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Humanity’s consumption of Earth’s resources endan-
gers our planet and the livelihood of current and future 
generations. Our Common Future, the 1987 seminal 
report by the United Nations World Commission on 
Environment and Development led by Gro Brundtland, 
highlighted the interconnectedness of environmental, 
economic, and societal issues pertaining to sustainability, 
and introduced the notion of sustainable development as 
“development that meets the needs of the present with-
out compromising the ability of future generations to 
meet their needs.” In 2015, as part of the United Nations 
2030 Agenda for Sustainable Development, 193 coun-
tries agreed on 17 ambitious goals, referred to as the 
Sustainable Development Goals.

Computational sustainability and materials
Planning for sustainable development encompasses 
complex interdisciplinary decisions spanning a range of 
questions concerning human well-being, infrastructure 
(such as sustainable cities and smart grids), and the envi-
ronmental protection of the Earth and its species. Such 
complex decision-making is challenging and requires 
expertise and research efforts in computational sciences 
and related disciplines. Computational Sustainability is a 
nascent interdisciplinary field harnessing computing and 
artificial intelligence (AI) to provide solutions to compu-
tational problems concerning balancing environmental, 
economic, and societal needs for a sustainable future1–4.

Materials have been instrumental in humanity’s pro-
gress and have been key technology enablers. Materials 
discovery and development will play a critical role in 
providing greener, more efficient, and accessible tech-
nologies for a more sustainable future4–6. For example, 
the Materials Genome Initiative is truly visionary, using 
computing and AI methods to accelerate materials 
design and discovery to address key challenges in clean 
energy, sustainable materials, and human prosperity. 
The initiative has been very productive and has had sig-
nificant impact throughout materials research by gen-
erating open-source materials data and computational 
infrastructure.

Over the past decade, the Institute for Computational 
Sustainability has developed AI and machine learning 
(ML) approaches for various computational sustain-
ability applications that have also been harnessed to 
advance materials discovery, and vice versa. Herein we 
describe synergies resulting from ecology and materials 
science applications. We highlight the importance of 
model interpretability and of the incorporation of prior 
scientific knowledge to better condition the models, 
to produce scientifically meaningful solutions, and to 
compensate for the paucity of training data.

Multi-entity prediction
Biodiversity is critical for sustaining ecosystem ser-
vices. Biodiversity loss has increased dramatically since 
the Industrial Revolution. For example, since the 1970s, 
North America has lost nearly 30% of the total num-
ber of birds7. A fundamental question in biodiversity 
research is how different species are distributed across 
landscapes over time. The ability to capture interac-
tions between species and their local environments 
and interactions among different species is essential for 
addressing many of the core questions in ecology and 
conservation today. In particular, it is critical to be able 
to predict the distribution of hundreds of species simul-
taneously. However, it is computationally challenging 
for traditional joint species distribution approaches to 
simulataneously handle numerous species.

To address this challenge, we have developed a gen-
eral end-to-end deep-learning framework with prior 
knowledge based on the multivariate probit (MVP) 
model, a multi-Gaussian model called Deep Multivariate 
Probit Model (DMVP)8. DMVP is a general multi-entity 
model, suitable for predicting the distribution of multi-
ple species and other entities, such as the different types 
of land cover across geographic regions over time, or the 
different objects in images. DMVP automatically learns 
the relative importance of a potentially large number 
of input features and generates a structured and inter-
pretable latent space to express the associations between 
entities (such as species or land cover types) and features 
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(such as environmental features), as well as the interac-
tions among the entities. To tackle the computational 
challenge of integrating the MVP likelihood, DMVP 
uses a novel parallel sampling process, which allows for 
efficient deep net training. We applied DMVP to harness 
high-dimensional data, combining bird observations 
from eBird, a global citizen-science bird monitoring 
platform, with remote sensing data. The integration of 
these data in a unified model uncovered species inter-
actions and habitat associations for the entire North 
American avifauna, providing key information on 
species richness at the fine-grain resolution needed for 
conservation efforts, which is well beyond the scale of 
previous approaches.

This work provided the impetus for tackling multi- 
property prediction in materials science, resulting in 
the Hierarchical Correlation Learning of Materials 
Properties (H-CLMP) model9. Analogously to DMVP, 
H-CLMP (pronounced H-CLAMP) encodes a struc-
tured interpretable latent space to capture the materials 
features’ associations and materials properties’ interac-
tions. A multi-Gaussian distribution for pair-wise cor-
relation modelling is coupled to a graph attention model 
for capturing higher-order correlations, collectively pro-
viding a sufficiently expressive model for multi-property 
prediction that remains trainable with modest datasets, 
because the model design facilitates its conditioning. 
H-CLMP also incorporates prior scientific knowledge 
via transfer learning, using physics-based computa-
tional data from the Materials Project to encode materi-
als chemistry in a generative model, which is then used 
to augment the multi-property prediction. H-CLMP 
outperforms state-of-the-art methods for the predic-
tion of optical absorption properties for solar energy 
materials in new composition spaces for which there is 
no available training data.

Pattern demixing
Pattern demixing involves decomposing an observed 
signal into its constituent parts and is used, for exam-
ple, for identifying animal calls in audio recordings 
used for monitoring wildlife. Human experts perform 
signal demixing by reasoning about prior knowledge. 
By prior knowledge, we mean anything that is known 
about the structure of the problem, such as rules that 
characterize valid solutions. Crystal-structure phase 
mapping, a core challenge in materials science, requires 
demixing noisy mixtures of X-ray diffraction (XRD) pat-
terns into the source XRD signals of the corresponding 
crystal structures. Crystal-structure phase mapping is a 
challenging unsupervised pattern demixing task, given 
that labeled training data are typically not available. 
Materials scientists tackle phase mapping by reasoning 
about known crystal structure patterns from existing 
databases combined with knowledge about thermody-
namic rules of phase diagrams. Nevertheless, often phase 
mapping is beyond materials scientists’ capabilities due 
to complexities such as the presence of dozens of phase 
mixtures and alloy-dependent variations in diffraction 
patterns in high-dimensional composition spaces, cre-
ating a major bottleneck in high-throughput materi-
als discovery. We developed deep reasoning networks 

(DRNets)10 to address these challenges. DRNets are a 
general end-to-end framework with seamless integra-
tion of data-driven learning with knowledge-driven rea-
soning about prior knowledge for unsupervised pattern 
demixing. DRNets produce an interpretable latent space 
to encode the domain rules, coupled with a generative 
decoder that encapsulates prior knowledge about known 
crystal structures patterns. The interpretable latent space 
of DRNets was inspired by our DMVP model for joint 
species distributions. In turn, DRNets inspired the gen-
erative model of H-CLMP for transferring prior mate-
rials chemistry knowledge. DRNets outperform human 
capabilities and previous methods for crystal-structure 
phase-mapping problems, solving previously unsolved 
chemical systems to facilitate the discovery of solar 
energy materials.

Computational synergies
The dramatic advances in information and computing 
technology critically rely on the digital representation of  
information and the universal computing capabilities 
of digital devices. Additionally, the generality of com-
putational models enables the transferability of findings 
across domains. Computational sustainability research 
is a two-way street: it uses computational thinking and 
methodologies to address sustainability questions and it  
also leads to foundational contributions to comput-
ing and AI, by exposing computational scientists to  
new challenging problems and formalisms from other 
disciplines. The resulting general AI methodologies 
can then be applied to problems across different fields, 
as discussed herein for materials science. Examples of 
cross-cutting computational problems, some discussed 
above, include: multi-entity prediction for species distri-
butions, land cover, image object detection, and mate-
rials properties; pattern demixing for crystal-structure 
phase mapping, identification of animal calls from 
audio recordings, and inference of plant phenotypes 
from hyperspectral data; active learning for scientific 
experimentation and sensor placement, including cit-
izen science and crowdsourcing; and optimization of 
sequential decision making for managing (renewable) 
resources and invasive species and for designing sci-
ence experiments. Computational synergies can be 
leveraged for exploring the vast materials space, both 
in the realm of theory and for planning, designing, 
executing, and interpreting experiments using autono-
mous or semi-autonomous systems. At a higher level, 
there are opportunities for computational synergies to 
tackle the many other issues concerning materials and 
their interconnectedness with environmental, economic, 
societal, and technological aspects, ranging from mate-
rials life cycle analysis and supply chain optimization to 
mechanism and policy design for incentivizing human 
behaviors for a sustainable future.
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