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   Abstract—This  paper  introduces  a  new  algorithm  for
estimating the relative pose of a moving camera using consecutive
frames  of  a  video  sequence.  State-of-the-art  algorithms  for
calculating  the  relative  pose  between  two  images  use  matching
features  to  estimate  the  essential  matrix.  The  essential  matrix  is
then  decomposed  into  the  relative  rotation  and  normalized
translation  between  frames.  To  be  robust  to  noise  and  feature
match  outliers,  these  methods  generate  a  large  number  of
essential  matrix  hypotheses  from  randomly  selected  minimal
subsets  of  feature  pairs,  and  then  score  these  hypotheses  on  all
feature  pairs. Alternatively,  the  algorithm  introduced  in  this
paper  calculates  relative  pose  hypotheses  by  directly  optimizing
the  rotation  and  normalized  translation  between  frames,  rather
than  calculating  the  essential  matrix  and  then  performing  the
decomposition.  The  resulting  algorithm  improves  computation
time  by  an  order  of  magnitude.  If  an  inertial  measurement  unit
(IMU)  is  available,  it  is  used  to  seed  the  optimizer,  and  in
addition, we reuse the best hypothesis at each iteration to seed the
optimizer  thereby  reducing  the  number  of  relative  pose
hypotheses that must be generated and scored. These advantages
greatly speed up performance and enable the algorithm to run in
real-time on low cost  embedded hardware.  We show application
of  our  algorithm  to  visual  multi-target  tracking  (MTT)  in  the
presence  of  parallax  and  demonstrate  its  real-time  performance
on a 640 × 480 video sequence captured on a UAV. Video results
are available at https://youtu.be/HhK-p2hXNnU.
    Index Terms—Aerial  robotics,  epipolar  geometry,  multi-target
tracking,  pose  estimation,  unmanned  aircraft  systems,  vision-based
flight.
 

I.  Introduction

E STIMATING camera  motion  from a  video  sequence  has
many  applications  in  robotics  including  target  tracking,

visual  odometry,  and  3D  scene  reconstruction.  These
applications  often  require  on-board  processing  of  the  video
sequence  in  real-time  and  thereby  impose  size,  weight,  and
power (SWAP) constraints on the computing platform.

One method to estimate motion from a video sequence is to
calculate  the  essential  matrix  between  consecutive  frames.
The  essential  matrix  relates  the  homogeneous  image
coordinates  between  frames  using  the  epipolar  constraint.
After  the  essential  matrix  has  been  determined,  it  can  be
decomposed  into  a  rotation  and  a  normalized  translation  to
determine the  relative  motion of  the  camera  between frames.
In  order  to  be  robust  to  noise  and  feature  mismatches,  the
essential  matrix  is  typically  estimated  by  generating  a  large
number  of  hypotheses  from  five-point  minimum  subsets  of
matching  features,  and  selecting  the  best  hypothesis  using
either  random  sample  consensus  (RANSAC)  [1]  or  least
median  of  squares  (LMedS)  [2].  When  using  RANSAC,  the
hypotheses are scored by counting the number of inlier points
from  the  entire  set.  When  using  LMedS,  the  hypotheses  are
scored by calculating the median error.

State  of  the  art  methods  calculate  essential  matrix
hypotheses  directly  from  each  five-point  minimum  subset.
One  of  the  best  known  methods  is  Nister’s  algorithm  [3].
Nister  showed  that  for  five  matching  points,  there  are
potentially  ten  essential  matrices  that  satisfy  the  constraints,
each corresponding to a real root of a tenth-order polynomial
generated  from  the  data.  There  are  a  many  open-source
implementation  of  Nister’s  five-point  algorithm  including
OpenCV’s  findEssentialMat  function  [4].  However,  cons-
tructing, solving, and extracting the essential matrix from this
tenth-order  polynomial  is  complex  and  can  be
computationally expensive. Furthermore, since each minimum
subset  produces  up  to  ten  hypotheses,  it  can  be  time
consuming to score them.
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As  an  alternative  to  directly  calculating  essential  matrix
solutions,  some  authors  [5]–[9]  propose  solving  for  the
essential matrix using non-linear optimization algorithms such
as  Gauss-Newton  (GN)  and  Levenberg-Marquardt  (LM).
Since  the  essential  matrix  has  nine  entries  but  only  five
degrees of freedom, the optimization is performed on the five
dimensional essential matrix manifold. There are a number of
ways  to  define  the  essential  matrix  manifold.  Some  authors
define  the  manifold  using  a  rotation  and  translation  unit
vector, which are elements of  and , respectively [5],
[6].  Others  define the manifold using two elements  of 
[8], [9].

A third method of optimizing on a manifold is described in
[7].  This  approach  called  LM  Basis  calculates  the  four
essential matrix basis vectors in the nullspace of the essential
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matrix  equation  using  SVD.  The  four  coefficients  to  these
matrices are solved for on the  manifold. In contrast to the
previously  described  methods  which  operate  on  five-
dimensional  manifolds,  this  method uses  a  three-dimensional
manifold.

During  each  iteration  of  the  optimization  algorithm,  the
optimizer  step  is  solved  for  in  terms  of  the  three  or  five
degrees  of  freedom  along  the  manifold.  The  computational
requirements  of  the  resulting  scheme  are  significantly  less
than Nister’s five point algorithm. However, one weakness of
optimization-based solvers is that they only find one of the ten
possible  essential  matrices  at  a  time.  Finding  all  solutions
requires  additional  optimization  runs  with  different
initialization points. The optimization method is also sensitive
to  initial  conditions,  which  can  cause  the  optimizer  to  fail  to
produce a valid solution. For example, GN may diverge if the
initial guess is too far from the true solution. LM can be used
to  prevent  increases  in  the  cost  function,  but  still  may fail  to
converge.  Because  of  the  need  to  run  the  optimizer  multiple
times  from  different  initial  conditions,  these  existing
optimization-based  solvers  might  not  necessarily  be  faster
than  the  direct  essential  matrix  solvers  if  the  same  level  of
accuracy  is  desired.  However,  not  all  of  the  ten  possible
solutions are needed in order achieve comparable accuracy to
direct essential matrix solvers if the best solution can be found
the first time.

After  the  essential  matrix  is  found,  it  must  then  be
decomposed into a rotation and normalized translation. Given
an essential matrix, there are four possible rotation-translation
pairs  [10].  The  correct  rotation-translation  pair  is  typically
determined  using  the  Cheirality  check  that  ensures  that
matching features are in front of both cameras. However, the
Cheirality  check  is  sensitive  to  noise  in  the  image  and
frequently returns the wrong decomposition.

The main contribution in this paper is a novel optimization-
based algorithm that directly solves for the relative pose using
the  epipolar  constraint  in  the  cost  function.  If  an  inertial
measurement  unit  (IMU)  is  available,  then  it  is  used  to  seed
the  optimization  algorithm  at  the  next  time  step.  When  an
IMU  is  not  available,  since  the  rotation  and  translation
between consecutive video frames is similar to nearby frames,
we use the relative pose estimate from the previous time step
to initialize the optimization at the current time step. At each
iteration,  we  use  the  current  best  hypothesis  to  seed  the  LM
algorithm.

We  show  that  this  approach  significantly  reduces  the
number  of  hypotheses  that  must  be  generated  and  scored  to
estimate  the  pose,  thus  allowing  real-time  execution  of  the
algorithm on a Jetson TX2 processor.

The  remainder  of  the  paper  is  organized  as  follows.  The
problem  is  formally  stated  in  Section  II.  The  new  pose
estimation  algorithm is  developed  in  Section  III.  Application
of the algorithm to target tracking in the presence of parallax
is  described in Section IV.  Simulation and flight  results  on a
quadrotor  UAV  are  presented  in  Section  V,  and  conclusions
are given in section VI. 

II.  Problem Description

The  problem  geometry  is  shown  in Fig. 1 where  a  UAV
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captures images at time instants  and .  The camera frame
at  time  is  denoted .  Between  time  instances,  the  UAV
rotates  by ,  where  transforms  coordinates  in

 into  coordinates  in ,  and  is  translated  by
,  which  denotes  the  position  of 

relative to  expressed in , and where  is the position
of frame  in the inertial frame. Superscripts on vectors are
used  to  denote  the  coordinate  frame  in  which  the  vector  is
expressed.
 

 
Fig. 1.     The geometry for the derivation of the essential matrix.
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Suppose that the UAV observes the point  in both frames,
and  let  and 
be  the  3D  position  of  point  with  respect  to  camera  frames

 and , then from the geometry in Fig. 1 we have
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However,  the  left  side  of  (5)  is  always  zero  because  the
cross product  gives a vector perpendicular to ,
and therefore
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Let
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where  is  the  normalized  homogeneous  image
coordinates  of ,  and  and  are  the  normalized
homogeneous  image  coordinates  of  point  in  camera  frame

 and ,  respectively.  Since the right side of (6) is  zero,
any  scalar  multiple  of  and  will  also  satisfy  the
equation, which gives the so-called epipolar constraint.
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that relates homogeneous coordinates of matching features in
two images. Since the epipolar constraint holds for any scaling

of , we define  to get
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The essential matrix is defined as
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∈ SO(3)Since  and ,  there are five degrees of

freedom associated with E.
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The  key  idea  behind  our  pose  estimation  algorithm  is  to
optimize  the  rotation  and  translation  on  the  manifold

 subject  to  the  constraint  of  (7).  The  essential
matrix  is  only  constructed  when  it  is  needed  to  update  the
rotation  and  translation.  In  contrast,  many  approaches  in  the
literature  solve  for  the  essential  matrix  directly,  which
requires  decomposing  the  essential  matrix  later  to  obtain  the
desired rotation and translation.

R ∈ SO(3) q ∈ S 2
In  the  remainder  of  the  paper  we  drop  the  frame  notation

and  simply  write  and  for  the  rotation  and
normalized translation, except where needed for clarity. 

III.  Iterative Pose Estimation Algorithm

The new pose estimation algorithm proposed in this paper is
shown schematically in Fig. 2. At each time step, features are

detected  in  one  frame  using,  for  example,  OpenCV’s
goodfeaturesToTrack [11] and then matched to the next frame
using,  for  example,  OpenCV’s  LK  optical  flow  [12].  The
corresponding  feature  pairs  are  input  to  the  pose  estimation
algorithm.

As  shown  in Fig. 2,  given  the  set  of  matching  features
between  images,  at  each  iteration  of  the  optimization  loop,  a
set of N-matching features are randomly selected and the LM
algorithm is used to minimize the Sampson error, as explain in
Section III-A. The solution of the LM Optimization algorithm
is then scored using either LMedS or an inlier count similar to
the RANSAC algorithm, as described in Section III-B. If IMU
measurements  are  available,  they  are  used  to  predict  the
relative  pose  between  frames,  as  explained  in  Section  III-C,
and  are  used  to  seed  the  LM  optimization  algorithm.  In
addition, the algorithm retains the current best hypothesis and
uses the best hypothesis to seed the next LM optimization, as
also  explained  in  Section  III-C.  After n-iterations  the  best
hypothesis is then refined using all inlier data, and the rotation
and translation are disambiguated, as explained in Section III-
D. Finally, the relative pose between frames is composed with
the  estimated  pose  at  the  prior  time  step  to  produce  the  new
estimated pose, as explained in Section III-E. 

A.  LM Optimization
Since the LM optimization block is the core element of the

pose  estimation  algorithm,  we  explain  it  first  in  this  section.
The  LM  algorithm  is  a  standard  technique  for  solving
nonlinear least squares problems of the form
 

β∗ = argminr(z,β)T r(z,β)

z ∈ Z β ∈ B
r : Z×B→ RN

β δ

where  is  a  known  data  vector,  is  a  parameter
vector,  and  is  a  residual  vector  to  be
minimized. The optimization problem is solved by iteratively
incrementing  by a small  in  a  direction that  decreases the
squared residual
 

S (β) = r(x,β)T r(z,β).
Using the approximation

 

r(z,β+δ) ≈ r(z,β)+ J(z,β)δ
where
 

J(z,β) △=
∂r
∂β

(z,β)

r βis  the Jacobian of  with respect  to  the parameters ,  we get
that
 

S (β+δ) ≈ [r(z,β)+ J(z,β)δ]T [r(z,β)+ J(z,β)δ].
S (β+δ) δTaking  the  partial  of  with  respect  to  and  setting

equal to zero gives
 

JT r = −JT Jδ. (9)
δ

λδ λ

δ

Solving  for  from  this  equation  would  result  in  the  GN
optimization  method.  In  contrast,  gradient  descent  would
replace the  right  hand side  of  (9)  by ,  where  is  a  scalar.
The  LM  algorithm  is  a  hybrid  between  GN  and  gradient
descent, requiring  to satisfy

 

Good Features

to Track

IMU

prediction 

Pose composition

Optic

flow 

Delay

Video

(Rk−1, tk−1) (Rk, tk)

LM optimization

Randomly

select minimum

subset

Score solution

Best hypothesis

Pose refinement &

Disambiguation 

n-iterations

Pose correction

Feature pairs

IMU

 
Fig. 2.     Block diagram of the proposed recursive pose estimation algorithm.
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JT r = −(JT J+λI)δ. (10)
The  general  LM  optimization  algorithm  is  therefore  given

by the iteration
 

βℓ+1 = βℓ +δℓ (11)
where
 

δℓ = −
[
J(z,βℓ)T J(z,βℓ)+λℓI

]−1
J(z,βℓ)T r(z,βℓ)

λℓ
r(z,β)

where  is  selected  at  each  iteration  to  ensure  that  the
residual  decreases.
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The  remainder  of  this  section  explains  how  the  LM
algorithm  is  adapted  to  the  problem  of  finding  relative  pose
between two camera frames. Let  be defined as
the  matching  feature  pair  at  time ,  and  supposing  that
there are  matching features at time , let 
denote  the  index  set.  Then  will  denote  the  set  of  all
matching feature pairs  at  time .  If ,  then 
denotes a subset of matching feature pairs.

Ek

k

The residual  function  will  be  defined  in  terms  of  the  well-
known Sampson error,  which scales the epipolar error by the
reprojection  error  in  each  image  [13].  If  is  the  essential
matrix  at  time ,  then  the  associated  residual  based  on  the
Sampson’s error is defined by
 

ri(Mk
i ,Ek) =

pkTi Ekpk−1i√∥∥∥Πe3Ekpk−1i
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where  and . The residual associated
with  the  set  is  a  vector  of  length  constructed  by
stacking the residual for each matching pair in , and will
be  denoted  as .  Recall  from  (8)  that  the  essential
matrix can be written as
 

E(R̃, q̃) = q̃×R̃
R̃ ∈ SO(3) q̃ ∈ S 2

E
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SO(3) q̃ ∈ S 2 Q̃
Q̃T q̃ Q̃T

q̃
Q̃T Q̃

q̃ = Q̃T e3

where  and , and the “tilde” indicates that we
are  seeking  a  correction  over  one  time  step.  Therefore,  there
are  five  degrees  of  freedom  in .  To  make  the  math  more
transparent, we over-parameterize  by using an element
of .  Accordingly,  given  we  define  the  matrix 
such that the last column of  is , the first column of  is
selected  as  any  unit  vector  that  is  orthogonal  to  and  the
second column of  is selected so that  is orthogonal. Then

, and
 

E(R̃, Q̃) = [Q̃T e3]×R̃ = Q̃T e3×Q̃R̃.
r(MJ , R̃, Q̃)

MJ
z R̃ Q̃
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Therefore,  the  residual  will  be  denoted  as ,
where  a  subset  of  matching  pairs  plays  the  role  of  the
data vector  in the previous discussion, and  and  play the
role of .

J(MJ , R̃, Q̃)
r(MJ , R̃, Q̃)
R̃

Q̃

To  form  the  Jacobian ,  we  need  to  take  the
partial  derivative  of  the  residual  with  respect  to
the  three  degrees  of  freedom  in  and  the  two  degrees  of
freedom in .  Toward that  end, and to simplify notation,  we
define the boxplus operator [14] as
 

⊞ : SO (3)×R3→ SO (3)
S ⊞δ = exp(δ×)S

where
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The  normalized  translation  vector  is  represented  as
 where  only  has  two  degrees  of

freedom.  Let  represent  the  (local)  two
degrees of freedom in , and let
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∂δ j

si
(17)

with
 

si =
∥∥∥Πe3Ep

k−1
i

∥∥∥2+ ∥∥∥Πe3E
T pki

∥∥∥2 (18)
where
 

∂si
∂δ j
= pk−1Ti

∂ET

∂δ j
Πe3Ep

k−1
i + pk−1Ti ETΠe3

∂E
∂δ j

pk−1i

+ pkTi
∂E
∂δ j
Πe3E

T pki + p
kT
i EΠe3

∂ET

∂δ j
pki
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∂E
∂δ j

and where  are given by
 

∂E
∂δ1

(R̃, Q̃) = Q̃T e3×Q̃e1×R̃

∂E
∂δ2

(R̃, Q̃) = Q̃T e3×Q̃e2×R̃

∂E
∂δ3

(R̃, Q̃) = Q̃T e3×Q̃e3×R̃

∂E
∂δ4

(R̃, Q̃) = Q̃T e2×Q̃R̃

∂E
∂δ5

(R̃, Q̃) = −Q̃T e1×Q̃R̃.

λ = 10−4

λ

λ

λ

R̃ q̃

In applying the LM algorithm, we begin with  and
then  adaptively  modify  as  follows.  If  the  residual  error
grows  after  an  LM step,  then  the  update  is  rejected  and  is
doubled. On the other hand, if the error is decreased, then we
accept  the  step  and  divide  by  two.  This  ensures  that  the
residual  monotonically  decreases,  while  allowing  the  LM
algorithm  to  converge  faster  if  the  residual  function  is  well-
behaved.  The  LM optimization  algorithm  for  and  is
summarized in Algorithm 1.

Algorithm 1 LM Optimization for Pose Refinement

MJ , R̃0, q̃01: procedure LM OPTIMIZATION 
Q̃0 ∈ SO(3) q̃0 = Q̃T

0 e32:　Select  such that .
ℓ← 0 λ← 10−43:　 , .

4:　repeat
Jℓ = J(MJ , R̃ℓ, Q̃ℓ)5:　Compute Jacobian 

6:　from (16).
7:　　repeat

δℓ ∈ R58:　　　Compute  as
δℓ←

(
JTℓ Jℓ +λI

)−1
JTℓ rℓ9:　　　　 

R̃ R̃ℓ+1← R̃ℓ ⊞δℓ,1:310:　　　Update  as 
Q̃ Q̃ℓ+1← Q̃ℓ ⊞δℓ,4:511:　　　Update  as 

λ← 2λ12:　　　
∥rℓ∥ < ∥rℓ+1∥13:　　until 

ℓ← ℓ+1 λ← λ/214:　　 , 
∥rℓ+1∥ < ϵ15:　until 

16: end procedure
 

B.  Outlier Rejection
MkThe  optic  flow  algorithm  shown  in Fig. 2 produces 

feature  pairs,  but  it  is  well  known  that  the  process  is  not
robust,  and  that  some  of  the  feature  pairs  will  not  actually
correspond to the same physical  location in the environment.
Therefore, the LM optimization algorithm given in Algorithm 1
must  be  made  robust  to  false  feature  matches.  The  most
common methods  reported  in  the  literature  are  RANSAC [1]
and LMedS [2]. In this paper we will compare the efficacy of
these two methods.

SO(3)×S 2

N = 5

First  note  that  since  the  essential  matrix  manifold
 contains five degrees of freedom, and each feature

correspondence  gives  one  constraint,  that  only  feature
points  are  needed  to  generate  a  pose  using  the  LM
optimization  in  Algorithm  1,  assuming  that  the  feature  pairs

|J| = 5

are  true  correspondences,  and  that  the  3D  points  are  not  co-
linear  [10].  To  make  the  process  robust  to  outliers,  the  basic
idea is to solve the LM optimization many times on randomly
selected  subsets  of  feature  pairs,  to  score  each  pose
hypothesis using all of the feature pairs, and then to select the
pose with the best score.

k
MIk

MJ ⊂MIk |J| = 5 << |Ik |
MJ

MIk n

Recall  that  the  set  of  matching  feature  pairs  at  time  is
given  by .  The  basic  idea  of  the  RANSAC  and  LMedS
algorithms  is  to  randomly  select  a  minimum  subset

 where . The output of Algorithm 1
then  forms  a  model  hypothesis  associated  with .  The
model hypothesis is then scored against all feature matches in

.  This  process  is  repeated  times,  always  retaining  the
model hypothesis with the best score.

In  this  paper  we  consider  the  following  two  scoring
functions:
 

S RANSAC(MIk , R̃, Q̃)
△
=

∑
Mk

i ∈MIk

I
(∥∥∥r(Mk

i , R̃, Q̃)
∥∥∥ > τ)

(19)
 

S LMedS(MIk , R̃, Q̃)
△
= median
Mk

i ∈MIk

{
r2(Mk

i , R̃, Q̃)
}

(20)

I(boolean) boolean
boolean τ

τ

where  is the indicator function (1 when 
is  true,  and  0  when  is  false),  and  where  is  the
RANSAC  threshold  that  must  be  selected.  Note  that  for
RANSAC,  the  score  is  the  total  number  of  outliers  with  a
residual  greater  than ,  whereas  for  LMedS,  the  score  is  the
square of the median residual over all matching features.

To  determine  the  number  of  iterations  required  for
RANSAC or LMeds,  following [1] we assume that  the event
that  a  matching  feature  pair  is  an  outlier  is  a  binomial
distribution with:
 

ϵ = Probability thatMk
i is a false matching pair.

NIf  is  the  number  of  matching  points  used  to  generate  a
model  hypothesis,  then  the  probability  that  all  point
correspondences used to generate the model are inliers is
 

pm = (1− ϵ)N . (21)
nIf  model  hypotheses  are  generated,  then  the  probability

that at least one of models is generated using only inliers is
 

p = 1−
(
1− (1− ϵ)N

)n
. (22)

p
Solving  for  the  number  of  hypotheses  needed  to  achieve  a

desired confidence level , gives
 

n(p) =
log(1− p)

log
(
1− (1− ϵ)N

) . (23)

N = 5

n = 145

For  example,  achieving  a  99% confidence  ratio  when  the
outlier  ratio  is  50% and  when  minimal  subsets  of 
matching  features  are  used  to  create  model  hypotheses
requires  RANSAC or LMedS iterations. 

C.  IMU Predication and LM Seeding
In  this  section,  we  address  the  issue  of  initializing  the  LM

optimization  given  in  Algorithm  1.  We  are  particularly
interested in the robotic situation where an IMU, synchronized
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to the camera, is available to resolve the scale ambiguity. We
will  also  discuss  the  case  where  IMU  measurements  are  not
available.  The  discussion  in  this  section  follows  in  some
respects, the development in [15].

RI
k ∈ SO(3) k
F k F I ξkk/I vkk/I

k
F k akk/I

Fk ωkk/I

F k

For  the  sake  of  clarity,  in  this  section  we  will  again
explicitly  specify  the  different  coordinate  frames.  Let

 be  the  rotation  from  the  camera  frame  at  time ,
 to  the  inertial  frame ,  and  let  and  be  the

position  and  velocity  of  the  camera  at  time  relative  to  the
inertial  frame,  expressed  in  the  camera  frame ,  let  be
the measured specific acceleration of the camera expressed in

,  and  be the measured angular  velocity of  the camera
relative to the inertial frame, as expressed in the camera frame

,  where  we  have  assumed  that  the  IMU biases  are  known
and  have  been  removed  from  the  measurements.  Then  the
kinematics for the camera are given by
 

ṘI
k = R

I
k

(
ωkk/I

)
×

v̇kk/I = R
IT
k gI +akk/I

ξ̇kk/I = v
k
k/I (24)

gI Ts

m

κ0, κ1, κ2, . . . , κm
k−1 k κ0

k−1 κm
k

where  is  the gravity vector in the inertial  frame. Let  be
the  sample  period  of  the  IMU,  and  assume  that  there  are 
IMU  samples  between  camera  frames.  We  will  use  the
notation  to  denote  the  intermediate  sample
from  to , implying that the time instance  corresponds
to  the  time  at  image  frame ,  and  corresponds  to  the
time at  image frame .  Then,  integrating  over  one  sample  of
the  IMU  and  assuming  that  the  measurements  are  constant
over the sample period, we get
 

RI
κi+1
= RI
κi
exp

(
(ωκi
κi/I

)×Ts
)

vκi+1
κi+1/I

= Rκi+1κi vκi
κi/I
+RIT
κi+1

gITs+R
κi+1
κi aκi

κi/I
Ts

ξ
κi+1
κi+1/I

= Rκi+1κi ξ
κi
κi/I
+ vκi+1
κi+1/I

Ts

where
 

Rκi+1κi = R
IT
κi+1

RI
κi
= exp

(
(ωκi
κi/I

)×Ts
)T
.

mThe predicted pose after  IMU samples is therefore
 

R̃ = Rκmκ0 = R
IT
κmR

I
κ0

(25)
 

q̃ =
Rκmκ0 ξ

κ0
κ0/I
− ξκm
κm/I∥∥∥∥Rκmκ0 ξk0k0/I − ξkmkm/I∥∥∥∥ . (26)

(R̃, q̃)The  predicted  relative  pose  is  used  to  initialize
Algorithm 1.

R̃ = I
q̃

When an IMU is  not  available,  Algorithm 1 can be seeded
with  the  identity  rotation  and  a  randomly  selected
translation  unit  vector .  This  method  we  will  call  the
“random  initialization” method.  Another  alternative  is  to
initialize  Algorithm  1  with  the  best  hypothesis  from  the
previous time step. We will denote this method as the “prior”
method.  A  third  alternative,  that  can  also  be  used  with  or
without  the  IMU,  is  to  initialize  Algorithm  1  with  the  best
RANSAC/LMedS hypothesis that has been found so far from
previous LM iterations. Since each hypothesis depends on the

previous best hypothesis, when the first hypothesis is selected
randomly,  we  will  denote  this  method  as  the “random
recursive” method.  When  the  first  hypothesis  is  the  best
hypothesis from the IMU, or the prior time step in the case of
no IMU, we call it the “prior recursive” method. In Section V
we  will  show  results  using  each  of  these  initialization
techniques. 

D.  Pose Refinement and Disambiguation

MJ

Even  the  best  hypothesis  from  RANSAC  and  LMedS
usually has some error due to noise on the feature matches in
the  minimum  subset  used  to  create  the  hypothesis.  The
estimate can be improved by using least-squares optimization
over  all  inlier  feature  matches.  An  advantage  of  our  method
over traditional five point or eight point algorithms is that the
size of the feature set  in Algorithm 1 is not limited to a
fixed  number  of  points.  Therefore,  the  relative  pose  can  be
refined by instantiating Algorithm 1 on the entire set of inlier
feature matches.

To determine inlier points, we use the robust inlier detection
method described in [16] by setting
 

σ̂ = 1.4826
[
1+

5
|Ik | −N

] √
median{r(Mk

i , R̃, q̃)
2}

N = 5
|Ik |

k Mk
i

r(Mk
i , R̃, q̃)

2 < 2.5σ̂

where  is  the  number  of  feature  matches  used to  create
the  model  and  is  the  total  number  of  feature  matches  at
time . A feature match  is determined to be an inlier if the
Sampson residual .

(R̃, q̃) (R̃′, q̃) (R̃,−q̃)
(R̃′,−q̃) R̃′ q̃

It is well known that if the epipolar constraint (7) is satisfied
for ,  that  it  is  also  satisfied  for , ,  and

, where  is a 180 degree rotation about , i.e.,
 

R̃′ =
(
I+2q̃2×

)
R̃.

R̃ R̃′

Algorithm  1  will  find  one  of  these  four  solutions,  but  the
result  may not  correspond to  the  correct  pose,  particularly  in
the case when the IMU is not present and the initial translation
is  selected  randomly.  This  is  a  well-known  problem  with  5-
point  and 8-point  solvers  of  the  essential  matrix.  The  correct
pose is typically determined using the Cheirality check, which
involves triangulating each feature match to determine its 3D
position,  and then selecting the relative pose that  puts  all  3D
points  in  front  of  the  camera.  However,  the Cheirality  check
often  gives  spurious  results.  As  an  alternative,  since  the  two
possible rotations  and  are always 180 degrees apart,  we
can  pick  the  rotation  with  the  smallest  angle  and  use  the
Cheirality check to find the correct translation. Since
 

tr(R̃) = 1+2cosθ
θ

R̃ R̃′
q̃

−q̃

where  is  the eigen-angle,  and since we are expecting small
camera  deviations  between  time  samples,  we  select  or 
based on which one has the largest trace. The translation  or

 is then selected based on the Cheirality check. 

E.  Pose Composition
k−1 (RI

k−1, ξ
I
k−1/I)

(R̃, q̃) = (Rk
k−1,q

k
k−1/k)

q

The global pose at time  is given by . The
current  estimated  incremental  pose  is .
We use the IMU prediction to scale  which gives
 

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 947 



ξkk−1/k =
∥∥∥∥Rκmκ0 ξκ0κ0/I − ξκmκm/I∥∥∥∥ q̃. (27)

kAccordingly, the pose at time  is
 

RI
k = R

I
k−1R

kT
k−1 (28)

 

ξIk/I = ξ
I
k−1/I −R

I
k−1R

kT
k−1ξ

k
k−1/k. (29)

 

F.  Algorithm Summary
A  summary  of  the  proposed  iterative  pose  estimation

scheme is give in Algorithm 2 below.

Algorithm 2 Iterative Pose Estimation

1: procedure ITERATIVE POSE ESTIMATION
(Ik−1, Ik) (aκi

κi/I
,ω
κi
κi/I

)mi=1 (RI
k−1, ξ

I
k−1/I)2:　Input: , , 

Ik−1 Ik3:　From images  and  determine set
MIk4:　　 of matching features .

(R̃0, q̃0)5:　Initialize relative pose  using either:
R̃0 = I q̃0 = random6:　　(1) Initialization: , .

7:　　(2) Prior: best hypothesis from previous step.
8:　　(3) IMU: initialize using (25) and (26).

n(p)9:　Determine  from (23).
i = 1 n10:　for  to  do

Ji ⊂ Ik |Ji| = 511:　　Randomly generate  where ,
MJi12:　　　with corresponding features .

(R̃i, q̃i)← LM Optimization (MJi , R̃0, q̃0)13:　　Let 
14:　　　 using Algorithm 1.

(R̃i, q̃i)15:　　Score  using (19) or (20).
(R̃∗, q̃∗)← argmaxi S (MIk , R̃i, q̃i)16:　　Let  be the

17:　　　pose correction with the current lowest score.
18:　end for

(Ik, R̃∗, q̃∗)19:　Using , determine inliers and refine the
20:　　pose with those inliers, following Section III-D.
21:　Update the pose according to (27)–(29).
22: end procedure

 

IV.  Motion Detection and Tracking in the Presence of
Parallax

One  application  of  relative  pose  estimation  is  motion
detection  and  tracking  in  the  presence  of  parallax.  Motion
detection is a valuable source of information in target tracking
applications. It can be used to track objects without any prior
knowledge  about  their  appearance,  in  contrast  to  many
trackers that are designed to track specific classes of objects.

There  are  many  successful  image-based  background
subtraction techniques in the literature that work on stationary
cameras.  In  order  for  image  differencing  techniques  to  work
on a moving camera, the images must first be aligned using a
homography. While this works well for planar scenes, if there
is parallax, artifacts will appear in the difference image. If the
parallax  is  small  enough  in  comparison  to  the  movement  of
objects  in  the  scene,  the  effects  of  parallax  can  be  reduced
using  simple  morphological  operations  and  gradient
suppression [17].

In the presence of strong parallax, however, a better motion
model  that  accounts  for  depth  variation  must  be  used.  There
are  several  methods  in  the  literature  that  use  a  geometric

model  to  describe  the  motion  of  tracked  points  in  the  scene
over time. For example, [18] uses orthographic projections to
segment moving objects, which works well if the camera is far
from  the  scene  or  has  a  narrow  field  of  view.  Another
approach  maintains  an  affinity  matrix  and  uses  principal
component analysis to segment moving objects [19]. Another
approach uses multiple-frame geometric constraints [20], [21].
However,  all  of  these  methods  can  be  computationally
prohibitive.  In  contrast,  the  technique  proposed  in  this  paper
exploits  the  two-frame  epipolar  constraint  and  is  therefore
computationally simple, enabling real-time performance. 

A.  Motion Detection Algorithm

(R̃, q̃)
ϕ
(
Mk

i , R̃, q̃
)

1
Mk

i 0

Given two consecutive  frames,  with  point  correspondences
detected  in  each  frame,  the  objective  is  to  determine  which
points are from stationary objects and which are from moving
objects.  In  this  section  we  assume  that  the  relative  pose
between cameras  has been calculated using Algorithm 2.
The goal is to design a detector  which returns  if
the feature pair  is sourced from a moving object and  if it
is sourced from a stationary background object. The output of
the motion detector is used as an input to a tracking algorithm
that produces target tracks as described in Section IV-B.

The essential matrix relates points in one image to the other
image  with  the  epipolar  constraint.  In  other  words,  the
essential  matrix  maps  a  point  in  one  image  to  a  line  in  the
other image. The location where the point in the other image
appears  along  this  line  depends  on  the  feature’s  depth  to  the
camera. As the camera translates, points that are closer to the
camera will  appear to move more than the points that  are far
away. This effect is known as parallax.

There are two degrees of freedom for the apparent motion of
each  point  in  the  image  plane.  One  of  these  degrees  of
freedom  can  be  explained  by  the  epipolar  constraint  if  the
real-world  point  is  stationary.  However,  motion  along  this
degree of freedom can also be explained by object  motion in
the  world  frame.  Hence,  the  source  of  any  movement  along
this  degree  of  freedom  is  ambiguous  without  additional
information.  The  second  degree  of  freedom  for  apparent
motion  of  points  in  the  image  plane  is  perpendicular  to  the
epipolar  constraint.  Thus,  the  only  possible  source  of  motion
along  this  degree  of  freedom  is  movement  in  the  real-world
frame.

g : R3→ P2 g(P) = P/eT3 P
Pi ∈ R3

k1
pk1i = g(P

k1
i ) k2

Pi+δP
(R̃, ξ̃)

Let  defined by  be the perspective
projection  operator.  With  reference  to Fig. 1 let  be  a
feature in the world that is imaged by the camera at time  to
produce feature .  At time time ,  the feature has
moved in the world to position , and the camera, which
has moved by  images the feature to produce
 

pk2i = g(P
k2
i ) = g(R̃Pk1

i + ξ̃+δP).

i
F k2

pk1

To  streamline  the  notation,  we  will  drop  the  subscript  in
the  following  discussion.  The  epipolar  line  in  frame 
corresponding to the point  is given by
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ℓ = Epk1 = q̃×R̃pk1 =
ξ̃×R̃Pk1∥∥∥ξ̃∥∥∥eT3 Pk1

eT3 P
k1 Pk1

F k1

F k2

where  is  the  distance  that  is  from  the  camera  in
frame  and  is  therefore  positive.  Note  also  that  the
perpendicular to the epipolar line in  is given by
 

e3× ℓ = e3×Epk1 =
e3×ξ̃×R̃Pk1∥∥∥ξ̃∥∥∥eT3 Pk1

e3since  in the camera frame is directed along the optical axis.
Our  proposed  motion  detection  algorithm  is  based  on  the
following theorem.

P δP
k1 k2

(R̃, ξ̃) k1 k2 ξ̃ , 0
pk1 = g(Pk1 ) pk2 = g(Pk2 ) = g(R̃Pk1 + ξ̃+δP)

P F k1 P+δP
F k2 ℓ = q̃×R̃pk1 F k2

pk1 F k1 q̃ = ξ̃/∥ξ∥

Theorem 1: Let  be a point in the world frame and  its
displacement  between  times  and .  Suppose  that  the
camera moves by  between  and  and that , and
let  and  be  the
image  projection  of  the  point  in  frame  and  in

,  respectively.  Let  be  the  epipolar  line  in 
corresponding to point  in , where , and define
 

v∥ = (pk2 −g(R̃pk1 ))T (e3× ℓ)
v⊥ = (pk2 −g(R̃pk1 ))T ℓ

P F k2

v⊥ , 0 δP , 0 v∥ < 0
δP , 0

which  can  be  interpreted  as  the  rotation  corrected
displacement  of  the  projected  position  of  in  projected
along the  perpendicular  to  the  epipolar  line,  and the  epipolar
line, respectively. Then  implies that , and 
implies that .

Proof: Note that
 

pk2 −g(R̃pk1 )
= g(R̃Pk1 + ξ̃+δP)−g(R̃pk1 )

=
R̃Pk1 + ξ̃+δP

eT3 R̃P
k1 + eT3 ξ̃+ e

T
3 δP
− R̃Pk1

eT3 R̃P
k1

=
(eT3 R̃P

k1 )ξ̃− (eT3 ξ̃)R̃Pk1 + (eT3 R̃P
k1 )δP− (eT3 δP)R̃Pk1

(eT3 R̃P
k1 + eT3 ξ̃+ e

T
3 δP)e

T
3 R̃P

k1
. (30)

ξ̃T ξ̃×R̃Pk1 = (R̃Pk1 )T ξ̃×R̃Pk1 = 0Since  we have that
 

v⊥ =
(eT3 R̃P

k1 )δPT ξ̃×R̃Pk1

(eT3 P
k2 )(eT3 R̃P

k1 )(eT3 P
k1 )

∥∥∥ξ̃∥∥∥ .
v⊥ , 0 δP , 0Clearly  implies that .

v∥For , note that (30) can be written as
 

pk2 −g(R̃pk1 ) = e3×ξ̃×R̃Pk1 + e3×δPR̃Pk1

(eT3 P
k2 )(eT3 R̃P

k1 )
.

Therefore
 

v∥ =

∥∥∥e3×ξ̃×R̃Pk1
∥∥∥2+ (e3×δPR̃Pk1 )T (e3×ξ̃×RPk1 )

(eT3 P
k2 )(eT3 R̃P

k1 )(eT3 P
k1 )

∥∥∥ξ̃∥∥∥2 .

v∥

δP , 0

Since  the  denominator  and  the  first  term  in  the  numerator
are  always positive,  the  only way for  to  be  negative  is  for
the  second  term  in  the  numerator  to  be  negative  and  to
dominate the first term, which requires that .

Therefore, a decision function for whether a point is moving
is given by

 

ϕ
(
Pk
i , R̃, q̃

)
=

{
1 if |v⊥| > τ or v∥ < −τ
0 otherwise

(31)

τwhere  is  a  positive  threshold.  Due  to  small  errors  in
calculating  the  relative  pose  and  inaccuracies  with  camera
calibration,  a  threshold  of  one  pixel  is  the  tightest  constraint
that can be used. 

B.  Recursive-RANSAC Tracker
Moving  points  found  using  (31)  are  the  input  to  the

recursive-RANSAC  (R-RANSAC)  multiple  target  tracking
algorithm described in [22], [23]. In essence, the R-RANSAC
algorithm  fits  motion  model  trajectories  to  sequences  of
points.  For  this  paper  we  use  a  constant  velocity  motion
model. Tracks are initialized when a sufficient number of new
data  indicate  a  moving  object,  and  existing  tracks  are
propagated forward using a Kalman Filter.  Probabilistic Data
Association  [24]  is  used  to  account  for  measurement
association  uncertainty.  Each  track  is  given  an  inlier  score
based  on  the  percentage  of  time  steps  in  which  the  track  is
detected.  R-RANSAC  also  has  a  track  management  system
that  merges  similar  tracks  and  removes  tracks  that  have  an
inlier  score  lower  than  the  minimum  threshold.  For  more
details see [22], [23]. 

V.  Results

The  performance  of  the  pose  estimation  algorithm  will  be
demonstrated  in  simulation  and  with  real  flight  tests.  In  the
simulation  study  outlined  in  Section  V-A  we  know  the  true
pose  and  so  we  will  be  able  to  assess  the  accuracy  of  pose
estimation. In the flight test outlined in Section V-B, we apply
pose estimation to motion detection and tracking as described
in Section IV. 

A.  Pose Estimation - Synthetic Video
Algorithm 2 was tested on a  synthetic  video sequence of  a

UAV  inside  a  city  generated  using  the  BYU  Holodeck
simulator [25]. The two-minute video sequence (3600 frames)
includes  aggressive  rotational  and  translational  motions.  A
screenshot  of  the  video  sequence  is  shown  in Fig. 3.  The
purpose for using the simulator is  to compare estimated pose
to true pose.

We  will  consider  three  error  metrics  in  evaluating
Algorithm 2. The rotational error give by
 

eR =
∥∥∥∥log(RtrueR−1est

)∥∥∥∥ = tr
(
RtrueR−1est

)
−1

2
is  the  smallest  rotation  angle  between  the  estimated  and  true
rotation. The translation error given by
 

eq = cos−1
(
qTtrueqest

)
(32)

is  the  angle  between  the  estimated  and  true  normalized
translation.  The  rotation  and  translation  error  metrics  do  not
penalize pose disambiguation errors since they return the same
metric  for  all  four  possible  rotation-translation  pairs.
Therefore,  the  third  metric  is  the  pose  disambiguation metric
defined as the percentage of time that Algorithm 2 selects the
correct  rotation  and  translation.  Both  the  rotational  and
translational  error  are  measured  in  radians.  The  LMedS
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Sampson  error  is  also  computed.  Unless  otherwise  noted,  all
error  metrics  are  averaged  over  the  entire  video  sequence  of
3599 frame pairs.

The  error  over  time  for  the  OpenCV  Nister/LMedS
polynomial  solver  [4],  LM  Basis  [7],  and  Algorithm  2  are
shown  in Fig. 4.  All  three  algorithms  give  low  error  for  the
UAV  trajectory.  Notice  how  the  rotation  error  seems  to  be
proportional  to  the  total  rotation,  while  the  translation  error
becomes very large as the true translation approaches zero.
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Fig. 4.     Incremental  rotation  and  translation  error  over  entire  video
sequence. True incremental translation and rotation are also shown.
 

R̃0 q̃0

In  order  to  provide  a  fair  comparison  of  initialization
schemes  for  Algorithm  2  with  the  OpenCV  five-point
polynomial  solver,  the  IMU  was  not  used  in  this  section  for
initialization. Alternatively we compare random initialization,
where both  and  are selected randomly, random recursive

(R̃0, q̃0)

initialization,  where  the  first  LM  optimization  at  each  time
step is initialized randomly, but subsequent LM optimizations
at  that  time  step  use  the  best  pose  hypothesis  prior,  where

 is the best pose from the previous time step, and prior
recursive, where the first LM optimization at each time step is
the best pose from the previous time step, but subsequent LM
optimizations  at  that  time  step  use  the  best  pose  hypothesis.
All  results  use  LMedS  for  outlier  rejection.  The  LM
optimization is repeated 100 times with five matching features
at  each  iteration.  The  mean  error  across  the  entire  video
sequence is plotted in Fig. 5.
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Fig. 5.     Comparison of LM seeding methods.
 

This  result  shows  the  importance  of  initializing  the
optimizer  with  a  prior.  The  random  initialization  method
performs the worst  out  of  all  four methods,  while initializing
the optimizer  with a  prior  from the previous time step or  the
best  LMedS  hypothesis  so  far  from  the  current  time  step
significantly  reduces  the  error.  IMU  prediction  will  further
improve  these  results.  After  100  iterations,  the  LMedS  error
for  the  initialization  methods  that  use  prior  information  is
comparable  to  the  OpenCV  five-point  polynomial  solver,
despite  the  fact  that  only  one  hypothesis  is  generated  per
subset  instead  of  an  average  of  about  four  hypotheses.  LM
Basis also generates hypotheses from random seeds, resulting
in higher error than methods that initialize from a prior. Note
that while LM Basis generates up to 10 hypotheses per subset,
it  removes  duplicates  and  hypotheses  that  do  not  appear  to
converge, resulting in an average of only 1.82 hypotheses per
subset.  Dropping  these  hypotheses  early  may  increase  the
error  based  on  iteration  number,  but  results  in  a  lower  error
when compared against time.

Fig. 6 shows  the  error  of  Algorithm  2  compared  to  the
OpenCV 5-point algorithm, but with the x-axis changed to be
time  instead  of  number  of  iterations.  When  under  a  time
constraint, Algorithm 2 significantly outperforms the OpenCV
solver [4] and LM Basis [7].

For  outlier  rejection,  RANSAC  and  LMedS  were  also
compared.  For  RANSAC  the  algorithm  was  tested  with  19
different thresholds. For LMedS, the algorithm was run once,
because there is no threshold parameter to tune. For each run

 

 
Fig. 3.     Screenshot of the holodeck video sequence.
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the average truth rotation and translation error over the entire
video  sequence  were  calculated.  As  shown in Fig. 7,  LMedS
performs  well  without  requiring  a  threshold.  However,  in
order  for  RANSAC  to  perform  as  well  as  LMedS,  the
threshold must be tuned to within an order of magnitude of the
optimal threshold.

Table I shows  the  results  of  the  rotation  and  translation
disambiguation  algorithms.  The  first  row  within  each  group
shows a baseline comparison, where no method was used for
pose disambiguation. The baseline method gives poor results.
However,  it  is  worth  nothing  that  Algorithm  2  returns  the
correct  rotation,  even  without  any  form  of  pose
disambiguation. This is likely because it  is seeded at the first
frame with the identity rotation, and in every frame thereafter
the best  hypothesis  from the previous iteration is  used as  the
seed  to  the  optimizer.  The  second  row  in  each  group  shows
the  results  when  the  Cheirality  check  was  used  to  determine
the  best  of  the  four  possible  rotation/translation  pairs.  The

translation direction is often correct but the rotation is correct
only about half of the time. The third row in each group shows
the  results  of  using  the  matrix  trace  to  determine  which
rotation  is  correct  and  the  Cheirality  check  to  determine  the
correct  translation  direction.  This  third  pose  disambiguation
method consistently outperforms the other methods.

The  best  hypothesis  was  refined  using  LM to  optimize  the
Sampson  cost  over  all  inliers  (Section  III-D).  The  refined
relative pose is only kept if the new relative pose successfully
reduces the LMedS error. Table II compares the average error
with  and  without  refinement.  Refining  the  best  relative  pose
hypothesis  significantly  reduces  all  three  error  metrics.  LM
Basis also refines the best hypothesis and successfully reduces
the  translational  and  rotational  error.  However,  even  with
refinement, LM Basis has a higher error than Algorithm 2.

Table III compares  the  computation  time  for  relative  pose
estimation  between  the  OpenCV  implementation  [4],  LM

 

TABLE I  
Pose Disambiguation Comparison

Solver Pose disambiguation method Rotation correct Translation correct Both correct

OpenCV none 50.2% 14.7% 6.8%

OpenCV Cheirality 54.0% 93.2% 52.3%

OpenCV trace + Cheirality 100.0% 96.5% 96.5%

LM Basis other + Cheirality 100.0% 95.8% 95.8%

Algorithm 2 none 100.0% 57.2% 57.2%

Algorithm 2 Cheirality 40.9% 92.1% 40.8%

Algorithm 2 trace + Cheirality 100.0% 96.5% 96.5%
 

 

TABLE II  
Relative Pose Refinement

Relative pose solver Refine (success rate) Rot err (radians) Trans err (radians) LMedS err (Sampson)

OpenCV poly - 4.843E–04 1.742E–01 3.769E–08

LM Basis No 7.076E–04 2.059E–01 4.762E–08

LM Basis Yes 4.159E–04 1.708E–01 5.059E–08

Algorithm 2 No 4.640E–04 1.699E–01 3.653E–08

Algorithm 2 Yes (54.5%) 3.850E–04 1.596E–01 3.540E–08
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Fig. 6.     Sampson error over time.
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Fig. 7.     Average rotation and translation errors for RANSAC and LMedS.
 

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 951 



3×3 5×5

Basis  [7],  and  Algorithm  2.  The  algorithms  were  both
implemented on a laptop with a 2.1 GHz Intel i7 CPU running
Linux.  The  breakdown of  the  time  required  to  generate  each
hypothesis  set  is  shown  in Fig. 8.  The  most  time-consuming
part  of  the  OpenCV  solver  is  finding  the  zeros  of  the  tenth-
order polynomial. The most time-consuming part of Algorithm 2
is  the  Eigen  matrix  solver.  Note  that  while  LM  Basis  and
Algorithm 2 take about  the  same amount  of  time to  generate
hypotheses  per  subset,  LM  Basis  generates  up  to  10
hypotheses per  subset,  while Algorithm 2 only generates one
hypothesis.  The  faster  optimization  used  in  the  LM  Basis
algorithm  is  likely  due  to  solving  simpler  equations  which
require inverting a  matrix instead of a  matrix.
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Fig. 8.     Time required to generate each hypothesis set. 

B.  Motion Detection and Tracking - Flight Video
The  motion  detection  algorithm  was  tested  on  a  moving

camera video sequence taken from a multi-rotor UAV. Fig. 9
shows the results of the motion detection algorithm. Note that
the  stationary  points  have  zero  perpendicular  velocity  and  a
positive  parallax  velocity,  while  the  moving  points  have  a
non-zero perpendicular velocity component. Fig. 10 shows the
results  of  tracking  these  moving  points  using  R-RANSAC
[22].
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Fig. 9.     Video motion detection results. Each point position (left) and its
corresponding net velocity (right) are plotted. Points with a net perpendicular
velocity greater than one pixel are classified as moving points (red), while
points with a velocity below this threshold are classified as stationary points

(blue).
The computation times of the motion detection and tracking

algorithm  are  shown  in Table IV.  For  faster  processing  the
video  was  scaled  to  640 × 480.  The  motion  detection  and
tracking  algorithm  is  running  on  a  Linux  desktop  computer
with a 4 GHz Intel i7 CPU. On average about 800 points are
detected,  tracked,  and fed to Algorithm 2 each frame.  Notice
that  the  OpenCV feature  detection  and  tracking  are  the  most
time-consuming  components  of  the  tracking  algorithm  and
consume 70% of the total CPU usage. The complete algorithm
takes  29  milliseconds  to  run  per  frame,  which  means  it  is
capable of running in real-time at 34 frames per second (FPS).
 

TABLE IV  
Motion Detection and Tracking Computation Times

Tracking component Computation time

Good Features to Track 9.2 ms

LK optical flow 12 ms

(R̃, q̃)Compute  (Algorithm 2) 3.0 ms

R-RANSAC 0.4 ms

Other 4.4 ms

Total 29 ms (34 FPS)

 

 
Fig. 10.     R-RANSAC tracks.
  

VI.  Conclusion

In  this  paper  we  have  presented  a  relative  pose  estimation
algorithm  for  solving  the  rotation  and  translation  between
consecutive frames, that requires at least five matching feature
points  per  frame,  and  is  capable  of  running  in  real-time.  We
show  the  importance  of  seeding  the  LM optimizer  with  an
initial  pose estimate and demonstrate that this initial  estimate
significantly  improves  the  performance  of  the  algorithm.  We
have  applied  the  algorithm  to  detecting  motion  and  tracking
multiple  targets  from  a  UAV  and  demonstrated  real-time
performance  of  this  tracking  algorithm on  a  640 × 480  video
sequence.  Future  work  includes  applications  to  3D  scene

 

TABLE III  
Computation Time

OpenCV poly LM Basis Algorithm 2

Hypothesis generation 100 × 0.404 ms = 40.4 ms 100 × 27.9 us = 2.79 ms 100 × 23.4 us = 2.34 ms

Hypothesis scoring (avg 400 pts) 400 × 17.3 ns = 6.91 ms 182 × 13.9 ns = 2.52 ms 100 × 8.99 ns = 0.90 ms

Refinement - 2.17 ms 5.91 ns

Pose disambiguation 0.32 ms 1.86 ms 0.14 ms

Total 47.7 ms 9.57 ms 3.97 ms
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reconstruction and more complex tracking methods.
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