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Computational sustainability harnesses computing and artificial intelligence for human
well-being and the protection of our planet. Materials science is central to many sustainability
challenges. Exploiting synergies between computational sustainability and materials science

advances both fields, furthering the ultimate goal of establishing a sustainable future.

Humanity’s consumption of Earth’s resources endan-
gers our planet and the livelihood of current and future
generations. Our Common Future, the 1987 seminal
report by the United Nations World Commission on
Environment and Development led by Gro Brundtland,
highlighted the interconnectedness of environmental,
economic, and societal issues pertaining to sustainability,
and introduced the notion of sustainable development as
“development that meets the needs of the present with-
out compromising the ability of future generations to
meet their needs” In 2015, as part of the United Nations
2030 Agenda for Sustainable Development, 193 coun-
tries agreed on 17 ambitious goals, referred to as the
Sustainable Development Goals.

Computational sustainability and materials
Planning for sustainable development encompasses
complex interdisciplinary decisions spanning a range of
questions concerning human well-being, infrastructure
(such as sustainable cities and smart grids), and the envi-
ronmental protection of the Earth and its species. Such
complex decision-making is challenging and requires
expertise and research efforts in computational sciences
and related disciplines. Computational Sustainability is a
nascent interdisciplinary field harnessing computing and
artificial intelligence (AI) to provide solutions to compu-
tational problems concerning balancing environmental,
economic, and societal needs for a sustainable future'~.

Materials have been instrumental in humanity’s pro-
gress and have been key technology enablers. Materials
discovery and development will play a critical role in
providing greener, more efficient, and accessible tech-
nologies for a more sustainable future**. For example,
the Materials Genome Initiative is truly visionary, using
computing and AI methods to accelerate materials
design and discovery to address key challenges in clean
energy, sustainable materials, and human prosperity.
The initiative has been very productive and has had sig-
nificant impact throughout materials research by gen-
erating open-source materials data and computational
infrastructure.

Over the past decade, the Institute for Computational
Sustainability has developed Al and machine learning
(ML) approaches for various computational sustain-
ability applications that have also been harnessed to
advance materials discovery, and vice versa. Herein we
describe synergies resulting from ecology and materials
science applications. We highlight the importance of
model interpretability and of the incorporation of prior
scientific knowledge to better condition the models,
to produce scientifically meaningful solutions, and to
compensate for the paucity of training data.

Multi-entity prediction

Biodiversity is critical for sustaining ecosystem ser-
vices. Biodiversity loss has increased dramatically since
the Industrial Revolution. For example, since the 1970s,
North America has lost nearly 30% of the total num-
ber of birds’. A fundamental question in biodiversity
research is how different species are distributed across
landscapes over time. The ability to capture interac-
tions between species and their local environments
and interactions among different species is essential for
addressing many of the core questions in ecology and
conservation today. In particular, it is critical to be able
to predict the distribution of hundreds of species simul-
taneously. However, it is computationally challenging
for traditional joint species distribution approaches to
simulataneously handle numerous species.

To address this challenge, we have developed a gen-
eral end-to-end deep-learning framework with prior
knowledge based on the multivariate probit (MVP)
model, a multi-Gaussian model called Deep Multivariate
Probit Model (DMVP)*. DM VP is a general multi-entity
model, suitable for predicting the distribution of multi-
ple species and other entities, such as the different types
ofland cover across geographic regions over time, or the
different objects in images. DM VP automatically learns
the relative importance of a potentially large number
of input features and generates a structured and inter-
pretable latent space to express the associations between
entities (such as species or land cover types) and features
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(such as environmental features), as well as the interac-
tions among the entities. To tackle the computational
challenge of integrating the MVP likelihood, DMVP
uses a novel parallel sampling process, which allows for
efficient deep net training. We applied DM VP to harness
high-dimensional data, combining bird observations
from eBird, a global citizen-science bird monitoring
platform, with remote sensing data. The integration of
these data in a unified model uncovered species inter-
actions and habitat associations for the entire North
American avifauna, providing key information on
species richness at the fine-grain resolution needed for
conservation efforts, which is well beyond the scale of
previous approaches.

This work provided the impetus for tackling multi-
property prediction in materials science, resulting in
the Hierarchical Correlation Learning of Materials
Properties (H-CLMP) model’. Analogously to DMVP,
H-CLMP (pronounced H-CLAMP) encodes a struc-
tured interpretable latent space to capture the materials
features’ associations and materials properties’ interac-
tions. A multi-Gaussian distribution for pair-wise cor-
relation modelling is coupled to a graph attention model
for capturing higher-order correlations, collectively pro-
viding a sufficiently expressive model for multi-property
prediction that remains trainable with modest datasets,
because the model design facilitates its conditioning.
H-CLMP also incorporates prior scientific knowledge
via transfer learning, using physics-based computa-
tional data from the Materials Project to encode materi-
als chemistry in a generative model, which is then used
to augment the multi-property prediction. H-CLMP
outperforms state-of-the-art methods for the predic-
tion of optical absorption properties for solar energy
materials in new composition spaces for which there is
no available training data.

Pattern demixing

Pattern demixing involves decomposing an observed
signal into its constituent parts and is used, for exam-
ple, for identifying animal calls in audio recordings
used for monitoring wildlife. Human experts perform
signal demixing by reasoning about prior knowledge.
By prior knowledge, we mean anything that is known
about the structure of the problem, such as rules that
characterize valid solutions. Crystal-structure phase
mapping, a core challenge in materials science, requires
demixing noisy mixtures of X-ray diffraction (XRD) pat-
terns into the source XRD signals of the corresponding
crystal structures. Crystal-structure phase mapping is a
challenging unsupervised pattern demixing task, given
that labeled training data are typically not available.
Materials scientists tackle phase mapping by reasoning
about known crystal structure patterns from existing
databases combined with knowledge about thermody-
namic rules of phase diagrams. Nevertheless, often phase
mapping is beyond materials scientists’ capabilities due
to complexities such as the presence of dozens of phase
mixtures and alloy-dependent variations in diffraction
patterns in high-dimensional composition spaces, cre-
ating a major bottleneck in high-throughput materi-
als discovery. We developed deep reasoning networks

(DRNets)' to address these challenges. DRNets are a
general end-to-end framework with seamless integra-
tion of data-driven learning with knowledge-driven rea-
soning about prior knowledge for unsupervised pattern
demixing. DRNets produce an interpretable latent space
to encode the domain rules, coupled with a generative
decoder that encapsulates prior knowledge about known
crystal structures patterns. The interpretable latent space
of DRNets was inspired by our DMVP model for joint
species distributions. In turn, DRNets inspired the gen-
erative model of H-CLMP for transferring prior mate-
rials chemistry knowledge. DRNets outperform human
capabilities and previous methods for crystal-structure
phase-mapping problems, solving previously unsolved
chemical systems to facilitate the discovery of solar
energy materials.

Computational synergies

The dramatic advances in information and computing
technology critically rely on the digital representation of
information and the universal computing capabilities
of digital devices. Additionally, the generality of com-
putational models enables the transferability of findings
across domains. Computational sustainability research
is a two-way street: it uses computational thinking and
methodologies to address sustainability questions and it
also leads to foundational contributions to comput-
ing and Al by exposing computational scientists to
new challenging problems and formalisms from other
disciplines. The resulting general AI methodologies
can then be applied to problems across different fields,
as discussed herein for materials science. Examples of
cross-cutting computational problems, some discussed
above, include: multi-entity prediction for species distri-
butions, land cover, image object detection, and mate-
rials properties; pattern demixing for crystal-structure
phase mapping, identification of animal calls from
audio recordings, and inference of plant phenotypes
from hyperspectral data; active learning for scientific
experimentation and sensor placement, including cit-
izen science and crowdsourcing; and optimization of
sequential decision making for managing (renewable)
resources and invasive species and for designing sci-
ence experiments. Computational synergies can be
leveraged for exploring the vast materials space, both
in the realm of theory and for planning, designing,
executing, and interpreting experiments using autono-
mous or semi-autonomous systems. At a higher level,
there are opportunities for computational synergies to
tackle the many other issues concerning materials and
their interconnectedness with environmental, economic,
societal, and technological aspects, ranging from mate-
rials life cycle analysis and supply chain optimization to
mechanism and policy design for incentivizing human
behaviors for a sustainable future.
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