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Abstract—Thermal awareness is increasingly important for
real-time systems deployed in harsh environments. As high chip
temperature can cause frequency throttling or shutdown of
processor cores at unexpected times, many real-time scheduling
techniques have been developed to ensure continuous, fail-safe op-
eration of safety-critical tasks with stringent timing constraints.
However, their practical use remains largely limited due to the
fact that it is extremely difficult to obtain a precise thermal model
of commercial processors without using special measurement
instruments or access to proprietary information, such as the
power traces of micro-architectural units and detailed floorplans.

In this paper, we propose a data-driven structured thermal
modeling scheme that is directly applicable to commercial off-the-
shelf multi-core processors used in real-time embedded systems.
By using a small number of thermal profiles obtained from on-
chip temperature sensors, our scheme can accurately predict
the processor operating temperature under dynamic real-time
workloads at various CPU frequencies and ambient conditions.
The thermal model derived from our scheme is fast to converge
and robust against different sources of errors. Our scheme
is non-intrusive, meaning that it does not require changes to
the software code or the hardware packaging of the target
system. Furthermore, our scheme can estimate the relative
power consumption of the processor for a given workload and
clock frequency level. Experimental results from a multi-core
ARM platform indicate that our scheme estimates the operating
temperature with a maximum error of 2.5% while the latest prior
work results in 23% error. This highly accurate modeling enables
us to obtain the maximum achievable processor utilization that
does not cause a thermal safety violation.

I. INTRODUCTION

A major concern in recent embedded systems is the high
heat dissipation caused by complex applications running on
high-performance multi-core systems-on-chips (SoCs). The
high temperature also increases power consumption [2], re-
duces the chip reliability [35], [36], and leads to chip burnout.
Due to these reasons, many modern operating systems (OSs)
monitor SoC operating temperatures using on-chip tempera-
ture sensors to ensure thermal-safe operation.

The reactive thermal management mechanisms implemented
to protect the system from burnout raise a challenging problem
in real-time embedded systems. To protect the processor from
thermal damage, OS thermal governors define a set of policies
to dynamically throttle CPU core frequencies or shut cores
down [5], [12], [37] when temperatures exceed operationally
safe limits. Such thermal countermeasures, however, lead to
timing unpredictability since the deadlines of tasks could
be unexpectedly violated by reduced processing speed or
temporarily unavailable CPU cores.

To prevent the negative impact of such performance dis-
ruption, extensive studies have been conducted including the
techniques based on Dynamic Voltage Frequency Scaling
(DVFES) [10], [26], [30], [34], [38] and forced sleeping dur-
ing the execution of hot applications [4], [16], [22], [20],
[19], [38]. Moreover, offline analysis has been proposed to
guarantee the thermal safety of real-time tasks by bound-
ing the maximum operating temperature in the steady [13],
[14] and transient states [29] of a given system. These ap-
proaches assume a priori knowledge of a precise thermal
model for temperature prediction, resource management, and
task scheduling, and require accurate simulation tools or extra
equipment for validation. Therefore, identifying an accurate
thermal model of a given multi-core SoC is the fundamental
requirement to substantiate these techniques in practice, and
we call it a thermal system identification problem in this paper.
Such a thermal model should also be in a format compatible
with those used in prior work so that it is applicable to the
timing and thermal analysis of a wide range of real-time
systems.

Despite its importance, the thermal system identification
of commercial off-the-shelf (COTS) processors still remains
a challenging problem. Existing numerical simulation tools
like HotSpot [18] can construct a compact thermal model
for modern VLSI devices by using a resistance-capacitance
(RC) thermal network to capture the transient temperature and
generate a heatmap at each time instant. However, they are
not difficult to use with modern COTS multi-core processors
because the information required by these tools is proprietary
and not publicly available. An exhaustive search approach for
approximating this information through reverse engineering
is time-consuming and prone to unacceptably high inaccura-
cies [31], especially for transient temperature estimation.

The latest work [1], [31], [32] partially addresses these
issues by calibrating the parameters of thermal models without
power traces and detailed floorplans. However, it is not appli-
cable to systems using priority-based preemptive scheduling
where execution patterns are dynamic [13], [14], [29], [1],
[7]. Similar to HotSpot, it uses a time-driven prediction model
where the temperature is calculated for each time instant under
static workloads. This makes the model not only slow but
also infeasible to capture the correct operating temperature
when multiple tasks with different periods are concurrently
scheduled. Due to the extensive transient temperature data
needed for system identification, it suffers from the numerical



instability in the temperature model especially in the presence

of different types of errors and sensor limitations.

In this paper, we propose a data-driven structured thermal
modeling scheme for COTS multi-core processors in real-time
embedded systems. Our scheme requires only a small number
of temperature traces from on-chip thermal sensors which are
standard in today’s processors. To achieve a precise thermal
model of SoCs, our scheme estimates the location of CPU
cores on the chip floorplan and considers this information dur-
ing thermal parameter estimation. This reduces the number of
unknown parameters so that a thermal model can be estimated
with fewer temperature profiles. Besides, it allows obtaining
a model with robustness against noise, reduced order, and
ensured stability. We also provide techniques to improve the
accuracy of thermal parameters through the ensemble of mea-
surements from different frequency levels, execution patterns,
or redundant experiments. Unlike prior work, our scheme is
particularly well suited for use in real-time systems because
the thermal model obtained by our work does not assume fixed
execution patterns of application tasks and is thus applicable
to any systems with preemptive work-conserving schedulers.
Contributions. The contributions of this paper are as follows:
o We present a thermal modeling scheme that has low com-

putational cost by design. Given that steady-state profiles are
much compact than transient-state profiles, our scheme first
estimates the thermal parameters of a given system using
only steady-state profiles, and then uses transient-state data
for calibration purposes.

o We characterize various sources of errors in thermal system
identification, and reduce their negative effects through the
multiple refinement stages of our scheme. Our scheme also
enables locating errors in the temperature profiles.

e Our scheme identifies the relative distance between CPU
cores and produces an estimated chip floorplan from tem-
perature profiles. It can also estimate the relative power
consumption for a given workload on each CPU core.

e We present techniques to further improve the accuracy
of thermal parameters by exploiting the ensemble of mea-
surement data obtained at various frequency and workload
settings.

o The effectiveness and accuracy of our proposed scheme is
demonstrated with extensive experiments on a real ARM
embedded platform. The results show that our scheme es-
timates the operating temperature with the maximum error
ratio of 2.5% while the state-of-the-art gives 23%. Our
scheme also addresses the problems of the start-of-the-art
that disallows preemptive scheduling and overestimates the
maximum achievable utilization by up to 18%.

II. RELATED WORK

There exist well-known numerical tools to estimate the chip
operating temperature. For instance, HotSpot [18] solves the
system of differential equations using the fourth-order Runge-
Kutta numerical method through fine-granularity iterations.
ATMI [27] proposed an analytical method to provide explicit
solutions to the heat equation more efficiently than the Finite

element method (FEM) and finite-difference methods (FDM).
The authors of [11], [21] constructed a thermal model with the
measured power and temperature trace of each subsystem on a
real mobile platform. Power Blurring [39] calculates tempera-
ture distributions using a matrix convolution technique, unlike
the finite-element analysis (FEA) used in other simulation
tools like HotSpot.

There are several studies that estimate or bound chip oper-
ating temperature based on HotSpot, IR thermal imaging, and
hardware performance counter measurements. An analytical
method proposed in [17] utilizes a reduced RC thermal model
that considers only vertical thermal conduction while ignoring
the lateral thermal conduction. This method requires signifi-
cantly less computational effort and less memory demand for
temperature estimation than tools like HotSpot. The neural
network approach to temperature estimation introduced in [33]
predicts the rate of temperature changes by using hardware
performance counters and the current estimate of the thermal
map. During dynamic task execution in the design space
exploration process, several features are extracted for the
model by recording data taken from performance counters and
dynamic heatmaps generated from IR imaging. Their run-time
method is able to estimate temperature changes, but cumulative
error forces the absolute temperature estimation to diverge
from the actual chip temperature. The authors of [6] proposed
a simplified temperature model that considers the transient
and steady state thermal behavior (temporal effect) of multi-
core processors in addition to the thermal conductance and
dependency (spatial effect) of nearby cores. Data gathered
from offline simulation using Hotspot was used to generate
a temperature model considering only the temporal effect and
another model based on the regression analysis of that data
was then used to consider the spatial effect. The combination
of both approaches led to temperature overestimation of up
to 6°C. However, to apply these approaches in practice, they
require detailed information about device power traces and
floorplans which are not publicly available for commercial
SoCs. Furthermore, some of these approaches require highly
precise thermal imaging from IR cameras, assuming the ab-
sence of cooling packages like heat-sinks and fans.

There have been other studies that focus on thermal sys-
tem identification based on on-chip sensors and linear con-
trol systems [31], [32], [8], [1], [24], [23]. The authors of
[31], [32] proposed a calibration-based method to predict
thermal behavior by modeling the thermal impulse response
of each CPU core with respect to core utilization. Simi-
lar to [8], they utilized a modified Generalized-Pencil-Of-
Function (GPOF) [15] to estimate the impulse response of
each application from utilization and temperature traces. In
their work, the thermal effects due to conduction between
CPU cores are taken into account by the transfer matrices
constructed from self-core and other-core transfer functions.
The fundamental contribution of [31], [32] is based on the
assumption that a thermal model can be constructed using
thermal fingerprint of different applications on SoCs. However,
some of the key thermal parameters of SoCs are characteristics



of semiconductor technology and can be obtained independent
of the workloads executing on the systems. Hence, only relying
on thermal fingerprints may lead to inaccurate thermal system
identification and a large stored volume of transfer functions
in the profiling stage because each transfer function has to be
estimated for each application on each CPU core at different
frequency levels. Moreover, if a task is preempted by another
task or is suspended, the current thermal model is no longer
valid. In order to maintain consistency in the temperature
estimation, for each context switch, a convolution of the
utilization trace of the new application with the application’s
thermal impulse response vector has to be performed, which
can cause additional errors in the temperature estimation of
the whole SoC. This spatio-temporal thermal dependency is
hard to capture in their model for preemptively-scheduled tasks
on the same CPU core or concurrently-executing tasks on
other CPU cores. Due to this reason, despite all the other
benefits provided, the applicability of their approach to real-
time systems is limited. In [23], the thermal parameters of
mobile devices equipped with SoCs and cooling packages are
estimated. In their work, the chip temperature is considered as
a single value and thermal conduction between CPU cores and
other subsystems are not taken into account. The parameter
identification process proposed in [24] estimates thermal-
coupling coefficients by running CPU benchmarks on CPU
cores one at a time measuring the steady state data from
measurements. Lastly, the authors of [1] proposed a thermal-
isolation server to ensure the thermal safety of real-time multi-
core systems. Their server policy introduces a new direction
to real-time system design and has inspired other thermal-
aware real-time systems [14], [13]. However, since the thermal
modeling part of their work is almost similar to the thermal
fingerprinting approach in [31], [32], they also have the same
limitations mentioned above.

All aforementioned research suffers from two major prob-
lems. The first is the lack of persistency of excitation in
system identification, which means that the collected input-
output data may not be rich enough to capture all the thermal
characteristics of the chip. The need for a sizable amount of
noiseless data due to a large number of unknown parameters
limits their applicability in practice. Second, an exhaustive
search is required for thermal system identification. However,
because of the existence of noises, poor precision of samples,
and low sampling rate of on-chip sensors, an enormously high-
order model can be obtained, which leads to heavy intensive
computation in running the models with estimated parameters.
A reduced order model is particularly important to achieve an
accurate and fast thermal model as the number of CPU cores
in embedded SoCs increases.

In this paper, we present a thermal modeling scheme
solved by the matrix exponential method, which overcomes
the limitations of prior work. Our scheme can estimate the
thermal parameters of the chip that represent its semiconductor
technology and cooling package, without requiring any infor-
mation about the applications running on the system. We
propose a two-stage scheme that first extracts the thermal

information from quantized and imprecise measurements of
steady-state temperature profiles with on-chip temperature
sensors and estimates relative location of CPU cores on
chip floorplans. With the information from the first stage,
the second stage gathers information from a limited amount
of transient data to complete the estimation of the thermal
parameters. This structured estimation of thermal parameters
ensures the stability of and accuracy of our thermal model
and reduces the order of model while filtering out noises from
various sources.

III. SYSTEM MODEL

We consider a homogeneous multi-core processor where
each CPU core uses the same microarchitecture. Each core
is assumed to have a dedicated temperature sensor that is
accessible by the OS at runtime. This assumption can be easily
met in many commercial processors such as Samsung Exynos
and Intel Core processors. We assume that the following
information is not available to use: the chip floorplan, the exact
locations of on-chip temperature sensors, and the power traces
of the processor. In the rest of this section, we introduce the
power and temperature model used in this paper.

A. Power Model

The total power consumption of CMOS circuits at time
t is modeled as the summation of dynamic and static pow-
ers [3], i.e., P(t) = Ps(t) + Pp(t). Static power Ps depends
on the semiconductor technology and the operating temper-
ature caused by current leakage. Hence, it can be modeled
as: Pg(t) = k16(t) + ko, where k; and ko are technology-
dependent system constants, and 6(t) is the operating tem-
perature [25]. Dynamic power Pp(t) is the amount of power
consumption due to the processor operating frequency f at
time ¢, modeled as Pp(t) = ko f(t)®, where s and kq are the
system constants that depend on semiconductor technology.

B. Temperature Model

We consider the temperature model widely used in real-
time systems [1], [7], [13], [14], [22], [24], which follows
the well-known linear time-invariant (LTI) model. Hence, the
temperature model for a multi-core CPU with n cores is given
by the following equation:

[ol(t)]nxl = Anxn [G(t)]nxl + ann [P(t)}nxl (1)
where 0(t) is the n X 1 matrix of the CPU core operating
temperatures relative to the ambient temperature, and P(t) is
the power consumption of all cores at time ¢. A is an invariant
n X n matrix and it is based on the characteristics of the semi-
conductor technology. It quantifies the effect of conduction
between adjacent cores, convection among all cores, and a
difference between ambient and operating temperature.

B is the diagonal n x n matrix and it captures the effect
of power consumption on the temperature of each core. For
homogeneous multi-core CPUs, since all CPU cores follow
the same power model, the matrix B can be represented as
b x I, where I is the n X n identity matrix. Similar to A, the
values of b are invariant to the changes in power consumption.



Hence, the problem will be estimating the values of the
matrices A and B (= b x I) without any prior knowledge or
direct measurement of CPU power consumption. We will show
that it is impossible to estimate the value of b without having
any knowledge of CPU power consumption; instead, we will
estimate B x P which matters in calculating the temperature
in the LTI model.

C. Problem Description

Given a multi-core CPU equipped with on-chip temperature
sensors, construct an accurate and fast thermal RC model by
estimating A and B x P of the CPU from a limited number
of temperature profiles, without requiring a priori knowledge
of the floorplan, cooling package, and power traces.

IV. LIMITATIONS AND ERRORS

Before continuing our discussion, we must identify some
limitations to thermal parameter estimation on real-life plat-
forms. Identifying these potential sources of error is critical
to our data analysis and comprehension. It allows us to
address the noise and limitations of our profile data set by
preprocessing raw data and improve the accuracy of thermal
parameters through the ensemble of measurements from dif-
ferent frequency levels and workload settings.

The largest sources of error in the raw data are the on-
chip temperature sensors. In CPUs for embedded systems, the
sampling rate of temperature sensors is, generally, very low.
This limitation may cause inaccuracies in data measurements
since sudden changes in CPU-core utilization and their effects
on operating temperature may go undetected by the sensors.
Furthermore, the location of temperature sensors on each
CPU-core may vary and may not coincide with the cpu-
core’s hotspot. Additionally, the data sampled from the on-
chip temperature sensors is subject to quantization and, thus,
limits the precision of measurement. This imprecision can be
exacerbated due to the superposition law in thermal modeling
for multi-core CPUs [13]. Moreover, due to differences in
the construction and architecture of on-chip thermal sensors,
their response time may vary. Hence, the sensor data may not
represent the actual temperature if the CPU utilization changes
in a relatively short time interval. Over time, if there is no
fluctuation in CPU utilization, the sensor data will converge
to the actual CPU core temperature. Therefore, we can assume
that this type of error only affects the transient-state data while
the steady-state data is unaffected.

Our thermal model considers temperatures relative to the
ambient temperature. Although we assume that the ambient
temperature remains invariant during profiling, in reality, it
may change even in a room or a thermal furnace. The fluctua-
tion of the ambient temperature while profiling can introduce
noise into the raw data. Heat convection caused by room fans,
air conditioners, or active temperature control in a furnace
can also lead to noisy thermal profiles, by directly affecting
the heat transfer between the device and the surrounding
environment.

V. THE PROPOSED SCHEME

In this section, we introduce our scheme for thermal system
identification of a given multi-core processor. The entire work-
flow of the proposed scheme is illustrated in Fig. 1. The very
first step is profiling steady-state temperature data for a set of
designed workloads. Then, the scheme removes noise from the
raw data set and detects possible inconsistencies in thermal
profiles (@), and performs the floorplan estimation (@).
By using the estimated floorplan template and the collected
steady-state data, the value of the matrix A is estimated in
terms of the power parameters (@). The parameters B x P
are then estimated by analyzing a subset of the transient-state
data at the final stage (@). One of the reasons that we propose
dividing analysis into the steady-state and the transient-state
stages (@ and @) is to cope with the various types of errors
that may be introduced during temperature profiling. If one
tries to tackle this problem by using both data at the same
time, errors in the transient-state data can adversely affect
the characterization of the system in steady state because the
transient-state data has a much larger number of data points
than the steady-state data. Moreover, our proposed scheme
has a low computational cost as it requires processing only a
few data points in the steady-state stage to obtain the thermal
characteristics of the system.

A. Thermal Analysis and Steady-State Profiling

The proposed scheme primarily uses the steady-state data
for thermal parameter estimation since it iS more robust
to measurement errors than the transient-state data but still
contains the required information about semiconductor tech-
nology and power consumption. Hence, before introducing the
detailed stages of our scheme, we analyze the thermal model
and provide the reasoning behind the steady-state profiling.

Our goal is to estimate the thermal parameters related to
the steady-state data. After solving the first order equation of
Eq. 1, we have

t
0(t) = Ochip + elt—to)Ag, 4 / e(t_S)ABP(S)ds 2)
to
where [Ocniplnx1 is the total heat dissipation caused by IP
blocks on the chip and idle power of CPU cores. We assume
that all IPs generate a constant amount of heat. This term
captures the heat conduction between all parts of the chip
and the CPU. When the CPU cores are idle for a long time,
0.nip can be measured. It is worth noting that due to the
location of CPU cores and their sensors on the floorplan, the
steady-state temperature of each idle core can be different.
The second term is the homogeneous solution which is the
thermal response due to the initial temperature difference from
the ambient. The third term is the non-homogeneous solution
caused by the input power signal.

For thermal profiling, our scheme collects thermal data
while the CPU is running at a fixed frequency level. It is
worth noting that this is only for profiling purposes and the
thermal model found by our scheme can be used with DVFS
policies. Given that we analyze the data collected at a fixed



Steady-State
Profiling

Profile 1 —_— 02 - 02

—_— V=

Profile 2 - gf’n

Thermal profile (Y)

@ Anomaly Detection during Data Preprocessing

Xy = ) X (h=¥p) + Y,

grfn —

(3 Floorplan Estimation

Anomaly detection >

Thermal Adjacency

Profile n+1

Graph
4 (template construction)

®

Thermal Parameter Estimation |e
with Transient-State Data

O]

=l

A & BP <«

Thermal Parameter Estimation

A

with Steady-State Data

Figure 1: Proposed thermal system identification scheme.

CPU frequency, the total power can be considered as a function
of temperature at any time instant ¢ because the other factors
remain invariant during task execution. For homogeneous
multi-core CPUs, the power for each core is Pg(t) when the
CPU is idle, and Pg(t)+ Pp(t) when the CPU executes some
workload and all cores are fully utilized. Hence, Eq. 2 can
be written as:
0(t) = Oopip + 71020, — A~1 (1At )BP.  (3)
In the steady state, the second term disappears because the
steady-state operating temperature depends only on the power
consumption (third term) and it is unaffected by initial tem-
perature 0. Suppose 6°° represents the operating temperature
in the steady state, then:

6> = lim 0(t) = 6.1, — A~ BP.

“4)

We are interested in finding the value of matrices A and
BP. It is worth noting that the only control parameter is the
power signal. It means that for each profiling procedure, it is
possible to execute workload on any subset of CPU cores or
hot-unplug them but the actual value of the power remains
unknown. Let [Yj],x1 denote the operating temperature of
the CPU cores when the i-th core is fully-utilized and Y
represent the temperature of the CPU when all CPU cores
are idle. Furthermore, let [Y],xn = [Y1Y2...Y,]? be the
matrix of temperature profiles of the CPU in the steady state.
For instance, y; ; in the row ¢ and column j of Y is the
temperature of the j-th CPU core when tasks are executing
only on the i-th CPU core. Hence, according to Eq. 4,

Y — [YoYo..YolX,, = Pp (—A'B). (5)

We solve the equation to find the value of A. Therefore,

A=-Ppb(Y—[YoYo..Yo©) L (6)

By denoting A = (Y — [YoYo..Yo]T)" and v = b Pp,

we have

A= —vA. (7
Therefore, by estimating A and ~, we can determine the value
of A. A can be determined by profile without any knowledge
of power consumption. The value of + cannot be determined
by the information from the steady-state profiles even with
temperature profiles encompassing various CPU frequencies.

As shown in Eq. 7, we only need n + 1 profiles to estimate

the value of A, i.e., one profile measured when all cores are
off, and n profiles when each core is fully utilized one at a
time. However, because of errors and limitations discussed in
Section IV, there may be a considerable amount of noises in
estimating the value of A.If the profiles are noiseless, A will
be a symmetric matrix with positive values on diagonal and
non-positive values on non-diagonal elements. Zeros at a; ; of
A represent that there is no heat conduction between cores
i and j. It is noteworthy that a non-symmetric A caused by
noisy data sets can lead to imaginary eigenvectors which is
impossible in practice. We will later propose several methods
to address different types of noises. Moreover, we will extend
our analysis to reach a more precise A by fusing more data
profiles. By using those techniques, it is not necessary to have
the exhaustive combinations of Y ; for profiling purposes, but it
is still possible to benefit from multiple auxiliary data obtained
from the same core configuration.

One interesting property of A and A is that both have the
same eigenvectors. Additionally the eigenvalues of A are —vy
times the eigenvalues of A. We will use these properties to
find the value of v later and justify why it is impossible to
estimate absolute power consumption from thermal profiling.

B. Anomaly Detection during Data Preprocessing

Compensating for various sources of errors in the steady-
state data is critical to accurately estimate the system thermal
parameters. For instance, the negative impact of limited sensor
precision and transient noises can be reduced by applying a
low-pass filter to each steady-state temperature profile before
constructing an observation matrix. Beyond these basic meth-
ods, this section presents how our scheme detects inconsisten-
cies and anomalies when multiple thermal profiles exist.

As we discussed in Sec. V-A, our scheme needs steady-
state temperature profiles which are obtained when only one
of the CPU cores is fully utilized at a time. If there are
more profiled data, it is possible to detect if there is any
inconsistency in some of the temperature profiles. For instance,
if the ambient temperature in one profile is different from that
in other profiles, it can be detected and rectified. Our post-
processing error detection tests if the observed data Y; are
consistent with other auxiliary profiles that are obtained when



more than one CPU core is fully utilized. If any error is found
from the observed data Y;, the corresponding column of Y
will be rectified with the correct value.

We now present the details. Let Xz denote the steady-state
temperature of CPU cores. Z = Z123 . . . z,, is the predicate that
shows the status of CPU cores in the profile test where z; €
{0,1} represents whether the i-th CPU core is fully utilized
(z; = 1) or not (2; = 0). We are interested to test primary
observed data Y; by using auxiliary data Xs to detect the
prospective error in Y. According to the thermal superposition
theorem [13],

n
Xz =) zx(Yi—Yo)+ Yo (8)
i=1

Suppose that the available tests for a hypothetical 3-core
CPU are Y, for ¢ € [1, 3] and the auxiliary test Xqg7. Hence,
X151 = Y1 + Y3 — Y. In the idle condition where there is
no errors in the data, the equation much hold. Let’s suppose
there is an error data in one of them. We are interested to
detect or correct it. By adding an error term € to the equation,
we have X157 = Y1+ Y3 —Y( + ¢ 3. If there is no error in
data, one can assume that €1 3 = [0,0,0]7. If there is an error
in one of the tests, it can be detectable but not correctable.
Now suppose that there is another test X7 available, hence
Xgr=Y2+Y3-Yy+ €.

In order to detect and correct the error, we design a test in an
n-hypercube format. Each corner of the hypercube represents
one measurement setting Z, and there is only a one-bit differ-
ence in the Z values of two neighboring corners. Therefore,
the hamming distance of Zs of each pair of neighbor corners
is 1. In this way, it is possible to examine the correctness of
each test with its neighbors. It is also possible to spot the error
with a sufficient number of tests.

‘ Xlll
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XﬂII

Y, Y Y,

(@) (b) ()
Figure 2: a) Auxiliary test for detect one error in either Y or Y. b)
Auxiliary test for detect one error in either Y or Y 3. ¢) Second-tier
testing of auxiliary tests.

We explain the procedure by making an example. Fig. 2a
illustrates the auxiliary test Xg77. The blue side shows the
verification of the Y, and Y. If all the data are consistent,
one can conclude that there is no single error in Y; and Y.
If there is an error in one data an additional test is needed
that we will explain later. The green side in Fig. 2b shows
the verification for Y and Y. If there is no single error, the
data on this side is also consistent.

Now suppose that both sides are inconsistent, then it is easy
to say that the data of Y is faulty because we assume that
there is only one error in observation profiles and the edge of

(Yo,Y) is the intersection of both sides. Since Y is zero
base and not faulty, Y, is noisy.

We now discuss the case where €13 # 0 and €33 = 0. To
locate the error in the data, we use the auxiliary test that make
a side with two of suspicious tests (the yellow side in Fig. 2c).
In this case, we consider X177 that can make a side with X557,
Xoig and Xqg7. If the data of this side is consistent, the error
will belong to Yy, otherwise to the test X571

In generalization, any subset of verified steady-state tem-
perature profiles X = {Xz,,X,, -, Xz } such that Z, =
@;_1Z,; where @ is the bitwise exclusive disjunction operator
(XOR) can validate the data of the profile X . By using
it, the total number of auxiliary profiles with the hamming
distance of 1 for a single anomaly detection is bounded by
(g) — 1. For spotting the error, at most one extra profile with
the hamming distance of 1 from two suspicious profiles is
required. In fact, the profile that contains the error can be found
by performing bitwise exclusive disjunction on predicates of
inconsistent profiles. Only when there exist two inconsistent
profiles, an extra auxiliary profile is required. The timing
complexity of the proposed anomaly detection algorithm is
O(n?) for detecting and correcting one single error.

By employing the same technique, it is easily possible to
extend the proposed method for two errors in the tests by
adding another tier to test the auxiliary tests with each other.
Additionally, it is possible to conclude that there exists a single
error or two errors in the data. It is important to mention that
in this paper, it is assumed that errors in the two tests cannot
conceal each other.

C. Floorplan Estimation

Hereby, we introduce a greedy algorithm to estimate the
topography of the CPU cores in the chip. Later, we use
this information to calibrate the thermal term b Pp in the
temperature model by using the transient-state data. One of the
steps to refine the thermal parameters of a chip is to estimate
the parameters complying with the floorplan. We present a
mechanism to estimate the relative location of the CPU cores
on a given chip.

The intuition behind our proposed algorithm is that the
amount of heat dissipation from a heat source to a closer
object is more than that to a farther object. Therefore, we
expect that the temperature increase due to heat conduction
of adjacent CPU cores is more than that of non-adjacent CPU
cores. We introduce a fully-connected weighted graph where
the edge weight represents the temperature increase of a CPU
core when its neighboring cores are fully utilized. For instance,
suppose there is a quad-core CPU where each core is labeled
as C; with ¢ € [1,4]. The fully-connected graph of this CPU is
illustrated in Fig. 3a. The weight of each edge, w;_;, represents
the temperature increase of a core C'; when another core C; is
fully utilized (i.e., y; ; —y?). It is worth noting that w; ; # w; ;
not only because of noise but also due to the location of
the on-chip temperature sensor relative to the hotspot of each
CPU core, although the amount of heat dissipation from each
homogeneous core is ideally the same.
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Figure 3: a) Example of adjacency graph of a quad-core CPU. b)
Reduced uni-directed graph c) Final CPU affinity graph.

We are interested in the relative temperature increase of
core C; when it is fully utilized compared to when another
core Cj is fully-utilized. Hence, we have w; ; = yii — ¥i,;j-
We also remove self-loops from the graph for simplicity. After
this, the graph of Fig. 3 is reduced to a graph where all
weights are positive. Next, we convert the bi-directed graph to
a uni-directed graph by taking minimum of the edges in the
different direction (i,e., min{w; ;,w’ ;}) as shown in Fig. 3b.
It is noteworthy that one can use average, maximum or any
reduction operation for this stage. As shown in Fig. 3b, the
temperature increase of CPU core C; when the CPU core Cy
is fully utilized is because of heat conduction of CPU cores
Cs and Cjs. In other words, the CPU core Cy is heated up
because of transitive heat transfer from C; to both Cy and Cs
and then heat transfer occurs from these CPU cores to the CPU
core Cy. Therefore, there is only transitive heat conductivity
between the CPU core C; and the core Cy.

The floorplan estimation algorithm is shown in Algorithm 1.
By using this graph (line 2-4) and also the aforementioned
intuition, we estimate the relative location of the CPU cores
on the floorplan. To do this end, we begin from one arbitrary
core (line 9), let’s say C7, and find the minimum value of
all weights connected to its corresponding node in the graph
(line 29-31). In this example, the minimum weight is 2 for both
CPU cores (5 and C'5. Next, we find the minimum weight of
CPU cores (5 and C3 from the unvisited node list, one at
a time (line 16-25). We continue this step until all nodes are
visited (line 8). If some of the visited CPU cores have the same
value (within some error margin 4), they are connected. In this
example, the error margin is 1 so the cores are connected as
illustrated in Fig. 3c. The time complexity of this algorithm
is O(|E||V|) because each node is visited only once for its
edges and the function £indMinEdges can be O(1) using
precomputed tables or memoization.

Furthermore, if the temperature profiles of on-chip IPs such
as an integrated GPU are available, the same approach can be
applied to locate the corresponding IP by using the temperature
increase when each CPU core is fully-utilized. In this way,
there is only one edge from each CPU core C; to the IP.

D. Thermal Parameter Estimation with Steady-State Data

We propose a method to calibrate the thermal parameters
based on the floorplan estimation discussed in the previous

Algorithm 1: Floorplan estimation algorithm

1 FloorPlanEst
Input: A and error margin &
Output: G(V, E)
2 B = dzag([l) * ll,n — 121 /+» 1 is the matrix of

ones and diag gets diagonal elements of

matrix */

3 C = min(B,BT)

4 Construct graph G’ from C

5 Q =[] // empty queue

6 E =[] // edge set

7 V =[] // vertex set

8 while |V| # |C| do

9 node = select randomly one unvisited node

from G’

10 Q.push(node)

u while |Q| > 0 do

12 node = Q.top()

13 node.visited = true

14 Q.pop()

15 neighbors = findMinEdges (node, 9)

16 foreach Node = € neighbors do

17 if x.visited = false then

18 Q.push(z)

19 V .insert(x)

20 E.insert({node,x})

21 end

2 else if E.contains({node,x}) = false
then

23 E.insert({node,x})

24 end

25 end

26 end

27 end

28 return G(V, F)

29 Function findMinEdges (node, 6):

30 min = the minimum value of weights of edges

with the source vertex node
31 return a list of nodes directly connected to node

whose edges weights are less than min + 0

section. The thermal parameter estimation without consider-
ing the floorplan may not be applicable in practice.! Some
important properties of A according to heat transfer are as
follows:

e A is a symmetric matrix.

o The elements on diagonal of A are negative.

o The zero values of non-diagonal elements represent a pair
of corresponding CPU cores are not adjacent.

o All non-zero values of non-diagonal elements are positive.

These properties of A guarantee that there exist n real

IThis is because Y can be inaccurate and the properties of A may be
violated if the floorplan is not considered.



negative eigenvalues and a set of n eigenvectors, one for each
eigenvalue, that are mutually orthogonal. The negative values
of all eigenvalues ensure the obtained thermal model is stable.
This stage estimates the values of thermal parameters in way
that it not only complies with the floorplan but also reduces
the effect of noisy data observed data in A.

The matrix A is constructed according to the estimated
floorplan. If there is no thermal interference between two cores
C; and C} in the estimated floorplan, the corresponding value
in the matrix, i.e., a; j, is zero. A single value can be used
for all adjacent CPU cores in the matrix A as they share
the same heat dissipation increase value. It is worth noting
that, depending on the user’s accuracy demand, more distinct
non-zero values may be used. For the explained example, the
structure of matrix A will be
a; as as 0
as az 0 ag
as 0 asz as
0 ag a5 Q4

We propose a gradient descent algorithm to find the param-
eters according the estimated floorplan. For the calibration of
the parameters, A is compared with the inverse of Y, which
means that A follows the estimated floorplan template and its
inverse must be close to the temperature profiles. We propose
the cost function as follows

argmin [[A~ — Y% ©)
a;: i € [1,7]
where r is the number of unknown parameters. The sign of
each parameter has to be carefully considered in the imple-
mentation, taking into account the properties of A discussed
before (e.g., diagonal elements of A should be positive and
the rest be non-positive).

A=

E. Thermal Parameter Estimation with Transient-State Data

In this section, we discuss how to estimate the matrix B for
homogeneous multi-core platforms. As we mentioned in Sec.
III-B, it is impossible to determine v from the steady-state
observations, hence, we must process the transient-state data.

As discussed in the steady-state section, if the power
remains the same, the temperature equation will become
Eq. 3. To estimate the value of A, we only need v which
is commensurate to the power consumption. Substituting Eq.7
in Eq. 3, we have:

O(t) = Oopip+e 020 4 (vA) ' (I—eAt bIP. (10)

Suppose that V and A are the eigenvectors and eigenval-
ues of A, respectively. Therefore, e(*~t0)=7A can be repre-
sented as V e(*=%0)=7A V=1 From our proposed steady-state
scheme, V and A are determined. We can estimate the value
of v from the transient-state data of a singular observation. To
better calibrate -, multiple profiles may also be considered.
Hence,

O(t) = Ocpip +e 171070, A1 (T—eAt%) YH (11)
where H is an n x 1 control signal whose ¢-th element is
h; € {0,1}. It is noteworthy that h; = 1 when i-th core
is fully utilized. By substituting the eigenvalues and eigen-

vectors, the equation can be represented as 0(t) = O.pip +
Ve~ (t=to)yA =19, 4 A=1 (I—V e~ (t-t0)7A V=1 YH_ The
only missing part in the temperature model is v which can be
estimated by curve fitting on transient-state temperature. The
values of Py(t), Ocnip and A change at different frequency
levels but the values of A, V and b remain invariant against
frequency change. Although the value of v can be estimated
and is embedded in the temperature data, it is impossible to
estimate absolute power even with temperature information at
different frequency levels.

Since +y is a scalar value, we observed that curve fitting on
only a few cores can provide good results. The simplest test
for estimating the value of v is when all cores are cooling
down because the third term of Eq. 11 can be eliminated.

VI. ACCURACY ENHANCEMENT

In this section, we extend our proposed scheme to improve
accuracy using additional steady-state data from different core
settings and extra data observed at different frequencies.

A. Use of Steady-State Data Ensembles

We discuss how to use the ensemble of extra observations
at one frequency level to obtain a more accurate thermal
observation profile. As discussed in the previous section,
our method requires n + 1 observed steady-state temperature
profiles for a n-core system to construct the matrix Y: one
profile when all cores are idle and n profiles when each of
CPU core is only fully-utilized. Now, we extend our analysis
to answer the following questions:

« Is it possible to collect different CPU core usage settings
(other than the aforementioned n + 1 observed data) to
construct Y?

« Is it possible to have a more precise Y if there exist multiple
instantiations from an identical setting and use all of them?

o Is it possible to construct Y with more than n + 1 steady-
state data?

We are interested in generalizing the construction of Y
to include any possible thermal traces of fully-utilized CPU
core combinations and the ensemble of more thermal traces.
It is noteworthy that if there is no noise in the observed
data and also data is not quantized, no extra data or multiple
instantiations are needed due to superposition law in Eq. 8.

Now, suppose we have m profiles such that n < m <
2™ — 1 and each profiling was done under a different CPU
core setting Z;. Based on that, we can construct the predicate
matrix [D],,xn = [Z1Zs2 ... Z.,]T from the auxiliary profiles
in U= [X,,X,,...X,, |7 The matrix Y is then generated
as follows

Y=(DxD" ' xDxU")L (12)

Because of the inversion in the equation, the equation works
when the number of the profiles is more than the number of
CPU cores. It also works when there exist enough orthogonal
profiles, meaning that there is at least one profile for each CPU
core where the core is idle. The matrix A is then calculated
as explained in Sec. V-D.



B. Use of Multi-Frequency Data Ensembles

We now discuss how to obtain a more accurate A by
using additional data collected at multiple frequency levels. As
explained in Sec. III-B, the thermal parameter A is dependent
on the semiconductor technology and remains invariant against
frequency changes. Therefore, it would be logical to assume
that having observed temperature profiles from different fre-
quency levels would lead to an identical A. However, due
to the term ~ in Eq. 7, A is proportional to the power
consumption and the clock frequency of CPU cores. Based on
this, we extend our scheme to answer the following questions:
e Is it possible to have an identical A from different Y's

collected at different frequency levels?
o Is it possible to estimate relative power consumption at
different frequency levels?

To answer these questions, we propose a thermal parameter
estimation approach based on multi-frequency data ensembles.
Let Y' denote the temperature increase matrix constructed
from the data when the CPU frequency is f;, and 7; denote
its power effect on temperature at the frequency f;. Unlike the
method presented in Sec. V-D which estimates the parameters
in A, we will estimate Al, which is the base at fi. Addi-
tionally, we consider v; = 1 and estimate 2+,V4 > 1. In such
case, tracking the values of ~ over different frequency levels
gives the power consumption of CPU cores proportional to
the v, of the base frequency level f1, and all Ys share the
same thermal parameter A. Using the same procedure as in
Sec. V-E allows estimating the value of ~;; hence, all vs can
be estimated. It is noteworthy that, even in this case, the actual
value of the power consumption cannot be computed, but
the relative power consumption at different frequency levels
can be obtained. Therefore, one can see the effect of power
consumption embedded in the temperature profiles.

We change the cost model of Eq. 9 to

If]
1
argmin Z||A1 - —Y 1% (13)
aj: j € [1,7]
i e [1L1£0]

Y1
The problem is estimating the values of A, and also 2.
One can expect that f; > f; leads to ; < <y; due to dynamic
power increase and this can be considered as a constraint in
the implementation.

VII. EVALUATION

This section presents the experimental evaluation of our
proposed scheme on a real embedded platform. We first
evaluate the accuracy and validity of our techniques in thermal
modeling and temperature prediction. We then conduct a case
study to demonstrate the practical effectiveness and implica-
tions of our work in the context of real-time mixed-criticality
systems (MCS).

A. Platform

We performed our experiments on an ODroid-XU4 develop-
ment board [28] equipped with a Samsung Exynos5422 SoC
based on the ARM big. LITTLE architecture. The Exynos CPU

Table I: Descriptions of steady-state traces on big cores.

Case name Experiments Traces (decimal) # of traces
CA1l one core Zy, Zo, Z4, Zg 4
CA3 three cores Z7, 711, Z13, Z14 4
CA2 two cores Z3, Z5, Zg, Zg, 6
Z10: Z12

CAl1,3 one core & three | zi,z,, 24, z;, 8

cores Zg, 211, Z13, Z14
CAl1,2 one core & tWO | Zy,Zo, Zs, Z4, Zs, 10

cores Zg, Zg, Zg, Z10> Z12
CA1,2,3,4 | all cores Z1,Zo,s .., Z15 15
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Figure 4: The error of steady-state temperature of CPU cores by using
different cases in construction of Y.

package contains two different quad-core CPU clusters of little
Cortex-A7 and big Cortex-A15 cores. On-chip temperature
sensors with a sampling rate of 10 Hz and precision of 1° C
are available for each big CPU core as well as the GPU
to measure the operating temperature>. The DTM throttles
the frequency of the entire big CPU cluster to 900 MHz
when one of its cores exceeds the hardware-defined maximum
temperature threshold of 95° C. There is no active or passive
cooling mechanism enabled on the CPU. The big CPU cluster
frequency can be dynamically adjusted within the range of
[0.2,2.0] GHz. However, for each experiment, it was pinned
at a fixed frequency in the range of [0.7,1.4] GHz to avoid
thermal violations that have occurred when all CPU cores
run fully-utilized beyond 1.4 GHz in our environment where
ambient temperature is regulated at around 21° C.

B. Anomaly Detection and Steady-State Data Ensembles

We evaluate our scheme in improving the accuracy of
thermal parameter estimation by using the ensemble of steady-
state profiles from multiple frequency levels. We apply the
superposition theorem as in Eq. 8 to estimate the steady-state
temperature of CPU cores when different subsets of them
are fully-utilized. We use the data collected from a subset
of all possible combinations of CPU cores at the fixed clock

2There is no temperature sensor for little cores since the power consumption
and heat dissipation of the little cluster is substantially lower than that of the
big cluster.
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Figure 5: MSE of CPU cores from all setting in different cases.

frequency of 1.4 GHz.> The details on the subsets used to
construct the matrix Y are given in Table I. Some cases
contain the least number of orthogonal profiles (i.e., 4 profiles)
while others contain more profiles. The case C'Al,2,3,4
includes all profiles to construct the matrix Y. The name of
each case indicates the number of fully-utilized CPU cores.
For instance, C'A1,2 includes four profiles of one CPU core
and six profiles of two cores.

Fig. 4 depicts the error in steady-state temperature of
each CPU core under different utilization scenarios (Y from
Eq. 12). As shown in the figure, using more profiles helps
reduce the effect of noise in constructing Y. The proposed
anomaly detection mechanism presented in Sec. V-B was
applied to the profiles and the outliers were excluded from
consideration for Y. For instance, applying this mechanism
detected an anomaly in the profile Zg by comparing it with
the other profiles. Hence, while constructing Y, we were able
to find out that the anomaly was not because of an error in
the other profiles but rather due to the error in Zg. The mean
square errors (MSE) of the temperature model for all CPU
cores under all different settings are shown in Fig. 5. The x
axis is sorted in ascending order in terms of the number of
profiles used during the construction of Y. Some spikes in the
results, e.g., the yellow line at C'A1, 2, are due to that addi-
tional traces contained noisy data. However, the error generally
decreases as more profiles are used for the construction of Y.
This trend indicates that our proposed approach to considering
data ensembles can reduce the negative impact of noisy data
and improve the accuracy of thermal parameter estimation.

C. Floorplan Estimation

We validate our proposed floorplan estimation method on
the Exynos5422 SoC. We draw the proposed adjacency graph
according to the data collected at 1.4 GHz. Figures 6a-c
show the steps to construct the final adjacency graph for
Exynos5422. As we observe in Fig. 6¢c, the cores C3 and
Cy4 have greater spatial proximity than cores C3 and Cb.
Although the physical layout of the cores on the CPU package
is bi-symmetrical, the primary reason for the asymmetrical
layout shown in Fig. 6¢ is that the location of the on-chip

3Note that the total number of core combinations is 24 in a quad—cgre
system and the number of selecting a subset from the combinations is 22" .
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Figure 6: Floorplan estimation of Exynos5422 based on data of 1.4
GHz. (a) The fully-connected graph from the temperature increase
data, (b) Graph reduction stage (c) The CPU affinity graph, (d)
Estimation of GPU location relative to CPU location, and (e) The
actual Exynos5422 floorplan [11].

temperature sensors on each processor may vary between
cores. Additionally, the L2 cache and peripheral controllers
may have an effect on the modeled spatial proximity between
the core pairs of C7, Cs and C3, Cy . Using the same approach
and GPU temperature data, we are also able to locate the
embedded GPU by profiling the heat conduction between
each CPU cores and the GPU. Fig. 6d depicts the final
estimated locations of the embedded GPU and CPU cores on
Exynos5422. Since this is similar to the actual layout reported
in [11]*, we conclude that our floorplan estimation can provide
a sufficient level of accuracy for thermal parameter calibration
(Sec. V-D).

We construct the template of the matrix A to be compatible
with the estimated floorplan. The matrix A at 1.4 GHz is
then computed by using the steady-state data of C' A1,2,3,4
at different frequency levels:

0.2961 —0.1324 0 —0.1194
A— —-0.1324 0.3017 —0.1579 0
0 —0.1579 0.3088 —0.1269
—0.1194 0 —0.1269  0.2798

D. Relative Power Estimation

The relative power consumption of each CPU core can
be estimated while estimating A, as explained in Sec. VI-B.
Fig. 7 illustrates the estimated power consumption. The results
are obtained using profiles from different frequency ranges. As
depicted in the figure, the estimated relative power closely
follows the actual data collected from the built-in power
sensors of the XU3 board that is equipped with the same
Exynos5422 SoC.

4The CPU core labeling in [11] is different from the labels in the driver and
it is verified with infrared imaging captured by an FLIR A325sc IR camera [9].
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Figure 7: Power data of CPU cores in Exynos5422. (a) Comparison
between the estimated relative power consumption and the normalized
actual power data from built-in power sensors for C'Al, and (b)
Comparison for C'Al, 2,3, 4.

E. Temperature Prediction

We estimate the parameter 7; as the base parameter for the
clock frequency 1.4 GHz in our experiments. Based on this, the
absolute value of other s can be determined. As discussed in
Sec. V-E, we use the transient-state trace when all CPU cores
are cooling down. After estimating the values of s, we apply
our model to predict the operating temperature of CPU cores.

We evaluated our proposed scheme against the state-of-
the-art power-agnostic thermal modeling method given in [1]
(referred to as “TF”), which is based on the thermal fingerprint
and calibration techniques [31], [32]. For the thermal profiling
of TF, we left the CPU idle for 10 minutes before capturing
the transient data of each thermal profile so that their model
can estimates the initial states of transfer functions accurately.
Next, we captured temperature data for all cores while each
core was individually being fully-utilized for 30 minutes and
then idle for 10 minutes. As in our scheme, a low-pass filter
was applied to the raw data to reduce noise. This step gives
us the idle steady state, active steady state, and transient
state temperatures for every core. We performed the above
steps when CPU operates at 1.0 GHz and 1.4 GHz. Then,
we used Matlab’s tfest function to estimate the self-core
transfer functions [1] that represent the thermal response of
each CPU core as a function of CPU core utilization. Finally,
we performed an exhaustive search to tune the number of
poles and zeros required for more accurate estimation of the
transfer functions. The modeling results of TF have the average
goodness fit of 89.96% at 1.0 GHz and 88.31% at 1.4 GHz,
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Figure 8: (a-d) CPU temperature from sensor, our model, and TF
when three cores are fully utilized. (e) Utilization overestimation error
of server period of 50 and 100 ms at frequency level of 1.4 GHz.

which is reasonable given that the sensor precision is 1° C.
Fig. 8a-d depict the CPU temperatures when three CPU
cores are fully utilized. The legends “sensor”, “mdl”, and “TF”
refer to actual temperature collected from CPU sensors, the
estimated temperature by our proposed scheme, and the state-
of-the-art [1], respectively. Our proposed model can estimate
the temperature values more accurately than TF especially
when the frequency is higher (see the steady-state temperature
of cores 1 and 2 at 1.4 GHz).> Since the precise estimation of
the steady-state temperature is the key to ensure thermal safety,
we expect that our proposed scheme can be effectively used in
the thermal-aware design of COTS-based real-time systems.
One of the most important metrics during system design is
the maximum achievable utilization (MAU) while the system
remains thermally safe (i.e., a higher utilization than MAU
leads to thermal violations). For instance, when designing a
system using thermal-aware periodic servers [1], [14], [13], an
underestimated steady-state temperature is particularly danger-

SWe also observe that the underestimation error of TF increases with the
number of fully-utilized CPU cores but demonstrate only the three-core case
due to space limit.
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ous since it can lead to an overestimation of server budget,
which in turn jeopardizes thermal safety. The amount of
overestimation depends on temperature estimation accuracy,
the number of active CPU cores, and the server settings
used (i.e., period and budget replenishment policy). Hereby,
we show in Fig. 8e the overestimated server utilization due
to temperature estimation error under TF and our model
when different number of CPU cores are active. The budget
replenishment period of 50 ms and 100 ms and the polling
server policy are used. In this figure, anything higher than zero
means thermally unsafe. TF results in a large overestimation
of MAU (up to 18% per core), and this trend increases with
active core counts due to the thermal superposition. On the
other hand, our scheme does not make any overestimation,
so it is thermally safe. The underestimated MAU from our
scheme is only less than 3% per core.

F. Case Study on MCS Application

We performed a case-study to evaluate the performance of
our model for a mixed-critical Flight Management System
(FMS) [1]. All low-criticality tasks are assigned to a polling
server with a replenishment budget of 50 milliseconds and
utilization of 50% on CPU core 1. High-criticality tasks are
partitioned using worst-fit bin packing and executed on cores 2
and 4 using thermal-aware periodic servers [1], [14], [13] with
a replenishment budget of 50 ms and utilization of 65%. Since
TF assumes static scheduling and no preemption between
servers, we used only one server per core for both ours and TF.
All OS tasks are isolated on the little CPU cluster and CPU
core 3 is idle. We carry on the experiment at CPU frequency
of 1.4 GHz. As shown in Fig. 9, our scheme can estimate
the temperature with a marginal error of 0.5° C while the TF
method estimates the temperature with error that approaches
5.3° C. The ratio of the error to the temperature increase
from the idle steady state is 23.07% for TF and 2.53% for
our scheme. This large improvement in accuracy enables a
thermally-safe system design (recall the impact of accuracy
in utilization discussed in Sec. VII-E) and demonstrates the
effectiveness of our work. Also, our scheme allows real-time
tasks and thermal-aware servers to be scheduled preemptively,
which TF cannot do.

VIII. CONCLUSION

In this paper, we proposed a novel and accurate scheme
to estimate the thermal parameters of COTS multi-core pro-
cessors for real-time embedded systems. By decomposing
our estimation scheme into steady-state and transient-state
stages, we substantially reduce the number of transient-state
profiles needed to estimate the system’s thermal parameters.
We presented methods to improve the accuracy of our scheme
by utilizing additional temperature profiles in the parameter
estimation. Our proposed scheme is fast to converge and has
a low computational cost for the prediction of chip operating
temperature. Hence, it can be even used in an event-driven
manner, e.g., at the arrival and the departure of each job of
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Figure 9: CPU temperature from sensor, our model, and TF for FMS
application at 1.4 GHz.

periodic real-time tasks, with negligible memory and com-
putational overhead. We derived the thermal characteristics
of a multi-core processor which remain unchanged across
different frequency levels. We also showed the effectiveness
of our scheme in extracting the relative power consumption
information from temperature profiles.

There are several interesting directions for future work. Our
scheme can be extended to identify the thermal models of
SoCs under various cooling conditions or those with hetero-
geneous processor units. One may consider using statistical
approaches to estimate the floorplan of SoCs rather than the
fixed error margin used in this work. A formal mathematical
analysis to quantify the robustness of data-driven thermal
modeling against noisy profiles is an important research issue
and will be a valuable addition to our work.
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