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Ecography Extreme weather events are increasing in frequency and intensity as a result of mod-
44: 1143-1155, 2021 ern climate change. During winter, species may be especially vulnerable to extreme
doi: 10.1111/ecog.05495 weather as they are surviving on scarce resources and living at the edge of their thermal

limits. We compiled data from eBird, a global citizen science initiative, to examine
Subject Editor: Morgan W. Tingley how 41 eastern North American birds shifted their occurrence and abundance patterns
Editor-in-Chief: Miguel Aratjo immediately following two recent extreme weather events each affecting > 2 million
Accepted 7 April 2021 km?, the intrusion of a polar vortex and a winter heat wave. eBird data is continuously

collected at high spatiotemporal resolution across large spatial extents, allowing us to
compare species’ responses immediately before and after these extreme events with
trends in other winters across geographic scales. Overall, we found that birds responded
differently to each extreme weather event. Bird occurrence rates did not change follow-
ing the polar vortex, but where species occurred, population density was temporarily
reduced, suggesting reductions in number of individuals driven by decreases in behav-
joral activity or temporary movement out of the area. However, birds demonstrated
widespread increases in occurrence and increases in density and number of individuals
where they occurred for at least 20 days after the heat wave, hinting at longer-term
range changes. Smaller-bodied, warm-adapted passerines tended to be most sensitive
to extreme weather and responded most negatively to the polar vortex and most posi-
tively to the heat wave, while larger-bodied, cold-adapted waterbirds expressed only
mild responses to either event. Thus, certain species may be exceptionally sensitive to
extreme weather events while others are less sensitive. As climate change progresses
and climatic variability increases, researchers and managers must better quantify the
broad-scale sensitivity of different species to multiple types of extreme weather events.
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Introduction

Increasing variability in temperature and precipitation over
recent decades is resulting in the proliferation and inten-
sification of extreme weather events (Wallace et al. 2014,
Cohen et al. 2018). Although extreme weather events are
increasing in frequency throughout the year (Rahmstorf and
Coumou 2011), extreme weather during winter may leave
wildlife exceptionally vulnerable as many species are already
living at the razor’s edge — operating with scarce food resources
and temperatures often at the lower end of their thermal limits
(Salewski et al. 2013, Penczykowski et al. 2017, Casson et al.
2019). Several types of winter weather events have the poten-
tial to impact northerly ecosystems and their dependent
species — disrupting behavior, distributions and survival —
despite lasting only days (Martin 2017, Birgander et al. 2018,
Kreyling et al. 2019, Latimer and Zuckerberg 2019). For
instance, the intrusion of the polar vortex into central and
eastern North America during winter has become more com-
mon and intense as arctic warming has destabilized the jet
stream separating arctic and temperate air masses, resulting
in extremely cold air outbreaks in temperate areas sustained
over several days to a week (Cohen et al. 2014). Furthermore,
unseasonably warm periods have increased in both fre-
quency and duration, sometimes resulting in early summer
temperatures during winter (Di Lorenzo and Mantua 2016,
Yu et al. 2019). However, few studies have examined how
species respond in the days or weeks following extreme win-
ter weather events at regional and continental scales because
high-volume, continuous observations before, during and
after such events are scarcely available at high spatiotemporal
resolution, especially for multiple species or across large spa-
tial extents. Further, few studies have examined how extreme
weather impacts multiple aspects of population status, such
as occurrence and abundance. Thus, it remains unclear how
extreme winter weather events impact wildlife, whether these
impacts are typically short-lived or long-lasting, and which
species are most likely to be vulnerable.

Species may exhibit distinct responses to extreme weather
events, including changes in behavioral activity, die-offs or
increased movement (Salewski et al. 2013, Penczykowski et al.
2017, Casson et al. 2019). Such responses could manifest
as changes in occurrence and abundance that persist across
different periods of time, highlighting the importance of
examining species’ responses to extreme weather at high tem-
poral resolution. For example, an extreme weather event may
induce changes in occurrence (e.g. range contraction) and, in
areas where the species occurs, it may also induce changes in
population density (e.g. via flocking or spreading out) that
last throughout a season or even over years (Clark and Dukas
2000, Moreno et al. 2015). Alternatively, species that shift
their behavior (e.g. changes in foraging) may quickly revert
to previous occurrence or abundance levels following an
extreme event in a matter of days or weeks. As predicted by
the abundance—occupancy relationship (Gaston et al. 1999,
Zuckerberg et al. 2009), concurrent changes in occupancy
and abundance across species should be similar, but specific
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responses may result in a decoupling of these relationships
(Gaston et al. 1999). For instance, flocking, a common
response of birds to cold weather (Klein 1988), may result in
rapid increases in local abundance with little change in overall
occurrence. Alternatively, if extreme weather results in high
rates of community turnover, in which individuals spread out
to explore new areas, acquire thinning resources or seek out
refugia, occurrence may increase while abundance decreases
(Borregaard and Rahbek 2010, Latimer and Zuckerberg
2020). Across species, extreme weather events may impact
species differently depending on their thermal tolerance or
functional traits. For instance, a southerly-distributed spe-
cies with low cold tolerance may be relatively more sensi-
tive than a northerly species to an extreme weather event in
which temperatures plummet (Sauer et al. 1996, Latimer
and Zuckerberg 2020), whereas small-bodied species may be
most sensitive to an extreme weather event because they have
low thermal inertia (Huey et al. 2012, Albright et al. 2017).

Currently, little is known about how species respond to
extreme weather events in winter (but see Casson et al. 2019,
Latimer and Zuckerberg 2019), as this assessment necessi-
tates high volumes of continuously recorded data on species’
occurrences and counts at high spatiotemporal resolution.
Birds are an excellent model taxa as they are easily detectable,
are widely considered indicators of environmental change,
and expend energy at high rates, making them sensitive to
fluctuations in weather (Knudsen et al. 2011) across tem-
poral scales (Cohen et al. 2020). Herein, we examined bird
responses to extreme winter weather events using occurrence
and count data from eBird, a global citizen science initia-
tive in which users contribute checklists of birds observed
at a specific location, date and time (Sullivan et al. 2014).
Citizen science data has become widely recognized as a valu-
able resource enabling the analysis of species distributions
over broad geographic extents at fine spatiotemporal reso-
lution (Zuckerberg et al. 2016). eBird has over 650 million
contributed records collected in a continuous fashion (La
Sorte et al. 2018), ensuring a high volume of high-resolution
data before, during and after extreme weather events, and,
importantly, eBird data are collected with ancillary informa-
tion to correct for biases inherent in citizen science datasets
(Kelling et al. 2019).

eBird data has been collected across multiple years in
which extreme winter weather events have occurred by
chance. Thus, eBird data can be used to assess the biological
impact of extreme weather events as a natural experiment;
analogous to a before—after impact study (e.g. pre- versus
post-treatment changes; De Palma et al. 2018) in which spe-
cies’ occurrence and counts are compared before and after
an event and during the same time period in other years.
Our goal was to examine how birds responded to two recent
extreme weather events that may expose birds to conditions
well outside their typical thermal limitations — the intrusion
of a polar vortex (hereafter referenced as ‘polar vortex) and a
winter heat wave — that each affected about 2 million km? of
central and eastern North America. Although temperatures
during a winter heat wave are well within species’ thermal



limitations most of the year, many winter-adapted species
undergo physiological changes (e.g. seasonal adjustments to
summit metabolic rate) to acclimate to cold weather (Liknes
and Swanson 2011, Laplante et al. 2019, Jimenez et al. 2020)
and may thus be less tolerant of unusually warm weather dur-
ing the winter months. We had several objectives: 1) compare
concurrent changes in occurrence and abundance following
each event that may indicate whether the responses are driven
by behavioral changes, demography (e.g. die-offs) or distribu-
tional changes; 2) assess the duration of species responses to
each weather event; and 3) assess whether species responses
to events were predictable based on functional traits, such
as geographic range, body size, habitat generalism, primary
diet and habitat preference. To address issues with abundance
modeling of citizen science data (Johnston et al. 2015), we
estimated abundance based on checklists where the species
already occurs (Methods); thus, our abundance estimates
(hereafter, ‘conditional abundance’) are an indicator of popu-
lation density or aggregation/disaggregation.

We predicted that both extreme events — a polar vortex
and heat wave — would reduce the occurrence and conditional
abundance rates of most species, as each event brought a sharp
departure from the typical winter conditions. However, we
did not have an a priori expectation about whether changes
in occurrence and conditional abundance following each
event would be similar in magnitude. We predicted that at
the same location in space, ‘warm-adapted’ species or those
typically distributed throughout warmer climates, would be
more sensitive than ‘cold-adapted’ species to a polar vortex
but least sensitive following a heat wave, and that species that
typically experience less climate variability would respond
more negatively than others to either event. Further, we pre-
dicted to observe higher sensitivity to extreme weather events
for 1) small-bodied species that have lower thermal inertia
(Huey et al. 2012, Albright et al. 2017); 2) habitat special-
ists, as thermal and habitat niche breadths are often positively
related across species (Barnagaud et al. 2012); and 3) species
occupying open areas, such as grasslands or open water, that
support fewer microclimatic refugia than forest-adapted spe-
cies (Jarzyna et al. 2016).

We quantified before—after changes in both occurrence
and conditional abundance rates across a suite of widespread
castern North American bird species following the most
intense polar vortex and winter heat wave of the previous
decade. The polar vortex occurred in January 2014, bringing
temperature anomalies of —10°C to about 1.8 million km?
of the midwest and northeast USA over a four-day period
(Fig. 1a; Cohen et al. 2014). The winter heat wave took place
in late December 2015 and carried temperature anomalies as
high as +15°C across 2.0 million km? of the eastern USA for
about a week (Fig. 1b; Zhang and Villarini 2017). For com-
mon wintering birds in the affected areas (polar vortex: 35
species; heat wave: 41), we used machine learning approaches
to predict occurrence and conditional abundance from 10
days prior to the event until 30 days after in the areas that
were most affected. Utilizing the occurrence of these extreme
events as a natural experiment, we further compared the

before—after shifts in bird occurrence and conditional abun-
dance to those over identical time periods in 14 other recent
winters to control for typical seasonal trends. Finally, we
used multivariate models and model selection to assess how
species-level traits were associated with responses to weather
events across multiple species.

Methods

Extreme weather events

We examined bird responses to two winter extreme weather
events, the 2014 Polar Vortex and 2015 Winter Heat Wave,
that each impacted large parts of eastern North America for
several days (Fig. 1). These events carried the most extreme,
sustained negative and positive wintertime temperature anom-
alies, respectively, from 2004 to 2018, the period in which
sufficient eBird data is available. We defined the period of the
polar vortex and heat wave as continuous dates in which the
majority of 0.01° cells covering land in northern-temperate
eastern North America (designated as a box with dimensions
25°-50°N and 60°-100°W) experienced < —10°C and >
+10°C mean temperature anomalies, respectively (regions
with points in Fig. 1). Thus, we considered the polar vortex
to have covered 4—7th January 2014 (4 days) and the heat
wave to have covered 22nd-27th December (6 days), 2015
and hereafter refer to these as ‘event dates’. When examin-
ing responses to each event, we analyzed checklists from any
areas within this region that experienced these temperature
anomalies on average over the event dates. Restricting the
geographic extent of the analysis in this way has the benefit of
increasing power to detect changes in species occurrence and
abundance in these regions, however, it limits the ability to
directly study shifts in species ranges, which extend beyond
these regions for many species.

Daily minimum (for polar vortex) or maximum (for heat
wave) temperature anomalies were derived from Daymet, a
high-resolution, interpolated grid-based product from NASA
that offers daily, 1-km? scale weather data across North
America (Thornton et al. 2017). Anomalies were calculated
by extracting daily baseline values of each weather variable
between 1980 and 2003 (the period during which Daymet
data are available that is prior any eBird data used in our
analysis) for every checklist and subtracting these from the
respective values on event dates.

eBird data

We collected all ‘complete checklists’ (indicating that all
detected and identified species were recorded) contributed to
eBird in eastern North America (as defined above) between
2004 and 2018, applying a number of filters to the data
in accordance with established best practices outlined in
Johnston et al. (2019). We limited checklists to those recorded
after 2004, the first year exceeding an average of 10 000 user
contributions per month in our study area. We also limited

1145



Daily min./max. temperature anomaly (°C)

| I I -

-20 -15 -10 -5 0 5 10 15 20

Figure 1. The 2014 polar vortex and 2015 winter heat wave. We examined avian responses to two North American extreme weather events
in winter by selecting eBird checklists (points) contributed within greatly affected areas (those with daily mean temperature anomalies of <
—10°C for the polar vortex, (a) and > +10°C for the heat wave, (b); denoted by boxes in legend) from 10 days before the events until 30
days after.
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checklists to ‘traveling’ or ‘stationary’ observations, exclud-
ing exhaustive area-counts, which are less numerous and not
directly comparable. In all checklists, subspecies information
was discarded and observations were summarized at the spe-
cies level. We excluded checklists with extreme high values of
effort (> 3 h or > 5 km traveled) or extreme checklist calibra-
tion index (CCI, an index designed to capture inter-observer
variation among eBird checklists (Johnston et al. 2018))
scores (z-score < —4 or > 4), which are infrequent and not
directly comparable with the bulk of eBird’s data.

Our goal was to model occurrence and conditional abun-
dance trends over time in areas impacted by extreme weather
events. Therefore, we spatiotemporally filtered the eBird data-
set to contain checklists exclusively within the regions signifi-
cantly impacted by the event (defined above) and on dates
shortly before, during and shortly after the event dates (all
data compilation and subsequent analyses were conducted
in R 3.5.1; <www.r-project.org>). For each event, we first
compiled all checklists beginning 10 days before the event
and ending 30 days after the event. Second, we included all
checklists within the event regions defined above (Fig. 1) and
refer to the resulting datasets as the ‘event’ datasets. Finally,
to compare species’ changes in occurrence and conditional
abundance between event and non-event years, and account
for any typical species-level seasonal trends, we compiled all
checklists recorded in each of the event areas/regions during
the same calendar dates in all other winters between 2004
and 2018 (hereafter referred to as the ‘non-event’ datasets).
To mitigate site selection bias within event and non-event
datasets, we also filtered eBird checklists by randomly select-
ing one observation per 5 km? grid cell during each calendar
week (Johnston et al. 2019).

Although there are inaccuracies among the point-based
locations reported by eBird participants, we do not consider
this to be a major concern for this analysis. First, by excluding
checklists with distances > 5 km, we eliminated the largest
potential locational inaccuracies. Recent analyses comparing
the locations reported by eBird participants and the centroid
of the GPS locations reported by the eBird app found that
on average 86% of all eBird search effort was within a 1.5
km radius of the reported location among searches with total
distances of 5 km or less (Auer pers. comm.). Thus, the vast
majority of eBird search effort is within a relatively small
neighborhood whose size is similar to the spatial resolution
of our other predictors, including weather, land cover and
topography (below).

Model covariates

We included a variety of covariates in each model to account
for the myriad factors that influence species” detection, dis-
tribution and recorded counts. First, to facilitate the study
of the seasonal progression in species occurrence and con-
ditional abundance before and after each event, we created
an ‘event date’ predictor, defined as the date centered on
the weather event, with negative dates before the event, all
event dates classified as day 0, and positive dates following

the event. Second, to account for variation in detection
rates associated with search effort, as well as varying activity
levels among birds at different times of the day and among
observers, we included time spent birding, number of bird-
ers, whether a checklist was categorized as traveling or sta-
tionary, distance traveled and CCI as predictors in species
distribution models (SDMs, below) following established
best practices for modeling eBird data (Johnston et al. 2019).
Finally, to account for variation in detection rates associated
with weather conditions while birding, we included the mean
temperature and total precipitation on the day the checklist
was recorded. Third, we gathered land and water cover and
topographic data corresponding to each checklist to account
for species preferences in landscape composition and configu-
ration. We obtained annual landcover data from the mod-
erate resolution imaging spectroradiometer (MODIS) land
cover type (MCD12Q1) dataset, ver. 6 (<https://lpdaac.
usgs.gov/dataset_discovery/modis/modis_products_table/
mcd12q1>). For each checklist, we calculated the proportion
and variation of land and water classes within a neighborhood
with 1.4 km radius occupied by a variety of landcover types
(Hansen et al. 2000), including grasslands, croplands, mixed
forests, woody savannahs, urban/built, barren, evergreen
broadleaf, evergreen needle, deciduous broadleaf, decidu-
ous needle, closed shrubland, open shrubland, herbaceous
wetlands and open savannah. Land-cover data varied annu-
ally, although we used 2017 land-cover values for checklists
recorded in 2018. We also collected topographical informa-
tion (median aggregations of elevation, eastness, northness,
roughness and topographic position index or TPl ata 1 km?
resolution) from the Global Multi-Terrain Elevation Dataset,
a product of the U.S. Geological Survey and the National
Geospatial-Intelligence Agency (GMTED2010; Danielson
and Gesch 2011).

Species distribution models: random forest

We modeled responses to extreme weather events in all spe-
cies with a minimum detection rate of 5% on checklists
within the area of each event to avoid low-detection issues.
For the 2014 PV and 2015 WHW, this resulted in 35 and
41 species included in our analysis, respectively (Supporting
information for list of species).

For each species, we individually fit a two-step hurdle
model based on random forests (RFs; Johnston et al. 2015)
designed to generate accurate predictions of each species’
occurrence rate and median abundance while dealing with
the inherent challenges of abundance estimation based on
citizen science data, including a high proportion of zero
values (Fink et al. 2020). In the first step of the hurdle
model, species occurrence is modeled as a binary response
with all checklists. In the second step, reported counts are
modeled based on the subset of checklists for which the
species occurred and for which species was predicted to
occur. Thus, our estimates of abundance are conditional
on species’ occurrence, making them a good indicator of
population density or aggregation/disaggregation. For
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both steps, we use RFs (ranger package; Wright and Ziegler
2015), a flexible machine learning method designed to
analyze large datasets with many predictor variables,
adjust automatically to complex, nonlinear relationships
and consider high-order interactions between all predic-
tors. RFs have been used in a number of species distribu-
tion modeling problems (Mi et al. 2017) and have been
used to study seasonal variation in the occurrence rates
of tree swallows Zachycineta bicolor associated with warm
winters (Coleman et al. 2020). To predict species’ binary
state (occurrence/non-occurrence) from the occurrence
rate, we estimated the threshold that maximized Cohen’s
Kappa statistic (Cohen 1960) using out-of-bag train-
ing samples. Predictor sets for occurrence and abundance
models included all predictors discussed above. The count/
abundance model also included the predicted occurrence
rate as an additional predictor to allow for proportionate
changes between species occurrence rates and abundance.
The second step count model utilized quantile regression
to estimate the median abundance, a more robust statistic
than the mean when analyzing species counts.

Before modeling, all data was split 75/25 into training/
testing subsamples. Initial training data were further split
75/25 into training and out-of-bag samples for model valida-
tion (below). In non-event models, we also equalized weight-
ing by year, accounting for the increasing sample sizes by year
generated by eBird (submissions have increased roughly 30%
every year since 2002). Finally, we randomly subsampled 25
000 records from the remaining checklists to reduce the com-
putational burden. We repeated these processes and refit all
models 25 times to reduce error generated by random sub-
sampling and estimate uncertainty in estimates of occurrence
and conditional abundance. For each model, we checked
test—set calibration plots as a diagnostic of overfitting. Finally,
we assessed the fit of each model based on a series of predic-
tive performance metrics computed with the test data. The
predictive performance metrics included specificity, sensitiv-
ity, Kappa and area under the curve (AUC).

To examine changes in occurrence and conditional
abundance following extreme weather events, we began by
calculating the partial dependence (Hastie et al. 2009) of
the occurrence and conditional abundance on every date
from 10 days prior to the event until 30 days after. These
partial dependence statistics describe how occurrence and
conditional abundance varied as a function of event date,
averaging across the values of all other predictors in the
occurrence and conditional abundance models across the
event area. By averaging in this way, the partial dependence
estimates capture systematic, area-wide changes associ-
ated with event date while averaging out all other sources
of variation captured by the models, including variation
in detection rates and heterogeneity in search effort and
among observers.

To quantify species responses to the extreme weather
events, we computed the ratios of the partial dependences
before and after the event. Specifically, we divided the partial
dependence for occurrence and conditional abundance at 5,
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10 and 20 days following each event by the partial depen-
dence averaged across the five days preceding the event. This
ratio measures the relative change in species occurrence and
conditional abundance before and after the event. Finally, to
account for any typical seasonal movements in species’ occur-
rence and conditional abundance, we computed the differ-
ence in seasonal shifts between the event and non-event years
over identical calendar dates. The resulting metrics measure
the proportional change in species occurrence and con-
ditional abundance due to the events, after accounting for
typical intra- and inter-annual changes. We further measured
cross-species relationships between changes in conditional
abundance and occurrence using simple linear regression.

Finally, we wished to determine how the magnitude of the
anomalous shift in occurrence and conditional abundance
following extreme weather events compared to equivalent
shifts during years in which extreme events did not occur.
This would help us further assess whether shifts following
extreme weather fell outside of typical interannual cross-spe-
cies fluctuations in occurrence and conditional abundance.
We iteratively generated these cross-species metrics over the
same dates for each year between 2011 and 2018 (years with
> 5000 checklists over these dates) relative to all other years.
For computational feasibility, we generated interannual met-
rics based on five (rather than 25) resampled model fits. As
this produced some extreme values for several species in cer-
tain years, we present medians rather than means. Further, we
limited the years that we iteratively compared to 2011-2017,
as years prior to 2010 did not have > 10 000 records before
and after extreme weather events and 2018 could not be ana-
lyzed because it would require 2019 checklist data, which we
do not have access to.

To generate maps depicting change in predicted occur-
rence and conditional abundance throughout a species
range before and after an extreme weather event, we cre-
ated a gridded dataset with 2.8 km? resolution and gener-
ated predictions in each cell five days prior to an extreme
event and 10 days after the event. To account for variation
in detectability, we held all of the observation process pre-
dictors constant, resulting in occurrence predictions for a
standardized eBird search defined as a checklist reported
by an average observer traveling 1 km over one hour dur-
ing the year of the event, at the hour of the day when a
given species is most commonly observed, and on a day
with mean 1970-2000 winter (Dec—Feb) temperatures
and precipitation totals (obtained via Worldclim; Fick and
Hijmans 2017). Predictions were generated using values
of land cover, elevation and topographic predictors cor-
responding to each cell. We divided predictions following
an extreme weather event by predictions before the event
and then subtracted this value from similar changes in pre-
dictions from all other years to generate the plotted per-
centage change values. Maps were generated using the purr
package (Henry and Wickham 2017) and plotted using
RColorBrewer (Neuwirth and Neuwirth 2011). All plots
visualizing partial effects and metrics were generated using
goplor2 (Wickham 2011).



Cross-species models

The final step in our modeling process involved examining
how shifts in occurrence and conditional abundance follow-
ing extreme weather events across species were associated with
various avian life-history traits. For all species, information
on diet type and preferred habitat (categorical variables), and
body mass (continuous) was collected from Barnagaud et al.
(2017). We grouped several categories of each predictor to
increase power. Diet type categories included carnivore,
invertebrate, omnivore and herbivore (a combination of
‘fruit’, ‘nectar’, ‘vegetation’ and ‘seed’ in the original dataset).
Habitat categories included water (‘coastal’, ‘open_water’),
open (‘semi-open’, ‘rock’, ‘arid’), generalist (‘urban’, ‘devel-
oped’), forest and riparian wetlands. Further, we calculated
species-level landcover diversity index (LDI), a measure of
habitat generalism, based on mean partial effects of all land-
cover covariates (following Zuckerberg et al. 2016). Finally,
we calculated species thermal index (STI), a measure of the
long-term mean temperature in a species range that indicates
whether it is likely to be adapted to cool or warm weather, by
taking the mean winter (Dec—Feb) daily minimum tempera-
ture across all points where a species was observed on a check-
list between 2004 and 2018 (following Princé and Zuckerberg
2015). High collinearity between functional traits and phy-
logeny precluded us from testing for phylogenetic effects in
occurrence and conditional abundance patterns.

We fit multivariate linear models (LMs) including all of
the above traits as predictor variables to examine how traits

predict species’ responses following each extreme weather
event. Models were fit separately for occurrence and con-
ditional abundance responses. Following each LM, we
employed a model selection approach in which we fit models
with all possible combinations of predictor variables (via the
MuMIn package; Barton 2014) to identify important pre-
dictors. LMs with all combinations of trait predictors were
fit and predictors were scored by the proportion of model
weight accounted for by models in which they were present.
We evaluated whether the shifts in occurrence or abundance
at 5, 10 or 20 days following each event were phylogeneti-
cally correlated by calculating Blomberg’s K (Blomberg et al.
2003) using an avian phylogeny (Jetz et al. 2012) and com-
paring it to a null distribution of K after randomizing species’
responses 1000 times (‘picante’ package; Kembel et al. 2010).

Results and discussion

Overall, bird species demonstrated highly distinct responses
to the polar vortex and heat wave. Across all species, median
conditional abundance typically decreased five and 10 days
after the polar vortex relative to the five-day period before
the polar vortex (—6.3% =+ 1.7 SE and —5.5% =+ 1.4, respec-
tively, suggesting disaggregation), but returned to previous
levels after 20 days (1.8% =+ 2.1; Fig. 2b). Meanwhile, occur-
rence rates on average remained relatively stable following
the polar vortex (5d: =1.6% =+ 1.5; 10d: —0.8% =+ 1.1;
Fig. 2a). Following the heat wave, both median occurrence

(a) Polar vortex (b) Polar vortex
€ ( 1
3 (TR 1
-l 1
/1 1
T 1
-40 -20 0 20 40 -40 -20 0 20 40
(c) (d) Winter heat wave
€
2
[e]
O
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Change in occurrence (%)

-40 -20 0 20 40
Change in abundance (%)

Figure 2. Responses to extreme weather events across avian species. Density plots show percent changes in occurrence (a, ¢) and conditional
abundance (b, d) at various time points following the 2014 polar vortex (a, b) and 2015 winter heat wave (c, d). Percent changes given are
the change following a five day period before each event subtracted from the change over an identical period during other winters. Colors
represent time points following each event: 5 days (red), 10 days (green) or 20 days (blue). On average, species decreased their conditional
abundance but not occurrence following the polar vortex, and increased both their occurrence and conditional abundance following the

heat wave.
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and conditional abundance probabilities increased at all
time points for most species (occurrence: 5.2% =+ 1.4, 6.6%
+ 2.2 and 5.4% =+ 2.0 at days 5, 10 and 20, respectively;
conditional abundance: 5.3% + 1.5, 6.4% =+ 2.3 and 5.7%
+ 2.4; Fig. 2c¢-d). Occurrence and conditional abundance
changes remained synchronized five days after the polar
vortex (R?=0.66; $=0.72 + 0.09), although these rela-
tionships decoupled after 10 and 20 days (R?=0.17, 0.06;
f=0.30 + 0.12, 0.13 + 0.08, respectively) due to a much
stronger effect of the polar vortex on bird conditional abun-
dance than occurrence. However, the heat wave synchro-
nized changes in occurrence and conditional abundance
(R*=0.84, 0.89, 0.80; $=0.88 = 0.06, 0.91 + 0.05, 0.74
+ 0.06; Supporting information). At the species level, there
was a negative relationship between the immediate response
to the two winter weather events; bird species that increased
in occurrence or conditional abundance following the polar
vortex were most likely to decline in occurrence or condi-
tional abundance following the heat wave, and vice versa (5d
change in occurrence: f=—0.70 + 0.12; conditional abun-
dance: f=-0.46 + 0.13; Fig. 3). However, we observed the
reversed pattern 20 days after the weather events — species
shifted their occurrence probabilities, though not median
conditional abundance, at similar rates to both weather
events (5d change in occurrence: f=0.61 + 0.37; condi-
tional abundance: $=0.18 + 0.55; Fig. 3). The magnitude
of cross-species shifts in conditional abundance (and for
the heat wave, occurrence) exceeded analogous shifts over
equivalent time periods during other years, when extreme
weather did not occur (Supporting information), suggesting
that the observed responses fall outside of the typical inter-
annual cross-species variation in occurrence and conditional
abundance.
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At the species level, responses to extreme weather events
hinged on functional traits, notably distribution, body
size and habitat preference (Supporting information). As
expected, warm-adapted species were more likely than cold-
adapted species to decline in occurrence (Relative Importance
score > 0.99; f=-3.21 = 1.1; henceforth, only top model
coeflicients are reported; Fig. 4b, Supporting information
for model adjusted-R* values) and conditional abundance
(RI=0.96; p=-2.57 + 1.55; Supporting information) five
days after the polar vortex, though this effect disappeared
later. Five days after the polar vortex, cold-adapted species
demonstrated only minor shifts in occurrence and condi-
tional abundance by an average of +1.2% and —1.9%, respec-
tively, whereas warm-adapted species declined by —4.6% and
—10.7%. Following the winter heat wave, warm-adapted
birds experienced average increases in occurrence of 9.2%
(5d RI=1; p=2.54 + 0.77; Fig. 4e, Supporting informa-
tion) and increased in conditional abundance by 8.5% (5d
RI=0.99; p=1.72 + 0.88; Supporting information) in con-
trast with cold-adapted species, which increased by only 1.6%
and 2.9%, respectively (Fig. 4d—f). Soon after the polar vor-
tex, smaller-bodied species (those with below-average body
size) decreased in occurrence and conditional abundance
by an average of —6.8% and —10.0%, respectively, though
body size was only an important predictor driving occur-
rence changes (occurrence: 5d RI > 0.99; =1.25 + 1.24;
Fig. 5a, Supporting information; conditional abundance: 5d
RI=0.22; Supporting information); however, these effects
diminished after twenty days. Meanwhile, larger-bodied spe-
cies increased in occurrence by 3.6% and decreased in con-
ditional abundance —3.0% following the polar vortex. After
the heat wave, smaller-bodied species increased in occur-
rence by 8.4% and in conditional abundance 8.3%, while

(b) Change in abundance (%)
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Figure 3. Species demonstrate opposite responses immediately following a polar vortex (PV) and winter heat wave (WHW). The figure
demonstrates the relationship between percent changes in occurrence (a) and conditional abundance (b) at two time points following a
polar vortex (x-axis) and winter heat wave (y-axis) at the species level (points represent individual species). Percent changes given are the
change following a five day period before each event subtracted from the change over an identical period during other winters. Colored
points and 95% confidence intervals represent time points following each event: 5 days (red) or 20 days (blue). Immediately (5 days) fol-
lowing both extreme events, bird species demonstrated opposite changes in occurrence and conditional abundance, but at longer time lags

(20 days), birds responded similarly to the polar vortex and heat wave.
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Figure 4. Functional trait groups demonstrate opposite responses to a polar vortex and winter heat wave. Following the 2014 polar vortex,
species with smaller log-transformed body mass (a), greater species thermal index (STT; b) or species other than waterbirds (c; response at
5d shown) were most likely to decrease in occurrence. Conversely, following the 2015 winter heat wave, species with larger body mass (d),
lower STI (e) or waterbirds (f) were most likely to decrease in occurrence. Percent changes given are the change following a five day period
before each event subtracted from the change over an identical period during other winters. Colored 95% confidence intervals (a—b, d—e)
represent time points following each event: 5 days (red), 10 days (green) or 20 days (blue). Habitat categories are as follows: O =open;

W =water; G =generalist; F =forest.

larger-bodied species increased in each by only 1.6% (Fig. 4d,
Supporting information). Consequently, warm-adapted and
smaller-bodied species appeared to be more sensitive to both
extreme events.

Five days after the polar vortex, only waterbirds (e.g. com-
mon goldeneye, Bucephala clangula and common merganser,
Mergus merganser) on average increased in occurrence 7.1%
despite decreasing in conditional abundance by —3.4%,
while other species decreased by —4.1% and —7.2%, respec-
tively, though habitat association was unimportant in model
selection (Fig. 4c; Supporting information). However, fol-
lowing the heat wave, waterbirds initially declined in occur-
rence by —4.2% (5d RI=1) and conditional abundance by
—5.5% (5d RI=1) while all other habitat groups increased
by 8.5% and 8.9%, respectively (Fig. 4e; Supporting infor-
mation). We did not observe that other functional traits
greatly influenced species responses to extreme weather
events (Supporting information). Maps predicted changes in

occurrence probability and median conditional abundance of
up to between —20% and 20%, depending on species and
location (Fig. 5). Blombergs K was never significantly dif-
ferent from what would be expected by chance (all p-values
> 0.15; Supporting information), suggesting that species’
responses were not phylogenetically correlated.

Our results suggest that on average, birds exhibited oppo-
site responses soon (5-10 days) after the 2014 polar vortex
and 2015 winter heat wave. Following the polar vortex, we
observed consistent decreases in conditional abundance, but
not occurrence, across most species. A temporary decline in
conditional abundance, but not occurrence, after the polar
vortex suggests that birds may be spreading out to seek out
refugia or dwindling resources (Borregaard and Rahbek
2010) or temporarily left the affected area (e.g. moved
south), and were thus often observed in lower numbers by
eBird users. These responses were generally short-lived; thus,
the responses likely reflected behavioral changes and were
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Figure 5. Responses of mourning doves Zenaida macroura to the 2014 polar vortex and 2015 winter heat wave. Percent changes in occur-
rence (a, b) and conditional abundance (c, d) following the 2014 polar vortex (a, ¢) and winter heat wave (b, d) are shown for mourning

doves. Partial dependence plots show partial effect means and 95%

ClIs (across 25 model runs) in occurrence or conditional abundance

before and after each weather event (day 0); red points represent predictions generated before and after the weather event, and black points
represent predictions for all other non-event years between 2004 and 2018. Maps display percent changes five days following the weather
event (bidirectional arrows in partial dependence plots) relative to the five day mean beforehand, adjusted to account for typical trends over
these dates. Colored regions of maps represent portions of the species range that experienced less than —10°C shifts for at least four days
during the weather event. Gray areas show the remainder of the species range. Bluer colors signify percent increases, redder colors are

decreases and beige areas represent no change.

unlikely to carry long-term consequences for most species.
In contrast, birds responded to the heat wave by increasing
in both occurrence and conditional abundance for at least
30 days, suggesting birds may have increased their behavioral
activity (e.g. time spent feeding) and were therefore more
noticeable to contributors submitting checklists. Some spe-
cies may have even shifted their ranges northwards, either
temporarily or through the winter, appearing on more check-
lists because they became more common in the area affected
by the heat wave. Recent evidence suggests that, as a result of
a warming winter climate, resident birds (including most of
those tested) are responding more strongly than other bird
groups by shifting northward and colonizing new areas along
northern leading edge of their breeding ranges (La Sorte and
Thompson 2007, Rushing et al. 2020).

Although we did not directly test for changes in the total
number of individuals after extreme weather events, overall
increases in both occurrence and population density (mea-
sured via conditional abundance) following the heat wave
suggest that the number of individuals in the affected area
likely increased. Likewise, cross-species trends demonstrat-
ing stable occurrence rates despite decreases in population
density following the polar vortex imply a possible decrease
in the number of individuals in the affected area. However,
given that conditional abundance for most species recovered
to previous levels about 20 days following the polar vor-
tex, our results do not suggest that these extreme weather
events strongly impacted the survival of most species tested.
Interestingly, the lack of response in occurrence rates for most
species following the polar vortex likely caused a decoupling
in abundance—occupancy relationships for many species
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following this event, but not following the heat wave. A posi-
tive relationship between occurrence and abundance is perva-
sive throughout macroecology with important implications
in conservation biology (Gaston 1996, Gaston et al. 2000).
In this case, a breakdown in abundance—occupancy relation-
ships across species due to an extreme weather event suggests
that varying sensitivity of species to climate variability may
be an important, albeit understudied, mechanism underlying
this macroecological pattern.

Much of the species-level variation in responses to each
extreme weather event was associated with several key func-
tional traits. For example, smaller-bodied birds strongly
reduced their occurrence following the polar vortex and
greatly increased their occurrence and population den-
sity after the heat wave, while larger-bodied birds exhib-
ited more muted shifts in response to each event, possibly
because they have greater thermal inertia (Huey et al. 2012,
Albright et al. 2017) and may thus be less impacted by
short-term temperature changes. Further, we observed that
warm-adapted species were most likely to decrease in popu-
lation density following a polar vortex and most likely to
increase in occurrence and population density after a heat
wave, while cold-adapted species were much more resilient
to each event. Finally, although we predicted birds occupy-
ing open areas to be more sensitive to extreme weather, we
found that waterbirds reacted differently than other birds.
Waterbirds occurred more often following the polar vortex
and less often after the heat wave, while other species dem-
onstrated opposite shifts. Because most of the larger-bodied
species we analyzed were also waterbirds, it was not possible
to separate the influence of functional traits from each other.



However, at minimum we can conclude that large-bodied
waterbirds (mostly Anseriformes) appeared to be far less sen-
sitive to a polar vortex than smaller-bodied passerines, but
may also experience smaller increases in population density
and occurrence following a winter heat wave.

Our results shed light on how species respond to two
types of extreme winter weather events that are increasing in
frequency and intensity with climate change, a polar vortex
and winter heat wave. However, it remains unclear how spe-
cies respond to extreme weather events during other periods
of the year. For example, birds may be highly vulnerable to
extreme weather during the breeding season as they have
high energetic requirements and cannot easily relocate when
they are caring for young (Conradie et al. 2019, Cohen et al.
2020). Further, if juveniles have especially high susceptibil-
ity to extreme weather, breeding season weather events could
carry long-term demographic consequences for populations
(Bourne etal. 2020). Extreme weather occurring on the shoul-
der seasons, spring and autumn, may leave migrants exposed
to conditions they cannot tolerate. For example, a freeze or
snowfall occurring early in autumn or late in spring could
leave neotropical migrants exposed to cold weather that they
rarely experience under typical circumstances (Casson et al.
2019), and may alter insect phenology (Sevenello et al. 2020)
or damage plants, fruit and seeds (Kunkel et al. 2013), possi-
bly leaving these species without food sources needed to fuel
continental-scale migrations or hampering breeding success
(Krause et al. 2016). Thus, extreme weather during shoul-
der seasons could result in greater mortality than mid-winter
extreme weather events, which exclusively affect winter resi-
dents that are likely to be tolerant of a broader range of ther-
mal conditions than neotropical migrants (Somveille et al.
2015, 2019). Alternatively, mid-winter extreme weather
events involving precipitation, such as rain-on-snow events
in which rapid freezing and unfreezing causes very high
ice accumulation, may result in mortality because they can
destroy habitat, make microclimate (e.g. snowpack) inac-
cessible or block food sources (Putkonen and Roe 2003,
Casson et al. 2019). Further work is needed to determine
how species respond to additional forms of extreme weather
throughout the annual cycle.

Climate sensitivity is a key facet of assessing species vul-
nerability to climate change and reflects whether certain spe-
cies are more susceptible to the effects of climate variability
due to differences in physiology, habitat specialization or
other life history characteristics (Moritz and Agudo 2013).
By measuring the responses of temperate-wintering birds
to short-term climate variability over a broad geographic
scale, we offer a robust and novel estimation of sensitivity
that could be incorporated in future assessments of climate
change vulnerability (Rapacciuolo et al. 2012). Integrating
citizen science and machine learning provided a framework
for calculating partial dependencies, mapping species-level
responses to extreme weather across a broad geographic
region and identifying which species are more vulnerable.
Failing to account for the multi-scale structure of these
species-level responses may produce unreliable estimates of

which species are most likely to be impacted by future cli-
mate change (Oedekoven et al. 2017).

Here, we took advantage of a natural experiment to
quantify how 41 common North American bird spe-
cies shifted in occurrence and conditional abundance in
response to two extreme weather events, an intrusion of a
polar vortex and a winter heat wave, using high-resolution
citizen science data continuously recorded before and after
each event. Our results suggest that extreme weather events,
despite lasting only several days, are likely to greatly impact
the behavior and distribution of birds but unlikely to do so
in a consistent manner. Future work is needed to determine
if long-term range shifts, one of the hallmarks of ecologi-
cal responses to modern climate change, can result from a
single extreme weather event. With extreme winter weather
becoming more common, it will be critical for researchers
and managers to better understand how birds respond to
extreme weather events and to determine which species are
most likely to be vulnerable.

Acknowledgments — We thank the Zuckerberg lab for their
thoughtful comments on the analyses. Funding was provided
by the Data Science Initiative through the Office of the Vice
Chancellor for Research and Graduate Education at the University
of Wisconsin-Madison. We thank the many eBird participants for
their contributions and the eBird team for their support. All authors
agreed to submission of the manuscript and accept the responsibility
for the accuracy and integrity of the manuscript.
Funding—Thisworkwasfunded in partby The Leon Levy Foundation,
The Wolf Creek Foundation, NASA (80NSSC19K0180) and the
National Science Foundation (DBI-1939187; CCF-1522054; and
computing support from CNS-1059284).

Author contributions

Jeremy Cohen: Conceptualization (equal); Data cura-
tion (lead); Formal analysis (lead); Investigation (lead);
Methodology (equal); Visualization (lead); Writing — origi-
nal draft (lead); Writing — review and editing (lead). Daniel
Fink: Conceptualization (equal); Data curation (equal);
Resources (equal); Supervision (equal); Visualization (sup-
porting); Writing — review and editing (equal). Benjamin
Zuckerberg: Conceptualization (equal); Funding acquisi-
tion (lead); Supervision (equal); Writing — review and edit-
ing (equal).

Transparent Peer Review

The peer review history for this article is available at <https://
publons.com/publon/10.1111/ecog.05495>.

Data sharing and accessibility

eBird data is available for public use online at <https://ebird.
org/science/download-ebird-data-products>. Code gener-
ated to conduct the analyses is available upon request.

1153



References

Albright, T. P. et al. 2017. Mapping evaporative water loss in desert
passerines reveals an expanding threat of lethal dehydration. —
Proc. Natl Acad. Sci. USA 114: 2283-2288.

Barnagaud, J.-Y. et al. 2012. Relating habitat and climatic niches
in birds. — PLoS One 7: ¢32819.

Barnagaud, J.-Y. et al. 2017. Temporal changes in bird functional
diversity across the United States. — Oecologia 185: 737-748.

Barton, K. 2014. MuMIn: multi-model inference, R package ver.
1.10.0. — <http://r-forge.r-project.org/projects/mumin/>.

Birgander, J. et al. 2018. The responses of microbial temperature
relationships to seasonal change and winter warming in a tem-
perate grassland. — Global Change Biol. 24: 3357-3367.

Blomberg, S. P. et al. 2003. Testing for phylogenetic signal in com-
parative data: behavioral traits are more labile. — Evolution 57:
717-745.

Borregaard, M. K. and Rahbek, C. 2010. Causality of the relation-
ship between geographic distribution and species abundance.
— Quarterly Rev. Biol. 85: 3-25.

Bourne, A. R. et al. 2020. Hot droughts compromise interannual
survival across all group sizes in a cooperatively breeding bird.
— Ecol. Lett. 23: 1776-1788.

Casson, N. et al. 2019. Winter weather whiplash: impacts of mete-
orological events misaligned with natural and human systems
in seasonally snow-covered regions. — Earth’s Future 7:
1434-1450.

Clark, C. W. and Dukas, R. J. E. E. R. 2000. Winter survival
strategies for small birds: managing energy expenditure through
hypothermia. — Evol. Ecol. Res. 2: 473-491.

Cohen, J. 1960. A coefficient of agreement for nominal scales. —
Educ. Psychol. Measure. 20: 37-46.

Cohen, J. etal. 2014. Recent Arctic amplification and extreme mid-
latitude weather. — Nat. Geosci. 7: 627-637.

Cohen, J. et al. 2018. Warm Arctic episodes linked with increased
frequency of extreme winter weather in the United States. —
Nat. Comm. 9: 1-12.

Cohen, J. M. et al. 2020. Avian responses to extreme weather across
functional traits and temporal scales. — Global Change Biol. 26:
4240-4250.

Coleman, T. et al. 2020. Statistical inference on tree swallow
migrations with random forests. — J. R. Stat. Soc. C 69:
973-989.

Conradie, S. R. et al. 2019. Chronic, sublethal effects of high tem-
peratures will cause severe declines in southern African arid-
zone birds during the 21st century. — Proc. Natl Acad. Sci. USA
116: 14065-14070.

Danielson, J. J. and Gesch, D. B. 2011. Global multi-resolution
terrain elevation data 2010 (GMTED2010). — US Geol. Surv.,
Virginia, USA.

De Palma, A. et al. 2018. Challenges with inferring how land-use
affects terrestrial biodiversity: study design, time, space and syn-
thesis. — Adv. Ecol. Res. 58: 163-199.

Di Lorenzo, E. and Mantua, N. 2016. Multi-year persistence of the
2014/15 North Pacific marine heatwave. — Nat. Clim. Change
6: 1042-1047.

Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1-km
spatial resolution climate surfaces for global land areas. — Int.
J. Climarol. 37: 4302-4315.

Fink, D. et al. 2020. Modeling avian full annual cycle distribution
and population trends with citizen science data. — Ecol. Appl.
30: €02056.

1154

Gaston, K. J. et al. 1999. Intraspecific relationships between abun-
dance and occupancy among species of Paridae and Sylviidae
in Britain. — Ecoscience 6: 131-142.

Gaston, K. J. et al. 2000. Abundance-occupancy relationships. — J.
Appl. Ecol. 37: 39-59.

Gaston, K. J. J. O. 1996. The multiple forms of the interspecific
abundance—distribution relationship. — Oikos 76: 211-220.
Hansen, M. C. et al. 2000. Global land cover classification at 1 km
spatial resolution using a classification tree approach. — Int. J.

Remote Sens. 21: 1331-1364.

Hastie, T. et al. 2009. The elements of statistical learning: data min-
ing, inference and prediction. — Springer Science & Business
Media.

Henry, L. and Wickham, H. 2017. purrr: functional programming
tools, 2017. R package ver. 0.25. — <https://CRAN.R-project.
org/package=purrr>.

Huey, R. B. et al. 2012. Predicting organismal vulnerability to cli-
mate warming: roles of behaviour, physiology and adaptation.
— Phil. Trans. R. Soc. B 367: 1665-1679.

Jarzyna, M. A. et al. 2016. Synergistic effects of climate and land
cover: grassland birds are more vulnerable to climate change.
— Landscape Ecol. 31: 2275-2290.

Jetz, W. et al. 2012. The global diversity of birds in space and time.
— Nature 491: 444-448.

Jimenez, A. G. et al. 2020. Consequences of being phenotypically
mismatched with the environment: no evidence of oxidative
stress in cold- and warm-acclimated birds facing a cold spell.
—J. Exp. Biol. 223: R274-R283.

Johnston, A. et al. 2015. Abundance models improve spatial and
temporal prioritization of conservation resources. — Ecol. Appl.
25: 1749-1756.

Johnston, A. et al. 2018. Estimates of observer expertise improve
species distributions from citizen science data. — Methods Ecol.
Evol. 9: 88-97.

Johnston, A. et al. 2019. Best practices for making reliable infer-
ences from citizen science data: case study using eBird to esti-
mate species distributions. — bioRxiv: 574392.

Kelling, S. et al. 2019. Using semistructured surveys to improve
citizen science data for monitoring biodiversity. — Bioscience
69: 170-179.

Kembel, S. W. et al. 2010. Picante: R tools for integrating phylog-
enies and ecology. — Bioinformatics 26: 1463—1464.

Klein, B. C. 1988. Weather-dependent mixed-species flocking dur-
ing the winter. — J. Theor. Biol. 38: 419-422.

Knudsen, E. et al. 2011. Challenging claims in the study of migra-
tory birds and climate change. — Biol. Rev. 86: 928-946.
Krause, J. S. et al. 2016. The effect of extreme spring weather on
body condition and stress physiology in Lapland longspurs and
white-crowned sparrows breeding in the Arctic. — Gen. Comp.

Endochrinol. 237: 10-18.

Kreyling, J. et al. 2019. Winter warming is ecologically more rel-
evant than summer warming in a cool-temperate grassland. —
Sci. Rep. 9: 1-9.

Kunkel, K. E. et al. 2013. Regional climate trends and scenarios
for the US National Climate Assessment Part 4. Climate of the
US Great Plains. — U.S. Department of Commerse, Washing-
ton, USA.

La Sorte, F. A. and Thompson, E R. 2007. Poleward shifts in
winter ranges of North American birds. — Ecology 88:
1803-1812.

La Sorte, E A. et al. 2018. Opportunities and challenges for big
data ornithology. — Condor: Ornithol. Appl. 120: 414-426.



Laplante, M. P et al. 2019. Flexible response to short-term weather
in a cold-adapted songbird. — J. Avian Biol. 50: e01766.

Latimer, C. E. and Zuckerberg, B. 2019. How extreme is extreme?
Demographic approaches inform the occurrence and ecological
relevance of extreme events. — Ecol. Monogr. 89: ¢01385.

Latimer, C. E. and Zuckerberg, B. 2020. Habitat loss and thermal
tolerances influence the sensitivity of resident bird populations
to winter weather at regional scales. — J. Anim. Ecol. 90:
317-329.

Liknes, E. T. and Swanson, D. L. 2011. Phenotypic flexibility of
body composition associated with seasonal acclimatization in
passerine birds. — J. Therm. Biol. 36: 363-370.

Martin, R. J. 2017. Winter warming affects the onset of reproduc-
tion but not cognition or the hippocampus in black-capped
chickadees Poecile atricapillus. — Electronic Thesis and Disserta-
tion Repository, 4713, <https://irlib.uwo.caletd/4713>.

Mi, C. et al. 2017. Why choose Random Forest to predict rare
species distribution with few samples in large undersampled
areas? Three Asian crane species models provide supporting evi-
dence. — Peer] 5: €2849.

Moreno, J. etal. 2015. A spring cold snap is followed by an extreme
reproductive failure event in a mountain population of pied
flycatchers Ficedula hypoleuca. — Bird Study 62: 466-473.

Moritz, C. and Agudo, R. ]J. S. 2013. The future of species under
climate change: resilience or decline? — Science 341: 504-508.

Neuwirth, E. and Neuwirth, M. E. 2011. Package ‘RColorBrewer’,
CRAN 2011-06-17 08:34:00. Apache License 2.0.

Oecdekoven, C. S. et al. 2017. Attributing changes in the distribu-
tion of species abundance to weather variables using the exam-
ple of British breeding birds. — Methods Ecol. Evol. 8:
1690-1702.

Penczykowski, R. M. et al. 2017. Winter is changing: trophic inter-
actions under altered snow regimes. — Food Webs 13: 80-91.

Princé, K. and Zuckerberg, B. 2015. Climate change in our back-
yards: the reshuffling of North America’s winter bird communi-
ties. — Global Change Biol. 21: 572-585.

Putkonen, J. and Roe, G. J. G. R. L. 2003. Rain-on-snow events
impact soil temperatures and affect ungulate survival. — Geo-
phys. Res. Lett. 30: 1188-1191.

Rahmstorf, S. and Coumou, D. 2011. Increase of extreme events
in a warming world. — Proc. Natd Acad. Sci. USA 108:
17905-17909.

Rapacciuolo, G. et al. 2012. Climatic associations of British species
distributions show good transferability in time but low predic-
tive accuracy for range change. — PLoS One 7: ¢40212.

Rushing, C. S. et al. 2020. Migratory behavior and winter geogra-
phy drive differential range shifts of eastern birds in response
to recent climate change. — Proc. Natl Acad. Sci. USA 117:
12897-12903.

Salewski, V. et al. 2013. Multiple weather factors affect apparent
survival of European passerine birds. — PLoS One 8: ¢59110.

Sauer, J. R. et al. 1996. Evaluating causes of population change in
North American insectivorous songbirds. — Conserv. Biol. 10:
465-478.

Sevenello, M. et al. 2020. Spring wildflower phenology and pollina-
tor activity respond similarly to climatic variation in an eastern
hardwood forest. — Oecologia 193: 475-488.

Somveille, M. et al. 2015. Why do birds migrate? A macroeco-
logical perspective. — Ecol. Biogeogr. 24: 664—674.

Somveille, M. et al. 2019. Where the wild birds go: explaining the
differences in migratory destinations across terrestrial bird spe-
cies. — Ecography 42: 225-236.

Sullivan, B. L. et al. 2014. The eBird enterprise: an integrated
approach to development and application of citizen science. —
Biol. Conserv. 169: 31-40.

Thornton, P et al. 2017. Daymet: daily surface weather data on a
1-km grid for North America, ver. 3. — ORNL DAAC, USA.
<https://daac.ornl.gov/DAYMET/guides/Daymet_V3_CFMo-
saics.html>

Wallace, J. M. et al. 2014. Global warming and winter weather. —
Science 343: 729-730.

Wickham, H. 2011. ggplot2. — Wiley Interdiscip. Rev. Comput.
Stat. 3: 180-185.

Wright, M. N. and Ziegler, A. 2015. ranger: a fast implementation
of random forests for high dimensional data in C++ and R. —
<https://CRAN. R-project. org/package= ranger>.

Yu, B. et al. 2019. Interannual variability of North American win-
ter temperature extremes and its associated circulation anoma-
lies in observations and CMIP5 simulations. — J. Clim. 33:
847-865.

Zhang, W. and Villarini, G. 2017. On the unseasonal flooding over
the central United States during December 2015 and January
2016. — Atmos. Res. 196: 23-28.

Zuckerberg, B. et al. 2009. The consistency and stability of abun-
dance—occupancy relationships in large-scale population
dynamics. — J. Anim. Ecol. 78: 172-181.

Zuckerberg, B. et al. 2016. Novel seasonal land cover associations
for eastern North American forest birds identified through
dynamic species distribution modelling. — Divers. Distrib. 22:
717-730.

1155



