated from the
outputs of f , the student is trained using mean squared error on the penultimate
layer of f , representing the relative certainties f assigns to each category. This
approach was extended in other works to train student models with different
architectures on intermediate-layer features from the original model f [25], and
beyond the classification setting [5].

None of these algorithms can succeed at compression without strong assump-
tions on the form of the improper representation f , and in particular they require



6 Will Burstein and John Wilmes

f to have opaque regularization properties. Specifically, knowledge distillation
and its cousins are empirically observed to work well for improper representations
f obtained by trainining a deep neural network using gradient descent; without
the “implicit bias” [24,15,28] imposed by the training of f , there is no reason to
expect algorithmic guarantees for compression via knowledge distillation beyond
the guarantees available for general learning problems.

Compression algorithms that work without strong assumptions on the regu-
larization of f must instead make use of the detailed representation of f provided
as input. This will not be an easy task. In the following Theorem 3, we will rule
out natural divide-and-conquer approaches to making use of the improper rep-
resentation f .

Let f ∈ NNΛ,d, and let g1, . . . , gd be the layers of f . For 1 ≤ i ≤ j ≤ d, the
slice f (i:j) of f is the map gj ◦gj−1 ◦ · · · ◦gi. Given a distribution D on the input
space of f , the distribution induced by D on the ith layer of f is the distribution
of the random variable f [1:i](x) over x ∼ D.

Definition 2 (Locally compressible). Let f ∈ NNΛ,d and let D be a distri-
bution on the input space of f . We say f is (ε, s, t)-locally compressible if for
some 1 ≤ i ≤ d− t and Λ′ = poly(Λ, d), there exists an (ε,NNΛ′,s)-compression
of f [i:i+t] over the distribution induced by D on the ith layer of f .

A natural divide-and-conquer approach for depth compression of a neural net-
work would take some number of consecutive layers of the network, and replace
those layers with a shallower (but perhaps wider) approximation. By iterating
such an approach until no slice can be compressed, we might obtain a much
shallower network. In the following theorem, we rule out such local algorithms
by observing that there are arbitrarily deep networks admitting lossless (global)
compressions, but which are locally incompressible.

Theorem 3. There is some c > 0 such that for any Λ, d > 3, there is a neural
network f ∈ NNΛ,d and an input distribution D such that

1. f is not (c, 2, 3)-locally compressible over D,
2. but there exists a (lossless) (0,NNΛ(d−3),3)-compression of f over D.

3 Compression vs. Distribution Learning

Let D0 be a probability distribution on R
n. By a family of η-perturbations of D0

we mean a family D of distributions D given by random variables of the form
x+ ηs(x,D)v, where x ∼ D0, v ∈ R

n is a fixed unit vector, and s(x,D) ∈ {±1}
is a (deterministic) function of x and D, which for fixed D is measurable as a
function of x with respect to D0. Given such a family D, we say a map f : Rn →
R

k is a ∆-separator for D if it is measurable with respect to every distribution
in D and ‖f(x+ ηv)− f(x− ηv)‖ ≥ ∆ for all x ∈ supp(D0).

A simple induction argument gives the following:

Proposition 1. If f ∈ NNΛ,d then f is Λd-Lipschitz.



Obstacles to Depth Compression of Neural Networks 7

The following is the main technical lemma used in the proofs of Theorems 1
and 2. We denote by DTV(D1, D2) the total variation distance between the
distributions D1 and D2.

Lemma 1. Let D be a family of η-perturbations of a distribution D0 on R
n, let

f be a ∆-separator for D, and let g be an (ε,NNΛ,d)-compression of f over some
(unknown) distribution D ∈ D. Suppose ηΛd ≤ ∆/4. There is an η-perturbation
D̃ of D0 satisfying DTV(D̃,D) = 16ε/∆2 and an efficient algorithm that, given
query access to f and g:

1. produces samples from D̃, given access to samples from D0;
2. computes the probability density of points in R

n under D̃, given query access
to the probability density of points under D0.

Proof. Let v ∈ R
n be the vector and s : Rn ×D → {±1} the map characterizing

D as a family of η-perturbations of D0. Let D ∈ D and let g ∈ NNΛ,d be a
compression of f . Define the following map z on the support of D0:

z(x0) =
{

x+ ηv ‖g(x0)− f(x0 + ηv)‖ < ‖g(x0)− f(x0 − ηv)‖x− ηv otherwise .

Let D̃ denote the distribution of z(x0), where x0 ∼ D0.
We now argue that D̃ is close to D in total variation distance. Fix x in the

support of D and let x0 = x − ηs(x,D)v. We have by Proposition 1 and the
triangle inequality that

‖g(x0)− f(x0 + ηs(x,D)v)‖ ≤ ‖g(x0)− g(x)‖+ ‖g(x)− f(x)‖
≤ ηΛd + ‖g(x)− f(x)‖ .

Let θ = (∆/2 − ηΛd) and suppose further that ‖g(x) − f(x)‖ < θ, so that
‖g(x0)− f(x)‖ < ∆/2. In this case, by the triangle inequality and the fact that
f is a ∆-separator,

‖g(x0)− f(x0 − ηs(x,D)v)‖ > ‖f(x0 + ηv)− f(x0 − ηv)‖ − ‖g(x0)− f(x)‖
> ∆/2 > ‖g(x0)− f(x)‖ .

So if ‖g(x)− f(x)‖ < θ, we have z(x0) = x0 + ηs(x,D)v. Hence,

DTV(D, D̃) ≤ Pr
x0∼D0

(z(x0) 6= x0 + ηs(x0, D)v)

≤ Pr
x∼D

(‖g(x)− f(x)‖ ≥ θ)

so it suffices to bound this latter probability. We have by assumption that

E
x∼D

(‖g(x)− f(x)‖2) < ε .

So by Markov’s inequality,

Pr
x∼D

(‖g(x)− f(x)‖ ≥ θ) = Pr
x∼D

(‖g(x)− f(x)‖2 ≥ θ2) < ε/θ2 ≤ 16ε/∆2 ,



8 Will Burstein and John Wilmes

as desired.
It remains only to observe that D̃ admits an efficient sampling algorithm

and probability density computation algorithm, given corresponding access to
D0 and query access to f and g. Sampling from D̃ is the same as sampling x0

from D0 and computing z(x0), which requires one query of g and two of f . To
compute probability densities p̃ under D̃, given probability densities p for D0,
we compute the density p̃(x) at a point x as

p̃(x) = p(x− ηv)1(z(x− ηv) = x) + p(x+ ηv)1(z(x+ ηv) = x) .

We denote by Pn the set of parity functions h : {±1}n → {±1} on the
n-dimensional Boolean hypercube. We recall two standard results concerning
parities.

Lemma 2. A parity function h ∈ Pn can be represented exactly by a neural
network in NN(1, 3) with O(n) gates.

Because the parities are pairwise uncorrelated, the set of parity functions
has large “statistical dimension,” from which it follows by a standard argument
that the total complexity of any statistical algorithm for learning parities is also
large. See, e.g., [12].

Lemma 3. The total complexity of learning parities in Pn over the uniform
distribution on the hypercube to within accuracy ≥ 3/4 is exp(Ω(n)).

Proof (Proof of Theorem 1). The theorem follows by applying Lemma 1 to an
appropriate choice of map f ∈ NNΛ,d and family D of distributions.

For some n to be defined, let f : Rn+1 → R be given by the layer-d neural
network with first layer

f1(x1, . . . , xn+1) = Λxn+1

and fi : R → R given by fi(x) = Λx for all 1 < i ≤ d. Clearly f ∈ NNΛ,d.
We now define D as a family of η-pertubations of a distribution. Let π :

R
n+1 → R

n be the projection onto the first n coordinates, π(x1, . . . , xn+1) =
(x1, . . . , xn). Let X be the embedding of the n-dimensional hypercube in R

n+1

given by
X = {x = (x1, . . . , xn, 0) : π(x) ∈∈ {±1}}

and let D0 be the uniform distribution on X. Let v be the standard basis vector
(0, ..., 0, 1) ∈ R

n+1. Let η = Λ−d. For h ∈ P, let Dh be the distribution of the
random variable x+ ηh(π(x))v where x ∼ D0. Let D = {Dh : h ∈ P}.

Thus, D is a family of η-perturbations of D0. Furthermore, since f(x+ηv)−
f(x−ηv) = 2ηΛd = 2 for all x ∈ supp(D0) = X, we have that f is a ∆-separator
for D where ∆ = 2.

To show the first claim of the theorem, that there is a (0,NNΛ,3)-compression
of f over any D ∈ D, we first observe that for any h ∈ P and x ∈ supp(Dh), we
have

f(x) = Λdηh(π(x)) = h(π(x)) .



Obstacles to Depth Compression of Neural Networks 9

The claim then follows immediately from Lemma 2, for appropriate choice of
n = Ω(Λ).

To bound the SQ complexity of the (f,NNΛ,d−1,D)-compression problem,
we first suppose g ∈ NNΛ,d−1) is a (1/16,NNΛ,d−1)-compression of f over some
Dh ∈ D. By Lemma 1, given inputs f and g, there is an an efficient algorithm
for estimating probabilities p̃(x) of points under a distribution D̃, which is an
η-perturbation of D0 satisfying DTV(D̃, D̃) < 1/4. Since D̃ is an η-perturbation
of D0, its support includes exactly one of x + ηv and x − ηv for each x ∈ X.
Let h̃(x) = 1 if p̃(x + ηv) > 0 and h̃(x) = −1 otherwise. Then Prx∼D0

(h̃(x) 6=
h(x)) < 1/4. In particular, given such a g ∈ NNΛ,d−1, we can learn h to within
accuracy 3/4 without any additional access to Dh. Hence, by Lemma 3, finding
such a g has total complexity exp(Ω(n)) = exp(Ω(Λ)).

Proof (Proof of Theorem 2). The proof is essentially the same as for Theorem 1.
We replace the parity functions with their noisy versions, with noise rate ε/2.
A neural network computing the (non-noisy) parity, as from Lemma 2, will be
an ε-approximation of the noisy parity with high probability. The result again
follows by Lemma 1.

4 Local vs. Global Compression

The proof of Theorem 3 is a straightforward application of existing depth sep-
aration theorems for neural networks. Several versions of depth separations of
2-layer from 3-layer networks are known [7,26,11].

Theorem 4 (Eldan and Shamir [11, Theorem 1]). There is a constant
c > 0 such that for every n there is a probability distribution D on R

n and a
map g : Rn → R with a neural network representation g ∈ NNpoly(n),3, such that
if there exists a (c,NNΛ,2)-compression of g, then Λ = exp(Ω(n)).

Proof (Proof of Theorem 3). Let D be the distribution and g : R
n → R be

the neural network in NNΛ,3 given by Theorem 4. We define the network f :
R

n×(d−3) → R in NNTODO,d using g as a gadget. Specifically, for 1 ≤ i ≤ d− 3,
let f (i)(x) : Rn → R be the network in NNΛ,d be the network whose first i
layers each compute the identity map on R

n, whose i + 1 through i + 3 layers
are identical to those of g, and whose subsequent d− i− 3 layers each compute
the identity map on R. Let f be the neural network given by the product of the
f (i) for 1 ≤ i ≤ d − 3. That is, the jth layer of f has as its input space the
Cartesian product of the input spaces of the jth layers of the networks f (i) for
1 ≤ i ≤ d − 3, and similarly for the output spaces, and map computed on the
jth layer is the Cartesian product of the maps of the jth layers of the networks
f (i). The input distribution of f is Dd−3.

Clearly f has an exact representation in NN(d−3)Λ,3 as product of g with itself

d−3 times, so a (0,NN(d−3)Λ,3)-compression of f overDd−3 exists. We argue that

f is not (O(1/d), 2, 3)-locally compressible over Dd−3. Letting h = f (i) be the
ith constituent network of f , we have h[i:i+3] = g. Furthermore, the distribution



10 Will Burstein and John Wilmes

induced by D on the ith layer of h is simply D. Therefore by Theorem 4, there
does not exist a (c,NNpoly(Λ),2)-compression of of h[i:i+3] over this distribution,
for some absolute constant c ≥ 0, and so the same is true of f . Hence, f is not
(c, 2, 3)-locally compressible over Dd−3.

It is reasonable to conjecture that similar statements larger notions of local
compressibility, e.g., (c, 3, 5)-local compression rather than (c, 2, 3)-local com-
pression. Such results would similarly follow from depth separation theorems
deeper neural networks. However, proving such separation theorems is a major
open problem.

5 Outlook

assumptions for feasibility: - smooth in neighborhood of distribution
equivalent to robustness to adversarial inputs?
path to algorithmic guarantees - make use of implicit bias / implicit regular-

ization? foreshadow Will’s current project

References

1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural
Information Processing Systems (NIPS). pp. 2654–2662 (2014)

2. Blum, A., Frieze, A., Kannan, R., Vempala, S.: A polynomial-time algorithm for
learning noisy linear threshold functions. Algorithmica 22(1-2), 35–52 (1998)

3. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM) 50(4), 506–519
(2003)

4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proc. 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. p. 535541 (2006)

5. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object
detection models with knowledge distillation. In: Advances in Neural Information
Processing Systems. pp. 742–751 (2017)

6. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Olukotun, K., Ng, A.Y.:
Map-reduce for machine learning on multicore. In: Advances in neural information
processing systems. pp. 281–288 (2007)

7. Daniely, A.: Depth separation for neural networks. In: Conference on Learning
Theory. pp. 690–696 (2017)

8. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., De Freitas, N.: Predicting parameters
in deep learning. In: Advances in Neural Information Processing Systems (NIPS).
pp. 2148–2156 (2013)

9. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems (NIPS). pp. 1269–1277 (2014)

10. Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving
linear programs. Mathematical Programming 114(1), 101–114 (2008)

11. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In:
Conference on Learning Theory. pp. 907–940 (2016)



Obstacles to Depth Compression of Neural Networks 11

12. Feldman, V.: A general characterization of the statistical query complexity. In:
Conference on Learning Theory. pp. 785–830 (2017)

13. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: On agnostic learning of
parities, monomials, and halfspaces. SIAM Journal on Computing 39(2), 606–645
(2009)

14. Feldman, V., Grigorescu, E., Reyzin, L., Vempala, S.S., Xiao, Y.: Statistical al-
gorithms and a lower bound for detecting planted cliques. Journal of the ACM
(JACM) 64(2), 1–37 (2017)

15. Gunasekar, S., Lee, J.D., Soudry, D., Srebro, N.: Implicit bias of gradient descent
on linear convolutional networks. In: Advances in Neural Information Processing
Systems. pp. 9461–9471 (2018)

16. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
(NIPS). pp. 1135–1143 (2015)

17. Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network
pruning. In: Neural Networks. pp. 293–299 (1993)

18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv:1503.02531 (2015)

19. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. arXiv:1405.3866 (2014)

20. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. In: Proc.
25th ACM Symp. on Theory of Computing (STOC). pp. 392–401 (1993)

21. Kiltz, E., Pietrzak, K., Venturi, D., Cash, D., Jain, A.: Efficient authentication
from hard learning problems. Journal of Cryptology 30(4), 1238–1275 (2017)

22. Klivans, A., Kothari, P.: Embedding hard learning problems into gaussian space.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2014) (2014)

23. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems (NIPS). pp. 598–605 (1990)

24. Neyshabur, B., Tomioka, R., Srebro, N.: In search of the real inductive bias: On
the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614
(2014)

25. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. arXiv:1412.6550 (2014)

26. Safran, I., Shamir, O.: Depth-width tradeoffs in approximating natural functions
with neural networks. In: Proceedings of the 34th International Conference on
Machine Learning. vol. 70, pp. 2979–2987 (2017)

27. Song, L., Vempala, S., Wilmes, J., Xie, B.: On the complexity of learning neural
networks. In: Advances in Neural Information Processing Systems (NIPS). pp.
5520–5528 (2017)

28. Soudry, D., Hoffer, E., Nacson, M.S., Gunasekar, S., Srebro, N.: The implicit bias
of gradient descent on separable data. The Journal of Machine Learning Research
19(1), 2822–2878 (2018)

29. Tai, C., Xiao, T., Zhang, Y., Wang, X., Weinan, E.: Convolutional neural networks
with low-rank regularization. arXiv:1511.06067 (2015)

30. Vempala, S., Wilmes, J.: Gradient descent for one-hidden-layer neural networks:
Polynomial convergence and sq lower bounds. In: Conference on Learning Theory.
pp. 3115–3117 (2019)

31. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv:1710.01878 (2017)


