
AegisDNN: Dependable and Timely Execution of
DNN Tasks with SGX

Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim
University of California, Riverside

yxian013@ucr.edu, ywang665@ucr.edu, hchoi036@ucr.edu, mkari007@ucr.edu, hyoseung@ucr.edu

Abstract—With the rising demand for emerging DNN ap-

plications in safety-critical systems, much attention has been

given to the reliability and trustworthiness of DNN inference

output against malicious attacks. Although prior work has

been conducted to improve the privacy of DNN inference by

executing the entire DNN model inside Intel SGX enclaves, ex-

isting approaches pose severe performance challenges to achieve

dependable and timely execution simultaneously. In this paper,

we propose AegisDNN, a DNN inference framework to address

this problem. AegisDNN leverages secure SGX enclaves for

protecting only the critical part of real-time DNN tasks which

are vulnerable to potential fault injection attacks. To choose the

right set of layers for protection while ensuring the timeliness

of task execution, AegisDNN includes a dynamic-programming

based algorithm that finds a layer protection configuration for

each task to meet the real-time and dependability requirements

based on the layer-wise DNN time and SDC (Silent Data Cor-

ruption) profiling mechanism. AegisDNN also utilizes a machine-

learning based SDC prediction method to significantly reduce the

time for estimating SDC rates for all possible layer protection

configurations. We implemented AegisDNN on Caffe, PyTorch,

and Tensorflow with Eigen BLAS ported into SGX enclaves

to comprehensively demonstrate the effectiveness of AegisDNN

against state-of-the-art DNN fault-injection attacks. Experiment

results indicate that AegisDNN could satisfy both dependability

and real-time requirements simultaneously, when none of the

other compared approaches could do so.

I. INTRODUCTION

Deep neural networks (DNNs) are becoming an essential el-
ement in safety-critical applications with intelligent autonomy.
In systems like self-driving cars and smart robotics, various
DNNs are used collectively to achieve intelligent features such
as object detection, scene recognition, and natural language
processing. As DNNs are increasingly involved in autonomous
decision-making processes, a faulty or late output may lead to
catastrophic behavior, which is unacceptable in safety-critical
domain [19, 40, 45]. Therefore, it is an emerging challenge to
ensure highly dependable real-time execution of DNN tasks
with limited computing resources.
Contrary to the common belief that DNNs are inherently

robust to errors, recent studies have demonstrated that DNNs,
particularly those for image classification, are vulnerable to
adversarial fault injection attacks [9, 25, 34, 35]. Since the
output of DNNs is determined by input data, trained weight
values, and intermediate results, manipulating some of these
parameters can easily lead to misclassification. Physical laser
beam [7] or software-based row hammer attacks [34, 43] are
shown to be successful in flipping specific DNN parameters
in memory. To ensure dependability against such attacks,

it is imperative to protect the parameters critical to output
correctness from malicious data modifications. The leakage of
the critical parameters including data structures and location
in memory should also be prevented because such information
is required by fault injection attacks to analyze the weakness
of DNN models. Even if attacks happen, the degree of mis-
classification should be contained within a permissible and
predictable range.
To achieve those requirements, we leverage the Trusted

Execution Environment (TEE), specifically Intel’s Software
Guard eXtension (SGX) [3] in this work. SGX provides secure
enclaves to ensure the integrity and confidentiality of data
and code from untrusted users even if the underlying OS or
DRAM hardware is compromised. Any malicious attempt to
modify data and code within enclave memory space is strictly
prevented by architecture support. With these benefits, prior
work on DNN cloud offloading has utilized SGX to address
privacy issues by running the entire DNN model inside an en-
clave [10, 12, 24]. However, we cannot simply adopt the same
approach to our problem due to the significant performance
penalty of SGX. Up to 40⇥ slowdown is observed compared
with running on a GPU (see Sec. III for details), which is
detrimental to real-time tasks. Concurrent execution of mul-
tiple DNN tasks in enclaves further deteriorates performance
due to the limited memory size of SGX.
This paper presents AegisDNN to address the aforemen-

tioned real-time performance challenges while ensuring the
dependability that we define as the reliability and integrity
of DNN classification output. The key idea of AegisDNN is
to find out critical subsets of DNN layers for the requested
level of dependability and execute only them on enclaves for
protected execution with a minimal performance penalty. To
achieve this, AegisDNN first analyzes the fault sensitivity of
each DNN layer, quantifying the degree of misclassification
when the layer is not protected. Based on this information,
AegisDNN determines the layer protection configurations of
a given taskset to satisfy both real-time performance and
dependability requirements. It is worth noting that AegisDNN
does not conflict with the techniques proposed in prior work
[24, 38, 40, 44] so that they can be accommodated in our
framework to further speed-up DNN task execution.
We have implemented AegisDNN on Caffe [1], Py-

Torch [30] and TensorFlow [4] with Linux SGX SDK [3] on an
Intel x86 platform. The performance of AegisDNN has been
evaluated for tasksets using popular DNN models against three
different state-of-the-art fault injection attacks [9, 25, 34]. Ex-

periment results show that AegisDNN significantly improves
the dependability of DNN output (e.g., as much as 88.8%
lower misclassification rates than unprotected GPU execution)
with minimal real-time performance loss (e.g., only 0-1.7% of
deadline misses when fully-protected SGX execution causes
96.5% or higher misses).
Contributions. Below summarizes our contributions:
• To the best of our knowledge, AegisDNN is the first work
to leverage SGX for protecting only the critical parts of
real-time DNN tasks against fault injection attacks. It is
designed amenable to formal real-time schedulability analy-
sis, by accessing SGX as a mutually-exclusive resource and
partitioning layers with real-time performance in mind.

• We propose a dynamic programming (DP) based algorithm
that balances between fault rate and utilization demand
to find the best protection configuration for each task. It
has a polynomial time complexity but still finds solutions
comparable to those of exhaustive search in our experiments.

• As the number of combinations of layer-wise protection
for each DNN task is enormous, we present a machine-
learning based approach to reduce the fault injection time by
predicting task-level fault rates under different combinations.

• We performed a thorough evaluation of AegisDNN on a
real platform under various state-of-the-art fault injection
attacks [9, 25, 34]. AegisDNN could satisfy both depend-
ability and real-time requirements when none of the existing
approaches could do so.

II. RELATED WORK

DNN Fault Attacks. Recently, much work has focused on the
feasibility and implications of fault injection attacks on DNNs.
DeepLaser [7] is a physical attack using laser beam to perturb
hidden DNN layers in embedded devices. Software-based bit-
flip attacks [26, 34, 43] using the rowhammer technique [20]
have also been developed. These attacks aim to achieve mis-
classification by injecting a relatively small amount of errors.
However, they commonly assume that attackers have the full
knowledge of victim DNN models (e.g., model structure and
parameters) and the access to critical locations, which our
work prevents. TensorFI [25], BinFI [9], and Ares [35] are
fault injection tools that analyze DNN models and identify
critical bits, and they are useful not only to assess the impact
of soft errors but also to guide attack strategies. Bit-flip attack
(BFA) with progressive bit search [34] presents a powerful
attack method that can completely malfunction a DNN model
by very few bit flips.
SGX and Trusted Execution. SGX has been used for DNNs
primarily to secure user privacy, e.g., confidentiality of input
image, when DNN execution is offloaded to untrusted cloud
systems. Notable prior studies are [10, 12, 24], all focusing
on privacy attacks. Specifically, Occlumency [24] includes
techniques to reduce memory usage during DNN inference in
SGX, which is orthogonal to our work and can be applied to
AegisDNN to improve enclave execution speed. Privado [12]
offers enhanced privacy via model transformation which in-
curs additional runtime costs. They both can be used for

fault-injection attacks since they execute the entire DNN in
enclaves for a complete protection. However, this approach
remains impractical as the inherent performance overhead
of SGX is still significantly high compared to GPUs and
hardware accelerators. Serdab [10] focuses on the privacy of
video processing DNNs and partitions DNN models across
distributed enclaves on multiple machines to reduce overall
latency. While the idea of partitioning DNNs is similar to ours,
Serdab cannot be used against fault-injection attacks because
it executes only the first few layers in enclaves and then the
rest layers in untrusted CPU/GPU, making them vulnerable to
attackers. It also limits the switch from enclave to untrusted
CPU/GPU to at most once per DNN, and does not consider
contention on trusted/untrusted resources. On the other hand,
AegisDNN chooses what layers to protect considering real-
time and dependability requirements (not just initial layers),
and the switch between GPU and enclave can happen multiple
times while taking into account the resulting costs.
While these approaches focus on DNN inference, Chi-

ron [15] focuses on training models within enclaves to conceal
training data from cloud service providers. Slalom [38] of-
floads linear operations of DNNs to untrusted GPUs and then
verifies the correctness of results in enclaves. This approach
is applicable to speed-up the protected layers in AegisDNN.
The idea of providing secure enclaves on GPUs has been
studied [39], but it comes with extra overhead and is still not
available on today’s hardware.
Real-Time DNN Execution. In the context of real-time
systems, recent work [40, 41, 44] has focused on improving
DNN inference latency and throughput. DART [40] proposes
a scheduling framework to achieve pipelining and data par-
allelism on heterogeneous CPUs and GPUs. It offers deter-
ministic timing guarantees to real-time tasks and increased
throughput to best-effort tasks. S3DNN [44] presents a su-
pervised stream scheduling approach for DNN workloads
running on GPUs, and yields enhanced response time and
throughput. Although these improves real-time performance,
none of them protects DNN execution from fault injection
attacks. Unawareness to such attacks makes the system to
use incorrect inference output, which may cause catastrophic
consequences. This is the problem our paper addresses.

III. BACKGROUND AND MOTIVATION

A. SGX and Enclaves

SGX is a hardware-assisted security extension built into
Intel architectures. It provides a software abstraction, called
enclave, to build an isolated and secure execution region within
the virtual address space of a user process. The code and data
contents of enclaves are stored encrypted in the Processor
Reserved Memory (PRM), which is not accessible by even
privileged software like OS and thus ensures confidentiality.
The pages of PRM are decrypted only within the CPU chip and
checked for integrity before use at the architecture level. This
enables SGX to protect enclaves against malicious software
such as fault data injection and bit-flipping attacks from other

2

Alexnet Pilotnet Lenet

104

105

106
Ex

ec
ut

io
n

tim
e(
7

s)

0

10

20

30

40

50

Sl
ow

do
w

n
of

 S
G

X
(ti

m
es

)GPU SGX Enclave Slowdown of SGX

Fig. 1: Execution time comparison on SGX enclave and GPU

Without running =2 Running with =2
102

103

104

Ex
ec

ut
io

n
tim

e
of

 =
1 (m

s) Avg. execution time
Max. execution time

Fig. 2: Execution time of ⌧1 when running in isolation vs when
running concurrently with ⌧2

applications, compromised OS, and low-level firmware. It can
also protect against physical attacks on off-chip hardware,
e.g., DRAM and memory bus, by detecting unwanted changes
in enclave regions and preventing corrupted output genera-
tion. Such strong security properties allow trustworthy and
dependable execution of programs even in hostile and harsh
environmental conditions. We thus utilize SGX to enhance the
dependability of DNN execution in this work.

B. Real-Time Performance Challenges
Although SGX provides strong protection mechanisms for

DNN execution, it poses critical performance challenges. As
shown in Fig. 1 with some popular DNN models, running
the entire DNN model on the SGX enclave can result in
a significant timing penalty (see Sec. VI for software and
hardware setup). For Alexnet [21], it takes more than 40x time
to execute on the enclave than on the GPU. For Pilotnet [6],
which experiences the least performance slowdown among the
three models shown in the figure, it is still 4.7x slower on the
enclave compared to the GPU. Thus, it is practically infeasible
to run real-time DNN tasks solely on enclaves.
There are three major reasons for such performance degra-

dation. First, DNN models on the SGX enclave are executed
by the CPU. The execution time of popular DNN models on
CPUs is significantly slower than that on modern accelerators.
Secondly, memory read and write speed is slower inside the
enclave, which is critical for DNN inference requiring a large
amount of memory operations. Such slowdown is mainly
due to the extra steps taken by on-chip data encryption and
integrity checks. Thirdly, the physical size of PRM under SGX
is considerably small, e.g., 128MB for all currently supported
Intel CPUs, far less than the memory needed for modern DNN
models. SGX SDK on Linux supports paging to allow enclaves
to have larger virtual space than the physical PRM size. How-
ever, frequent page swapping causes high overhead especially
when executing large DNN models. In addition, when page
swapping happens between the unprotected main memory and
the protected enclave, additional encryption/decryption takes
place to ensure the integrity of the swapped data.

The small SGX physical memory size is also the bottleneck
when multiple DNN tasks need to execute concurrently. Mem-
ory thrashing may occur in such a scenario, further degrading
the performance or even freezing the entire system. To identify
the effect, we consider a simple taskset that has two memory-
intensive tasks, ⌧1 and ⌧2, running on different cores. ⌧1

allocates 30MB of memory in the enclave and repeatably reads
all its memory pages in a sequential manner. ⌧2 performs the
same but with a larger memory size of 200MB. Fig. 2 depicts
the average and maximum execution time of one iteration of ⌧1
with and without the concurrent execution of ⌧2, respectively.
When ⌧2 executes concurrently with ⌧1 in the system, the
execution time of ⌧1 becomes 120x longer in the worst case
and 3.7x longer on average. The exact moment when the
task gets the worst-case slowdown is unpredictable due to the
nature of the race condition between two tasks trying to page-
swap at the same time. These problems need to be addressed
in order for enclaves to be utilized for real-time DNNs.

IV. SYSTEM MODEL

The system considered in this work is equipped with a
GPU for accelerated DNN execution and a TEE for pro-
tected (secured) execution.1 Intel SGX is particularly assumed
for the TEE since it offers a minimum attack surface with
architecture-assisted integrity check mechanisms. SGX main-
tains a memory region separated from the system’s main
memory. Hence, explicit data transmission between an enclave
and main memory is required before and after a task executes
DNN workload within the enclave. The GPU also has its own
memory region, requiring data transmission for execution. The
CPU consists of one or more identical processor cores on
which tasks launch SGX and GPU operations.
To avoid unpredictable variations in execution time, we

model the enclave e and the GPU g as mutually-exclusive
shared resources, i.e., e and g are each protected by a distinct
mutex lock and accessible by only one task at a time. In case
of the GPU, lock-based synchronization [11, 31, 36] has been
widely used to secure the worst-case execution time (WCET)
which can be hampered when concurrent kernel execution is
allowed [16, 29, 42]. We adopt this approach for the enclave
as well to prevent the thrashing problem discussed in Sec. III.
Hence, the entire SGX memory is exclusively available for the
task accessing the enclave. If the task requires more memory
than the SGX memory, page swapping may occur, but its
performance effect can be captured as part of the WCET of
that task and does not adversely affect the WCETs of other
tasks.2 Note that the limited memory size of SGX is not
the motivation of our work. Even if a DNN can fit entirely
in the SGX memory, it is not efficient to protect all layers
since each layer has different vulnerability and performance
characteristics, and not all layers need to be protected to
achieve the required dependability.

1We only consider DNN inference in this paper. DNN training is not
considered since it is typically done offline.

2This notion of temporal isolation is similar to that in memory reservation
systems [18, 27].

3

We consider SGX as a building block in our work because
it offers architecture-level support for checking the integrity
of code and data stored in enclaves. However, we believe
it is possible to apply our work to other TEEs, e.g., ARM
TrustZone, by implementing software-based integrity checking
at the entry and exit points of the TEE, but this will likely
cause higher runtime overhead.

A. Task Model
We consider DNN tasks following the sporadic task

model [28] with constrained deadlines. Each task uses one
feed-forward DNN model, and each job of a task makes one
inference request for classification. Task ⌧i is characterized by:

⌧i := (Ci, Ti, Di, Ni,Mi)

• Ci: the WCET of a single job of ⌧i in the absence of external
temporal interference from other tasks

• Ti: the minimum inter-arrival time between jobs
• Di: the relative deadline of each job
• Ni: the number of layers of the DNN model used by ⌧i

• Mi: the DNN model used by ⌧i

Each job of ⌧i executes the layers of Mi in a sequential
manner.3 Hence, Ci comprises a set of execution times corre-
sponding to those layers. We use Li,j to denote the j-th layer
of Mi. For a layer Li,j , it can execute in either of the two
modes, protected or unprotected, which affects the execution
time of Li,j . If Li,j executes in the unprotected mode, the
weight parameters (if exist) and input data of the layer are
first copied from unprotected CPU memory to unprotected
GPU memory. Then the kernel corresponding to that layer
is launched on the GPU. Finally, the output data is copied
back to unprotected CPU memory when the GPU kernel
finishes its execution. If Li,j executes in the protected mode,
the corresponding program code and weight parameters are
assumed to have been preloaded into the enclave’s memory
space with the sealing feature of SGX [3]. So only the input
data needs to be explicitly copied to the enclave. Note that,
since those preloaded data might have been paged out when
Li,j starts execution in the enclave, the time to page-in them
needs to be captured in the WCET of Li,j .

To distinguish the WCET of Li,j in the protected and
unprotected mode, we will use Ci,j(d) where d indicates the
device Li,j runs on, i.e., d = e (enclave) in the protected mode
and d = g (GPU) in the unprotected mode. Ci,j(d) is detailed
with the following parameters:

Ci,j(d) := (Chd
i,j (d), C

e
i,j(d), C

dh
i,j (d), C

m
i,j(d))

where d is either the enclave e or the GPU g.
• C

hd
i,j (d): the maximum time for input data transmission

before Li,j’s execution on the device d

• C
e
i,j(d): the WCET of Li,j on the device d

• C
dh
i,j (d): the maximum time for output data transmission

after Li,j’s execution on the device d

• C
m
i,j(d): the maximum time of miscellaneous operations

required for Li,j’s execution, e.g., device launch preparation

3This is valid for feed-forward DNNs which are most commonly used these
days. Recurrent networks like LSTM will be considered in future work.

The WCET of Li on the enclave e, Ce
i,j(e), is assumed to

include the time for reloading and swapping its own pages.
Note that these parameters are also compatible with the models
used in real-time GPU work [17, 31].
This work mainly considers soft real-time systems where

avoiding an overload condition is important to minimize dead-
line misses [8]. Thus, our focus lies on how to partition DNN
workloads on SGX and GPU so that dependability is achieved
while preventing overloads. The design of AegisDNN, how-
ever, does not preclude its use in hard real-time systems
as long as the underlying OS and device drivers provide a
sufficient level of predictability. In order to check hard real-
time schedulability, we assume that tasks are pre-allocated to
processor cores with no runtime migration. This assumption
is not necessarily required for soft real-time systems since
our algorithm aims to optimize resource utilization which is
bottlenecked by mutex locks for SGX and GPU.

B. Threat Model

The notion of dependability considered in this work is the
capability to ensure the integrity of output generated by real-
time DNN tasks in the presence of fault data injection attacks.
Such attacks are often performed in a stealthy manner, so it
is hard to detect them as long as output, despite corrupted, is
generated. We do not consider other types of attacks, such as
side-channel and denial of service attacks, and delayed task
execution due to such attacks.4

For the threat model, we follow the general model used for
SGX-based systems in the literature [12, 24]. The CPU chip
package, SGX features, and enclaves are trusted entities. Off-
chip hardware components including DRAM, memory bus,
and GPU are untrusted. Software components running outside
enclaves, such as OS, device drivers, middleware, libraries, and
other processes, are also untrusted. The enclaves of real-time
DNN tasks are assumed to have been signed by the trusted
authority. Attackers cannot launch their own enclaves due to
the key management of the enclave launch procedure [3].5 We
assume that inter-enclave control-flow and data-flow integrities
are ensured using existing techniques, such as Panoply [37].
Faults can be injected by software attacks [26, 34, 43] using

rowhammer [20] or even by laser beam [7].6 We assume the
target system uses virtual memory and memory protection,
which limits the severity of attacks, e.g., the attacker cannot
perturb unlimited size of memory contents. Even if the OS is
compromised, it is not trivial to directly modify the memory
contents of other processes residing in a different virtual
memory space. Regardless of their origin, the degree of attacks
is quantified by using Bit Error Rate (BER), which is the
number of faulty bits divided by the total number of memory

4If the system eventually hangs and no output is generated, the attacks are
easily detectable and countermeasures can take place, e.g., a human operator
taking over control of self-driving cars.

5This prevents attackers to cause the SGX thrashing problem discussed in
Sec. III although this is not a primary attack we consider.

6Soft errors on memory devices could also be addressed by our work.
Physical attacks on the CPU chip itself are beyond the scope of the paper.

4

AegisDNN Framework
DNN Layer Profiler (§V-A)

WCET Profiling
(Measurement-based)

SDC Probability Estimation
✓ Fault-injection-based Method
✓ ML-based SDC Prediction (§V-C)

Layer Protection Configuration (§V-D)

✓ Guarantee min dependability threshold
while maintaining schedulability

✓ Maximize dependability with available
computing resources

Dynamic Programming (DP) based
Search Algorithm

Autonomous
Driving

Object
Detection

Smart
Robotics

···

Critical layer
Non-critical layer

···

Task
Reliable
output

Safety-critical DNN applications

Enclave GPU
Protected Unprotected Fault injection attack

Fig. 3: AegisDNN framework overview

bits. A higher BER indicates a task has a higher chance to
experience faults.
For a given BER, we use Silent Data Corruption (SDC)

probability as a metric to evaluate the dependability of a
system, and the system designer gives the minimum depend-
ability threshold that must be satisfied. In DNNs, there is often
not just a single output, but a list of ranked outputs (labels)
with a confidence score for each output. This work considers
the correctness of the top-ranked label as it is usually most
important. Therefore, we define the SDC probability as the
probability of the top-ranked element of DNN output being
different from that in the fault-free case.

V. THE AEGISDNN FRAMEWORK

This section presents the key components of AegisDNN
framework. Fig. 3 illustrates the framework overview. Aegis-
DNN has a layer-wise DNN profiling mechanism (Sec. V-A)
that not only obtains the WCET of each layer but also
uses a fault-injection method to estimate the SDC probability
of each layer when it is exposed to fault attack. Then, it
uses a machine-learning approach (Sec. V-C) to predict SDC
probabilities under all possible layer protection configurations,
which significantly reduces the fault-injection time for pro-
filing. Based on these profiles, AegisDNN runs a dynamic-
programming based algorithm (Sec. V-D) to find the best
feasible layer protection configuration for each task that allows
satisfying both the dependability and schedulability require-
ments. At runtime, AegisDNN uses the configurations found
by the algorithm to control the execution of DNN tasks.

A. Profiling Layer-wise WCET and SDC Probability
As discussed earlier that protecting all the layers of a DNN

is expensive and impractical, AegisDNN chooses only the
critical DNN layers to protect. Meanwhile, AegisDNN takes
into account the performance cost caused by such protection to
mitigate the scheduling penalty. To achieve both, AegisDNN
generates a layer-wise DNN profile, which is composed of a
WCET profile and an SDC probability profile.
1) WCET Profile: To understand the performance cost of

protecting a DNN layer by executing it on the SGX enclave e

compared to on the GPU g, the WCET needs to be estimated

on both. AegisDNN takes a measurement-based approach for
WCET estimation. All DNN models used in the taskset are
executed nprofile times on both the enclave e and GPU g,
where nprofile can be chosen by the user, and the execution
time records are stored in the profile DB. AegisDNN estimates
the WCET of each layer by taking the maximum among
the observed execution time history. Note that the WCET
estimation by this procedure may be violated when longer
execution time is observed. Due to this limitation, AegisDNN
claims to achieve soft real-time guarantees and to minimize
the occurrence of deadline misses. For firm or hard real-time
systems, one may add an error margin to the observed WCET,
as done in practice, or apply more robust estimation methods,
e.g., statistical approaches using Extreme Value Theory [5, 13].
2) SDC Probability Profile: To understand the criticality

for each DNN layer Li,j of task ⌧i, AegisDNN profiles their
SDC probability. The memory usage for computing each DNN
layer can be classified into input data, weights parameters (if
exist), and output data. As the output of the previous layer is
directly used for the input of the next layer, we thus consider
the SDC probability of only input and weight data. We use
sdcin(i, j, b) to denote the SDC probability of the input data
of layer Li,j under the BER of b, and sdcweight(i, j, b) to
denote the SDC probability of the weight data, accordingly.
The SDC probability of a layer Li,j is estimated by using
existing fault injection attack methods [9, 25, 34, 35] onto the
memory regions of input or weight data accordingly under the
BER of b. The attacked bits are chosen based on the fault-
injection attack method used. Next, AegisDNN executes the
DNN inference and compares it with the results from fault-
free condition. Finally, the sdcin(i, j, b) and sdcweight(i, j, b) are
estimated by calculating the number of wrong outputs divided
by the number of total fault injections when we only inject
faults into the input and the weight data regions of layer Li,j ,
respectively, while other layers remain fault-free.

B. Implications of Task-level Layer Protection
In this subsection, we discuss the implications of protecting

different combinations of layers at the task level. We consider
two cases of task-level protection: single layer protection and
consecutive layer protection.
1) Single Layer Protection: As shown in Fig. 4a, when

only a single layer Li,j of task ⌧i is executed in the enclave e,
only its weight data and the intermediate computation result
can be protected. The input data of the layer Li,j is still
vulnerable to fault as the output data of the previous layer
Li,j�1 is unprotected and fault can occur during its execution
or memory copy. It is worth noting that we cannot protect the
input data of the first layer due to this reason.
2) Consecutive Layer Protection: However, when multiple

layers are consecutively protected, as shown in Fig. 4b, input
data of all protected layers except the first layer (layer 2 in this
example) are protected besides all weights and intermediate
computation results. In other words, to protect the input data
of a layer Li,j for task ⌧i, both layer Li,j�1 and layer Li,j

have to be protected consecutively at the same time. Such

5

Input Data

Layer 1
Weights

Output Data

Unprotected/GPU

Protected/SGX Enclave

Result

Input Data

Layer 3
Weights

Output Data

Input Data

Layer 2
Weights

Output Data

Protected data transfer
Unprotected data transfer

(a) Single layer protection

Input Data

Layer 1

Weights

Output Data

Input Data

Layer 5

Weights

Output Data

Input Data

Layer 2

Weights

Output Data

Unprotected/GPU

Protected/SGX Enclave

Result
Input Data

Layer 4

Weights

Output Data

Input Data

Layer 3

Weights

Output Data Protected data transfer
Unprotected data transfer

(b) Consecutive layer protection

Fig. 4: Comparison of layer protections

𝐶𝑖,𝑗ℎ𝑑(𝑑) 𝐶𝑖,𝑗𝑒 (𝑑) 𝐶𝑖,𝑗𝑑ℎ(𝑑) 𝐶𝑖,𝑗𝑚(𝑑)

CPU

GPU

Enclave

Layer 1
unprotected

Layer 2
protected

Layer 3
protected

Layer 4
unprotected

Task i

Time

Time

Time

Fig. 5: Execution of consecutively protected layers

observation indicates that protecting consecutive layers enables
stronger protection. Moreover, it requires less memory copy
between the unprotected CPU/GPU memory and the protected
enclave memory. Fig. 5 exemplifies the saved memory copy
time for Task i where layers 2 and 3 are protected. The output
data transmission of the layer 2 (Cdh

1,2) and the input data
transmission of the layer 3 (Chd

1,3) do not present in the timeline
since those can reside within the enclave and do not need to
be transmitted. AegisDNN takes into account such property
in the machine-learning SDC prediction (Sec. V-C) and the
configuration-finding algorithm (Sec. V-D) to improve system
efficiency and dependability.

Task-level layer protection configuration. To better represent
a sequence of protected and unprotected layers, we define the
layer configuration of a task ⌧i in binary notation as follows:

S
p
i = si,Ni

si,Ni�1... si,2si,1

The superscript p of Sp
i is the identifier of the configuration.

si,j represents the protection status of the j-th layer of ⌧i,
which is 1 if protected, and 0 otherwise. For example, if the
2-th and 3-th layers of a task are protected, the configuration
value is equal to 0110.

C. Predicting Task-level SDC Probability

To find the balance between dependability and real-time
performance, AegisDNN needs to choose the most critical
layers to protect. Although the SDC probability has been
already estimated for the case where only one layer of a DNN
model is unprotected (Sec. V-A), it could not get the SDC
probability when a combination of layers are simultaneously
protected for a given task. To get a thorough SDC probability
profile for all possible layer protection configurations, one
may try to use an exhaustive-search approach by running fault
injection for all configurations. However, for each DNN model
Mi used in taskset, there are 2Ni different configurations. It is
not feasible to run exhaustive fault injections as the entire fault
injection procedure required for the profiling takes enormous
time to complete. To address this problem, we propose a
machine-learning (ML) based approach to obtain a task-level
SDC probability for a given layer protection configuration.
For a DNN model Mi used by task ⌧i, AegisDNN

first randomly generates ntrain layer protection configura-
tions S

p1
i , S

p2
i , ..., S

pntrain
i , which are uniformly distributed

among all configurations. AegisDNN then runs fault in-
jection for each configuration, and collects its SDC
probability. The results are used as the training data
set T = {sdc(i, Sp1

i , b), sdc(i, Sp2
i , b), ..., sdc(i, S

pntrain
i , b)},

where sdc(i, Sp
i , b) denotes the SDC probability for a task

⌧i with the layer protection configuration S
p
i under the

BER of b. The parameter ntrain controls the training data
size for the ML algorithm and can be configured by the
user. AegisDNN then converts each S

p
i into two bitmaps

which represent the layer protection configuration of the
input data and weights parameters, respectively. Each bit
of these bitmaps is considered as an input feature for
the ML algorithm. The formation of the first bitmap is
X

weights
i = {xweights

i,1 , x
weights
i,2 , ..., x

weights
i,N�1 , x

weights
i,N } in

which each xweights
i,j is set if the weight data of the correspond-

ing layer is protected. It also takes into account the effect of
consecutively-protected layers by adjusting the value of bits in
the second bitmap X

in
i = {xin

i,1, x
in
i,2, ..., x

in
i,N�1, x

in
i,N}, where

each bit indicates whether the input data of the corresponding
layer is protected. Given that any two consecutively-protected
layers make the input data of the second layer protected, the
bit xin

i,j+1 is set only if both x
weights
i,j and x

weights
i,j+1 are 1.

For a given training data point of DNN model Mi, we first
encode its layer protection configuration into the two bitmaps
X

weights
i and X

in
i as mentioned above. With the two bitmaps

properly set, the relationship between SDC probability and
layer configurations is modeled by multiple linear regression.
The model we developed for SDC probability prediction can
be represented in the following form:

ŷi = ci +
NiX

j=1

↵i,jx
in
i,j +

NiX

j=1

�i,jx
weights
i,j (1)

Here, ŷi is the estimated SDC probability for a given task ⌧i.
ci is a constant. ↵i,1,↵i,2, ...,↵i,N and �i,1,�i,2, ...,�i,N are
the coefficients of the respective predictor xin

i,j and x
weights
i,j .

6

Ni is the number of layers of ⌧i. ŷi equals to ci (ci > 0) if no
layer is protected. Otherwise, the predicted SDC probability
reduces since ↵i,j  0 and �i,j  0. All data analysis are
carried out using scikit-learn [32] in Python.
Our regression model can make precise estimations on SDC

probabilities by capturing the interactions between protected
layers as shown in Eq. (1). AegisDNN uses this model to
obtain a complete set of SDC probabilities for each DNN
model used by the taskset. We redefine sdc(i, Sp

i , b) in the
rest of the paper to denote the SDC probability predicted by
the regression method for a task ⌧i.

D. Finding Layer Protection Configurations

1) For Each Task: We first find a layer protection configu-
ration for each task in the taskset with the following goals: (i)
satisfy the minimum dependability threshold for each task, (ii)
minimize the utilization demands of tasks, and (iii) maximize
the dependability of the taskset by fully utilizing system
resources. Since the dependability D is inversely proportional
to the SDC probability p, it can be represented as D = 1� p.

While exhaustive search can be considered to find the
protection configuration for each task, it is not a practical
option. The number of layer protection configurations for a
taskset � is 2

P
⌧i2� Ni , which leads to an exponential time

complexity for the search algorithm.
To reduce the time complexity, we first propose a dynamic-

programming-based approach to find a layer protection con-
figuration for a task ⌧i that meets the given dependability
threshold with the lowest utilization demand Ui. We define
utilization of a task ⌧i as the sum of execution time of all its
layers over its period. Accordingly, the utilization Ui,j of a
layer Li,j of a task ⌧i is given by Ui,j = Ci,j(d)/Ti.

We use UD
z [i, j, k] to denote the minimum utilization de-

mand for the layers from Lz,i to Lz,j of a task ⌧z when
up to k disjoint subsequences of layers are protected and the
minimum dependability thresholdD is satisfied. SoUD

z [i, j, 1]
means there is only one disjoint subsequence of protected
layers. We store the corresponding layer protection configu-
ration SD

z [i, j, k] for ⌧z when calculating UD
z [i, j, k]. Since

memory copy only occurs at the boundaries of protected and
unprotected layer segments, the user can configure k to limit
such copy operations to improve system efficiency.
When k is equal to 1, the UD

z [i, j, 1] is given by:
UD

z [i, j, 1] =

min

8
>>>>>>>>><

>>>>>>>>>:

UD
z [i+ 1, j, 1] + Cz,i(g)/Tz,

UD
z [i, j � 1, 1] + Cz,j(g)/Tz,8

>>>><

>>>>:

⇣ jX

q=i

�
C

e
z,q(e) + C

m
z,q(e)

�
+ C

hd
z,i(e) + C

dh
z,j(e)

⌘
/Tz

, if 1� sdc(z, Sp
z , b) � D

1 , if 1� sdc(z, Sp
z , b) < D

(2)
The first term in the min function, UD

z [i + 1, j, 1] +
Cz,i(g)/Tz , denotes the minimum utilization from layers Lz,i

to Lz,j when the algorithm protects one section of consecutive

layers among the layers from Lz,i+1 to Lz,j (UD
z [i+ 1, j, 1])

and the layer Lz,i is executed on the GPU g. Similarly, the
second term in the min function, UD

z [i, j�1, 1]+Cz,j(g)/Tz ,
depicts the minimum utilization when it protects one section
of consecutive layers among Lz,i to Lz,j�1 and executes
Lz,j on the GPU g. The third term denotes the utilization
under the protection configuration when the layers from Lz,i

to Lz,j are all protected, i.e., Sp
z =

Pj
q=i(2

q�1). We set it
to infinite if Sp

z cannot satisfy the dependability requirement
(1�sdc(z, Sp

z , b) < D). Otherwise, it represents the utilization
under Sp

z . Finally, UD
z [i, j, 1] is calculated as the minimum of

the three terms.
When k is greater than 1, the recurrence is given as follows:

UD
z [i, j, k] =

min

8
>>>><

>>>>:

UD
z [i, j, k � 1]

min
q2[i+1,j�1]
r2[1,k�1]
d2[D0,D]

8
><

>:

Ud
z [i, q, r] +Ud

z [q + 1, j, k � r]

, if 1� sdc(z, Sp
z , b) � D

1 , if 1� sdc(z, Sp
z , b) < D

(3)
In Eq. (3), Sp

z is the layer protection configuration resulted
by both Sd

z [i, q, r] and Sd
z [q+1, j, k�r], i.e., Sp

z = Sd
z [i, q, r]+

Sd
z [q + 1, j, k � r]. Note that each of Sd

z [i, q, r] and Sd
z [q +

1, j, k � r] already guarantees the dependability of the task
to be higher than d. Hence, to find a configuration with the
dependability higher than or equal to D in Eq. (3), we need to
search the dependability d ranging from D0 to D, i.e., D0 
d  D. By controlling D0, the user can adjust the search space
of the algorithm, which affects the execution time and ability
of the algorithm to find the solution. For each case, AegisDNN
checks sdc(z, Sp

z , b) to ensure that the combined configuration
S
p
z still meets the dependability requirement D.
2) For All Tasks in a Taskset: We now propose our search

algorithm in Alg. 1 to find the layer protection configuration
for all tasks in a taskset. The goals of the algorithm are to: (i)
satisfy the minimum dependability threshold for all tasks, (ii)
ensure the schedulability of the taskset, and (ii) maximize the
dependability of all tasks while maintaining the schedulability.
The algorithm takes as input the taskset �, the minimum
dependability threshold D, the set of candidate k values Ks,
and the set of candidate dependability values Ds. The values
in Ds are greater than or equal to the requirement D, and
used to maximize the dependability of all tasks.
For each ⌧i 2 �, the algorithm computes the minimum

required utilization Ud
i [1, Ni, k] for all d 2 Ds and k 2 Ks

values according to Eqs. (2) and (3) (line 7). It stores the cor-
responding configuration in Sd

i [1, Ni, k]. Then, the algorithm
checks the feasibility of the taskset under the configuration
Ssol for the minimum dependability threshold D (lines 9-
10). Here, feasibility means all tasks in the taskset satisfy
both dependability and schedulability. If any of the tasks has
UD

i [1, Ni, kmax] = 1, dependability is said to be unmet.
Schedulability will be discussed in the later of this subsection.
If the taskset is not feasible, the algorithm returns an

7

Algorithm 1 Finding layer protection configuration of all tasks
Input: � = {⌧1, ⌧2, ⌧3, ..., ⌧n}: taskset
Input: D: minimum dependability threshold
Input: Ds: a set of search dependability values including D
Input: Ks: a set of candidate k values used in Eqs. (2) and (3)
Output: Ssol = {Ssol

1 , Ssol
2 , ..., Ssol

n }: Solution layer protection con-
figuration for each task; Ssol = ;, if failed.

1: function FIND SOLUTION(�, D,Ds, Ks)
2: Ssol = ; /* initialization */
3: kmax = max(Ks)
4: for all ⌧i 2 � do

5: for all d 2 Ds do

6: for all k 2 Ks do

7: Compute Ud
i [1, Ni, k] by Eqs. (2) and (3)

8: Store Sd
i [1, Ni, k] accordingly

9: Ssol = {SD
1 [1, N1, kmax], ...,S

D
n [1, Nn, kmax]}

10: if Taskset � is feasible under Ssol
then

11: for all d 2 Ds in descending order do
12: for all ⌧i 2 � do

13: Replace the i-th term in Ssol with Sd
i [1, Ni, kmax]

14: if Taskset � is feasible under Ssol
then

15: break /* The best solution is found for ⌧i*/
16: else

17: for all ⌧i 2 � do

18: Restore the old i-th config in Ssol

19: else

20: return Ssol = ; /* no solution*/
21: end function

empty solution (line 20) as no feasible configuration is found.
Otherwise, it tries to maximize dependability for all tasks.
It iterates over d 2 Ds in descending order (line 11), and
replaces the protection configuration for each task ⌧i in the
solution configuration set Ssol with Sd

i [1, Ni, kmax]. Then
the algorithm checks the feasibility again (line 14). If the
taskset is feasible, the algorithm returns the found solution
Ssol. Otherwise, it restores Ssol and then tries the next highest
dependability value until the taskset is feasible.
The time complexity of our DP-based algorithm excluding

schedulability test and SDC probability lookup is O(
P

⌧i2� ! ·
N

2
i), where Ni is the number of layers of ⌧i and ! is

determined by the size of user input, i.e., ! = |Ks| · |Ds|.
Since our algorithm has a polynomial complexity w.r.t. Ni, it
can handle complex models with a large number of layers.

Schedulability conditions. The schedulability test depends on
the degree of real-time guarantees sought and the scheduling
algorithm implemented. For soft real-time systems, AegisDNN
implements the classical Least Slack Time (LST) scheduler to
assign task priorities dynamically based on available slacks at
runtime. LST is known to be optimal if tasks are preemptive
with no shared resource and the system is not overloaded.
Although GPU and SGX segments in our task model make it
different from the optimal condition, we focus on whether the
system will be overloaded when the found configuration is ap-
plied. Hence, the schedulability test for soft real-time systems
checks if the cumulative utilization demand of all tasks does
not exceed 100%, i.e.,

P
⌧i2� U

D
i [1, Ni, kmax]  1. We found

this simple admission control sufficient to make a good trade-
off between dependability and soft real-time performance.

Although we primarily consider soft real-time systems in
this work, the design of the AegisDNN framework and the
way it controls access to SGX and GPU allow us to find a
theoretical upper bound on task response time, which can be
used by our algorithm to check hard real-time schedulability.
The schedulability analysis developed for tasks with mutual-
exclusive shared resources [11, 31, 36] can be used in our
algorithm. Here, we briefly introduce an analysis tailored
to our framework under partitioned fixed-priority scheduling.
We define the priority of task ⌧i as ⇡i, the total number of
disjoint subsequences of protected layers of ⌧i as Ki, the w-
th execution segment of ⌧i as ⌧i,w, the CPU core that ⌧i is
allocated to as Pi, and the execution time of ⌧i,w as C⇤

i,w(d),
where d 2 {g, e} is the device that ⌧i,w executes on. As
discussed in the system, each of GPU and SGX segments
is modeled as a critical section protected by a mutex lock.
We consider the priority boosting mechanism of the well-
known multiprocessor priority ceiling protocol (MPCP) [33]
for bounded remote blocking. In addition, we assume that
tasks are busy-waiting while waiting for a shared resource for
simplicity. The worst-case response time (WCRT) Ri of ⌧i is
given by the following recurrence:

Ri = Ci+Bi+
X

⇡h>⇡i
Ph=Pi

⇠
Ri

Th

⇡
(Ch+Bh)+

X

d2{g,e}

max
⇡l<⇡i
Pl=Pi

1jKl

C
⇤
l,j(d)

where Bi is the remote blocking time. The third term captures
preemption from higher-priority tasks. The last term represents
interference from lower-priority tasks executing SGX and GPU
segments with boosted priority, which happens only once per
resource if tasks do not self-suspend. Bi is given by:

Bi =
X

1jKi

Bi,j(type(⌧i,j))

where Bi,j is the remote blocking time of ⌧i,j , type(⌧i,j) is the
device that ⌧i,j executes on, i.e., g or e. The remote blocking
time Bi,j(d) of ⌧i,j accessing the device d is given by [22]:

Bi,j(d) = max
1wKl
⇡l<⇡i

C
⇤
l,w(d)+

X

d=type(⌧h,x)
1xKh
⇡h>⇡i

✓⇠
Bi,j(d)

Th

⇡
+1

◆
C

⇤
h,x(d)

VI. EVALUATION

This section presents experimental evaluation of AegisDNN.
We first discuss the WCET and SDC profile results, and
evaluate the accuracy and speed improvement of the proposed
ML-based SDC prediction method. We then conduct integrated
system experiments of AegisDNN with soft real-time tasksets.
Lastly, we present the application of AegisDNN to hard real-
time tasksets and discuss our findings.

A. Implementation

We have implemented AegisDNN in Caffe [1], Py-
Torch [30], and TensorFlow [4] for an Intel platform with
SGX enabled running Ubuntu 18.04, in order to evaluate our
work against various state-of-the-art fault-injection techniques.
We used Eigen [2] as a basis for a light-weight linear-algebra
library within enclaves since it does not have any dependency

8

other than the C++ standard library. We have used C++11
mutex locks for both SGX and GPU resource access control,
and conditional_variable for event synchronization.
We have enabled paging on SGX to support the execution of

large DNN models. Upon initialization, AegisDNN pre-loads
all the protected weights into the SGX enclave. This design is
aligned with our system model in Sec. IV, allowing protection
for weight parameters at the cost of page swapping. However,
due to the current SGX physical memory size limitation, we
argue that we cannot avoid such performance overhead in order
to provide dependability to large DNNs.

B. Experiment Setup
We consider three popular DNN models in the evaluation:

Lenet [23], Alexnet [21], ResNet-18 [14] for image classi-
fication, and Pilotnet [6] for self-driving. Three state-of-the-
art fault-injection attacks are used: (i) random fault injection
(RANFI) from TensorFI [25] and Ares [35], (ii) targeted fault
injection (TFI) from BinFI [9], and (iii) bit-flip attack (BFA)
with progressive bit search [34].7 We consider both floating-
point and INT8-quantized models. The hardware platform
used features an Intel 7700K CPU with 16GB RAM, and an
NVIDIA RTX 2080 Super graphics card with 8GB VRAM.
We configured SGX with the maximum 128MB of encrypted
memory in BIOS. Both CPU and GPU are configured to run at
their maximum frequency. We disabled unrelated system ser-
vices, e.g., WiFi and lightDM, to avoid potential interference.

C. DNN Execution Time and SDC Probability Profile
For all the DNN models considered in the evaluation,

we first profile the worst-case execution time (WCET) of
each layer when executed either on the GPU g or on the
enclave e. We also profile the SDC probability of each layer
Li,j , sdcin(i, j, b) and sdcweight(i, j, b), for all DNN models
considered. Figures 6, 7, 8 and 9 depict the WCET and
SDC probability of DNN layers under the BER of 10�6 for
AlexNet, LeNet, PilotNet, and ResNet, respectively. RANFI
was used for AlexNet, LeNet, and PilotNet, and BFA for
the quantized ResNet-18. Since BFA only attacks weight
parameters, only sdcweight values are displayed in Figure 9.
Observation 1. We generally observe an increasing trend in
WCET when layers are executed on the enclave compared to
on the GPU. However, the slowdown varies significantly layer
by layer. For example, the layer 17 of Alexnet experiences a
slowdown of over 50x when executed on the enclave, whereas
surprisingly on the layers 11-13 of Pilotnet, the WCET on
the enclave is shorter than that on the GPU. Such execution
variation is mainly due to various memory copy size. The
layer 17 of Alexnet is a fully-connected (FC) layer which
requires over 200 MB of memory to run. When executing it
on the enclave, page swapping happens frequently as a result
of the limited physical memory of SGX, which significantly
slows down the execution. Moreover, FC layers usually ex-
ecute significantly faster on GPUs, which also contributes

7BFA and BinFI experiments were conducted on PyTorch and TensorFlow,
respectively, by using the original authors’ code.

TABLE I: Evaluation of ML prediction accuracy
DNN model Cross-validation MAE% Ground-truth MAE%

Pilotnet 2.14 1.03
Lenet 4.55 4.32
Alexnet 1.21 -
Resnet-18 4.80 -

to the 50x slowdown of the enclave. The layers 11-13 of
Pilotnet, however, are very small layers, which may not cause
page swapping when executed on the enclave. The CPU-
side overhead for executing on the GPU, such as memory
copy between CPU-GPU memory and other miscellaneous
operations, nullifies the GPU performance advantage.
Observation 2. We also observe significant variation for SDC
probabilities. For Alexnet, some layers (e.g., layers 1,3-5,7-
9,15-16,18,20-22) have close to zero SDC probability for both
input (sdcin) and weight data (sdcweight). Thus protecting those
layers does not contribute to lowering the task-level SDC prob-
ability. Layer 19 has the highest SDC probability for weight
data (0.39). It also experiences very high slowdown (262 ms)
when executed on the enclave. In other words, although
protecting layer 19 can significantly improve dependability,
the system might experience high performance penalty. Layer
17, however, has even higher slowdown (1184ms) compared
to layer 19, but it features a much lower SDC probability for
weight data (0.09). If layer 17 is protected instead of 19, the
dependability gain is lower but the slowdown is larger. These
results well justify AegisDNN’s approach that utilizes a DP-
based approach to choose only critical layers by balancing
their SDC probabilities and performance cost based on the
DNN profiles generated.

D. ML-based SDC Prediction
We evaluate the ML-based SDC prediction of AegisDNN

in this section. We first randomly generate 512 uniformly
distributed configurations for Pilotnet, 128 for Lenet, 1024 for
Alexnet, and 512 for Resnet-18, which are decided based on
their number of layers. Then we run fault injection for each
generated configuration to obtain SDC probability samples.
To evaluate the model, We use 80% of the obtained samples
for the training data and 20% for cross-validation. The final
model is trained by using all the samples. We also manage to
run exhaustive fault injection for Pilotnet and Lenet to get all
the ground truth data to better evaluate the accuracy of our
ML prediction. Table I depicts the accuracy of ML prediction
by cross-validation and ground-truth comparison. Our ML
approach manages to achieve very low mean-absolute-error
(MAE) in both cross-validation and ground-truth comparisons.
We also measure the total time needed for AgeisDNN’s ML
approach and the exhaustive fault injection method to generate
the SDC profile for all configurations, as shown in Table II.
The “Training” column depicts the fault injection time needed
to collect training data and to train the ML model. “Pred.
All Config.” denotes the time needed to predict the SDC
probabilities under all configurations. “Est. FI All Config”
shows the time needed to run exhaustive fault injection for
all configurations. AegisDNN’s ML approach significantly
reduces (up to 99.9% for Alexnet) the time needed to generate

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Layer index

102

104

106

W
C

ET
(7

s)

0

0.1

0.2

0.3

0.4

SD
C

 p
ro

ba
bi

lit
y

sdcin
sdcweight

WCET(GPU)
WCET(SGX Enclave)

Fig. 6: Alexnet layer-wise profile

1 2 3 4 5 6 7 8 9
Layer index

102

104

106

W
C

ET
(7

s)

0

0.1

0.2

0.3

0.4

SD
C

 p
ro

ba
bi

lit
y

sdcin
sdcweight

WCET(GPU)
WCET(SGX Enclave)

Fig. 7: Lenet layer-wise profile

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer index

102

104

106

W
C

ET
(7

s)

0

0.1

0.2

0.3

0.4

SD
C

 p
ro

ba
bi

lit
y

sdcin
sdcweight

WCET(GPU)
WCET(SGX Enclave)

Fig. 8: Pilotnet layer-wise profile

the complete SDC profile needed for our algorithm. The exper-
iment results indicate that AegisDNN’s ML approach is able
to generate acceptably accurate SDC profiles in significantly
shorter time.

E. Integrated System Evaluation
In this section, we evaluate AegisDNN against AegisDNN-

Simple and two baseline approaches. AegisDNN-Simple is
a simplified version based on the layer-wise SDC profile of
AegisDNN. It looks through sdcweight(i, j, b) and sdcin(i, j, b)
(if exists) of each layer Li,j , and picks the layers with the top-
n SDC probabilities to protect. The two baselines we consider
are SGX-only and GPU-only approaches, where the entire
DNN model inference is executed only on the SGX enclave
and the GPU, respectively. The GPU-only approach represents
the conventional DNN inference frameworks such as Caffe,
Tensorflow, and Torch as they do not provide any protection
against fault attacks. The SGX-only approach represents the
state-of-the-art such as Occlumency [24], where all DNN
models are executed in the enclave and thus all protected. Two
BERs are considered in the evaluation: 10�6 and 10�7. All
experiments are conducted on the real platform. We target soft
real-time systems and use LST scheduling for this case study.
In order to evaluate the soft real-time performance of our work
from various aspects, we introduce the following metrics:
• Deadline miss ratio: the ratio of jobs that missed their
deadlines during 10 minutes of test period. This metric can
show the practical impact of the difference between our task
model and LST’s optimal condition.

• Average relative response time: the average of the observed
response time normalized to the deadline for all jobs executed
during our test period.

8This is an estimate based on the speed of progress on our tested platform.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Layer index

100

102

104

W
C

ET
(7

s)

0

20

40

60

80

100

SD
C

 p
ro

ba
bi

lit
y

WCET(GPU)
WCET(SGX Enclave)

sdcweight

Fig. 9: INT8-quantized ResNet-18 layer-wise profile
TABLE II: Execution time comparison between AegisDNN
ML approach and exhaustive fault injection appraoch

DNN model Training Pred. All Config. Est. FI All Config.

Pilotnet 3.75h 1.27s 59.84h
Lenet 0.56 0.2s 2.25h
Alexnet 72hr 0.5h 33yr8
Resnet-18 28hr 0.4h 17yr8

• Normalized number of completed jobs: the number of jobs
completed by their deadlines, normalized to the number of
jobs executed under the GPU-only approach.

• Dependability: the percentage of the jobs that successfully
return the same output as in the fault-free condition.

• Quality of Service (QoS): the percentage of the jobs that
successfully return the same output as in the fault-free
condition within their deadlines.
We consider two tasksets shown in Table III. Taskset 1

represents DNN execution scenarios in a self-driving car with
multiple cameras: LeNet for traffic sign text, AlexNet for road
object classification, and PilotNet for steering wheel actuation.
Taskset 2 represents a DNN image classification server using
heavy models: AlexNet and ResNet-18. We use floating-point
models for taskset 1, and INT8-quantized models for taskset
2. Tasks are assigned different periods as the required update
rate may vary depending on camera locations or service types.
We require the system to achieve a dependability threshold

of 90% when the BER is 10�6 as the system is running under a
high degree of attacks, and 98% when the BER is 10�7 due to
a relatively lower error rate. For RANFI, the attacker randomly
injects faults across all the unprotected layers. Whereas for
TFI and BFA, the attacker targets on only attacking the critical
bits found by the corresponding fault injection tool. It is worth
noting that finding the critical bits of DNNs not only requires a
significant amount of time, e.g., 150 hours for one input image
on AlexNet, but also needs visibility to the entire network
parameters. Since AegisDNN prevents such visibility to the
protected layers, such TFI and BFA attacks cannot be launched
in real-life scenarios. We apply both RANFI and TFI to taskset
1. We deploy the most powerful BFA attack9 to taskset 2 since
it contains quantized DNN models that are more robust to

9BFA can successfully attack a ResNet-18 to fully malfunction (i.e., top-1
accuracy degrade from 69.8% to 0.1% on Imagenet 2012 dataset) with only
13 bit-flips out of 93 million bits.

10

AegisDNN AegisDNN-simple SGX-only GPU-only
0

20

40

60

80

100
D

ea
dl

in
e

m
is

s r
at

io
(%

) o
r

N
or

m
al

iz
ed

 n
um

be
r o

f
co

m
pl

et
ed

 jo
bs

(%
)

102

104

106

R
el

at
iv

e
re

sp
on

se
 ti

m
e(

%
)

1.5

96.9
97.15

0

100

8.42 7.37

100

Deadline miss ratio
Normalized number of completed jobs Relative response time

17

121217 127002

0

(a) Taskset 1 with BER=1e-6
AegisDNN AegisDNN-simple SGX-only GPU-only

0

20

40

60

80

100

D
ep

en
da

bi
lit

y(
%

)

0

20

40

60

80

100

Q
oS

 (%
)

93.1

73.9

100

57.9

98
89

100

82
92.9

1.6 3

57.9

97

2 2

82

Dependability TFI
Dependability RANFI

QoS TFI
QoS RANFI

Dependability
 threshold

(b) Taskset 1 with BER=1e-6 (Dependability and QoS)

AegisDNN AegisDNN-simple SGX-only GPU-only
0

20

40

60

80

100

D
ea

dl
in

e
m

is
s r

at
io

(%
) o

r
N

or
m

al
iz

ed
 n

um
be

r o
f

co
m

pl
et

ed
 jo

bs
(%

)

100

102

104

106

R
el

at
iv

e
re

sp
on

se
 ti

m
e(

%
)

0.1 0

96.5

0

98.95 100

7.37

100

Deadline miss ratio
Normalized number of completed jobs Relative response time

10

1

127258

0

(c) Taskset 1 with BER=1e-7
AegisDNN AegisDNN-simple SGX-only GPU-only

0

20

40

60

80

100

D
ep

en
da

bi
lit

y(
%

)

0

20

40

60

80

100

Q
oS

 (%
)

98.3

82.9

100

76.5

98
91

100
90

98.3

82.9

3

76.5

98
91

3

90

Dependability TFI
Dependability RANFI

QoS TFI
QoS RANFI

Dependability threshold

(d) Taskset 1 with BER=1e-7 (Dependability and QoS)
Fig. 10: Integrated system evaluation for taskset 1 under RANFI and TFI

AegisDNN AegisDNN-simple SGX-only GPU-only
0

20

40

60

80

100

D
ea

dl
in

e
m

is
s r

at
io

(%
) o

r
N

or
m

al
iz

ed
 n

um
be

r o
f

co
m

pl
et

ed
 jo

bs
(%

)

102

104

106

R
el

at
iv

e
re

sp
on

se
 ti

m
e(

%
)

1.7

97.9
99.7

0

99.3

5.96 3.26

100
Deadline miss ratio
Normalized number of completed jobs Relative response time

91

38952
112859

0

(a) Taskset 2 with BER=1e-6
AegisDNN AegisDNN-simple SGX-only GPU-only

0

20

40

60

80

100

D
ep

en
da

bi
lit

y(
%

)
0

20

40

60

80

100

Q
oS

 (%
)

99.5

0

100

0

98.8

0 3.26 0

Dependability QoS

Dependability threshold

(b) Taskset 2 with BER=1e-6 (Dependability and QoS)
Fig. 11: Integrated system evaluation for taskset 2 under BFA

TABLE III: Taskset information
Taskset 1 Taskset 2 (INT8-Quantized)

Task DNN model Deadline Task DNN model Deadline

1 LeNet 30 ms 1 ResNet-18 100 ms
2 LeNet 50 ms 2 ResNet-18 200 ms
3 PilotNet 50 ms 3 ResNet-18 200 ms
4 PilotNet 80 ms 4 ResNet-18 400 ms
5 AlexNet 200 ms 5 AlexNet 500 ms
6 AlexNet 250 ms 6 AlexNet 500 ms
7 AlexNet 300 ms

attacks [34]. For the AegisDNN algorithm, we chooseKs from
{1, 2, 3, 4, 5}, allowing a maximum of 5 partitions between
SGX and GPU. We choose Ds from {85, 86, 87..., 90} when
the dependability threshold is 90%, and {90, 91, ..., 100} when
it is 98%.

Figure 10 depicts the deadline miss ratio, relative response
time, normalized number of completed jobs (normalized to
the GPU-only approach), dependability, and QoS metrics for
the taskset 1 under the two BERs and under RANFI and
TFI attacks. Figure 11 shows the results of taskset 2 under
BFA attack. For both tasksets under all three different attack
methods, AegisDNN successfully finds the layer protection
configurations under both BERs and meets the dependability
threshold requirement. For taskset 1, the dependability of
all approaches are lower under TFI compared to RANFI,
indicating that TFI is a more powerful attack. AegisDNN has
the highest QoS among all the approaches evaluated, and close
to 0% of deadline miss ratio even under the high BER of 10�6.
It manages to complete the same number of jobs as the GPU-
only approach during our test period. Such results demonstrate
AegisDNN’s ability to find the highest possible protection

without sacrificing schedulability and number of completed
jobs. It achieves up to 88.8% less failure (misclassification)
rates than the unprotected GPU-only approach, and 99.9%
shorter relative response time compared to the SGX-only
approach. AegisDNN-Simple achieves the second best QoS
under the BER of 10�7, though it does not meet the de-
pendability threshold requirement, as it only protects a certain
number of layers without having the knowledge of the system
overall SDC. It also suffers from drastic QoS loss when the
BER changes to 10�6, because it simply picks the layer with
the highest SDC probability without considering execution
time penalty or schedulability, which leads to 97% deadline
miss ratio. For taskset 2, AegisDNN manages to achieve 99.5%
dependability with a QoS of 98.3%, significantly better than
any other approaches. AegisDNN-simple fails to protect the
layers and the BFA attack makes the entire system a random
generator. It also fails to find a reasonable layer protection
configuration which considers the schedulability of the system,
thereby scoring 0% QoS.

Overall, AegisDNN-Simple sometimes yields good results
in some test cases despite a very simple algorithm but it lacks
guarantees and stability due to its unawareness to schedulabil-
ity and overall system SDC. SGX-only achieves the highest
dependability but the lowest QoS (close to 0%) in all the
test results because almost all the tasks have missed their
deadlines. It also has the highest average relative response
time. GPU-only achieves the highest number of completed
jobs as well as the lowest deadline miss ratio and relative
response time. However, due to its ignorance to attacks,

11

AegisDNN AegisDNN-simple SGX-only GPU-only
0

20

40

60

80

100
D

ea
dl

in
e

m
is

s r
at

io
(%

) o
r

N
or

m
al

iz
ed

 n
um

be
r o

f
co

m
pl

et
ed

 jo
bs

(%
)

102

104

106

R
el

at
iv

e
re

sp
on

se
 ti

m
e(

%
)

0

95.3 96.2

0

100

6.32911 6.32911

100
Deadline miss ratio
Normalized number of completed jobs Relative response time

17

425931 489301

(a) Modified taskset 1 with BER=1e-6
AegisDNN AegisDNN-simple SGX-only GPU-only

0

20

40

60

80

100

D
ep

en
da

bi
lit

y(
%

)

0

20

40

60

80

100

Q
oS

 (%
)

94.1

72.3

100

57.9

97

84

100

81

94.1

1.3 2.9

57.9

97

2.1 2.3

81

Dependability TFI
Dependability RANFI

QoS TFI
QoS RANFI

Dependability threshold

(b) Modified taskset 1 with BER=1e-6 (Dependability and QoS)
Fig. 12: Modified taskset 1 with hard real-time constraints under RANFI and TFI

even under a low BER, it fails to maintain the dependability
threshold requirement. In particular, it suffers significantly
from TFI attack for taskset 1, e.g., almost half of the input
is misclassified under BER=10�6, and completely fails from
BFA attack for taskset 2 (0% dependability and QoS).
Comparison with exhaustive search. We conduct another ex-
periment to evaluate AegisDNN against the exhaustive search
approach. We first compare the execution time of both algo-
rithms. AegisDNN is able to find the configuration for taskset
1 in 243 ms. However, the exhaustive search could not find
the configuration within an acceptable time.10 We thus create
a small taskset for comparison: one task running LeNet with
30ms period, and another task running AlexNet with 100ms
period. We consider the BER of 10�6 and the dependability
requirement of 90%. The exhaustive search takes 508 seconds,
whereas AegisDNN finishes its DP-based algorithm in only
80 ms. Both AegisDNN and exhaustive search manage to
find the configuration meeting the dependability requirement
for this taskset. They both achieve the same QoS of 97%.
Exhaustive search has a slightly lower deadline miss ratio by
0.01%, but other performance metrics are almost identical and
better than the other three approaches.

F. AegisDNN with Hard Real-Time Constraints

Lastly, we have applied AegisDNN to a hard real-time
taskset to check if our analysis given in Sec. V-D has a
meaningful effect in practice. There are several additional
implementation efforts to consider. First, each DNN task is
assigned a static real-time priority with SCHED_FIFO, and we
determine task priorities based on Rate Monotonic (RM). Sec-
ond, given that our hard real-time analysis assumes MPCP [33]
for GPU and SGX, priority boosting is implemented on top
of the standard mutex locks. Third, all tasks are allocated to
the same CPU core in order to exclude the effect of task
partitioning methods. In fact, we found that task allocation
does not give discernible performance changes in our setup
because (i) the system does not have any non-DNN task with
real-time priority, the presence of which may cause preemption
delay to DNN tasks, and (ii) all DNN tasks have an alternating
sequence of SGX and GPU segments, both of which are
critical sections. Thus, scheduling performance is dominated
by the contention on GPU and SGX, but not on CPU cores.
We found that the taskset 1 in Table III cannot be used

as-is under hard real-time requirements and any reasonably
high dependability thresholds (�80%), presumably due to the

10The estimated search time for the taskset 1 is 2.3397697 ⇤ 1012 years.

pessimism of the analysis. Hence, we increased the deadline
of task 1 to 40 ms, task 3 to 100 ms, and task 5 to 250 ms,
respectively, and then AegisDNN successfully found a config-
uration that is expected to meet the given dependability and
hard real-time requirements. We used this modified version of
the taskset 1 for hard real-time experiments.
Figure 12 shows the runtime results of the modified taskset 1

with hard real-time requirements and the BER of 10�6. As
expected from the offline analysis, AegisDNN satisfied the
dependability requirement, with the highest QoS among all
the approaches and no deadline miss during 10 minutes of
experiments. It is worth noting that the modified taskset is still
difficult to schedule on this hardware platform. If we revert
the deadline relaxation of this taskset, it can no longer pass the
schedulability test and we start to observe deadline misses at
runtime although the number of misses is small. Therefore,
these results indicate that our hard real-time schedulability
analysis can reject unsafe tasksets and AegisDNN adheres to
the scheduling behavior assumed by the analysis.

VII. CONCLUSIONS

In this paper, we presented AegisDNN, a DNN inference
framework for timely and dependable execution with SGX.
It is motivated by the limitations of recent work on SGX-
only DNN protection that executes entire DNN model inside
the enclave and does not consider real-time schedulability.
We address such limitations by proposing layer-wise WCET
and SDC profiling mechanisms, ML-based SDC prediction
method, and DP-based configuration-finding algorithm. We
have implemented AegisDNN based on Caffe and Eigen
on a real platform. We conducted a thorough evaluation
by comparing AegisDNN with a total of four different ap-
proaches under three state-of-the-art fault-injection attacks. In
our experiments, AegisDNN was able to find layer protection
solutions close to the optimal ones of exhaustive search,
but in a considerably shorter time. It also outperformed the
other approaches in many aspects, including response time,
throughput, dependability, and QoS.
AegisDNN offers several interesting directions for future

work. First, while this paper focuses on one GPU and one
TEE, AegisDNN can be extended to multiple TEEs and
multiple unprotected computing resources (e.g., distributed
TEEs and Tensor Cores) to further improve protection level
and throughput. Second, other TEE technologies are worth
considering so that AegisDNN can be supported in more
hardware platforms. We plan to explore those topics in the
future.

12

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their valuable
comments and suggestions. This work was sponsored by the
U.S. National Science Foundation (NSF) grants 1943265 and
1955650, and by the U.S. Office of Naval Research (ONR)
grant N00014-19-1-2496. This work was also supported by
the Institute of Information and Communications Technol-
ogy Planning and Evaluation (IITP) Grant (No.2017-0-00067,
Development of ICT Core Technologies for Safe Unmanned
Vehicles) funded by the Korea Government (MSIT).

REFERENCES

[1] Caffe. http://caffe.berkeleyvision.org. Accessed: 2019-03-30.
[2] Eigen C++ library for linear algebra. http://eigen.tuxfamily.org/.

Accessed: 2020-06-30.
[3] Intel Software Guard Extensions (Intel SGX) SDK for Linux

OS. http://intel.com. Accessed: 2020-06-30.
[4] M. Abadi et al. TensorFlow: Large-scale machine learn-

ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[5] J. Abella, M. Padilla, J. D. Castillo, and F. J. Cazorla.
Measurement-based worst-case execution time estimation using
the coefficient of variation. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 22(4):1–29, 2017.

[6] M. Bojarski et al. End to end learning for self-driving cars.
CoRR, abs/1604.07316, 2016.

[7] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu.
Deeplaser: Practical fault attack on deep neural networks. arXiv
preprint arXiv:1806.05859, 2018.

[8] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-
Time Systems. Springer, 2005.

[9] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben. BinFI:
an efficient fault injector for safety-critical machine learning
systems. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2019.

[10] T. Elgamal and K. Nahrstedt. Serdab: An IoT framework
for partitioning neural networks computation across multiple
enclaves. arXiv preprint arXiv:2005.06043, 2020.

[11] G. Elliott et al. GPUSync: A framework for real-time GPU
management. In IEEE Real-Time Systems Symposium (RTSS),
2013.

[12] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee.
Privado: Practical and secure DNN inference with enclaves.
arXiv preprint arXiv:1810.00602, 2018.

[13] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-based
WCET estimation and validation. In 9th international workshop
on worst-case execution time analysis (WCET’09). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[15] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel.
Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961, 2018.

[16] S. Jain, I. Baek, S. Wang, and R. Rajkumar. Fractional GPUs:
Software-based compute and memory bandwidth reservation for
GPUs. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019.

[17] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar. A server-based
approach for predictable GPU access with improved analysis.
Journal of Systems Architecture, 88:97–109, 2018.

[18] H. Kim and R. Rajkumar. Shared-page management for improv-
ing the temporal isolation of memory reservations in resource
kernels. In IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2012.

[19] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel
scheduling for cyber-physical systems: Analysis and case study

on a self-driving car. In IEEE/ACM International Conference
on Cyber-Physical Systems (ICCPS), 2013.

[20] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits in memory
without accessing them: An experimental study of dram dis-
turbance errors. ACM SIGARCH Computer Architecture News,
42(3):361–372, 2014.

[21] A. Krizhevsky et al. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information
processing systems, 2012.

[22] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors.
In IEEE Real-Time Systems Symposium, 2009.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

[24] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu,
L. Zhang, and J. Song. Occlumency: Privacy-preserving remote
deep-learning inference using SGX. In ACM Conference on
Mobile Computing and Networking (MobiCom), 2019.

[25] G. Li, K. Pattabiraman, and N. DeBardeleben. Tensorfi: A
configurable fault injector for tensorflow applications. In IEEE
International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2018.

[26] Y. Liu, L. Wei, B. Luo, and Q. Xu. Fault injection attack on
deep neural network. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2017.

[27] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Cre-
spo. Memory resource management for real-time systems. In
Euromicro Conference on Real-Time Systems (ECRTS), 2007.

[28] A. K. Mok. Fundamental design problems of distributed systems
for the hard real-time environment. PhD Thesis, Massachusetts
Institute of Technology, 1983.

[29] N. Otterness et al. An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads. In IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2017.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

[31] P. Patel et al. Analytical enhancements and practical insights for
MPCP with self-suspensions. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2018.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[33] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time syn-
chronization protocols for multiprocessors. In IEEE Real-
TimeSystems Symposium (RTSS), 1988.

[34] A. S. Rakin, Z. He, and D. Fan. Bit-flip attack: Crushing neural
network with progressive bit search. In IEEE/CVF International
Conference on Computer Vision, 2019.

[35] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee,
N. Mulholland, D. Brooks, and G.-Y. Wei. Ares: A framework
for quantifying the resilience of deep neural networks. In
ACM/ESDA/IEEE Design Automation Conference (DAC), 2018.

[36] S. K. Saha, Y. Xiang, and H. Kim. STGM : Spatio-Temporal
GPU Management for Real-Time Tasks. In IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2019.

[37] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. Panoply: Low-
TCB linux applications with SGX enclaves. In Network and
Distributed System Security Symposium (NDSS), 2017.

13

[38] F. Tramer and D. Boneh. Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. arXiv preprint
arXiv:1806.03287, 2018.

[39] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted
execution environments on gpus. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[40] Y. Xiang and H. Kim. Pipelined data-parallel CPU/GPU
scheduling for multi-DNN real-time inference. In IEEE Real-
Time Systems Symposium (RTSS), 2019.

[41] M. Yang et al. Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial chal-
lenge. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019.

[42] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson,
and F. D. Smith. Avoiding pitfalls when using NVIDIA GPUs

for real-time tasks in autonomous systems. In Euromicro
Conference on Real-Time Systems (ECRTS), 2018.

[43] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin.
Fault sneaking attack: A stealthy framework for misleading deep
neural networks. In ACM/IEEE Design Automation Conference
(DAC), 2019.

[44] H. Zhou, S. Bateni, and C. Liu. S3DNN: Supervised streaming
and scheduling for GPU-accelerated real-time DNN workloads.
In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018.

[45] Q. Zhu, W. Li, H. Kim, Y. Xiang, K. Wardega, Z. Wang,
Y. Wang, H. Liang, C. Huang, and J. Fan. Know the unknowns:
Addressing disturbances and uncertainties in autonomous sys-
tems. In International Conference on Computer-Aided Design
(ICCAD), 2020.

14

