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ARTICLE INFO ABSTRACT

Keywords: The seasonal dynamics of snow cover strongly affect ecosystem processes and winter habitat, making them an
Cit.izen science important driver of terrestrial biodiversity patterns. Snow cover data from the Moderate Resolution Imaging
eBird Spectroradiometer (MODIS) Aqua and Terra satellites can capture these dynamics over large spatiotemporal
Frozen ground . oo . e c . o

MODIS scales, allowing for the development of indices with specific application in ecological research and predicting

North America biodiversity. Here, our primary objective was to derive winter habitat indices (WHIs) from MODIS that quantify
Remote sensing snow season length, snow cover variability, and the prevalence of frozen ground without snow as a proxy for
Snow subnivium conditions. We calculated the WHIs for the full snow year (Aug-Jul) and winter months (Dec-Feb)
across the contiguous US from 2003/04 to 2017/18 and validated them with ground-based data from 797
meteorological stations. To demonstrate the potential of the WHIs for biodiversity assessments, we modeled their
relationships with winter bird species richness derived from eBird observations. The WHIs had clear spatial
patterns reflecting both altitudinal and latitudinal gradients in snow cover. Snow season length was generally
longer at higher latitudes and elevations, while snow cover variability and frozen ground without snow were
highest across low elevations of the mid latitudes. Variability in the WHIs was largely driven by elevation in the
West and by latitude in the East. Snow season length and frozen ground without snow were most accurately
mapped, and had correlations with station data across all years of 0.91 and 0.85, respectively. Snow cover
variability was accurately mapped for winter (r = 0.79), but not for the full snow year (r = —0.21). The model
containing all three WHIs used to predict winter bird species richness patterns across the contiguous US was by
far the best, demonstrating the individual value of each index. Regions with longer snow seasons generally
supported fewer species. Species richness increased steadily up to moderate levels of snow cover variability and
frozen ground without snow, after which it steeply declined. Our results show that the MODIS WHIs accurately
characterized unique gradients of snow cover dynamics and provided important information on winter habitat
conditions for birds, highlighting their potential for ecological research and conservation planning.

Species richness

1. Introduction

Snow cover is an important component of winter habitat across the
mid to high latitudes. The seasonal dynamics of snow influence the
physical and chemical processes that govern ecosystem structure and
function. For example, snow cover dynamics regulate climatic condi-
tions in the atmosphere and soil, as well as the stability of the subnivium
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(i.e., the area between the snowpack and the ground). The low thermal
conductivity of snow also provides insulation against harmful freezing
temperatures for soil organisms, plants, and animals (Edwards et al.,
2007; Kreyling, 2010; Pauli et al., 2013). In temperate and polar eco-
systems characteristics of snow cover such as duration, depth, and melt
strongly affect water and nutrient cycling, and consequently influence
vegetation composition patterns (Brooks et al., 2011; Jones, 1999). For
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many cold-adapted animals, survival and fitness are directly linked to
characteristics of the snowpack, which can increase or decrease ener-
getic costs associated with thermoregulation, locomotion, predator
avoidance, and foraging (Williams et al., 2015; Zuckerberg and Pauli,
2018). Snow cover dynamics are thus a major driver of terrestrial
biodiversity patterns through their effects on primary productivity,
winter habitat conditions, and species interactions (Niittynen et al.,
2018; Penczykowski et al., 2017; Spehn et al., 2002).

Climate change is rapidly altering seasonal snow cover dynamics,
particularly in the Northern Hemisphere. Warming temperatures during
winter and early spring are causing shifts in snow phenology, especially
earlier melt (Chen et al., 2015; Najafi et al., 2016; Xia et al., 2014),
decreasing snow cover extent and duration (Brown and Robinson, 2011;
Choi et al., 2010; Pulliainen et al., 2020), and decreasing snow depth
(Dyer and Mote, 2006; Kunkel et al., 2016). Concomitant with snow
cover decreases, the frequency of frozen ground without snow is
increasing (Zhang et al., 2011; Zhu et al., 2019), meaning both the
availability and the quality of the subnivium is in decline (Pauli et al.,
2013; Zuckerberg and Pauli, 2018). Understanding how changes in
seasonal snow dynamics will affect terrestrial biodiversity patterns re-
quires data that accurately characterize these dynamics at varying
temporal scales and across large areas.

Snow cover data products derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellites are ideal for quantifying
large-scale snow cover dynamics. These products are available globally
(Hall et al., 2002; modis.gsfc.nasa.gov/data/dataprod/mod10.php),
continue to undergo extensive validation (e.g., Coll and Li, 2018), and
have been used to map dynamics like snow cover duration and extent
around the world (e.g., Notarnicola, 2020; Salomonson and Appel,
2004; Zhu et al., 2017). While meteorological stations offer longer and
more detailed snow records than MODIS, their discrete locations and
uneven distribution means they cannot sufficiently characterize spatial
variability. Gridded datasets from data assimilation systems that incor-
porate data from satellites, stations, and climate models, e.g., SNODAS
(Barrett, 2003), provide modeled estimates of snow cover and variables
not directly quantifiable from MODIS (e.g., depth). However, these es-
timates come with higher uncertainties than observations from imagery,
especially in complex terrains (Sirén et al., 2018), and have coarse
spatial resolutions (> 1 km). There are challenges associated with
MODIS (and other optical-multispectral satellite) observations as well
such as data gaps caused by clouds - especially problematic in winter
months and around snowfall events when cloud cover is high — and polar
darkness, as well as spectral similarities between snow, ice, water, and
highly reflective clouds (Dumont and Gascoin, 2016; Stillinger et al.,
2019). Yet, one of the biggest limitations of the use of MODIS snow data
in biodiversity assessments and conservation planning is a lack of
indices that capture ecologically important aspects of the snow season at
spatiotemporal resolutions suitable for management decisions (Boelman
et al., 2019).

Over the past decade, substantial progress has been made in the use
of MODIS to characterize aspects of the snow season at different
spatiotemporal scales. The most commonly derived metrics include
snow cover duration, spatial extent, and phenology (e.g., first and last
snow dates), which tend to be highly accurate even when mapped over
broad spatial extents and complex topography (Dietz et al., 2012).
However, because of their importance in watershed hydrology, these
characteristics have been quantified almost exclusively in mountainous
regions (e.g., Dariane et al., 2017; Malmros et al., 2018; Notarnicola,
2020). Indices that describe subnivium conditions, which affect a wide
range of plant and animal species (Zuckerberg and Pauli, 2018), have
been developed globally using a combination of MODIS snow data and
frozen ground status derived from microwave sensors (NASA MEa-
SUREs; Zhu et al., 2017). Microwave satellite data have the advantage of
being unaffected by clouds, but the frozen ground products are currently
produced at spatial resolutions that are too coarse for many conservation
applications (6 km pixels for the Northern Hemisphere and 25 km
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globally). Additionally, assuming the coarse pixels of microwave satel-
lite data have homogenous freeze/thaw status when fusing with MODIS
snow cover data might introduce error in the resulting indices (Zhu
et al., 2017). Thus, while snow cover dynamics have been mapped with
MODIS in the past, there is a need for indices designed specifically for
conservation assessments and biodiversity modeling.

Accordingly, we developed indices that capture three characteristics
of the snow season that are both important for biodiversity and quan-
tifiable from MODIS at appropriate spatial scales: season length, cover
variability, and the prevalence of frozen ground without snow (i.e., lack
of subnivium). Snow season length is similar to cover duration,
capturing both snow cover extent (total area) and phenology (first/last
snow dates). Within-year variability in snow cover, or the frequency
with which an area switches from snow-covered to not and vice versa,
quantifies freeze-thaw events and identifies ecologically critical transi-
tion zones from snow- to rain-dominated systems. This metric has many
important applications, with some examples being monitoring potential
winter freeze-thaw damage in forests (Charrier et al., 2017); informing
species range boundary mapping (La Sorte and Jetz, 2012); and iden-
tifying areas of phenotypic mismatch (e.g., for species that undergo
seasonal colour molt to winter white as camouflage against snow (Mills
etal., 2018). We are not aware of prior remote sensing studies on within-
season (or intra-annual) snow cover variability, but there are examples
of inter-annual variations in snow cover duration and extent (e.g., Li
et al., 2017; Malmros et al., 2018). Finally, frozen ground without snow
(sensu Zhu et al., 2017) approximates the frequency with which or-
ganisms lack thermal refugia (i.e., the subnivium) and thus face func-
tionally colder climates (Fitzpatrick et al., 2019; Zhu et al., 2019).

Here, our primary goal was to develop a set of winter habitat indices
(WHIs) from MODIS (500 m) that quantify snow season length, cover
variability, and frozen ground without snow and assess their accuracy
using meteorological station data. To highlight the potential of the WHIs
for biodiversity assessments, we examined relationships between each
WHI and winter bird diversity. Our specific research objectives were to:

1) calculate the WHIs for the full snow year (Aug — Jul) and winter
months only (Dec - Feb), from 2003/04 to 2017/18, and for each
year, across the contiguous US;

2) validate the MODIS WHIs with WHIs derived from meteorological
station data;

3) evaluate errors in the WHIs geographically and by sensor (i.e., Terra
vs. Aqua vs. Terra-Aqua combined);

4) examine spatial patterns in the MODIS WHIs to identify major gra-
dients of snow cover dynamics and regions with distinct winter
climate conditions; and

5) quantify relationships between the MODIS WHIs and winter bird
species richness.

We predicted that areas with longer snow seasons would support
fewer bird species compared to those with shorter ones because longer
snow seasons have harsher winter conditions and lower food availability
for most species (Somveille et al., 2015; Somveille et al., 2019).
Conversely, we predicted that regions with higher snow cover vari-
ability and more frequent frozen ground without snow would support
more bird species taking advantage of the transition zone from rain- to
snow-dominated ecosystems, where temperatures are warmer and food
availability is generally higher (Somveille et al., 2019).

2. Methods

2.1. Preprocessing of the MODIS Normalized Difference Snow Index
(NDSI) data

We analyzed daily MODIS NDSI data (Collection 6) from Terra
(MOD10A1) and Aqua (MYD10A1) (Riggs et al., 2015) to calculate the
WHIs in Google Earth Engine (Gorelick et al., 2017). MODIS NDSI data
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are highly accurate across all land cover types, but errors are greater in
dense forests where snow cover on the ground is obscured, over large
bodies of water, and at high elevations (Coll and Li, 2018; Zhu et al.,
2017). Collection 6 products have improved accuracies over those from
Collection 5 (Da Ronco et al., 2020; Masson et al., 2018; Zhang et al.,
2019). We only analyzed pixels with the best snow cover retrievals (QA
bit = 0) and applied an NDSI threshold >10 for snow presence, which
characterize snow cover across large spatial scales and complex topog-
raphies more accurately than the commonly-used threshold of >40 (Coll
and Li, 2018; Zhang et al., 2019). We initially applied a water mask
derived from MODIS (MCD12Q1) to remove common misclassification
errors between snow and water, yet noticeable errors persisted around
inland lakes, so we applied a more aggressive Landsat-based mask from
the European Commission’s Joint Research Centre (Pekel et al., 2016).
This step effectively removed water pixels misclassified as snow, but
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2.2. The MODIS WHIs

We calculated the three WHIs — snow season length, frozen ground
without snow, and snow cover variability — for every year from 2003/04
to 2017/18, both for the full snow year (Aug - Jul) and for winter
months only (Dec — Feb), except for snow season length, which is only
meaningful for the full snow year. We included the full snow year cal-
culations to characterize areas of the contiguous US that experience
winter conditions outside the core winter months, namely high eleva-
tions. Because first and last snow detections are less affected by data
gaps than the other WHIs, we derived snow season length from the daily
data. We did this for both Terra and Terra-Aqua combined data to
quantify the degree to which including Aqua increased coverages, but
also introduced errors. Our calculation of snow season length used the
following formula (note DOY 1 = Aug. 1):

Snow season length (days) = DOY of last snow detection-DOY of first snow detection

unfortunately also resulted in data losses in areas with abundant per-
manent and seasonal water (e.g., northern portions of the Great Lake
states and Dakotas). We reordered the day of year (DOY) from August 1
(DOY 1) to July 31 (DOY 365) to analyze the full snow year and calculate
snow season length. Finally, to focus our analyses on areas with bio-
logically relevant snow seasons, we masked any pixel that had a median
snow season length shorter than two weeks over the 14-year study
period.

To minimize data gaps, we combined Terra and Aqua data using the
daily observation with the highest NDSI value. We tested both mean and
max value compositing of the daily observations and found that the
results were very similar. We suggest this was because 1) the morning
(Terra) and afternoon (Aqua) observations are taken on the same day,
and 2) we had already applied a > 10 NDSI threshold for snow presence
to both datasets (as is done in the MODIS 8-day composite products).
Thus, in the majority of cases, this step was simply retrieving whichever
sensor had a cloud-free observation. Snow season length was derived
from the Terra and Terra-Aqua combined data separately (see section
2.2). We did this because Aqua products usually have higher error rates
due to a sensor malfunction necessitating the use of a different band in
the NDSI calculation (Coll and Li, 2018; Zhang et al., 2019). For snow
cover variability and frozen ground without snow, which require near-
continuous observations of snow presence and absence, we created 8-
day composites of snow cover (akin to a temporal filter) from the
daily combined Terra-Aqua dataset. We used the same approach and
compositing periods that are used to create the MODIS 8-day Maximum
Snow Extent band in the MOD/MYD10A2 product (currently unavai-
lable in Google Earth Engine). A pixel was considered snow-covered if
any day in the 8-day period had snow. We chose an 8-day window, even
though a longer window would have reduced data gaps even more (Coll
and Li, 2018), to capture more transitional observations — i.e., when a
pixel switches from snow-covered to not and vice versa.

Finally, because commission errors in the snow data are more
prevalent during warmer months (namely July and August, Coll and Li,
2018), we constrained the dates when snow could theoretically occur.
We did this by examining the historical first and last snow dates recor-
ded in our ground-based validation dataset at different elevations (see
section 2.3). Snow occurred year-round at high elevations (> 915 m or
3000 ft) so we did not constrain these areas by date. Mid elevations
(458-914 m or 1500-2999 ft) were constrained to September 1st-July
31st and low elevations (< 457 m or 1499 ft) to October 1st-May 31st.
We used the USGS’s GMTED2010 dataset (Danielson and Gesch, 2011)
to delineate elevation classes.

For the frozen ground without snow cover WHI (sensu Zhu et al.,
2019), we combined daily minimum temperature from Daymet (1 km;
Thornton et al., 2014) and the 8-day snow cover time-series so that each
day’s temperature estimate lined up with its associated 8-day composite
snow cover estimate. We considered the ground as frozen when the daily
minimum temperature was below —4 °C (~25 °F, Riseborough (2001)).
Because we were interested in quantifying the proportion of the ‘frozen
season’ when there is no snow, we only analyzed ‘frozen’ pixels (with or
without snow) in our calculation:

F days without ¢
Frozen ground without snow (%) = ( 2. Frozen days withou 9now> *100

>~ Total frozen days

Our calculation derives a proportion rather than the absolute number
of days of frozen ground without snow as in Zhu et al., 2019. We chose to
calculate the proportion to put the absolute numbers into better
ecological context. For example, five frozen days without snow in lower
latitudes with short snow seasons is quite different from the same
number of days in higher latitudes with longer snow seasons.

To derive snow cover variability from the 8-day composite snow
presence/absence data, we first calculated the absolute backward-
difference between each observation in the time-series (i.e., |t3gs —
t3e4l...|t2 — t1]) to detect ‘change events’ (new snow or snowmelt = 1)
and no change (= 0). Change and no change events separated by a
missing observation were not included in the calculation. We then
calculated snow cover variability as the total number of change events
divided by the total number of valid observations:

> Change events 100
>~ Change&no change events

Snow cover variability (%) = (

Finally, we examined the relatedness of the WHIs using Pearson’s
correlations. We then created a multiband composite image with the
final WHIs used in our winter bird biodiversity analyses (see section 2.4)
to identify regions/areas with unique snow cover dynamics across the
contiguous US.

2.3. Accuracy assessment of the WHIs

To validate the accuracy of the MODIS WHIs, we obtained ground-
based snow cover data from Global Historical Climatology Network
(GHCN; Menne et al., 2012) and SNOwpack TELemetry Network
(SNOTEL; Schaefer and Paetzold, 2001) meteorological stations and
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Fig. 1. The spatial distribution of 797 meteorological stations from the Global Historical Climatology Network (GHCN) and SNOwpack TELemetry (SNOTEL)
Network used to validate the MODIS WHISs, across elevation classes. The final station list included stations that a) had a continuous snow data record from 2003/
04-2017/18, b) had MODIS WHI observations for each year, and c¢) had a median snow season length of at least two weeks per year across the 14-year period.

calculated the WHIs from these data. We only included stations with
continuous data from 2003/04 to 2017/18 (i.e., 797 stations, Fig. 1).
However, our validation dataset was biased toward high elevations
(~60% of stations) because SNOTEL is designed for hydrological
monitoring in mountainous areas. We used a > 3 cm snow depth (Snow
Water Equivalent; SWE) threshold for snow presence, which is the
lowest presence value reported in the SNOTEL data.

We evaluated the accuracy of each MODIS-based WHI with scatter-
plots and Pearson’s correlations with the station-based WHIs for both
the full snow year and winter months. Here, it is important to note that
the station-based WHIs pertain to a specific location on the ground,
whereas the MODIS WHIs are for a 500 m pixel. Correlations were
calculated for the means across the entire study period (2003/04-2017/
18) and for each individual year, as well as for each elevation class.
Finally, as a sensitivity analysis for the frozen ground without snow and
snow cover variability WHIs, we quantified the information lost when
downgrading daily station snow cover data to 8-day snow composites.

2.4. Relationships between the WHIs and winter bird diversity

We developed models to predict winter bird diversity based on three
WHIs: snow season length (Terra) and the core winter frozen ground
without snow and snow cover variability indices. Because we were
interested in evaluating how winter habitat conditions captured by the
WHIs relate to broad-scale winter biodiversity patterns, we modeled
total bird species richness (highest number of species observed) during
the core winter months (Dec — Feb) as our response variable (hereafter
‘winter bird species richness’). We calculated winter bird species rich-
ness from eBird data (Sullivan et al., 2009), which were available from
the winter of 2003 on throughout the US (Fig. S1). Raw eBird data

consist of species counts (‘checklists’) collected in the field by citizen
scientists. The raw data is processed with automated checks on data
quality based on the date a given species was observed and the ob-
server’s geographic location, then vetted for accuracy by a regional
expert (Sullivan et al., 2014). However, eBird data are unevenly
distributed in space and time, with higher survey effort in and around
areas of human activity and in recent years (the number of checklists has
been increasing geometrically concomitant with smart phone and mo-
bile app usage) (Cohen et al., 2020). To address these issues, we fol-
lowed the best practices for maximizing eBird data quality detailed in
Johnston et al., 2019 and Cohen et al., 2020. We only analyzed “com-
plete checklists” where the observer recorded every species detected and
identified, which allowed us to infer absences of undetected species and
thus produce more accurate measures of species richness. To account for
imprecise checklist locations, we summarized the mean WHI values
within 2.5 km of a given checklist location. Finally, to account for the
increase in the number of checklists over time and mitigate the uneven
spatial distribution of eBird data, we created a uniform grid of 25 km
cells across the contiguous US and extracted the checklist, along with its
associated WHI values, with the highest winter bird species richness
across all years (2003/04-2017/18) for each grid cell. We excluded
areas that did not experience an appreciable snow season (e.g., the
southernmost states) by only sampling from grid cells that had valid data
for all three WHISs, resulting in a total of 7844 checklists (Fig. S1).

We evaluated relationships between winter bird species richness and
the WHIs using generalized additive models (GAMs), which account for
nonlinear relationships. To control for differences in survey effort across
time and space detailed above, we also included the number of check-
lists within each grid cell as a covariate in our models (per Johnston
et al., 2019). We assumed the maximum observed species richness in
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each grid cell would follow a negative binomial distribution with a log-
link mean function that varied as additive combinations of smooth
functions of the three WHIs and the number of checklists. To avoid
overfitting the GAM, we restricted the flexibility of each smooth to have
5 knots (Wood, 2017). We constructed models for all combinations of
the covariates and chose the best model based on the sample-size
adjusted Akaike’s Information Criterion (AIC;). We used AIC, instead
of the non-adjusted AIC for model selection since their values converge
at large sample sizes, and thus Burnham and Anderson (2002) recom-
mend the use of AIC, as standard practice. Additionally, we assessed
model fit using the total deviance explained. Finally, we used partial
effect plots to quantify and visualize the effect of each individual WHI,
after accounting for the effects of survey effort and the other two WHIs
in the model.

3. Results
3.1. The MODIS WHIs

3.1.1. Snow season length

The snow season length WHI captured prominent altitudinal and
latitudinal gradients throughout the contiguous US (Fig. 2). The longest
snow seasons (~8-11 months) occurred in the high elevations of the
Sierra Nevada, Cascade, and Rocky Mountain ranges in the western US.

SSL (Months)
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Other notable gradients in the West included the short seasons (< 2
months) at lower elevations in the Four Corners (intersection of Arizona,
New Mexico, Colorado, and Utah), Great Basin, and Pacific Northwest
regions, but more moderate lengths (~4-7 months) with increasing
elevation. Spatially, one of the most rapid changes in snow season length
occurred from the border of the Front Range of the Rocky Mountains
(longer) to the Central Plains region (shorter) in eastern Colorado
(Fig. 2a). Most regions east of the Rocky Mountains were dominated by a
distinct latitudinal gradient in snow season length, with very short
seasons (< 1 month) in the southern states, slightly longer seasons (2-3
months) at mid-latitudes from the Central Plains to the Eastern
Seaboard, and moderate length seasons (3-4 months) in the Upper
Midwest and lower elevation areas of New England. The longest snow
seasons in the eastern US occurred in the mountain ranges of New En-
gland (~5-7 months; Fig. 2b), followed by northern parts of the Great
Lakes states and Maine (4-5 months).

The mean snow season length across all years agreed well with the
station data, with estimates from Terra (r = 0.91) outperforming those
from Terra-Aqua combined (r = 0.87) (Fig. 3). Terra snow season length
had a mean difference of —20 days compared to the station data, with
72% of the observations falling within +40 days. The mean differences
for the three elevation classes showed consistent underestimations (low
= —34 days, mid = — 46 days, and high = —10 days) and almost all of
the overestimations occurred at high elevations in the western US

Fig. 2. Mean snow season length (SSL, months) estimated from daily MODIS Terra data from 2003/04-2017/18. The areas highlighted in (A) the Front Range of the
Rocky Mountains and Central Plains and (B) New England show clear altitudinal and latitudinal gradients.
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Fig. 3. The accuracy of mean snow season length (SSL, days) estimates, derived from daily Terra (left) and Terra-Aqua combined (right) data, across the study period
(2003/04-2017/18) based on meteorological stations (N = 797). The bimodal distribution of the points is a reflection of our validation dataset: most stations were
located at high or low elevations (long and short snow seasons, respectively) and few at mid elevations with moderate-length snow seasons. Points are colored by
density from low (purple) to high (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(Fig. S3). Conversely, the Terra-Aqua combined index had a mean dif-
ference of +28 days and over 40% of the observations overestimated
snow season length by >50 days. Again, these overestimations occurred
almost exclusively at high elevations in the West (mean difference with
the station data = +58 days; Fig. S3). Terra snow season lengths had
higher correlations than Terra-Aqua combined at low elevations (r =
0.82 vs. 0.65) and high elevations (r = 0.67 vs. 0.60), while both per-
formed similarly at mid elevations (r = 0.63 vs. 0.64). Given their higher
accuracies, we focused the rest of our analyses on the Terra-based esti-
mates, which also had high annual accuracies ranging from r =
0.70-0.83, with only one year having moderate-level accuracy (r = 0.59
for 2014-2015; Table S1).

3.1.2. Frozen ground without snow

The frozen ground without snow indices for winter and the full snow
year had virtually identical spatial patterns across the contiguous US,
but estimates were higher in winter (Fig. 4). Areas with the highest
frozen ground without snow percentages in the contiguous US occurred
in the Central Plains region immediately east of the Front Range of the
Rocky Mountains, with half or more of all winter observations being
frozen without snow (Fig. 4a, c). Winter frozen ground without snow
was also high in parts of the Colorado Plateau (Arizona and New Mexico)
and the western Great Basin region (immediately east of the Sierra
Nevada Mountains). Both indices had a strong latitudinal gradient east
of the Rocky Mountains, with higher frozen ground without snow in the
middle latitudes decreasing northward. Areas with the lowest frozen
ground without snow percentage were those where frozen ground is
snow-covered throughout much of the winter, including high elevation
mountain ranges and northern parts of the Great Lakes states and New
England, and those where frozen ground occurs less frequently, such as
the low elevations of the Great Basin and areas with a strong lake effect
(e.g., the Lake Champlain valley; Fig. 4b, d).

The mean frozen ground without snow estimates across all years
were highly accurate for both the full snow year (r = 0.85) and winter (r
= 0.83) according to the station data. Both indices generally under-
estimated the number of days of frozen ground without snow, but
overall patterns were similar to the station-based data (Fig. 5). The
winter estimates were often closer to the ‘true’ station-based value than

those for the full season, though, the latter tended to underestimate
frozen ground without snow prevalence in parts of the Midwest and the
Front Range of the Rocky Mountains (Fig. S4). Notably, the winter es-
timates were highly correlated with the station-based full snow year
frozen ground without snow estimates (r = 0.84), even more so than the
full season correlation at low (r = 0.61 vs. 0.60) and mid elevations (r =
0.81 vs. 0.79). The full snow year correlation was only slightly stronger
at high elevations (r = 0.89 vs. 0.88). Finally, both the winter and full
season indices exhibited moderate to high annual accuracies ranging
from r = 0.62-0.81 (Table S1).

3.1.3. Snow cover variability

We present the accuracy assessment results before describing spatial
patterns in snow cover variability, because while the mean snow cover
variability estimates across all years had good agreement with the
station-based data for winter (r = 0.79), they did not for the full snow
year (r = —0.21), making the full snow year maps unreliable. Both
indices tended to overestimate variability by approximately 10-20%
(Fig. 6). However, the full snow year index had much higher over-
estimations at high elevations in the West with low snow cover vari-
ability (0-5%) (Fig. S5). The full snow year data also had more uniform
overestimations across all sites (i.e., with no discernible pattern mir-
roring the station data as in the winter index) (Fig. 6). Interestingly, the
problematic sites featuring low variability were all the high elevation
SNOTEL stations, resulting in the bimodal distribution of points in Fig. 6.
Accordingly, the full snow year index performed very poorly at mid (r =
—0.03) and high elevations (r = 0.01), and somewhat better at low el-
evations (r = 0.18). The exact opposite was true for the winter index,
which performed best at high elevations (r = 0.82), followed by mid (r =
0.45) and low elevations (r = 0.39). The lower correlations for the latter
two were mainly due to overestimations of variability in parts of the
Midwest and the Front Range of the Rocky Mountains (Fig. S5). The
winter index was also well-correlated with the station-based full snow
year variability (r = 0.77). Annual correlations for the winter index were
slightly lower than the correlation for the mean of all years, ranging
from r = 0.47-0.67 (Table S1).

The winter snow cover variability patterns showed the highest values
in the middle latitudes from the Central Plains to the Eastern Seaboard
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Fig. 4. Mean frozen ground without snow (FWOS, %) for the full snow season (top) and winter only (bottom) from 2003/04-2017/18. The right-hand panels
highlight FWOS gradients across the Front Range of the Rocky Mountains and Central Plains (A, C) and New England (B, D). Areas where frozen ground was not
recorded were removed to emphasize those where FWOS equaled zero (i.e., where the ground was always frozen and snow-covered).

(Fig. 7), where a quarter or more of all the observations during winter
were ‘change events’ (i.e., new snow or snowmelt). Winter variability
estimates were lowest (~0-5%) in the Rocky Mountains, the northern
parts of the Great Lake states and Maine, and the mountain ranges of
New England. Again, a distinct latitudinal gradient occurred east of the
Rocky Mountains, with higher winter variability in the middle latitudes
decreasing to the north and south, as well as a stark transitional gradient
from the Rocky Mountains (virtually no variability) to the Central Plains
(high variability) (Fig. 7a, c). Contrasting the snow cover variability
indices for the winter and full season revealed overestimations in the
latter were greatest in areas with frequent cloud cover: mountain ranges
and northern parts of the Great Lake states and New England (Fig. 7b, d).

3.1.4. Sensitivity of the WHIs: daily versus 8-day composite snow cover
data

When we converted each station’s continuous snow cover record
from daily to 8-day composites in order to quantify how much the
composited MODIS data affected our results, the frozen ground without
snow estimates changed little for both the full snow year (r = 0.94) and
winter (r = 0.93), albeit with systematic underestimations (46 vs. 365
observations) (Fig. 8). However, snow cover variability was greatly
affected by this change for both the full season (r = 0.80) and winter (r

= 0.76). Virtually all of the full snow year percentages >10% (ranging
from approximately 10-30%) estimated from the daily data fell between
4 and 8% in the 8-day, with higher daily-derived variability estimates
not always resulting in higher 8-day estimates. The same was true for
winter variability, where daily-derived variability estimates ranging
from approximately 5-30% consistently fell between 2 and 6%. Inter-
estingly, the correlation between the MODIS-based (8-day) and station-
based (daily) winter variability index was higher (0.79) than the daily
versus 8-day relationship of the station data (0.76).

3.1.5. Composite patterns in the WHIs

Correlations between the MODIS WHIs showed that while they were
closely related, each one captured unique aspects of snow cover dy-
namics across the contiguous US. Winter frozen ground without snow
and snow cover variability had the strongest correlation (r = 0.87),
followed by season length and winter variability (r = —0.78), then
season length and winter frozen ground without snow (r = —0.72).
Combining the WHIs in a composite image highlighted distinct zones of
different snow cover dynamic dominated by either one WHI or a com-
bination of them (Fig. 9). Notable examples include the high elevations
of the Cascades and northern Rocky Mountains which are dominated by
long snow seasons with near-continuous snow cover, and to a lesser
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degree, the same is true for the mountains of New England and northern
parts of the Great Lakes states and Maine. Snow seasons in the Central
Plains east of the Rocky Mountains were some of the harshest, with high
snow cover variability and frequent frozen ground without snow. This
pattern graded into areas in the Midwest where frozen ground without
snow was less frequent, but snow cover variability and season length
were higher. Correlations between all the WHIs, both MODIS- and
station-based, are available in Table S2.

3.2. The WHIs and winter bird diversity

Snow season length, winter snow cover variability, and winter frozen
ground without snow prevalence were strong predictors of winter bird
species richness across the contiguous US. Model comparisons consis-
tently ranked the model that included all three WHIs as the best, and
substantially so, with the next best model having a AAIC. = 129.5
(Table S3). The full model explained 34% of the total deviance, and of
this 34%, the WHIs accounted for approximately 60% (20% of the total
deviance).

Partial effects plots showed non-linear relationships between species
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Fig. 7. Mean snow cover variability (SCV), in percent (number of change events/total valid observations), for the full snow season (top) and winter only (bottom)
from 2003/04-2017/18. The right-hand panels show contrasting SCV estimations for the two time periods, and highlight important SCV gradients captured by the
much more accurate winter index across the Front Range of the Rocky Mountains and the Central Plains (A, C) and New England (B, D).

richness and the model covariates (Fig. 10). Species richness had a
strong unimodal relationship with survey effort, with maximum species
counts occurring around 3000 checklists per grid. As expected, bird
species richness was lower in regions with longer snow seasons
(Fig. 10b). Species richness also had unimodal relationships with snow
cover variability and frozen ground without snow. Richness was higher
in regions where up to 25% of all the winter observations were ‘change
events’ (i.e., new snow or snowmelt) and 40% of observations were of
frozen ground without snow, but declined sharply in regions of greater
variability (Fig. 10c, d).

4. Discussion

We derived the winter habitat indices (WHIs) from MODIS that
characterize patterns of snow season length, snow cover variability, and
frozen ground without snow across the contiguous US from 2003/04 to
2017/18. Accuracy assessment with data from 797 meteorological sta-
tions showed that the WHIs accurately captured snow cover dynamics,
both across the 14-year study period and annually. The season length
and frozen ground without snow indices were most accurate, followed
by winter snow cover variability. For frozen ground without snow and
for snow cover variability, the core winter indices were also highly

correlated with the full snow year station data, and sometimes even
more so than their full snow year counterparts. Thus, estimating these
two WHIs for the core winter only appears to be an accurate portrayal of
conditions over the entire snow year, and adding non-winter observa-
tions increases error. The ability of each WHI to capture winter habitat
conditions that are important to wildlife was underscored by their in-
dividual importance in models predicting winter bird diversity across
the contiguous US.

Though each MODIS WHI exhibited some degree of bias, only one —
snow cover variability for the full snow year — showed poor agreement
with the station data. Snow season length bias included un-
derestimations at lower elevations with shorter seasons and over-
estimations at higher elevations with longer seasons, though most
estimates were within 40 days of the station-based estimate. Frozen
ground without snow was typically underestimated for both the full
snow year and core winter indices, but more so in the former. Snow
cover variability was mostly slightly overestimated in the core winter
index, but this tendency was exacerbated in the full snow year index,
where most of the MODIS WHI estimates were ~ 5-30% higher than the
station-based ones (with greater differences at high elevation sites). The
sources of error that may have biased our MODIS WHIs included: (1)
incorrect snow detections, (2) data gaps due to cloud cover, (3)
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Fig. 8. Correlations between the station-based WHIs derived from daily versus 8-day snow cover data for frozen ground without snow (FWOS, %; top) and snow

cover variability (SCV, %; bottom) from 2003/04-2017/18.

compositing of the snow cover data from daily to 8-day periods for the
frozen ground without snow and snow cover variability WHIs, and (4)
scale mismatch between meteorological stations (point-level) and
MODIS (500 m) data. Incorrect snow detection in MODIS snow cover
products is largely due to spectral similarities between certain cloud and
snow conditions, which produce false positives (high NDSI values for
clouds), and dampening of the spectral signal due to cloud and mountain
shadows or patchy snow cover within a pixel, which produce false
negatives (low NDSI values when they should be high) (Hall and Riggs,
2007; Rittger et al., 2013; Stillinger et al., 2019). Error rates in both the
Terra and Aqua products are generally highest during the warmer
shoulder season months when bright cirrus clouds and patchy snow
cover are more common, and they are higher in the Aqua product than in
the Terra products due to Aqua’s sensor malfunction (Coll and Li, 2018;
Hall and Riggs, 2007). Thus, while each WHI suffered from more than
one of these errors, those that were both calculated for the full snow year
and used combined Terra-Aqua data —i.e., the snow cover variability for
the full snow year and combined Terra-Aqua snow season length and
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indices - performed worse relative to their counterparts (i.e., snow cover
variability for winter only and snow season length from Terra only).
Biases in our MODIS-based estimates of snow season length, which
are based on daily data, were caused by data gaps and incorrect snow
detections. Because we constrained the period when snow could occur
by elevation class (low = Oct. 1st — May 31st, mid = Sep. 1st—June 31st,
high = no date constraint), the lower elevations were less affected by
false positives during warmer months. Thus season length was largely
underestimated in these areas due to missed snow cover days from
clouds or shadows, and overestimated in higher elevation areas where
false positives were more common. Unsurprisingly, season length esti-
mates derived from the daily Terra data outperformed those from Terra-
Aqua combined, especially at higher elevations, because the latter
contained the aforementioned snow detection errors that are most
prevalent in the Aqua data. Other studies that have mapped and vali-
dated snow cover duration, which is closely related to our season length
metric, using MODIS products have found similar results in Europe
(Dietz et al., 2012; Foppa and Seiz, 2012), China (Xu et al., 2017), the
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Fig. 9. Composite spatial patterns in the MODIS WHIs from 2003/04-2017/18, highlighting zones with distinct snow cover dynamic across the contiguous US. The
winter snow cover variability (%) WHI is in red, the snow season length (days) WHI in green, and the winter frozen ground without snow (%) WHI in blue. Thus, for
example, bright green areas represent long snow seasons with little snow cover variability and rarely any frozen ground without snow. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Pacific Northwest in the US (Gao et al., 2011), and across mountain
ranges globally (Notarnicola, 2020).

While data gaps and incorrect snow detections also affected the
MODIS-based estimates of frozen ground without snow and snow cover
variability, our 8-day compositing introduced additional bias by
reducing the number of valid observations available for the WHI cal-
culations, e.g., from 94 possible observations in the daily data to 12 in
the 8-day data for the core winter calculations. Our sensitivity analysis
based on the continuous data from meteorological stations (representing
‘true’ conditions) showed that condensing the data record from daily
observations to 8-day composites led to consistent underestimations in
the estimates of frozen ground without snow and snow cover variability
(refer to Section 3.1.4 and Fig. 8). Compositing the snow record over-
estimated the amount of time the ground is frozen with snow and hence
underestimated the prevalence of frozen ground without snow. Simi-
larly, extending snow presence or absence to 8-day periods removed the
variability within those periods, leading to underestimations in areas
where snow cover is more variable versus those that remain snow-
covered for long periods of time (e.g., high elevations). However,
because frozen ground without snow and snow cover variability require
a near-continuous data record (whereas snow season length only re-
quires a first and last observation), we found that creating 8-day com-
posites with the MODIS data was necessary to produce them at an
annual timescale. Using only the daily data resulted in substantial data
gaps in parts of the country where cloud cover is especially prevalent in
winter (e.g., the Upper Midwest and Northeast). Even after compositing
data from two sensors (Terra and Aqua), having a valid MODIS obser-
vation for each 8-day period in a given year was rare.

That data gaps remained in our 8-day composite snow product is the
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reason our accuracy assessment results for the MODIS-based estimates
differ from those of the station-based sensitivity analysis (Figs. 5 and 6
vs. Fig. 8), since the MODIS calculations were based on fewer observa-
tions. This was particularly true for the snow cover variability indices,
which were biased toward overestimation in the MODIS estimates (data
gaps) and underestimation in the station-based sensitivity analysis (no
data gaps). Because we only counted a ‘change event’ (new snow or
snowmelt) as valid if it occurred between two clear, adjacent observa-
tions — if a pixel had snow the first period, was masked due to cloud
cover the next, then had no snow cover on the following period, no
change event was recorded - reducing the number of valid observations
progressively increases the impact of one change event on the variability
estimate (increases it). Nevertheless, three of the four MODIS WHIs
derived from 8-day composites were still highly correlated with the
‘true’ conditions represented by the station data. The exception to this
was the snow cover variability for the full snow year index, which was
almost universally overestimated due to a combination of false positive
snow detections in warmer shoulder season months and fewer valid
observations, inflating the variability estimate. We suspect the false
positive during warmer months issue was drastically reduced in the
frozen ground without snow for the full snow year index, because valid
observations for this index also require the minimum temperature to be
below —4 °C (~25 °F).

Despite the known shortcomings of Aqua snow cover data, we
decided to test if they could provide supplemental information to the
Terra data for the WHI calculations. Our question was whether the in-
crease in spatiotemporal coverage due to more frequent snow observa-
tions, particularly in the core winter months and for annual estimates,
outweighed the resulting decrease in accuracy. Maximizing
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spatiotemporal coverage and resolution of the WHIs is important for
many conservation and biodiversity applications, such as species dis-
tribution modeling, identifying areas of phenotypic mismatch (e.g., for
species that rely on snow cover for cryptic coloration, like snowshoe
hare), and for management decisions at local or regional scales over
relatively short timeframes (e.g., 10-year management plans). The core
winter indices are of particular importance because snow and frozen
ground conditions affect wildlife especially during colder months. We
found that the daily Terra data alone was sufficient to characterize snow
season length without substantial gaps in spatial coverage for most
years. Yet, even after creating 8-day composites from the daily data,
Terra data alone was insufficient to calculate frozen ground without
snow and snow cover variability. Further, we found that the Aqua errors
mainly occurred during the shoulder seasons and not in the core winter
months, which was reflected in the high accuracies of the winter frozen
ground without snow and snow cover variability indices derived from
the combined Terra-Aqua data, similar to what others have found (e.g.,
Wang et al., 2009). Ultimately, the answer to the question if Aqua data
adds useful information depends which index is of interest, for which
parts of the US the WHIs are calculated, and whether the core winter
months or full snow year is more appropriate. Based on our results, we
recommend that users do not include the Aqua data in 1) calculations of
snow season length for the western US, and 2) calculations of snow cover
variability and frequency of frozen ground without snow for the full
snow year regardless of location.

The accuracies of our WHIs compare favorably with other studies
that have developed and extensively validated similar MODIS-derived
snow cover metrics across broad spatiotemporal scales. For example,
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87% of snow cover duration estimates (pixels) across Europe
(2000—2011) using a combined Terra-Aqua fall within +36 days of
ground-based duration estimates (Dietz et al., 2012). This result is
slightly more accurate than our season length index (72% of pixels
within +40 days), and we suggest that more complex topography in the
US may be the cause. Mean snow cover duration (2000-2018) has also
been mapped across major mountain ranges of the world, with high
accuracy in North America based on station data (r = 0.80) (Notarnicola,
2020). While our overall season length accuracy was higher (r = 0.91),
our correlation for the high elevation class was quite a bit lower (r =
0.67). We suspect this is due to the use of fewer validation stations by
Notarnicola (2020) and their focus on the Rocky Mountains in the US,
which have less frequent cloud cover than mountain ranges in the
Northeast and Pacific Northwest. These two differences in our validation
dataset, which included 489 high elevation sites spanning several major
mountain ranges, may have made the Notarnicola (2020) high elevation
estimates likely more accurate than ours, but less precise. In a global
study that was the inspiration for our frozen ground without snow
indices, Zhu et al. (2017) mapped the duration of frozen ground with
and without snow (akin to our frozen ground without snow WHI, but
expressed in days rather than as a percentage) using a combination of
MODIS 8-day snow cover and microwave sensing-based freeze/thaw
status data and had higher overall accuracies (r = 0.91 vs. our 0.85), but
with important caveats. First, their frozen ground estimation was limited
by the coarse resolution of the microwave data (25 km). We improved
upon this by using 1-km data from Daymet and achieved similar results
at a much finer spatial resolution. Second, their validation of frozen
ground status was not independent of the data used to calculate their
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metrics, as they extracted the microwave data for each station (rather
than using minimum temperature-based thresholds), and thus overall
accuracy is only capturing snow cover duration accuracy. Caveats aside,
the spatial patterns in their frozen ground without snow metric (see
Figs. 3b and 4c in Zhu et al., 2017) largely matched those of ours. The
main difference was their index had higher estimates of frozen ground
without snow in the southcentral and southeastern portions of the US,
most likely due to differences in the spatial resolution of our frozen
ground status data.

Our WHIs identified distinct spatial patterns in snow cover dynamics
across the contiguous US. These spatial patterns summarize dynamic
winter conditions that are of potential importance for many winter-
adapted species and ecosystems by capturing interactions between
ground status (frozen or not, snow-covered or not) and gradients of
temperature (latitude, elevation) and precipitation (longitude, eleva-
tion, near large bodies of water). Unsurprisingly, snow season length is
longer in high elevation areas nationwide and, in general, the highest
elevation mountain ranges experience long snow seasons with little
variability in snow cover. One exception to this is the Allegheny
Mountains in the eastern US, which have snow seasons of moderate
length (~3-5 months) characterized by high variability. This mountain
range is in the transition zone from rain- to snow-dominated winters,
and we suspect rainfall on warmer days during the core winter months
causes the high rates of snow cover variability, and also of frozen ground
without snow, since minimum temperatures at night remain low. East of
the Mississippi River, there is a strong latitudinal gradient in snow cover
dynamics, where the percentage of frozen ground without snow is high
in the southernmost latitudes, snow cover variability high in mid-
latitudes, and snow season length in the north. Snow cover variability
is also higher near large bodies of water, such as Lake Champlain in New
England and the Great Lakes. Finally, the WHIs highlighted the Central
Plains region east of the Rocky Mountains as having arguably the
harshest winters, where frozen ground without snow is highest reflect-
ing cold, dry winters.

The ecological relevance of the WHIs was underscored by our
assessment of winter bird species richness, where we found that each
WHI had a significant, independent contribution in explaining variation
in patterns of winter bird species richness across the contiguous US. The
large percentage of total deviance explained by the WHIs (~60%) sug-
gests that snow cover dynamics strongly influence the spatial distribu-
tion of winter bird diversity in the mid to northern latitudes. As far as we
know, our study is the first to explicitly examine relationships between
broad-scale snow cover dynamics and winter bird diversity. Most related
studies to date have focused on quantifying relationships between
winter bird assemblages and measures of temperature, total precipita-
tion, and productivity (e.g., Elsen et al., 2020; Evans et al., 2006; H-
Acevedo and Currie, 2003; Meehan et al., 2004).

Overall, regions with longer snow seasons supported fewer bird
species. This is unsurprising given longer snow seasons occur at higher
elevations and latitudes where winter minimum temperatures are lower,
snow depths are typically greater, and food availability is limited,
resulting in high energetic demands for endotherms (Evans et al., 2006;
Kawamura et al., 2019; Williams et al., 2015). Indeed, the majority of
bird species that breed in North America have evolved migratory stra-
tegies to escape such harsh winter conditions (Somveille et al., 2019;
Somveille et al., 2015). However, species richness did not increase lin-
early with the snow cover variability WHI. Variability tends to peak in
middle latitude and coastal areas of the country where rain occurs in
winter and freeze/thaw events occur more frequently, and higher winter
temperatures can result in more bird species (Elsen et al., 2020; Evans
et al., 2006). We found that while initial increases in snow cover vari-
ability and frozen ground without snow were associated with increased
species richness, once these indices cross a certain threshold (~40% and
25%, respectively), species richness declines precipitously. These re-
lationships suggest a geographic optimum may exist for wintering birds
between long, harsh snow seasons and those characterized by high
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temperature and precipitation fluctuations, where short-distance mi-
grants may still find resources and resident birds benefit from reduced
competition. Similarly, intermediate levels of temporal heterogeneity in
snow cover may facilitate coexistence of species that utilize aspects of
snow cover (e.g., for foraging) and those that do not, effectively
increasing species richness (Adler and Drake, 2008; White et al., 2010).
In regions of high variability, a possible explanation for lower species
richness is the costs associated with highly variable temperatures,
leading to unpredictable environmental conditions (H-Acevedo and
Currie, 2003). For birds, climatic stability in winter can be a major
determinant of winter species richness patterns across North America,
with more species preferring areas where temperature is relatively sta-
ble but precipitation varies (H-Acevedo and Currie, 2003). Diminished
species richness in extremely cold, dry conditions (higher frozen ground
without snow) may be due to the lack of a subnivium or other thermal
refugia (Pauli et al., 2013; Petty et al., 2015) for birds themselves (e.g.,
roosting habitat; Shipley et al., 2019; Shipley et al., 2020) and for the
resources they depend on (e.g., low productivity, food availability;
Antor, 1995). However, land cover may mediate species responses to
winter weather. For example, we would expect fewer species in grass-
lands where extremely cold, dry conditions are harder to escape, which
raises energetic costs and requires higher cold tolerance compared to
land cover types such as forest. That said, birds utilize overwintering
habitat more dynamically than breeding habitat, moving to and from
different land cover types in response to fluctuating weather conditions
and resource availability (Latimer and Zuckerberg, 2020). Thus, winter
habitat conditions may be more important for mediating winter bird
diversity than land cover types per se, and the MODIS WHIs can support
future comparisons of the relationships of snow and species richness
among and within different land cover types.

In summary, the MODIS WHIs that we derived for the contiguous US
offer a novel dataset to examine relationships between winter habitat
conditions and biodiversity patterns. Their 500-m resolution allows for
investigations that span from single species (e.g., snowshoe hares) to
functional guilds (e.g., snow-adapted species) to entire taxa (e.g., birds)
at regional or nationwide scales. As climate change continues to affect
seasonally snow-covered ecosystems across the mid to high latitudes,
the WHIs are essential to understanding the potential effects of these
changes on the abundance, distribution, and fitness of species. To
facilitate such studies, the WHIs are available for download on the
University of Wisconsin-Madison SILVIS Lab’s website (silvis.forest.wis
c.edu/data/whis).
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