942

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

An Iterative Pose Estimation Algorithm Based on
Epipolar Geometry With Application to
Multi-Target Tracking

Jacob H. White and Randal W. Beard, Fellow, IEEE

Abstract—This paper introduces a new algorithm for
estimating the relative pose of a moving camera using consecutive
frames of a video sequence. State-of-the-art algorithms for
calculating the relative pose between two images use matching
features to estimate the essential matrix. The essential matrix is
then decomposed into the relative rotation and normalized
translation between frames. To be robust to noise and feature
match outliers, these methods generate a large number of
essential matrix hypotheses from randomly selected minimal
subsets of feature pairs, and then score these hypotheses on all
feature pairs. Alternatively, the algorithm introduced in this
paper calculates relative pose hypotheses by directly optimizing
the rotation and normalized translation between frames, rather
than calculating the essential matrix and then performing the
decomposition. The resulting algorithm improves computation
time by an order of magnitude. If an inertial measurement unit
(IMU) is available, it is used to seed the optimizer, and in
addition, we reuse the best hypothesis at each iteration to seed the
optimizer thereby reducing the number of relative pose
hypotheses that must be generated and scored. These advantages
greatly speed up performance and enable the algorithm to run in
real-time on low cost embedded hardware. We show application
of our algorithm to visual multi-target tracking (MTT) in the
presence of parallax and demonstrate its real-time performance
on a 640 x 480 video sequence captured on a UAV. Video results
are available at https://youtu.be/HhK-p2hXNnU.

Index Terms—Aerial robotics, epipolar geometry, multi-target
tracking, pose estimation, unmanned aircraft systems, vision-based
flight.

I. INTRODUCTION

STIMATING camera motion from a video sequence has

many applications in robotics including target tracking,
visual odometry, and 3D scene reconstruction. These
applications often require on-board processing of the video
sequence in real-time and thereby impose size, weight, and
power (SWAP) constraints on the computing platform.

Manuscript received April 17, 2020; accepted May 10, 2020. This work
was funded by the Center for Unmanned Aircraft Systems (C-UAS), a
National Science Foundation Industry/University Cooperative Research
Center (I/UCRC) under NSF award Numbers IIP-1161036 and CNS-
1650547, along with significant contributions from C-UAS industry members.
Recommended by Associate Editor Chenglin Liu. (Corresponding author:
Randal W. Beard.)

Citation: J. H. White and R. W. Beard, “An iterative pose estimation
algorithm based on epipolar geometry with application to multi-target
tracking,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 942-953, Jul. 2020.

The authors are with the Brigham Young University, Provo, Utah 84058
USA (e-mail: snowflakeobsidian3.14@gmail.com; beard@byu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2020.1003222

One method to estimate motion from a video sequence is to
calculate the essential matrix between consecutive frames.
The essential matrix relates the homogeneous image
coordinates between frames using the epipolar constraint.
After the essential matrix has been determined, it can be
decomposed into a rotation and a normalized translation to
determine the relative motion of the camera between frames.
In order to be robust to noise and feature mismatches, the
essential matrix is typically estimated by generating a large
number of hypotheses from five-point minimum subsets of
matching features, and selecting the best hypothesis using
either random sample consensus (RANSAC) [1] or least
median of squares (LMedS) [2]. When using RANSAC, the
hypotheses are scored by counting the number of inlier points
from the entire set. When using LMedS, the hypotheses are
scored by calculating the median error.

State of the art methods calculate essential matrix
hypotheses directly from each five-point minimum subset.
One of the best known methods is Nister’s algorithm [3].
Nister showed that for five matching points, there are
potentially ten essential matrices that satisfy the constraints,
each corresponding to a real root of a tenth-order polynomial
generated from the data. There are a many open-source
implementation of Nister’s five-point algorithm including
OpenCV’s findEssentialMat function [4]. However, cons-
tructing, solving, and extracting the essential matrix from this
tenth-order polynomial is complex and can be
computationally expensive. Furthermore, since each minimum
subset produces up to ten hypotheses, it can be time
consuming to score them.

As an alternative to directly calculating essential matrix
solutions, some authors [5]-[9] propose solving for the
essential matrix using non-linear optimization algorithms such
as Gauss-Newton (GN) and Levenberg-Marquardt (LM).
Since the essential matrix has nine entries but only five
degrees of freedom, the optimization is performed on the five
dimensional essential matrix manifold. There are a number of
ways to define the essential matrix manifold. Some authors
define the manifold using a rotation and translation unit
vector, which are elements of SO(3) and S2, respectively [5],
[6]. Others define the manifold using two elements of SO (3)
(81, [9]-

A third method of optimizing on a manifold is described in
[7]. This approach called LM Basis calculates the four
essential matrix basis vectors in the nullspace of the essential

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2020.1003222

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 943

matrix equation using SVD. The four coefficients to these
matrices are solved for on the S* manifold. In contrast to the
previously described methods which operate on five-
dimensional manifolds, this method uses a three-dimensional
manifold.

During each iteration of the optimization algorithm, the
optimizer step is solved for in terms of the three or five
degrees of freedom along the manifold. The computational
requirements of the resulting scheme are significantly less
than Nister’s five point algorithm. However, one weakness of
optimization-based solvers is that they only find one of the ten
possible essential matrices at a time. Finding all solutions
requires additional optimization runs with different
initialization points. The optimization method is also sensitive
to initial conditions, which can cause the optimizer to fail to
produce a valid solution. For example, GN may diverge if the
initial guess is too far from the true solution. LM can be used
to prevent increases in the cost function, but still may fail to
converge. Because of the need to run the optimizer multiple
times from different initial conditions, these existing
optimization-based solvers might not necessarily be faster
than the direct essential matrix solvers if the same level of
accuracy is desired. However, not all of the ten possible
solutions are needed in order achieve comparable accuracy to
direct essential matrix solvers if the best solution can be found
the first time.

After the essential matrix is found, it must then be
decomposed into a rotation and normalized translation. Given
an essential matrix, there are four possible rotation-translation
pairs [10]. The correct rotation-translation pair is typically
determined using the Cheirality check that ensures that
matching features are in front of both cameras. However, the
Cheirality check is sensitive to noise in the image and
frequently returns the wrong decomposition.

The main contribution in this paper is a novel optimization-
based algorithm that directly solves for the relative pose using
the epipolar constraint in the cost function. If an inertial
measurement unit (IMU) is available, then it is used to seed
the optimization algorithm at the next time step. When an
IMU is not available, since the rotation and translation
between consecutive video frames is similar to nearby frames,
we use the relative pose estimate from the previous time step
to initialize the optimization at the current time step. At each
iteration, we use the current best hypothesis to seed the LM
algorithm.

We show that this approach significantly reduces the
number of hypotheses that must be generated and scored to
estimate the pose, thus allowing real-time execution of the
algorithm on a Jetson TX2 processor.

The remainder of the paper is organized as follows. The
problem is formally stated in Section II. The new pose
estimation algorithm is developed in Section III. Application
of the algorithm to target tracking in the presence of parallax
is described in Section IV. Simulation and flight results on a
quadrotor UAV are presented in Section V, and conclusions
are given in section V1.

II. PROBLEM DESCRIPTION
The problem geometry is shown in Fig. 1 where a UAV

captures images at time instants k; and k. The camera frame
at time k; is denoted F%. Between time instances, the UAV
rotates by R]]Z € SO(3), where Rif transforms coordinates in
Fh 7,
fkl/kz fkl/l §k2/16R3, which denotes the position of FXi
relative to 72 expressed in %2, and where &; is the position
of frame F* in the inertial frame. Superscripts on vectors are
used to denote the coordinate frame in which the vector is
expressed.

into coordinates in and is translated by

P;

Fig. . The geometry for the derivation of the essential matrix.

Suppose that the UAV observes the point P; in both frames,
T T
and let P{'=(x}" P Z') and PP =(x2 v ZP)
1 1 1 l l 1 1
be the 3D position of point i with respect to camera frames
F*1 and 7%, then from the geometry in Fig. 1 we have

k: ko pk
PP =RZP! +£2, . (1)

Left multiplying each side of the equation by (cfk] /kz)

where
0 -z vy
(ch) é(z 0 —x] 2)
Ux A=y x 0
gives
() P = (i) RO +E) G O
The last term on the right is zero, thus
(& 0) P2 = (&) R P)
Left-multiply each side of (4) by (kz) give
(sz) <k1/k2) (sz) (kl/k2)>< I’ZPkl' ®)

However, the left side of (5) is always zero because the
cross product (f,lff / kz)>< sz gives a vector perpendicular to sz,
and therefore

() (fk]/kz)x klpkl =0. (6)

Let

944

A A P

pi=gPy) = egpi
where e3 =(0,0,1)7 is the normalized homogeneous image
coordinates of P;, and pfl and pfz are the normalized
homogeneous image coordinates of point i in camera frame
71 and 7%, respectively. Since the right side of (6) is zero,
any scalar multiple of Pi.‘l and P;‘z will also satisfy the
equation, which gives the so-called epipolar constraint.

k2\T (ko ky ki _
(P,-) (é:kl/kz)kalpi =0
that relates homogeneous coordinates of matching features in
two images. Since the epipolar constraint holds for any scaling

offllzf/kz, we define g = £ to get

lI€1]
(pfz)T (q'zif/kz)x Rgpfl =0.

The essential matrix is defined as

ky kp A ky ko
ERE. 42 1) = (42 1), Ri2- ®)

Since qlg Iy € S2 and RE € S0(3), there are five degrees of
freedom associated with E.

The key idea behind our pose estimation algorithm is to
optimize the rotation and translation on the manifold
SO3)xS? subject to the constraint of (7). The essential
matrix is only constructed when it is needed to update the
rotation and translation. In contrast, many approaches in the
literature solve for the essential matrix directly, which
requires decomposing the essential matrix later to obtain the
desired rotation and translation.

In the remainder of the paper we drop the frame notation
and simply write R € SO(3) and ¢ € S? for the rotation and
normalized translation, except where needed for clarity.

(7

III. ITERATIVE POSE ESTIMATION ALGORITHM

The new pose estimation algorithm proposed in this paper is
shown schematically in Fig. 2. At each time step, features are

Video Good Features
to Track .
Optic
flow
Delay
Feature pairs |
L] n-iterations
Randomly
select minimum Best hypothesis
subset /
I i
LM optimization Score solution
Pose refinement & J
IMU IMU Disambiguation
prediction l Pose correction

i

—>

Ri 1)

Pose composition
(Ris i)

Fig. 2. Block diagram of the proposed recursive pose estimation algorithm.

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

detected in one frame using, for example, OpenCV’s
goodfeaturesToTrack [11] and then matched to the next frame
using, for example, OpenCV’s LK optical flow [12]. The
corresponding feature pairs are input to the pose estimation
algorithm.

As shown in Fig. 2, given the set of matching features
between images, at each iteration of the optimization loop, a
set of N-matching features are randomly selected and the LM
algorithm is used to minimize the Sampson error, as explain in
Section III-A. The solution of the LM Optimization algorithm
is then scored using either LMedS or an inlier count similar to
the RANSAC algorithm, as described in Section III-B. If IMU
measurements are available, they are used to predict the
relative pose between frames, as explained in Section III-C,
and are used to seed the LM optimization algorithm. In
addition, the algorithm retains the current best hypothesis and
uses the best hypothesis to seed the next LM optimization, as
also explained in Section III-C. After n-iterations the best
hypothesis is then refined using all inlier data, and the rotation
and translation are disambiguated, as explained in Section III-
D. Finally, the relative pose between frames is composed with
the estimated pose at the prior time step to produce the new
estimated pose, as explained in Section III-E.

A. LM Optimization

Since the LM optimization block is the core element of the
pose estimation algorithm, we explain it first in this section.
The LM algorithm is a standard technique for solving
nonlinear least squares problems of the form

B =argminr(z.B)" r(z.B)
where z€Z is a known data vector, B€ B is a parameter
vector, and r:ZxB—RM is a residual vector to be
minimized. The optimization problem is solved by iteratively
incrementing 8 by a small ¢ in a direction that decreases the
squared residual

SPB) =r(x,B) r(z.p).

Using the approximation

r(z,B+06) = r(z,B) + J(z,8)6
where
or
B
is the Jacobian of r with respect to the parameters 8, we get
that

J(zB) = = (2,8)

S(B+6) ~ [r(z.,B) + J(z.B)5]" [r(z,B) + J(z.B)3].
Taking the partial of S(8+) with respect to § and setting
equal to zero gives

JTr==J"Js. 9)

Solving for § from this equation would result in the GN
optimization method. In contrast, gradient descent would
replace the right hand side of (9) by A6, where A is a scalar.

The LM algorithm is a hybrid between GN and gradient
descent, requiring § to satisfy

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 945

Jr=—T T+ D)6 (10)
The general LM optimization algorithm is therefore given
by the iteration

Ber1 =Pe+06¢ (11)

where

T -1 T
8¢ ==[J@B0" @B+ Acl | T @B 1z Be)

where A, is selected at each iteration to ensure that the
residual r(z,8) decreases.

The remainder of this section explains how the LM
algorithm is adapted to the problem of finding relative pose
between two camera frames. Let Mk (pk L pk) be defined as
the ith matching feature pair at time k, and supposing that
there are M; matching features at time k, let 7 = {1,2,..., My}
denote the index set. Then My, will denote the set of all
matching feature pairs at time k. If J C 1, then Mgy C My,
denotes a subset of matching feature pairs.

The residual function will be defined in terms of the well-
known Sampson error, which scales the epipolar error by the
reprojection error in each image [13]. If EX is the essential
matrix at time k, then the associated residual based on the
Sampson’s error is defined by

p?TEkpf—l

Ve, E4p1 P+, 247

where I1, = I —xx” and e3 = (0,0, 1)7. The residual associated
with the set Mg is a vector of length |J| constructed by
stacking the residual for each matching pair in Mg, and will
be denoted as r(My, Ey). Recall from (8) that the essential
matrix can be written as
ER.7) =GR

where R € SO(3) and § € S?, and the “tilde” indicates that we
are seeking a correction over one time step. Therefore, there
are five degrees of freedom in E. To make the math more
transparent, we over-parameterize § € S> by using an element
of SO(3). Accordingly, given €S2 we define the matrix Q
such that the last column of Q7 is g, the first column of Q7 is
selected as any unit vector that is orthogonal to ¢ and the
second column of Q7 is selected so that Q is orthogonal. Then
G=0"es, and

ER,0)=[0"es1xR = 0" e3xOR.

Therefore, the residual will be denoted as r(Mgq,R,Q),
where a subset of matching pairs Mg plays the role of the
data vector z in the previous discussion, and R and Q play the
role of 5.

To form the Jacobian J(Mj,R, 0), we need to take the
partial derivative of the residual r(Mgq,R, Q) with respect to
the three degrees of freedom in R and the two degrees of
freedom in Q. Toward that end, and to simplify notation, we
define the boxplus operator [14] as

ri(M- Ey) =

(12)

B:S0(3)xR> - S0(3)
S B0 =exp(dx)S
where

2

0%
exp(dx) =1+ Sln(lléll)n +(1- COS(II&I))@-

If 6 = 6 where @ is unit length, then

dR@OD) 0 o

T = %CXP(QU)X)R’GZO (13)
= O exp(@d)x)f?|€: (14)
= OxR. (15)

Let 6p = (5R,1,6R,2,6R,3)T represent the (local) three degrees
of freedom in R, then the partial derivatives of ReSO®)
along each of the three degrees of freedom are

6R HOog

O0R, j :(ej)xR’
where e; = (1,0,0)7, e, = (0,1,0)7, and e3 = (0,0, 1)T.

The normalized translation vector is represented as
G=0"e3€S? where QeSO3) only has two degrees of
freedom. Let 0g =(60.,1,602)" represent the (local) two
degrees of freedom in 0, and let

=123

1 0
B=10 1
00

then the partial derivatives of O along each of the two degrees
of freedom are

d0®EBsg ~
— =[e;Ix0, Jj=12.
850, /
Defining = (61,62,03,04,65)" =(5T,5§)T, then the
Jacobian J(Mq, R, O) € RS is given by
001 00, 003 004 005
6r2 3}’2 3}”2 5}’2 arz
J(MJ,R, Q) — 561 (9(52 (9(53 054 655
drg Ongy Ong Ong Ong
061 06, 065 064 8Os
(16)
where
OE -1 A
\/S_i(l’i) a5, Pi (Pi) Ep; 35,
ori _ V5 (17)
35]' Si
with
12 2
si = [0y Epi~" ||+ [, £7] (18)
where
Jsi k— 1T5’E k=1T =T OE kl
as; i as, LR “a6,"
r 9E T ko kT OE" k
—H E Ell,,—
+p; 35, Pitpi 5 s P

946

OE
and where — are given by
06

—(R 0) = 0" e3x0e1xR

661

6_52(11 Q) = QTe3><QeZ><R

OE - ~ 5 x =
%(R’ Q) = 0" e3xQesxk
3
S (R.0)= 0" exOR
S R.0)=-0"e1OR
In applying the LM algorithm, we begin with A= 10"* and

then adaptively modify A4 as follows. If the residual error
grows after an LM step, then the update is rejected and A is
doubled. On the other hand, if the error is decreased, then we
accept the step and divide A by two. This ensures that the
residual monotonically decreases, while allowing the LM
algorithm to converge faster if the residual function is well-

behaved. The LM optimization algorithm for R and § is
summarized in Algorithm 1.

Algorithm 1 LM Optimization for Pose Refinement

1: procedure LM OPTIMIZATION Mg, Ry, Go

2: Select Qg € SO(3) such that o = Qo es.
30 £e0,1 1074

4: repeat

5: Compute Jacobian J; = J(M,R¢, Oy)
6: from (16).

7 repeat

8: Compute &, € R as

9: 50— (T Je+al) JTr

10: Update R as Ry « Ry 83,13
11: Update O as Qi1 < QrBr4:5
12: A«24

13: until [[r¢]] < ||lrz41ll

14: C—€+1,1< /2
15: until ||re]l < €
16: end procedure

B. Outlier Rejection

The optic flow algorithm shown in Fig. 2 produces My
feature pairs, but it is well known that the process is not
robust, and that some of the feature pairs will not actually
correspond to the same physical location in the environment.
Therefore, the LM optimization algorithm given in Algorithm 1
must be made robust to false feature matches. The most
common methods reported in the literature are RANSAC [1]
and LMedS [2]. In this paper we will compare the efficacy of
these two methods.

First note that since the essential matrix manifold
SO(3)x §? contains five degrees of freedom, and each feature
correspondence gives one constraint, that only N =5 feature
points are needed to generate a pose using the LM
optimization in Algorithm 1, assuming that the feature pairs

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

are true correspondences, and that the 3D points are not co-
linear [10]. To make the process robust to outliers, the basic
idea is to solve the LM optimization many times on randomly
selected subsets of | J] =15 feature pairs, to score each pose
hypothesis using all of the feature pairs, and then to select the
pose with the best score.

Recall that the set of matching feature pairs at time k is
given by My,. The basic idea of the RANSAC and LMedS
algorithms is to randomly select a minimum subset
Mg c My, where |J| =5 << |Tk|. The output of Algorithm 1
then forms a model hypothesis associated with Mgy. The
model hypothesis is then scored against all feature matches in
My,. This process is repeated n times, always retaining the
model hypothesis with the best score.

In this paper we consider the following two scoring
functions:

SransacMr, R, 0) = Z 1[(||F(Mf»R,Q)H>T)

MeeMy,
(19)
Simeas(Mz, R, 0) = medlan{ (MR,) (20)
M eMy

where I(boolean) is the 1nd1cator function (1 when boolean
is true, and 0 when boolean is false), and where 7 is the
RANSAC threshold that must be selected. Note that for
RANSAC, the score is the total number of outliers with a
residual greater than 7, whereas for LMedS, the score is the
square of the median residual over all matching features.

To determine the number of iterations required for
RANSAC or LMeds, following [1] we assume that the event
that a matching feature pair is an outlier is a binomial
distribution with:

€ = Probability that Mf is a false matching pair.

If N is the number of matching points used to generate a
model hypothesis, then the probability that all point
correspondences used to generate the model are inliers is

pu=1-0". @n
If n model hypotheses are generated, then the probability
that at least one of models is generated using only inliers is

p=1-(1-1-0")". (22)
Solving for the number of hypotheses needed to achieve a
desired confidence level p, gives
log(1-p)
log(1-(1-e)")
For example, achieving a 99% confidence ratio when the
outlier ratio is 50% and when minimal subsets of N =35

matching features are used to create model hypotheses
requires n = 145 RANSAC or LMedsS iterations.

n(p) = (23)

C. IMU Predication and LM Seeding

In this section, we address the issue of initializing the LM
optimization given in Algorithm 1. We are particularly
interested in the robotic situation where an IMU, synchronized

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT

to the camera, is available to resolve the scale ambiguity. We
will also discuss the case where IMU measurements are not
available. The discussion in this section follows in some
respects, the development in [15].

For the sake of clarity, in this section we will again
explicitly specify the different coordinate frames. Let
R’ € SO(3) be the rotation from the camera frame at time &,

Tk to the inertial frame 7/, and let fk /1 and vk : be the
position and velocity of the camera at time k relative to the
inertial frame, expressed in the camera frame F*, let ak /1 be
the measured specific acceleration of the camera expressed in
Fx, and w’; /1 be the measured angular velocity of the camera
relative to the inertial frame, as expressed in the camera frame
F*, where we have assumed that the IMU biases are known
and have been removed from the measurements. Then the

kinematics for the camera are given by
ol _ pl
Ri = R (w).,
ko _ pIT I, k
Vi =R 8 +ay,
(24)

where g is the gravity vector in the inertial frame. Let 7'y be
the sample period of the IMU, and assume that there are m
IMU samples between camera frames. We will use the
notation g,k1,k2,...,k, to denote the intermediate sample
from k — 1 to k, implying that the time instance kg corresponds
to the time at image frame k—1, and «,, corresponds to the
time at image frame k. Then, integrating over one sample of
the IMU and assuming that the measurements are constant
over the sample period, we get

Rl =R, exp((@!h 1)

koo k
Eer1 = Vil

Ki+1 Ki+1 Kz IT Kivl Ki
o1 = R’ K/1+R gTJrR+ e Ts
Ki+1 _ pKi+l Ki+1
g’(z:l/l - RKI'+ Ki/l +vkiil/ITS
where
: IT pl i r
RKH R, Ri. =exp ((‘U:l./])sz)
The predicted pose after m IMU samples is therefore
5 m _ pIT pl
R=R{ =RIIRL (25)
Km KO Km
~ _ R Ko/l _fkm/]
q= T (26)
| kO/l é‘:km/l

The predicted relative pose (R,3) is used to initialize
Algorithm 1.

When an IMU is not available, Algorithm 1 can be seeded
with the identity rotation R =] and a randomly selected
translation unit vector §. This method we will call the
“random initialization” method. Another alternative is to
initialize Algorithm 1 with the best hypothesis from the

previous time step. We will denote this method as the “prior”

method. A third alternative, that can also be used with or
without the IMU, is to initialize Algorithm 1 with the best
RANSAC/LMedS hypothesis that has been found so far from
previous LM iterations. Since each hypothesis depends on the

947

previous best hypothesis, when the first hypothesis is selected
randomly, we will denote this method as the “random
recursive” method. When the first hypothesis is the best
hypothesis from the IMU, or the prior time step in the case of
no IMU, we call it the “prior recursive” method. In Section V
we will show results using each of these initialization
techniques.

D. Pose Refinement and Disambiguation

Even the best hypothesis from RANSAC and LMedS
usually has some error due to noise on the feature matches in
the minimum subset used to create the hypothesis. The
estimate can be improved by using least-squares optimization
over all inlier feature matches. An advantage of our method
over traditional five point or eight point algorithms is that the
size of the feature set Mg in Algorithm 1 is not limited to a
fixed number of points. Therefore, the relative pose can be
refined by instantiating Algorithm 1 on the entire set of inlier
feature matches.

To determine inlier points, we use the robust inlier detection
method described in [16] by setting

6 =1.4826(1+

7 |] \/medlan r(Mk R.5)?)
k

where N =5 is the number of feature matches used to create
the model and |7| is the total number of feature matches at
time k. A feature match Mf‘ is determined to be an inlier if the
Sampson residual r(M*,R,§)* < 2.56.

It is well known that if the epipolar constraint (7) is satisfied
for (R,3), that it is also satisfied for (R’,3), (R,—§), and
(R',-§), where R’ is a 180 degree rotation about g, i.e.,

R = (I+251§<)I~?

Algorithm 1 will find one of these four solutions, but the
result may not correspond to the correct pose, particularly in
the case when the IMU is not present and the initial translation
is selected randomly. This is a well-known problem with 5-
point and 8-point solvers of the essential matrix. The correct
pose is typically determined using the Cheirality check, which
involves triangulating each feature match to determine its 3D
position, and then selecting the relative pose that puts all 3D
points in front of the camera. However, the Cheirality check
often gives spurious results. As an alternative, since the two
possible rotations R and R’ are always 180 degrees apart, we
can pick the rotation with the smallest angle and use the
Cheirality check to find the correct translation. Since

tr(R) = 1 +2cosd

where 6 is the eigen-angle, and since we are expecting small
camera deviations between time samples, we select R or R’
based on which one has the largest trace. The translation § or
—q is then selected based on the Cheirality check.

E. Pose Composition
The global pose at time k—1 is given by (R1 15 f,i 1 1) The

current estimated incremental pose is (R,§) = (RX
We use the IMU prediction to scale g which gives

k- 1"1k l/k)

948

k pa— m m >~
Sk = |le§o~i3/1_§ﬁm/1“q' 27)
Accordingly, the pose at time k is
Ry =Ry (R, (28)
I I I pkT sk
i1 = ey ~ R R e (29)

F. Algorithm Summary

A summary of the proposed iterative pose estimation
scheme is give in Algorithm 2 below.

Algorithm 2 Iterative Pose Estimation

1: procedure ITERATIVE POSE ESTIMATION

20 Input: (k1. 1), (a @yl DI, Ri_-&y)
3: From images I;_; and [; determine set

4: of matching features My, .

5: Initialize relative pose (Ry, o) using either:

6: (1) Initialization: Ry = I, §o = random.

7: (2) Prior: best hypothesis from previous step.
8: (3) IMU: initialize using (25) and (26).

9: Determine n(p) from (23).

10: fori=1tondo
11: Randomly generate J; C 7 where | J;| =5,

12: with corresponding features M.,.
13: Let (R;,§;) < LM Optimization (M 51.,1?0,510)
14: using Algorithm 1.

15: Score (R;, ;) using (19) or (20).

16: Let (R*,§*) « argmax; S (My,,R;,§;) be the

17: pose correction with the current lowest score.
18: end for

19: Using (J k,R*,Z]*), determine inliers and refine the
20: pose with those inliers, following Section III-D.
21: Update the pose according to (27)—(29).

22: end procedure

IV. MOTION DETECTION AND TRACKING IN THE PRESENCE OF
PARALLAX

One application of relative pose estimation is motion
detection and tracking in the presence of parallax. Motion
detection is a valuable source of information in target tracking
applications. It can be used to track objects without any prior
knowledge about their appearance, in contrast to many
trackers that are designed to track specific classes of objects.

There are many successful image-based background
subtraction techniques in the literature that work on stationary
cameras. In order for image differencing techniques to work
on a moving camera, the images must first be aligned using a
homography. While this works well for planar scenes, if there
is parallax, artifacts will appear in the difference image. If the
parallax is small enough in comparison to the movement of
objects in the scene, the effects of parallax can be reduced
using simple morphological operations and gradient
suppression [17].

In the presence of strong parallax, however, a better motion
model that accounts for depth variation must be used. There
are several methods in the literature that use a geometric

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

model to describe the motion of tracked points in the scene
over time. For example, [18] uses orthographic projections to
segment moving objects, which works well if the camera is far
from the scene or has a narrow field of view. Another
approach maintains an affinity matrix and uses principal
component analysis to segment moving objects [19]. Another
approach uses multiple-frame geometric constraints [20], [21].
However, all of these methods can be computationally
prohibitive. In contrast, the technique proposed in this paper
exploits the two-frame epipolar constraint and is therefore
computationally simple, enabling real-time performance.

A. Motion Detection Algorithm

Given two consecutive frames, with point correspondences
detected in each frame, the objective is to determine which
points are from stationary objects and which are from moving
objects. In this section we assume that the relative pose
between cameras (R,) has been calculated using Algorithm 2.
The goal is to design a detector ¢<Mf,l~€, Z]) which returns 1 if
the feature pair Mf‘ is sourced from a moving object and 0 if it
is sourced from a stationary background object. The output of
the motion detector is used as an input to a tracking algorithm
that produces target tracks as described in Section IV-B.

The essential matrix relates points in one image to the other
image with the epipolar constraint. In other words, the
essential matrix maps a point in one image to a line in the
other image. The location where the point in the other image
appears along this line depends on the feature’s depth to the
camera. As the camera translates, points that are closer to the
camera will appear to move more than the points that are far
away. This effect is known as parallax.

There are two degrees of freedom for the apparent motion of
each point in the image plane. One of these degrees of
freedom can be explained by the epipolar constraint if the
real-world point is stationary. However, motion along this
degree of freedom can also be explained by object motion in
the world frame. Hence, the source of any movement along
this degree of freedom is ambiguous without additional
information. The second degree of freedom for apparent
motion of points in the image plane is perpendicular to the
epipolar constraint. Thus, the only possible source of motion
along this degree of freedom is movement in the real-world
frame.

Let g : R? — P? defined by g(P) = P/el P be the perspective
projection operator. With reference to Fig. 1 let P; € R3 be a
feature in the world that is imaged by the camera at time & to
produce feature pfl = g(Pf.”). At time time kp, the feature has
moved in the world to position P; + 6P, and the camera, which
has moved by (R, &) images the feature to produce

k 5pki |z
P2 =g(P?) = g(RPY' +E+6P).
To streamline the notation, we will drop the i subscript in

the following discussion. The epipolar line in frame F*2
corresponding to the point p1 is given by

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 949

where e3T PX is the distance that pki is from the camera in
frame 7% and is therefore positive. Note also that the
perpendicular to the epipolar line in 7*2 is given by

€3><g: xRP ki

gl 3 P

since e3 in the camera frame is directed along the optical axis.
Our proposed motion detection algorithm is based on the
following theorem.

Theorem 1: Let P be a point in the world frame and 6P its
displacement between times k; and k. Suppose that the
camera moves by (R,&) between k; and k, and that £ # 0, and
let pf =g(PM) and p*2 = g(P*2) = g(RPM1 +Z+6P) be the
image projection of the point P in frame F% and P+6P in
7%, respectively. Let £ = GxRp*! be the epipolar line in F*2

e3><t’=e3><Epk’ =

corresponding to point p*1 in F%1, where § = £/ |||, and define

v = (P~ gRp*) (e3x £)

v = (' -gRp)"
which can be interpreted as the rotation corrected
displacement of the projected position of P in F*2 projected
along the perpendicular to the epipolar line, and the epipolar
line, respectively. Then v, # 0 implies that 6P # 0, and v <0

implies that 6P # 0.
Proof: Note that
P2 —gRp")
= g(RP" +&+6P) - g(Rp")
RPK +E+ 5P RPKi

" eIRPR yeTEvelsP el RPH
(eYRPM)E — (X E)RPX1 + (el RPF1)SP — (e} 5P)RPM
B (e?RPkl + egg + egdP)engf?Pkl

Since £T& RP"1 = (RP*)TERP*1 = 0 we have that

. (30)

(eY RP*)SPTE RPN
T (e PRyl RPR T PRI
Clearly v, # 0 implies that 6P # 0.
For v, note that (30) can be written as

63XEXRPk1 +63x6PRPkl
(engZ)(eSTRPkl)

P2 —g(Rp*) =
Therefore

le3xE<RPA||* + (e3xSPRP4YT (e3xExRP4)
V) =
ST

Since the denominator and the first term in the numerator
are always positive, the only way for v to be negative is for
the second term in the numerator to be negative and to
dominate the first term, which requires that 6P # 0.

Therefore, a decision function for whether a point is moving
is given by

k5 - 1 ifviy|>tory<—-1
¢(Pi’R’q) - {0 ot}Lei\lJvise ” (31
where 7 is a positive threshold. Due to small errors in
calculating the relative pose and inaccuracies with camera
calibration, a threshold of one pixel is the tightest constraint

that can be used.

B. Recursive-RANSAC Tracker

Moving points found using (31) are the input to the
recursive-RANSAC (R-RANSAC) multiple target tracking
algorithm described in [22], [23]. In essence, the R-RANSAC
algorithm fits motion model trajectories to sequences of
points. For this paper we use a constant velocity motion
model. Tracks are initialized when a sufficient number of new
data indicate a moving object, and existing tracks are
propagated forward using a Kalman Filter. Probabilistic Data
Association [24] is used to account for measurement
association uncertainty. Each track is given an inlier score
based on the percentage of time steps in which the track is
detected. R-RANSAC also has a track management system
that merges similar tracks and removes tracks that have an
inlier score lower than the minimum threshold. For more
details see [22], [23].

V. RESULTS

The performance of the pose estimation algorithm will be
demonstrated in simulation and with real flight tests. In the
simulation study outlined in Section V-A we know the true
pose and so we will be able to assess the accuracy of pose
estimation. In the flight test outlined in Section V-B, we apply
pose estimation to motion detection and tracking as described
in Section IV.

A. Pose Estimation - Synthetic Video

Algorithm 2 was tested on a synthetic video sequence of a
UAV inside a city generated using the BYU Holodeck
simulator [25]. The two-minute video sequence (3600 frames)
includes aggressive rotational and translational motions. A
screenshot of the video sequence is shown in Fig. 3. The
purpose for using the simulator is to compare estimated pose
to true pose.

We will consider three error metrics
Algorithm 2. The rotational error give by

1y
eR = HIOg(RLrueRgSlt) | - M

is the smallest rotation angle between the estimated and true
rotation. The translation error given by

in evaluating

eq = cos! (thmeqest) (32)

is the angle between the estimated and true normalized
translation. The rotation and translation error metrics do not
penalize pose disambiguation errors since they return the same
metric for all four possible rotation-translation pairs.
Therefore, the third metric is the pose disambiguation metric
defined as the percentage of time that Algorithm 2 selects the
correct rotation and translation. Both the rotational and
translational error are measured in radians. The LMedS

950

Fig. 3.

Screenshot of the holodeck video sequence.

Sampson error is also computed. Unless otherwise noted, all
error metrics are averaged over the entire video sequence of
3599 frame pairs.

The error over time for the OpenCV Nister/LMedS
polynomial solver [4], LM Basis [7], and Algorithm 2 are
shown in Fig. 4. All three algorithms give low error for the
UAV trajectory. Notice how the rotation error seems to be
proportional to the total rotation, while the translation error
becomes very large as the true translation approaches zero.

0.02 [—OpenCV poly —LM Basis — Algorithm 2 |
=
S 001} j]
g/ 0 " R TPIITATNOVIN | | W T .Am‘*;w}lw"d\u»h
0 500 1000 1500 2000 2500 3000 3500
z 0.02 : : . . r T :
= — Trut]
S E= M _
- =
e 0 T S N ALY
0 500 1000 1500 2000 2500 3000 3500
[—OpenCV poly —LM Basis — Algorithm 2 |
= T ™7 T T .m T 7
s 1l N [§
> ©
TR ﬂLu Hk \]M’Iu hh] MW
= 0 bk \'mu.w,..me‘A", suhiavddle S ‘L\W)’, uh‘u.M)’\ﬂ“.‘uJ_, Jf,
0 500 1000 1500 2000 2500 3000 3500
7 0.2 — Truth
& g 0.1f
£
~—~ 0 1 1 1 1 I
0 500 1000 1500 2000 2500 3000 3500

Frame

Fig. 4. Incremental rotation and translation error over entire video

sequence. True incremental translation and rotation are also shown.

In order to provide a fair comparison of initialization
schemes for Algorithm 2 with the OpenCV five-point
polynomial solver, the IMU was not used in this section for
initialization. Alternatively we compare random initialization,
where both Ry and gy are selected randomly, random recursive

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

initialization, where the first LM optimization at each time
step is initialized randomly, but subsequent LM optimizations
at that time step use the best pose hypothesis prior, where
(Ro.qo) is the best pose from the previous time step, and prior
recursive, where the first LM optimization at each time step is
the best pose from the previous time step, but subsequent LM
optimizations at that time step use the best pose hypothesis.
All results use LMedS for outlier rejection. The LM
optimization is repeated 100 times with five matching features
at each iteration. The mean error across the entire video
sequence is plotted in Fig. 5.

10 107
—— OpenCV poly
9l —— LM Basis
LM-random
—— LM-random recursive
8r —— LM-prior
5 LM-prior recursive
5 7t
?
3
=
-
5t
41
3

0 10 20 30 40 50 60 70 80 90 100
LMedS iterations

Fig. 5. Comparison of LM seeding methods.

This result shows the importance of initializing the
optimizer with a prior. The random initialization method
performs the worst out of all four methods, while initializing
the optimizer with a prior from the previous time step or the
best LMedS hypothesis so far from the current time step
significantly reduces the error. IMU prediction will further
improve these results. After 100 iterations, the LMedS error
for the initialization methods that use prior information is
comparable to the OpenCV five-point polynomial solver,
despite the fact that only one hypothesis is generated per
subset instead of an average of about four hypotheses. LM
Basis also generates hypotheses from random seeds, resulting
in higher error than methods that initialize from a prior. Note
that while LM Basis generates up to 10 hypotheses per subset,
it removes duplicates and hypotheses that do not appear to
converge, resulting in an average of only 1.82 hypotheses per
subset. Dropping these hypotheses early may increase the
error based on iteration number, but results in a lower error
when compared against time.

Fig. 6 shows the error of Algorithm 2 compared to the
OpenCV 5-point algorithm, but with the x-axis changed to be
time instead of number of iterations. When under a time
constraint, Algorithm 2 significantly outperforms the OpenCV
solver [4] and LM Basis [7].

For outlier rejection, RANSAC and LMedS were also
compared. For RANSAC the algorithm was tested with 19
different thresholds. For LMedS, the algorithm was run once,
because there is no threshold parameter to tune. For each run

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 951

x10°¢
10
9ol —— OpenCV poly
—— LM Basis
8 LM + prior recursive

Sampson error
N

0 5 10 15 20 25 30
Time (ms)

Fig. 6. Sampson error over time.

the average truth rotation and translation error over the entire
video sequence were calculated. As shown in Fig. 7, LMedS
performs well without requiring a threshold. However, in
order for RANSAC to perform as well as LMedS, the
threshold must be tuned to within an order of magnitude of the
optimal threshold.

Table I shows the results of the rotation and translation
disambiguation algorithms. The first row within each group
shows a baseline comparison, where no method was used for
pose disambiguation. The baseline method gives poor results.
However, it is worth nothing that Algorithm 2 returns the
correct rotation, even without any form of pose
disambiguation. This is likely because it is seeded at the first
frame with the identity rotation, and in every frame thereafter
the best hypothesis from the previous iteration is used as the
seed to the optimizer. The second row in each group shows
the results when the Cheirality check was used to determine
the best of the four possible rotation/translation pairs. The

6 %1073

—_RANSAC
41 — LMedS

0 1 1 1 1
1077 10 10°° 10 1073 1072

107 10 107 10 1073 1072
RANSAC threshold

Fig. 7. Average rotation and translation errors for RANSAC and LMedS.

translation direction is often correct but the rotation is correct
only about half of the time. The third row in each group shows
the results of using the matrix trace to determine which
rotation is correct and the Cheirality check to determine the
correct translation direction. This third pose disambiguation
method consistently outperforms the other methods.

The best hypothesis was refined using LM to optimize the
Sampson cost over all inliers (Section III-D). The refined
relative pose is only kept if the new relative pose successfully
reduces the LMedS error. Table II compares the average error
with and without refinement. Refining the best relative pose
hypothesis significantly reduces all three error metrics. LM
Basis also refines the best hypothesis and successfully reduces
the translational and rotational error. However, even with
refinement, LM Basis has a higher error than Algorithm 2.

Table III compares the computation time for relative pose
estimation between the OpenCV implementation [4], LM

TABLE I
POSE DISAMBIGUATION COMPARISON

Solver Pose disambiguation method Rotation correct Translation correct Both correct
OpenCV none 50.2% 14.7% 6.8%
OpenCV Cheirality 54.0% 93.2% 52.3%
OpenCV trace + Cheirality 100.0% 96.5% 96.5%
LM Basis other + Cheirality 100.0% 95.8% 95.8%

Algorithm 2 none 100.0% 57.2% 57.2%

Algorithm 2 Cheirality 40.9% 92.1% 40.8%

Algorithm 2 trace + Cheirality 100.0% 96.5% 96.5%
TABLE II

RELATIVE POSE REFINEMENT

Relative pose solver Refine (success rate)

Rot err (radians)

Trans err (radians) LMedsS err (Sampson)

OpenCV poly - 4.843E-04 1.742E-01 3.769E-08
LM Basis No 7.076E-04 2.059E-01 4.762E-08
LM Basis Yes 4.159E-04 1.708E-01 5.059E-08

Algorithm 2 No 4.640E-04 1.699E-01 3.653E-08
Algorithm 2 Yes (54.5%) 3.850E-04 1.596E-01 3.540E-08

952

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

TABLE III
COMPUTATION TIME

OpenCV poly

LM Basis Algorithm 2

100 x 0.404 ms = 40.4 ms
400 x 17.3 ns =6.91 ms

Hypothesis generation

Hypothesis scoring (avg 400 pts)

Refinement -
Pose disambiguation 0.32 ms
Total 47.7 ms

100 x 27.9 us =2.79 ms
182 x 13.9 ns =2.52 ms

100 x 23.4 us = 2.34 ms
100 x 8.99 ns = 0.90 ms

2.17 ms 591 ns
1.86 ms 0.14 ms
9.57 ms 3.97 ms

Basis [7], and Algorithm 2. The algorithms were both
implemented on a laptop with a 2.1 GHz Intel i7 CPU running
Linux. The breakdown of the time required to generate each
hypothesis set is shown in Fig. 8. The most time-consuming
part of the OpenCV solver is finding the zeros of the tenth-
order polynomial. The most time-consuming part of Algorithm 2
is the Eigen matrix solver. Note that while LM Basis and
Algorithm 2 take about the same amount of time to generate
hypotheses per subset, LM Basis generates up to 10
hypotheses per subset, while Algorithm 2 only generates one
hypothesis. The faster optimization used in the LM Basis
algorithm is likely due to solving simpler equations which
require inverting a 3 X 3 matrix instead of a 5 X 5 matrix.

= Setup
== SVD
OpenCV poly . == Coeffsl
: mm Make Jacobian mm Coeffs2
LM Basis == Solve matrix == Solve poly
. mm Manifold update mm Construct E
Algorithm 2 == Calc residual
mm Deduplicate E
0 100 200 300 400 500
Hypothesis generation time per subset (ms)
Fig. 8. Time required to generate each hypothesis set.

B. Motion Detection and Tracking - Flight Video

The motion detection algorithm was tested on a moving
camera video sequence taken from a multi-rotor UAV. Fig. 9
shows the results of the motion detection algorithm. Note that
the stationary points have zero perpendicular velocity and a
positive parallax velocity, while the moving points have a
non-zero perpendicular velocity component. Fig. 10 shows the
results of tracking these moving points using R-RANSAC
[22].

perpendicular
velocity (pixels)
—6 0 6
6 I

parallax velocity (pixels)
S

Fig. 9.
corresponding net velocity (right) are plotted. Points with a net perpendicular

Video motion detection results. Each point position (left) and its

velocity greater than one pixel are classified as moving points (red), while

points with a velocity below this threshold are classified as stationary points

(blue).

The computation times of the motion detection and tracking
algorithm are shown in Table IV. For faster processing the
video was scaled to 640 x 480. The motion detection and
tracking algorithm is running on a Linux desktop computer
with a 4 GHz Intel i7 CPU. On average about 800 points are
detected, tracked, and fed to Algorithm 2 each frame. Notice
that the OpenCV feature detection and tracking are the most
time-consuming components of the tracking algorithm and
consume 70% of the total CPU usage. The complete algorithm
takes 29 milliseconds to run per frame, which means it is
capable of running in real-time at 34 frames per second (FPS).

TABLE IV
MOTION DETECTION AND TRACKING COMPUTATION TIMES

Tracking component Computation time

Good Features to Track 9.2 ms
LK optical flow 12 ms
Compute (R, q) (Algorithm 2) 3.0 ms
R-RANSAC 0.4 ms
Other 4.4 ms

Total 29 ms (34 FPS)

Fig. 10. R-RANSAC tracks.

VL

In this paper we have presented a relative pose estimation
algorithm for solving the rotation and translation between
consecutive frames, that requires at least five matching feature
points per frame, and is capable of running in real-time. We
show the importance of seeding the LM optimizer with an
initial pose estimate and demonstrate that this initial estimate
significantly improves the performance of the algorithm. We
have applied the algorithm to detecting motion and tracking
multiple targets from a UAV and demonstrated real-time
performance of this tracking algorithm on a 640 x 480 video
sequence. Future work includes applications to 3D scene

CONCLUSION

WHITE AND BEARD: AN ITERATIVE POSE ESTIMATION ALGORITHM BASED ON EPIPOLAR GEOMETRY WITH APPLICATION TO MTT 953

reconstruction and more complex tracking methods.

REFERENCES

[1] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol.24, no.6,
pp.381-395, 1981.

[2] P. J. Rousseeuw, “Least median of squares regression,” J. American
Statistical Association, vol.79, no.388, pp.871-880, 1984.

[3] D. Nistér, “An efficient solution to the five-point relative pose
problem,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 6, pp. 756-770, 2004.

[4] “OpenCV 3.1: Open source computer vision library,” [Online].
Available: https://github.com/opencv/opencv/releases/tag/3.1.0, 2015.

[5] Y. Ma, J. Kosecka, and S. Sastry, “Optimization criteria and geometric
algorithms for motion and structure estimation,” [Int. J. Computer
Vision, vol.44, no.3, pp.219-249, 2001.

[6] T. Botterill, S. Mills, and R. Green, “Refining essential matrix estimates

=

from RANSAC,” in Proc. Image and Vision Computing New Zealand,
2011, pp. 1-6.
[7] T. Botterill, S. Mills, and R. Green, “Fast RANSAC hypothesis

generation for essential matrix estimation,” in Proc. IEEE Int. Conf.
Digital Image Computing Techniques and Applications, 2011, pp
561-566.

[8] U. Helmke, K. Hiiper, P. Y. Lee, and J. Moore, “Essential matrix
estimation using Gauss-Newton iterations on a manifold,” Int. J.
Computer Vision, vol.74, no.2, pp. 117-136, 2007.

[9] M. Sarkis, K. Diepold, and K. Hiiper, “A fast and robust solution to the
five-point relative pose problem using Gauss-Newton optimization on a
manifold,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing, 2007. DOI: 10.1109/ICASSP.2007.365999.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cabridge University Press, 2003.

[11] J. Shi and Tomasi, “Good features to track,” in Proc. IEEE Conf.
Computer Vision —and Pattern Recognition, 1994. DOI:
10.1109/CVPR.1994.323794.

[12] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying
framework,” Int. J. Computer Vision, vol.56, no.3, pp.221-255, 2004.

S. Belongie, “Cse 252b: Computer vision II, lecture 11,” [Online].
Available: https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lecl 1/lec
11.pdf, 2006.

[14] C. Hertzberg, R. Wagner, U. Frese, and L. Schroder, “Integrating
generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14, no. 1,
pp.57-77,2013.

[15] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold

preintegration for real-time visual-inertial odometry,” [EEE Trans.

Robotics, vol.33, no. 1, pp. 1-21, Fe. 2017.

[16] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection. John Wiley & Sons, 2005, vol. 589.

[17] V. Santhaseelan and V. K. Asari, “Moving object detection and tracking

[10

[}

(13

[t}

in wide area motion imagery,”
2014, pp. 49-70.

[18] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction for freely
moving cameras,” in Proc. [EEE 12th Int. Conf. Computer Vision, 2009,
pp. 1219-1225.

[19] A. Elqursh and A. Elgammal, “Online moving camera background
subtraction,” in Proc. European Conf. Computer Vision. Springer, 2012,
pp. 228-241.

[20] J. Kang, 1. Cohen, G. Medioni, and C. Yuan, “Detection and tracking of
moving objects from a moving platform in presence of strong parallax,”
in Proc. 10th IEEE Int. Conf. Computer Vision, vol. 1, pp. 10-17, 2005.

[21] S. Dey, V. Reilly, 1. Saleemi, and M. Shah, “Detection of independently
moving objects in non-planar scenes via multi-frame monocular
epipolar constraint,” in Proc. 12th European Conf. Computer Vision,
vol. 7576, pp. 860873, 2012.

[22] P. C. Niedfeldt and R. W. Beard, “Multiple target tracking using
recursive RANSAC,” in Proc. American Control Conf., Jun. 2014, pp.
3393-3398.

[23] P. C. Niedfeldt, K. Ingersoll, and R. W. Beard, “Comparison and
analysis of recursive-RANSAC for multiple target tracking,” [EEE
Trans Aerospace and Electronic Systems, vol.53, no.1, pp.461-476,
Feb. 2017.

[24] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data
association filter,” JEEE Control Systems, vol.29, no. 6, 2009.

in Wide Area Surveillance. Springer,

[25] “BYU holodeck: A high-fidelity simulator for deep reinforcement
learning,” [Online]. Available: https://github.com/byu-pccl/holodeck,
2018.

Jacob H. White received the B.S. and M.S. degrees
in electrical engineering from Brigham Young
University in 2015 and 2019, respectively. His
research interests include robotics, multiple-target
tracking, computer vision, and deep learning.

Randal W. Beard (F’15) received the B.S. degree in
electrical engineering from the University of Utah,
USA,in 1991, the M.S. degree in electrical
engineering in 1993, the M.S. degree in mathematics
in 1994, and the Ph.D. degree in electrical
engineering in 1995, all from Rensselaer Polytechnic
Institute, USA. Since 1996, he has been with the
Electrical and Computer Engineering Department at
Brigham Young University, USA, where he is
A currently a Professor. His primary research interests
1nclude autonomous control of unmanned air vehicles, multiple target
tracking, and multivehicle coordination and control. He is a past Associate
Editor for the IEEE Control Systems Magazine, Journal of Intelligent and
Robotic Systems, and IEEE Transactions on Automatic Control.

http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1109/TPAMI.2004.17
https://github.com/opencv/opencv/releases/tag/3.1.0
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1109/ICASSP.2007.365999
http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
http://dx.doi.org/10.1016/j.inffus.2011.08.003
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TAES.2017.2650818
http://dx.doi.org/10.1109/TAES.2017.2650818
https://github.com/byu-pccl/holodeck
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1109/TPAMI.2004.17
https://github.com/opencv/opencv/releases/tag/3.1.0
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1109/ICASSP.2007.365999
http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
http://dx.doi.org/10.1016/j.inffus.2011.08.003
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TAES.2017.2650818
http://dx.doi.org/10.1109/TAES.2017.2650818
https://github.com/byu-pccl/holodeck
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1109/TPAMI.2004.17
https://github.com/opencv/opencv/releases/tag/3.1.0
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1109/ICASSP.2007.365999
http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
http://dx.doi.org/10.1016/j.inffus.2011.08.003
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1109/TPAMI.2004.17
https://github.com/opencv/opencv/releases/tag/3.1.0
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1023/A:1012276232049
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1109/ICASSP.2007.365999
http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
https://cseweb.ucsd.edu/classes/sp04/cse252b/notes/lec11/lec11.pdf
http://dx.doi.org/10.1016/j.inffus.2011.08.003
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/TAES.2017.2650818
http://dx.doi.org/10.1109/TAES.2017.2650818
https://github.com/byu-pccl/holodeck
http://dx.doi.org/10.1109/TAES.2017.2650818
http://dx.doi.org/10.1109/TAES.2017.2650818
https://github.com/byu-pccl/holodeck

