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Extreme weather events are increasing in frequency and intensity as a result of mod-
ern climate change. During winter, species may be especially vulnerable to extreme 
weather as they are surviving on scarce resources and living at the edge of their thermal 
limits. We compiled data from eBird, a global citizen science initiative, to examine 
how 41 eastern North American birds shifted their occurrence and abundance patterns 
immediately following two recent extreme weather events each affecting > 2 million 
km2, the intrusion of a polar vortex and a winter heat wave. eBird data is continuously 
collected at high spatiotemporal resolution across large spatial extents, allowing us to 
compare species’ responses immediately before and after these extreme events with 
trends in other winters across geographic scales. Overall, we found that birds responded 
differently to each extreme weather event. Bird occurrence rates did not change follow-
ing the polar vortex, but where species occurred, population density was temporarily 
reduced, suggesting reductions in number of individuals driven by decreases in behav-
ioral activity or temporary movement out of the area. However, birds demonstrated 
widespread increases in occurrence and increases in density and number of individuals 
where they occurred for at least 20 days after the heat wave, hinting at longer-term 
range changes. Smaller-bodied, warm-adapted passerines tended to be most sensitive 
to extreme weather and responded most negatively to the polar vortex and most posi-
tively to the heat wave, while larger-bodied, cold-adapted waterbirds expressed only 
mild responses to either event. !us, certain species may be exceptionally sensitive to 
extreme weather events while others are less sensitive. As climate change progresses 
and climatic variability increases, researchers and managers must better quantify the 
broad-scale sensitivity of different species to multiple types of extreme weather events.
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Introduction

Increasing variability in temperature and precipitation over 
recent decades is resulting in the proliferation and inten-
sification of extreme weather events (Wallace et al. 2014, 
Cohen et al. 2018). Although extreme weather events are 
increasing in frequency throughout the year (Rahmstorf and 
Coumou 2011), extreme weather during winter may leave 
wildlife exceptionally vulnerable as many species are already 
living at the razor’s edge – operating with scarce food resources 
and temperatures often at the lower end of their thermal limits 
(Salewski et al. 2013, Penczykowski et al. 2017, Casson et al. 
2019). Several types of winter weather events have the poten-
tial to impact northerly ecosystems and their dependent 
species – disrupting behavior, distributions and survival – 
despite lasting only days (Martin 2017, Birgander et al. 2018, 
Kreyling et al. 2019, Latimer and Zuckerberg 2019). For 
instance, the intrusion of the polar vortex into central and 
eastern North America during winter has become more com-
mon and intense as arctic warming has destabilized the jet 
stream separating arctic and temperate air masses, resulting 
in extremely cold air outbreaks in temperate areas sustained 
over several days to a week (Cohen et al. 2014). Furthermore, 
unseasonably warm periods have increased in both fre-
quency and duration, sometimes resulting in early summer 
temperatures during winter (Di Lorenzo and Mantua 2016, 
Yu et al. 2019). However, few studies have examined how 
species respond in the days or weeks following extreme win-
ter weather events at regional and continental scales because 
high-volume, continuous observations before, during and 
after such events are scarcely available at high spatiotemporal 
resolution, especially for multiple species or across large spa-
tial extents. Further, few studies have examined how extreme 
weather impacts multiple aspects of population status, such 
as occurrence and abundance. !us, it remains unclear how 
extreme winter weather events impact wildlife, whether these 
impacts are typically short-lived or long-lasting, and which 
species are most likely to be vulnerable.

Species may exhibit distinct responses to extreme weather 
events, including changes in behavioral activity, die-offs or 
increased movement (Salewski et al. 2013, Penczykowski et al. 
2017, Casson et al. 2019). Such responses could manifest 
as changes in occurrence and abundance that persist across 
different periods of time, highlighting the importance of 
examining species’ responses to extreme weather at high tem-
poral resolution. For example, an extreme weather event may 
induce changes in occurrence (e.g. range contraction) and, in 
areas where the species occurs, it may also induce changes in 
population density (e.g. via flocking or spreading out) that 
last throughout a season or even over years (Clark and Dukas 
2000, Moreno et al. 2015). Alternatively, species that shift 
their behavior (e.g. changes in foraging) may quickly revert 
to previous occurrence or abundance levels following an 
extreme event in a matter of days or weeks. As predicted by 
the abundance–occupancy relationship (Gaston et al. 1999, 
Zuckerberg et al. 2009), concurrent changes in occupancy 
and abundance across species should be similar, but specific 

responses may result in a decoupling of these relationships 
(Gaston et al. 1999). For instance, flocking, a common 
response of birds to cold weather (Klein 1988), may result in 
rapid increases in local abundance with little change in overall 
occurrence. Alternatively, if extreme weather results in high 
rates of community turnover, in which individuals spread out 
to explore new areas, acquire thinning resources or seek out 
refugia, occurrence may increase while abundance decreases 
(Borregaard and Rahbek 2010, Latimer and Zuckerberg 
2020). Across species, extreme weather events may impact 
species differently depending on their thermal tolerance or 
functional traits. For instance, a southerly-distributed spe-
cies with low cold tolerance may be relatively more sensi-
tive than a northerly species to an extreme weather event in 
which temperatures plummet (Sauer et al. 1996, Latimer 
and Zuckerberg 2020), whereas small-bodied species may be 
most sensitive to an extreme weather event because they have 
low thermal inertia (Huey et al. 2012, Albright et al. 2017).

Currently, little is known about how species respond to 
extreme weather events in winter (but see Casson et al. 2019, 
Latimer and Zuckerberg 2019), as this assessment necessi-
tates high volumes of continuously recorded data on species’ 
occurrences and counts at high spatiotemporal resolution. 
Birds are an excellent model taxa as they are easily detectable, 
are widely considered indicators of environmental change, 
and expend energy at high rates, making them sensitive to 
fluctuations in weather (Knudsen et al. 2011) across tem-
poral scales (Cohen et al. 2020). Herein, we examined bird 
responses to extreme winter weather events using occurrence 
and count data from eBird, a global citizen science initia-
tive in which users contribute checklists of birds observed 
at a specific location, date and time (Sullivan et al. 2014). 
Citizen science data has become widely recognized as a valu-
able resource enabling the analysis of species distributions 
over broad geographic extents at fine spatiotemporal reso-
lution (Zuckerberg et al. 2016). eBird has over 650 million 
contributed records collected in a continuous fashion (La 
Sorte et al. 2018), ensuring a high volume of high-resolution 
data before, during and after extreme weather events, and, 
importantly, eBird data are collected with ancillary informa-
tion to correct for biases inherent in citizen science datasets 
(Kelling et al. 2019).

eBird data has been collected across multiple years in 
which extreme winter weather events have occurred by 
chance. !us, eBird data can be used to assess the biological 
impact of extreme weather events as a natural experiment; 
analogous to a before–after impact study (e.g. pre- versus 
post-treatment changes; De Palma et al. 2018) in which spe-
cies’ occurrence and counts are compared before and after 
an event and during the same time period in other years. 
Our goal was to examine how birds responded to two recent 
extreme weather events that may expose birds to conditions 
well outside their typical thermal limitations – the intrusion 
of a polar vortex (hereafter referenced as ‘polar vortex’) and a 
winter heat wave – that each affected about 2 million km2 of 
central and eastern North America. Although temperatures 
during a winter heat wave are well within species’ thermal 
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limitations most of the year, many winter-adapted species 
undergo physiological changes (e.g. seasonal adjustments to 
summit metabolic rate) to acclimate to cold weather (Liknes 
and Swanson 2011, Laplante et al. 2019, Jimenez et al. 2020) 
and may thus be less tolerant of unusually warm weather dur-
ing the winter months. We had several objectives: 1) compare 
concurrent changes in occurrence and abundance following 
each event that may indicate whether the responses are driven 
by behavioral changes, demography (e.g. die-offs) or distribu-
tional changes; 2) assess the duration of species responses to 
each weather event; and 3) assess whether species responses 
to events were predictable based on functional traits, such 
as geographic range, body size, habitat generalism, primary 
diet and habitat preference. To address issues with abundance 
modeling of citizen science data (Johnston et al. 2015), we 
estimated abundance based on checklists where the species 
already occurs (Methods); thus, our abundance estimates 
(hereafter, ‘conditional abundance’) are an indicator of popu-
lation density or aggregation/disaggregation.

We predicted that both extreme events – a polar vortex 
and heat wave – would reduce the occurrence and conditional 
abundance rates of most species, as each event brought a sharp 
departure from the typical winter conditions. However, we 
did not have an a priori expectation about whether changes 
in occurrence and conditional abundance following each 
event would be similar in magnitude. We predicted that at 
the same location in space, ‘warm-adapted’ species or those 
typically distributed throughout warmer climates, would be 
more sensitive than ‘cold-adapted’ species to a polar vortex 
but least sensitive following a heat wave, and that species that 
typically experience less climate variability would respond 
more negatively than others to either event. Further, we pre-
dicted to observe higher sensitivity to extreme weather events 
for 1) small-bodied species that have lower thermal inertia 
(Huey et al. 2012, Albright et al. 2017); 2) habitat special-
ists, as thermal and habitat niche breadths are often positively 
related across species (Barnagaud et al. 2012); and 3) species 
occupying open areas, such as grasslands or open water, that 
support fewer microclimatic refugia than forest-adapted spe-
cies (Jarzyna et al. 2016).

We quantified before–after changes in both occurrence 
and conditional abundance rates across a suite of widespread 
eastern North American bird species following the most 
intense polar vortex and winter heat wave of the previous 
decade. !e polar vortex occurred in January 2014, bringing 
temperature anomalies of −10°C to about 1.8 million km2 
of the midwest and northeast USA over a four-day period 
(Fig. 1a; Cohen et al. 2014). !e winter heat wave took place 
in late December 2015 and carried temperature anomalies as 
high as +15°C across 2.0 million km2 of the eastern USA for 
about a week (Fig. 1b; Zhang and Villarini 2017). For com-
mon wintering birds in the affected areas (polar vortex: 35 
species; heat wave: 41), we used machine learning approaches 
to predict occurrence and conditional abundance from 10 
days prior to the event until 30 days after in the areas that 
were most affected. Utilizing the occurrence of these extreme 
events as a natural experiment, we further compared the 

before–after shifts in bird occurrence and conditional abun-
dance to those over identical time periods in 14 other recent 
winters to control for typical seasonal trends. Finally, we 
used multivariate models and model selection to assess how 
species-level traits were associated with responses to weather 
events across multiple species.

Methods

Extreme weather events

We examined bird responses to two winter extreme weather 
events, the 2014 Polar Vortex and 2015 Winter Heat Wave, 
that each impacted large parts of eastern North America for 
several days (Fig. 1). !ese events carried the most extreme, 
sustained negative and positive wintertime temperature anom-
alies, respectively, from 2004 to 2018, the period in which 
sufficient eBird data is available. We defined the period of the 
polar vortex and heat wave as continuous dates in which the 
majority of 0.01° cells covering land in northern-temperate 
eastern North America (designated as a box with dimensions 
25°–50°N and 60°–100°W) experienced < −10°C and > 
+10°C mean temperature anomalies, respectively (regions 
with points in Fig. 1). !us, we considered the polar vortex 
to have covered 4–7th January 2014 (4 days) and the heat 
wave to have covered 22nd–27th December (6 days), 2015 
and hereafter refer to these as ‘event dates’. When examin-
ing responses to each event, we analyzed checklists from any 
areas within this region that experienced these temperature 
anomalies on average over the event dates. Restricting the 
geographic extent of the analysis in this way has the benefit of 
increasing power to detect changes in species occurrence and 
abundance in these regions, however, it limits the ability to 
directly study shifts in species ranges, which extend beyond 
these regions for many species.

Daily minimum (for polar vortex) or maximum (for heat 
wave) temperature anomalies were derived from Daymet, a 
high-resolution, interpolated grid-based product from NASA 
that offers daily, 1-km2 scale weather data across North 
America (!ornton et al. 2017). Anomalies were calculated 
by extracting daily baseline values of each weather variable 
between 1980 and 2003 (the period during which Daymet 
data are available that is prior any eBird data used in our 
analysis) for every checklist and subtracting these from the 
respective values on event dates.

eBird data

We collected all ‘complete checklists’ (indicating that all 
detected and identified species were recorded) contributed to 
eBird in eastern North America (as defined above) between 
2004 and 2018, applying a number of filters to the data 
in accordance with established best practices outlined in 
Johnston et al. (2019). We limited checklists to those recorded 
after 2004, the first year exceeding an average of 10 000 user 
contributions per month in our study area. We also limited 



1146

Figure 1. !e 2014 polar vortex and 2015 winter heat wave. We examined avian responses to two North American extreme weather events 
in winter by selecting eBird checklists (points) contributed within greatly affected areas (those with daily mean temperature anomalies of < 
−10°C for the polar vortex, (a) and > +10°C for the heat wave, (b); denoted by boxes in legend) from 10 days before the events until 30 
days after.
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checklists to ‘traveling’ or ‘stationary’ observations, exclud-
ing exhaustive area-counts, which are less numerous and not 
directly comparable. In all checklists, subspecies information 
was discarded and observations were summarized at the spe-
cies level. We excluded checklists with extreme high values of 
effort (> 3 h or > 5 km traveled) or extreme checklist calibra-
tion index (CCI, an index designed to capture inter-observer 
variation among eBird checklists (Johnston et al. 2018)) 
scores (z-score < −4 or > 4), which are infrequent and not 
directly comparable with the bulk of eBird’s data.

Our goal was to model occurrence and conditional abun-
dance trends over time in areas impacted by extreme weather 
events. !erefore, we spatiotemporally filtered the eBird data-
set to contain checklists exclusively within the regions signifi-
cantly impacted by the event (defined above) and on dates 
shortly before, during and shortly after the event dates (all 
data compilation and subsequent analyses were conducted 
in R 3.5.1; <www.r-project.org>). For each event, we first 
compiled all checklists beginning 10 days before the event 
and ending 30 days after the event. Second, we included all 
checklists within the event regions defined above (Fig. 1) and 
refer to the resulting datasets as the ‘event’ datasets. Finally, 
to compare species’ changes in occurrence and conditional 
abundance between event and non-event years, and account 
for any typical species-level seasonal trends, we compiled all 
checklists recorded in each of the event areas/regions during 
the same calendar dates in all other winters between 2004 
and 2018 (hereafter referred to as the ‘non-event’ datasets). 
To mitigate site selection bias within event and non-event 
datasets, we also filtered eBird checklists by randomly select-
ing one observation per 5 km2 grid cell during each calendar 
week (Johnston et al. 2019).

Although there are inaccuracies among the point-based 
locations reported by eBird participants, we do not consider 
this to be a major concern for this analysis. First, by excluding 
checklists with distances > 5 km, we eliminated the largest 
potential locational inaccuracies. Recent analyses comparing 
the locations reported by eBird participants and the centroid 
of the GPS locations reported by the eBird app found that 
on average 86% of all eBird search effort was within a 1.5 
km radius of the reported location among searches with total 
distances of 5 km or less (Auer pers. comm.). !us, the vast 
majority of eBird search effort is within a relatively small 
neighborhood whose size is similar to the spatial resolution 
of our other predictors, including weather, land cover and 
topography (below).

Model covariates

We included a variety of covariates in each model to account 
for the myriad factors that influence species’ detection, dis-
tribution and recorded counts. First, to facilitate the study 
of the seasonal progression in species occurrence and con-
ditional abundance before and after each event, we created 
an ‘event date’ predictor, defined as the date centered on 
the weather event, with negative dates before the event, all 
event dates classified as day 0, and positive dates following 

the event. Second, to account for variation in detection 
rates associated with search effort, as well as varying activity 
levels among birds at different times of the day and among 
observers, we included time spent birding, number of bird-
ers, whether a checklist was categorized as traveling or sta-
tionary, distance traveled and CCI as predictors in species 
distribution models (SDMs, below) following established 
best practices for modeling eBird data (Johnston et al. 2019). 
Finally, to account for variation in detection rates associated 
with weather conditions while birding, we included the mean 
temperature and total precipitation on the day the checklist 
was recorded. !ird, we gathered land and water cover and 
topographic data corresponding to each checklist to account 
for species preferences in landscape composition and configu-
ration. We obtained annual landcover data from the mod-
erate resolution imaging spectroradiometer (MODIS) land 
cover type (MCD12Q1) dataset, ver. 6 (<https://lpdaac.
usgs.gov/dataset_discovery/modis/modis_products_table/
mcd12q1>). For each checklist, we calculated the proportion 
and variation of land and water classes within a neighborhood 
with 1.4 km radius occupied by a variety of landcover types 
(Hansen et al. 2000), including grasslands, croplands, mixed 
forests, woody savannahs, urban/built, barren, evergreen 
broadleaf, evergreen needle, deciduous broadleaf, decidu-
ous needle, closed shrubland, open shrubland, herbaceous 
wetlands and open savannah. Land-cover data varied annu-
ally, although we used 2017 land-cover values for checklists 
recorded in 2018. We also collected topographical informa-
tion (median aggregations of elevation, eastness, northness, 
roughness and topographic position index or TPI at a 1 km2 
resolution) from the Global Multi-Terrain Elevation Dataset, 
a product of the U.S. Geological Survey and the National 
Geospatial-Intelligence Agency (GMTED2010; Danielson 
and Gesch 2011).

Species distribution models: random forest

We modeled responses to extreme weather events in all spe-
cies with a minimum detection rate of 5% on checklists 
within the area of each event to avoid low-detection issues. 
For the 2014 PV and 2015 WHW, this resulted in 35 and 
41 species included in our analysis, respectively (Supporting 
information for list of species).

For each species, we individually fit a two-step hurdle 
model based on random forests (RFs; Johnston et al. 2015) 
designed to generate accurate predictions of each species’ 
occurrence rate and median abundance while dealing with 
the inherent challenges of abundance estimation based on 
citizen science data, including a high proportion of zero 
values (Fink et al. 2020). In the first step of the hurdle 
model, species occurrence is modeled as a binary response 
with all checklists. In the second step, reported counts are 
modeled based on the subset of checklists for which the 
species occurred and for which species was predicted to 
occur. !us, our estimates of abundance are conditional 
on species’ occurrence, making them a good indicator of 
population density or aggregation/disaggregation. For 
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both steps, we use RFs (ranger package; Wright and Ziegler 
2015), a flexible machine learning method designed to 
analyze large datasets with many predictor variables, 
adjust automatically to complex, nonlinear relationships 
and consider high-order interactions between all predic-
tors. RFs have been used in a number of species distribu-
tion modeling problems (Mi et al. 2017) and have been 
used to study seasonal variation in the occurrence rates 
of tree swallows Tachycineta bicolor associated with warm 
winters (Coleman et al. 2020). To predict species’ binary 
state (occurrence/non-occurrence) from the occurrence 
rate, we estimated the threshold that maximized Cohen’s 
Kappa statistic (Cohen 1960) using out-of-bag train-
ing samples. Predictor sets for occurrence and abundance 
models included all predictors discussed above. !e count/
abundance model also included the predicted occurrence 
rate as an additional predictor to allow for proportionate 
changes between species occurrence rates and abundance. 
!e second step count model utilized quantile regression 
to estimate the median abundance, a more robust statistic 
than the mean when analyzing species counts.

Before modeling, all data was split 75/25 into training/
testing subsamples. Initial training data were further split 
75/25 into training and out-of-bag samples for model valida-
tion (below). In non-event models, we also equalized weight-
ing by year, accounting for the increasing sample sizes by year 
generated by eBird (submissions have increased roughly 30% 
every year since 2002). Finally, we randomly subsampled 25 
000 records from the remaining checklists to reduce the com-
putational burden. We repeated these processes and refit all 
models 25 times to reduce error generated by random sub-
sampling and estimate uncertainty in estimates of occurrence 
and conditional abundance. For each model, we checked 
test–set calibration plots as a diagnostic of overfitting. Finally, 
we assessed the fit of each model based on a series of predic-
tive performance metrics computed with the test data. !e 
predictive performance metrics included specificity, sensitiv-
ity, Kappa and area under the curve (AUC).

To examine changes in occurrence and conditional 
abundance following extreme weather events, we began by 
calculating the partial dependence (Hastie et al. 2009) of 
the occurrence and conditional abundance on every date 
from 10 days prior to the event until 30 days after. !ese 
partial dependence statistics describe how occurrence and 
conditional abundance varied as a function of event date, 
averaging across the values of all other predictors in the 
occurrence and conditional abundance models across the 
event area. By averaging in this way, the partial dependence 
estimates capture systematic, area-wide changes associ-
ated with event date while averaging out all other sources 
of variation captured by the models, including variation 
in detection rates and heterogeneity in search effort and 
among observers.

To quantify species responses to the extreme weather 
events, we computed the ratios of the partial dependences 
before and after the event. Specifically, we divided the partial 
dependence for occurrence and conditional abundance at 5, 

10 and 20 days following each event by the partial depen-
dence averaged across the five days preceding the event. !is 
ratio measures the relative change in species occurrence and 
conditional abundance before and after the event. Finally, to 
account for any typical seasonal movements in species’ occur-
rence and conditional abundance, we computed the differ-
ence in seasonal shifts between the event and non-event years 
over identical calendar dates. !e resulting metrics measure 
the proportional change in species occurrence and con-
ditional abundance due to the events, after accounting for 
typical intra- and inter-annual changes. We further measured 
cross-species relationships between changes in conditional 
abundance and occurrence using simple linear regression.

Finally, we wished to determine how the magnitude of the 
anomalous shift in occurrence and conditional abundance 
following extreme weather events compared to equivalent 
shifts during years in which extreme events did not occur. 
!is would help us further assess whether shifts following 
extreme weather fell outside of typical interannual cross-spe-
cies fluctuations in occurrence and conditional abundance. 
We iteratively generated these cross-species metrics over the 
same dates for each year between 2011 and 2018 (years with 
> 5000 checklists over these dates) relative to all other years. 
For computational feasibility, we generated interannual met-
rics based on five (rather than 25) resampled model fits. As 
this produced some extreme values for several species in cer-
tain years, we present medians rather than means. Further, we 
limited the years that we iteratively compared to 2011–2017, 
as years prior to 2010 did not have > 10 000 records before 
and after extreme weather events and 2018 could not be ana-
lyzed because it would require 2019 checklist data, which we 
do not have access to.

To generate maps depicting change in predicted occur-
rence and conditional abundance throughout a species 
range before and after an extreme weather event, we cre-
ated a gridded dataset with 2.8 km2 resolution and gener-
ated predictions in each cell five days prior to an extreme 
event and 10 days after the event. To account for variation 
in detectability, we held all of the observation process pre-
dictors constant, resulting in occurrence predictions for a 
standardized eBird search defined as a checklist reported 
by an average observer traveling 1 km over one hour dur-
ing the year of the event, at the hour of the day when a 
given species is most commonly observed, and on a day 
with mean 1970–2000 winter (Dec–Feb) temperatures 
and precipitation totals (obtained via Worldclim; Fick and 
Hijmans 2017). Predictions were generated using values 
of land cover, elevation and topographic predictors cor-
responding to each cell. We divided predictions following 
an extreme weather event by predictions before the event 
and then subtracted this value from similar changes in pre-
dictions from all other years to generate the plotted per-
centage change values. Maps were generated using the purr 
package (Henry and Wickham 2017) and plotted using 
RColorBrewer (Neuwirth and Neuwirth 2011). All plots 
visualizing partial effects and metrics were generated using 
ggplot2 (Wickham 2011).
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Cross-species models

!e final step in our modeling process involved examining 
how shifts in occurrence and conditional abundance follow-
ing extreme weather events across species were associated with 
various avian life-history traits. For all species, information 
on diet type and preferred habitat (categorical variables), and 
body mass (continuous) was collected from Barnagaud et al. 
(2017). We grouped several categories of each predictor to 
increase power. Diet type categories included carnivore, 
invertebrate, omnivore and herbivore (a combination of 
‘fruit’, ‘nectar’, ‘vegetation’ and ‘seed’ in the original dataset). 
Habitat categories included water (‘coastal’, ‘open_water’), 
open (‘semi-open’, ‘rock’, ‘arid’), generalist (‘urban’, ‘devel-
oped’), forest and riparian wetlands. Further, we calculated 
species-level landcover diversity index (LDI), a measure of 
habitat generalism, based on mean partial effects of all land-
cover covariates (following Zuckerberg et al. 2016). Finally, 
we calculated species thermal index (STI), a measure of the 
long-term mean temperature in a species range that indicates 
whether it is likely to be adapted to cool or warm weather, by 
taking the mean winter (Dec–Feb) daily minimum tempera-
ture across all points where a species was observed on a check-
list between 2004 and 2018 (following Princé and Zuckerberg 
2015). High collinearity between functional traits and phy-
logeny precluded us from testing for phylogenetic effects in 
occurrence and conditional abundance patterns.

We fit multivariate linear models (LMs) including all of 
the above traits as predictor variables to examine how traits 

predict species’ responses following each extreme weather 
event. Models were fit separately for occurrence and con-
ditional abundance responses. Following each LM, we 
employed a model selection approach in which we fit models 
with all possible combinations of predictor variables (via the 
MuMIn package; Barton 2014) to identify important pre-
dictors. LMs with all combinations of trait predictors were 
fit and predictors were scored by the proportion of model 
weight accounted for by models in which they were present. 
We evaluated whether the shifts in occurrence or abundance 
at 5, 10 or 20 days following each event were phylogeneti-
cally correlated by calculating Blomberg’s K (Blomberg et al. 
2003) using an avian phylogeny (Jetz et al. 2012) and com-
paring it to a null distribution of K after randomizing species’ 
responses 1000 times (‘picante’ package; Kembel et al. 2010).

Results and discussion

Overall, bird species demonstrated highly distinct responses 
to the polar vortex and heat wave. Across all species, median 
conditional abundance typically decreased five and 10 days 
after the polar vortex relative to the five-day period before 
the polar vortex (−6.3% ± 1.7 SE and −5.5% ± 1.4, respec-
tively, suggesting disaggregation), but returned to previous 
levels after 20 days (1.8% ± 2.1; Fig. 2b). Meanwhile, occur-
rence rates on average remained relatively stable following 
the polar vortex (5d: −1.6% ± 1.5; 10d: −0.8% ± 1.1; 
Fig. 2a). Following the heat wave, both median occurrence 

Figure 2. Responses to extreme weather events across avian species. Density plots show percent changes in occurrence (a, c) and conditional 
abundance (b, d) at various time points following the 2014 polar vortex (a, b) and 2015 winter heat wave (c, d). Percent changes given are 
the change following a five day period before each event subtracted from the change over an identical period during other winters. Colors 
represent time points following each event: 5 days (red), 10 days (green) or 20 days (blue). On average, species decreased their conditional 
abundance but not occurrence following the polar vortex, and increased both their occurrence and conditional abundance following the 
heat wave.
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and conditional abundance probabilities increased at all 
time points for most species (occurrence: 5.2% ± 1.4, 6.6% 
± 2.2 and 5.4% ± 2.0 at days 5, 10 and 20, respectively; 
conditional abundance: 5.3% ± 1.5, 6.4% ± 2.3 and 5.7% 
± 2.4; Fig. 2c-d). Occurrence and conditional abundance 
changes remained synchronized five days after the polar 
vortex (R2 = 0.66; β = 0.72 ± 0.09), although these rela-
tionships decoupled after 10 and 20 days (R2 = 0.17, 0.06; 
β = 0.30 ± 0.12, 0.13 ± 0.08, respectively) due to a much 
stronger effect of the polar vortex on bird conditional abun-
dance than occurrence. However, the heat wave synchro-
nized changes in occurrence and conditional abundance 
(R2 = 0.84, 0.89, 0.80; β = 0.88 ± 0.06, 0.91 ± 0.05, 0.74 
± 0.06; Supporting information). At the species level, there 
was a negative relationship between the immediate response 
to the two winter weather events; bird species that increased 
in occurrence or conditional abundance following the polar 
vortex were most likely to decline in occurrence or condi-
tional abundance following the heat wave, and vice versa (5d 
change in occurrence: β = −0.70 ± 0.12; conditional abun-
dance: β = −0.46 ± 0.13; Fig. 3). However, we observed the 
reversed pattern 20 days after the weather events – species 
shifted their occurrence probabilities, though not median 
conditional abundance, at similar rates to both weather 
events (5d change in occurrence: β = 0.61 ± 0.37; condi-
tional abundance: β = 0.18 ± 0.55; Fig. 3). !e magnitude 
of cross-species shifts in conditional abundance (and for 
the heat wave, occurrence) exceeded analogous shifts over 
equivalent time periods during other years, when extreme 
weather did not occur (Supporting information), suggesting 
that the observed responses fall outside of the typical inter-
annual cross-species variation in occurrence and conditional 
abundance.

At the species level, responses to extreme weather events 
hinged on functional traits, notably distribution, body 
size and habitat preference (Supporting information). As 
expected, warm-adapted species were more likely than cold-
adapted species to decline in occurrence (Relative Importance 
score > 0.99; β = −3.21 ± 1.1; henceforth, only top model 
coefficients are reported; Fig. 4b, Supporting information 
for model adjusted-R2 values) and conditional abundance 
(RI = 0.96; β = −2.57 ± 1.55; Supporting information) five 
days after the polar vortex, though this effect disappeared 
later. Five days after the polar vortex, cold-adapted species 
demonstrated only minor shifts in occurrence and condi-
tional abundance by an average of +1.2% and −1.9%, respec-
tively, whereas warm-adapted species declined by −4.6% and 
−10.7%. Following the winter heat wave, warm-adapted 
birds experienced average increases in occurrence of 9.2% 
(5d RI = 1; β = 2.54 ± 0.77; Fig. 4e, Supporting informa-
tion) and increased in conditional abundance by 8.5% (5d 
RI = 0.99; β = 1.72 ± 0.88; Supporting information) in con-
trast with cold-adapted species, which increased by only 1.6% 
and 2.9%, respectively (Fig. 4d–f ). Soon after the polar vor-
tex, smaller-bodied species (those with below-average body 
size) decreased in occurrence and conditional abundance 
by an average of −6.8% and −10.0%, respectively, though 
body size was only an important predictor driving occur-
rence changes (occurrence: 5d RI > 0.99; β = 1.25 ± 1.24; 
Fig. 5a, Supporting information; conditional abundance: 5d 
RI = 0.22; Supporting information); however, these effects 
diminished after twenty days. Meanwhile, larger-bodied spe-
cies increased in occurrence by 3.6% and decreased in con-
ditional abundance −3.0% following the polar vortex. After 
the heat wave, smaller-bodied species increased in occur-
rence by 8.4% and in conditional abundance 8.3%, while 

Figure 3. Species demonstrate opposite responses immediately following a polar vortex (PV) and winter heat wave (WHW). !e figure 
demonstrates the relationship between percent changes in occurrence (a) and conditional abundance (b) at two time points following a 
polar vortex (x-axis) and winter heat wave (y-axis) at the species level (points represent individual species). Percent changes given are the 
change following a five day period before each event subtracted from the change over an identical period during other winters. Colored 
points and 95% confidence intervals represent time points following each event: 5 days (red) or 20 days (blue). Immediately (5 days) fol-
lowing both extreme events, bird species demonstrated opposite changes in occurrence and conditional abundance, but at longer time lags 
(20 days), birds responded similarly to the polar vortex and heat wave.
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larger-bodied species increased in each by only 1.6% (Fig. 4d, 
Supporting information). Consequently, warm-adapted and 
smaller-bodied species appeared to be more sensitive to both 
extreme events.

Five days after the polar vortex, only waterbirds (e.g. com-
mon goldeneye, Bucephala clangula and common merganser, 
Mergus merganser) on average increased in occurrence 7.1% 
despite decreasing in conditional abundance by −3.4%, 
while other species decreased by −4.1% and −7.2%, respec-
tively, though habitat association was unimportant in model 
selection (Fig. 4c; Supporting information). However, fol-
lowing the heat wave, waterbirds initially declined in occur-
rence by −4.2% (5d RI = 1) and conditional abundance by 
−5.5% (5d RI = 1) while all other habitat groups increased 
by 8.5% and 8.9%, respectively (Fig. 4e; Supporting infor-
mation). We did not observe that other functional traits 
greatly influenced species responses to extreme weather 
events (Supporting information). Maps predicted changes in 

occurrence probability and median conditional abundance of 
up to between −20% and 20%, depending on species and 
location (Fig. 5). Blomberg’s K was never significantly dif-
ferent from what would be expected by chance (all p-values 
> 0.15; Supporting information), suggesting that species’ 
responses were not phylogenetically correlated.

Our results suggest that on average, birds exhibited oppo-
site responses soon (5–10 days) after the 2014 polar vortex 
and 2015 winter heat wave. Following the polar vortex, we 
observed consistent decreases in conditional abundance, but 
not occurrence, across most species. A temporary decline in 
conditional abundance, but not occurrence, after the polar 
vortex suggests that birds may be spreading out to seek out 
refugia or dwindling resources (Borregaard and Rahbek 
2010) or temporarily left the affected area (e.g. moved 
south), and were thus often observed in lower numbers by 
eBird users. !ese responses were generally short-lived; thus, 
the responses likely reflected behavioral changes and were 

Figure 4. Functional trait groups demonstrate opposite responses to a polar vortex and winter heat wave. Following the 2014 polar vortex, 
species with smaller log-transformed body mass (a), greater species thermal index (STI; b) or species other than waterbirds (c; response at 
5d shown) were most likely to decrease in occurrence. Conversely, following the 2015 winter heat wave, species with larger body mass (d), 
lower STI (e) or waterbirds (f ) were most likely to decrease in occurrence. Percent changes given are the change following a five day period 
before each event subtracted from the change over an identical period during other winters. Colored 95% confidence intervals (a–b, d–e) 
represent time points following each event: 5 days (red), 10 days (green) or 20 days (blue). Habitat categories are as follows: O = open; 
W = water; G = generalist; F = forest.
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unlikely to carry long-term consequences for most species. 
In contrast, birds responded to the heat wave by increasing 
in both occurrence and conditional abundance for at least 
30 days, suggesting birds may have increased their behavioral 
activity (e.g. time spent feeding) and were therefore more 
noticeable to contributors submitting checklists. Some spe-
cies may have even shifted their ranges northwards, either 
temporarily or through the winter, appearing on more check-
lists because they became more common in the area affected 
by the heat wave. Recent evidence suggests that, as a result of 
a warming winter climate, resident birds (including most of 
those tested) are responding more strongly than other bird 
groups by shifting northward and colonizing new areas along 
northern leading edge of their breeding ranges (La Sorte and 
!ompson 2007, Rushing et al. 2020).

Although we did not directly test for changes in the total 
number of individuals after extreme weather events, overall 
increases in both occurrence and population density (mea-
sured via conditional abundance) following the heat wave 
suggest that the number of individuals in the affected area 
likely increased. Likewise, cross-species trends demonstrat-
ing stable occurrence rates despite decreases in population 
density following the polar vortex imply a possible decrease 
in the number of individuals in the affected area. However, 
given that conditional abundance for most species recovered 
to previous levels about 20 days following the polar vor-
tex, our results do not suggest that these extreme weather 
events strongly impacted the survival of most species tested. 
Interestingly, the lack of response in occurrence rates for most 
species following the polar vortex likely caused a decoupling 
in abundance–occupancy relationships for many species 

following this event, but not following the heat wave. A posi-
tive relationship between occurrence and abundance is perva-
sive throughout macroecology with important implications 
in conservation biology (Gaston 1996, Gaston et al. 2000). 
In this case, a breakdown in abundance–occupancy relation-
ships across species due to an extreme weather event suggests 
that varying sensitivity of species to climate variability may 
be an important, albeit understudied, mechanism underlying 
this macroecological pattern.

Much of the species-level variation in responses to each 
extreme weather event was associated with several key func-
tional traits. For example, smaller-bodied birds strongly 
reduced their occurrence following the polar vortex and 
greatly increased their occurrence and population den-
sity after the heat wave, while larger-bodied birds exhib-
ited more muted shifts in response to each event, possibly 
because they have greater thermal inertia (Huey et al. 2012, 
Albright et al. 2017) and may thus be less impacted by 
short-term temperature changes. Further, we observed that 
warm-adapted species were most likely to decrease in popu-
lation density following a polar vortex and most likely to 
increase in occurrence and population density after a heat 
wave, while cold-adapted species were much more resilient 
to each event. Finally, although we predicted birds occupy-
ing open areas to be more sensitive to extreme weather, we 
found that waterbirds reacted differently than other birds. 
Waterbirds occurred more often following the polar vortex 
and less often after the heat wave, while other species dem-
onstrated opposite shifts. Because most of the larger-bodied 
species we analyzed were also waterbirds, it was not possible 
to separate the influence of functional traits from each other. 

Figure 5. Responses of mourning doves Zenaida macroura to the 2014 polar vortex and 2015 winter heat wave. Percent changes in occur-
rence (a, b) and conditional abundance (c, d) following the 2014 polar vortex (a, c) and winter heat wave (b, d) are shown for mourning 
doves. Partial dependence plots show partial effect means and 95% CIs (across 25 model runs) in occurrence or conditional abundance 
before and after each weather event (day 0); red points represent predictions generated before and after the weather event, and black points 
represent predictions for all other non-event years between 2004 and 2018. Maps display percent changes five days following the weather 
event (bidirectional arrows in partial dependence plots) relative to the five day mean beforehand, adjusted to account for typical trends over 
these dates. Colored regions of maps represent portions of the species range that experienced less than −10°C shifts for at least four days 
during the weather event. Gray areas show the remainder of the species range. Bluer colors signify percent increases, redder colors are 
decreases and beige areas represent no change.
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However, at minimum we can conclude that large-bodied 
waterbirds (mostly Anseriformes) appeared to be far less sen-
sitive to a polar vortex than smaller-bodied passerines, but 
may also experience smaller increases in population density 
and occurrence following a winter heat wave.

Our results shed light on how species respond to two 
types of extreme winter weather events that are increasing in 
frequency and intensity with climate change, a polar vortex 
and winter heat wave. However, it remains unclear how spe-
cies respond to extreme weather events during other periods 
of the year. For example, birds may be highly vulnerable to 
extreme weather during the breeding season as they have 
high energetic requirements and cannot easily relocate when 
they are caring for young (Conradie et al. 2019, Cohen et al. 
2020). Further, if juveniles have especially high susceptibil-
ity to extreme weather, breeding season weather events could 
carry long-term demographic consequences for populations 
(Bourne et al. 2020). Extreme weather occurring on the shoul-
der seasons, spring and autumn, may leave migrants exposed 
to conditions they cannot tolerate. For example, a freeze or 
snowfall occurring early in autumn or late in spring could 
leave neotropical migrants exposed to cold weather that they 
rarely experience under typical circumstances (Casson et al. 
2019), and may alter insect phenology (Sevenello et al. 2020) 
or damage plants, fruit and seeds (Kunkel et al. 2013), possi-
bly leaving these species without food sources needed to fuel 
continental-scale migrations or hampering breeding success 
(Krause et al. 2016). !us, extreme weather during shoul-
der seasons could result in greater mortality than mid-winter 
extreme weather events, which exclusively affect winter resi-
dents that are likely to be tolerant of a broader range of ther-
mal conditions than neotropical migrants (Somveille et al. 
2015, 2019). Alternatively, mid-winter extreme weather 
events involving precipitation, such as rain-on-snow events 
in which rapid freezing and unfreezing causes very high 
ice accumulation, may result in mortality because they can 
destroy habitat, make microclimate (e.g. snowpack) inac-
cessible or block food sources (Putkonen and Roe 2003, 
Casson et al. 2019). Further work is needed to determine 
how species respond to additional forms of extreme weather 
throughout the annual cycle.

Climate sensitivity is a key facet of assessing species vul-
nerability to climate change and reflects whether certain spe-
cies are more susceptible to the effects of climate variability 
due to differences in physiology, habitat specialization or 
other life history characteristics (Moritz and Agudo 2013). 
By measuring the responses of temperate-wintering birds 
to short-term climate variability over a broad geographic 
scale, we offer a robust and novel estimation of sensitivity 
that could be incorporated in future assessments of climate 
change vulnerability (Rapacciuolo et al. 2012). Integrating 
citizen science and machine learning provided a framework 
for calculating partial dependencies, mapping species-level 
responses to extreme weather across a broad geographic 
region and identifying which species are more vulnerable. 
Failing to account for the multi-scale structure of these 
species-level responses may produce unreliable estimates of 

which species are most likely to be impacted by future cli-
mate change (Oedekoven et al. 2017).

Here, we took advantage of a natural experiment to 
quantify how 41 common North American bird spe-
cies shifted in occurrence and conditional abundance in 
response to two extreme weather events, an intrusion of a 
polar vortex and a winter heat wave, using high-resolution 
citizen science data continuously recorded before and after 
each event. Our results suggest that extreme weather events, 
despite lasting only several days, are likely to greatly impact 
the behavior and distribution of birds but unlikely to do so 
in a consistent manner. Future work is needed to determine 
if long-term range shifts, one of the hallmarks of ecologi-
cal responses to modern climate change, can result from a 
single extreme weather event. With extreme winter weather 
becoming more common, it will be critical for researchers 
and managers to better understand how birds respond to 
extreme weather events and to determine which species are 
most likely to be vulnerable.
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