OPENSQUARE: Decentralized Repeated Modular Squaring Service

Sri Aravinda Krishnan Tiantian Gong Adithya Bhat
Thyagarajan Purdue University Purdue University

Carnegie Mellon University West Lafayette, USA West Lafayette, USA
Pittsburgh, USA tg@purdue.edu abhatk@purdue.edu

t.srikrishnan@gmail.com

Aniket Kate
Purdue University
West Lafayette, USA
aniket@purdue.edu

ABSTRACT

Repeated Modular Squaring is a versatile computational opera-
tion that has led to practical constructions of timed-cryptographic
primitives like time-lock puzzles (TLP) and verifiable delay func-
tions (VDF) that have a fast growing list of applications. While
there is a huge interest for timed-cryptographic primitives in the
blockchains area, we find two real-world concerns that need imme-
diate attention towards their large-scale practical adoption: Firstly,
the requirement to constantly perform computations seems unreal-
istic for most of the users. Secondly, choosing the parameters for
the bound T seems complicated due to the lack of heuristics and
experience.

We present OPENSQUARE, a decentralized repeated modular squar-
ing service, that overcomes the above concerns. OPENSQUARE lets
clients outsource their repeated modular squaring computation via
smart contracts to any computationally powerful servers that offer
computational services for rewards in an unlinkable manner. OPEN-
SQUARE naturally gives us publicly computable heuristics about a
pre-specified number (T) and the corresponding reward amounts
of repeated squarings necessary for a time period. Moreover, OPEN-
SQUARE rewards multiple servers for a single request, in a sybil
resistant manner to incentivise maximum server participation and
is therefore resistant to censorship and single-points-of failures.
We give game-theoretic analysis to support the mechanism design
of OPENSQUARE: (1) incentivises servers to stay available with their
services, (2) minimizes the cost of outsourcing for the client, and
(3) ensures the client receives the valid computational result with
high probability. To demonstrate practicality, we also implement
OPENSQUARE’s smart contract in Solidity and report the gas costs
for all of its functions. Our results show that the on-chain compu-
tational costs for both the clients and the servers are quite low, and
therefore feasible for practical deployments and usage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484809

Dominique Schroder
Friedrich Alexander Universitét
Erlangen-Niirnberg
Nirnberg, Germany
dominique.schroeder@fau.de

CCS CONCEPTS
« Security and privacy — Cryptography.

KEYWORDS
Time-Lock Puzzles; Repeated modular squaring; Smart contracts

ACM Reference Format:

Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat, Aniket
Kate, and Dominique Schroder. 2021. OPENSQUARE: Decentralized Repeated
Modular Squaring Service. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS 21), November 15-19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3460120.3484809

1 INTRODUCTION

Time-lock puzzles (TLPs) [36] and verifiable delay functions (VDFs)
[8] are two closely related cryptographic primitives that rely on
enforcing computational delays to achieve their respective func-
tionalities. TLPs [36] allow embedding of messages inside puzzles
“to the future” and they express the notion of time by enforcing a
pre-defined number of sequential computation steps to solve the
puzzle and access the “future message”. VDFs [8] lets users evaluate
a function such that the evaluation requires a pre-defined number
of sequential computation to all the parties, while offering an easy
way to verify the correctness of the function output. Both primitives
have numerous applications: Timed primitives, such as homomor-
phic TLPs [27], timed commitments [9], and timed signatures [9]
enjoy a wide range of applications: fair contract signing [9], sealed-
bid auctions [9], zero-knowledge arguments [17], non-malleable
commitments [26], timed payments in cryptocurrencies [40, 41],
among many others [24]. VDFs have found themselves useful in
generating randomness beacons [12, 31, 39] which are required in
Proof of stake based blockchain consensus [15, 31]. All practical
constructions of TLPs [36, 27] and VDFs [35, 44] use the sequential
nature of repeated modular squaring in the RSA group for enforcing
the computational delay.

Repeated Modular Squaring. The operation of repeated modu-
lar squaring in the RSA group can be described by giving (g, T, N),
where N = pq (for some large primes p and g) is the RSA modulus,
T is some positive integer, and g is some random element in the

group Zj‘\]. The task is to compute ng mod N. Rivest, Shamir, and
Wagner [36] conjectured that the only way to complete this task is

https://doi.org/10.1145/3460120.3484809
https://doi.org/10.1145/3460120.3484809
https://doi.org/10.1145/3460120.3484809

to perform T number of repeated squaring g, g%, g, ¢%, . .. ,ng. This

is despite an adversary having any amount of parallel computing
power. There is a tremendous amount of interest in developing
hardware with specific enhancements for repeated modular squar-
ing [1] to deploy these TLP and VDF constructions in practice. Most
of these applications require users to compute the squaring locally
in the background actively.

Real-world Challenges. However, there are some key real-world
challenges regarding the repeated squaring computation that have
remained unanswered to a large extent.

Challenge I: Performing computations constantly in the background
seems to be an issue for most users with moderate computing ma-
chines. Investing on and maintaining local hardware could be waste-
ful specially if the usage remains infrequent. The only remaining
choice is to outsource this computation to some computing server
(that may possess specialized hardware) at some cost. However,
this comes with the following problems: (a) in case of time-lock
puzzles, users may not want the computing server to learn any
information about the puzzle itself, other than simply performing
the squarings, (b) users require the guarantee that they receive
the correct result of the computation within some reasonable time,
or else the computing server is not paid and (c) users want the
outsourcing market to be live and liquid so that some servers are
available to perform the required number of squarings.

Challenge II: Security of these applications crucially relies on the
ability of honest parties to accurately predict the number of squar-
ings T corresponding to some real-world delay, both for themselves
and also for the adversary. Disparity in hardware availability, run-
ning costs and geo-political factors, among users makes this predic-
tion much harder. This is one of the major practical limitations of
using sequential squaring based TLPs and VDFs [43]. While there
has been interesting theoretical lower-bounds available [45], and
bounties and competitions are happening, we require real-world
estimates that reflect the ever-changing hardware market.

In this work, we strive to solve both challenges simultaneously.
Our solution is to have a public outsourcing mechanism where
users, whom we refer to as clients from now on, can request a
pool of servers (possibly with specialized hardware) that offer their
computational services. Specifically, a client requests services to
perform T number of repeated modular squarings, in exchange for
some payment. By public, we mean that the request and the com-
putational result from the services are available on a public ledger.
This mimics an open market place where the requests get matched
with results and one can openly learn the relation between T, real
time taken to post the computation result and the price offered in
the request. Moreover, this knowledge also evolves with the evolv-
ing hardware and can be used to make reasonable estimates on T
for other applications of TLPs and VDFs.

1.1 Our Contribution

We can summarise our contribution as follows.

(1) We propose OPENSQUARE, a decentralized repeated modular
squaring service protocol (Section 3), that lets users (clients) request
a decentralized network of services (servers) to perform repeated
modular squarings, and get paid a reward for the computation.
More specifically, clients post a request to a smart contract on a

blockchain, and services respond to the contract with their results.
The contract is entrusted with paying the services for a correct
result. We formally model our system as a decentralized solution
service (Appendix B) in the UC-framework [13]. Our protocol is (a)
Sybil resistant, where servers cannot duplicate themselves to gain
more reward, (b) optimistically efficient, where if everyone behaves
honestly, the on-chain computational cost is minimized and (c)
incentive-compatible, and profitable for servers to offer repeated
modular squaring services.

Using our protocol, clients can outsource the solving of their TLPs
to services with special hardware in an unlinkable manner, where
the services cannot link the request to a specific time-lock puzzle.
The decentralized nature means that if some machine crashes, the
client can be assured that many other services are working on his
request, who would give him the correct computation result. Also,
our protocol can help servers profit by using their otherwise idle
resources (special hardware) to offer services to clients for payment
and profit. As hinted above, our protocol results in an evolving
public marketplace. We can make reasonable estimates about the
choice of T in all the applications of TLPs and VDFs.

(2) We give game-theoretic analysis (Section 4) to back the de-
sign of our protocol. More precisely, we analyze the reward dis-
tribution functions for our protocol that balances the following
three goals: (a) incentivize servers to stay live and offer their com-
putational services, and (b) minimize the cost for the client who
outsources the computation. Additionally, it achieves Dominant-
Strategy Incentive Compatibility (DSIC), tractable in polynomial
time, and (c) guarantees that the client indeed obtains the correct
computational result with high probability.

(3) We implement the smart contract of our OPENSQUARE proto-
col (Section 5). We demonstrate the gas costs for various functions
of the contract and show the practicality of our system. We incorpo-
rate implementation level optimisations for certain functions of our
contract that helps us save up to 75% of the gas costs for the users
using the contract. These optimisations may also be of independent
interest for other applications. Given the applications of repeated
modular squaring in the form of VDFs in Ethereum 2.0, it is also
possible that the system reduces gas costs for VDF related on-chain
computation, which further lowers the costs of OPENSQUARE.
Consequences. Practical privacy-preserving cryptocurrency timed
payments were implemented in [40, 41], which opens the doors
for several new practical functionalities, like payment channels,
multi-signature transactions, atomic swaps etc., to be built on cur-
rencies like Bitcoin, Ethereum, and Monero, among many others. As
these timed payments rely on users needing to continuously solve
time-lock puzzles [27], they can use OPENSQUARE to outsource their
repeated squaring operation and then solve the puzzles. Previously
in [40, 41], users could only participate in as many protocol in-
stances (like, payment channels, atomic swaps, etc.) as the number
of CPU cores they possessed, as one core was used in solving one
puzzle. Apart from alleviating computational effort, another advan-
tage of using OPENSQUARE to solve puzzles is that users can now
participate in as many instances of these applications as they want,
since they are not limited by their own computational resources
anymore.

1.2 Solution Overview

We give a brief overview of our OPENSQUARE protocol. We rely on a
publicly verifiable blockchain like Ethereum that offers support for
running smart contracts. On a high-level, we implement a contract
C that has interfaces using which clients can post computation
requests and servers can post corresponding solutions. The contract
is also responsible for transferring payments from the client to the
servers if the server has posted a valid solution. In the description
below, we start with a straw-man proposal and highlight various
problems with this simplistic approach, and briefly sketch how we
can fix each of those.

The client starts off by posting a request of the form (g, T, N)
to the contract. The client also offers a reward of p coins for the
first valid solution. The servers (or services) now have the duration
tsor of the solving phase, to post their solution y := ng mod N.
The servers also attach a proof of correct computation 7 using
the constructions from [44, 35]. This proof helps in verifying if y
is computed correctly without actually performing the repeated
squarings again. The contract rewards the service that posted the
first valid solution with the p coins. If no solution was posted until
tsol, the p coins are refunded back to the client.

Incentive Level. The straw-man proposal suffers from several
glaring issues at various levels of the protocol. At the incentive
level, given that the computation is deterministic in nature, it is
guaranteed that irrespective of parallel computation power, the
hardware with the fastest clock cycle (and therefore the fastest

single squaring) computes ng mod N first, and gets the reward.
This discourages marginal servers with powerful yet not the fastest
machines from participating, and over time they tend to exit the
outsource market, leading to centralisation in the market.

We can rectify this by letting the client reward the server with the
solution that costs the least, rather than the server with the fastest
solution. We realize this approach by requiring the servers commit
to an asking price along with their solution: A plain revealing of
the asking price would lead to other servers quoting related and
favorable asking prices. For instance, if server A quotes an asking
price of 5 ETH in plain, server B whose original asking price would
have been 5.1 ETH, could quote an asking price of 4.999 ETH and
get the total reward amount p for a negligible loss in payment.

Therefore, only after the solving phase is over, the services re-
veal the asking price a, which the services expect from the total
reward amount p. The contract rewards the server with the least
asking price by transferring the asking price from the total reward
budget p to the server. While this mitigates the issue of the fastest
machine always wins, the single service reward is still an issue for
the decentralization of the marketplace.

We can address this problem by letting the client specify a reward
distribution function R that, depending on the asking prices of
different services and the total reward amount p, determines the
reward price for k services, instead of just rewarding one service.
In Section 4 we formally analyze the requirements of such a reward
distribution function to incentivize a maximum number of servers
to stay in the outsourcing market in the long run.
Cryptographic Level. Note that since the computation is deter-

ministic, the solution ng mod N is uniquely determined by the
request (g, T, N). Therefore, the servers in the network can copy

the solutions of other servers and register them at the contract. In
this case, the servers copying the solutions of others have a good
chance of getting the reward price for free, i.e., without investing
any computational cost. Also, an issue with rewarding multiple
solutions (as discussed above) is a version of a Sybil attack, where
a server can copy its solution several times in the hope of gaining
more reward prices at the cost of computing just once.

To prevent the former attack scenario, we need the property
of non-transferability of solutions, which says that another server
cannot copy the solution of one server without having spent at least
T amount of computation steps. A simple workaround would be
that the services commit to their solutions and reveal the solutions
later as they do for the asking price. This approach, however, means
that the client has to wait until the commit phase or solving phase
is over to learn a valid solution, which is undesirable. Instead, our
goal is that the client learns the solution as quickly as possible, i.e.,
after any service registers the solution to the contract.

We can address this issue by using watermarked VDFs [44],
where the proof of correct computation 7z for the solution is wa-
termarked with the public key pk of the server computing it. The
watermarking property ensures that no other server with a different
public key can compute the proof 7 in a significantly fewer number
of steps than T. This is because the proof 7 computation requires
the knowledge of the intermediate square values between g and

ng. By the security of the VDF construction [44], the intermediate
values can only be computed via repeated squaring starting from g.

For the Sybil attack scenario, where the server copies its solution,
the above watermarked VDF solution seems insufficient. This is
because a server can honestly compute (y, 7) watermarked with key
pk as above, and compute (y, r1) watermarked with pk;, compute
(y, m2) watermarked with pk,, and so on. The server can do this
without spending T steps for every solution because the server
can locally store the required intermediate square values while
computing (y,) and reuse them for computing 71, 72, etc. We can
circumvent this problem by letting the servers perform T repeated
modular squaring starting from another element x, such that x :=
H(g, pk) where H is a hash function and pk is the public key of

the server. The server attaches a proof of correct computation for

T
x% mod N as well. In this case, for the server to copy its solution

for different public keys, the server has to perform T repeated
squarings for different starting points corresponding to each of
those public key, and this cannot be done in less than T steps for
any of the keys.
On-chain Level. Even with the smart contract support, running
on-chain cryptographic computation can be pretty expensive; for ex-
ample, gas costs for group operations in the RSA group in Ethereum
are already several hundred dollars at the time of writing this paper.
Therefore, the cost of verifying the proof of correct computation x
at the contract for every solution being posted can be prohibitively
high. This makes the protocol unusable and clogs the blockchain
network with on-chain verification of the proof of every incoming
solution.

We solve this problem by letting the contract assume that, by
default, every solution is valid. The servers still post the proof 7

along with their computation result y; := ng mod N and y; :=

T
x% mod N, but the contract does not verify the proof. Instead,

2. Solution : 3. Ask price 4. Claim
C PSS tsol task trfnd
: emp :
1. Request Client 5. Refund

Figure 1: A sketch of OPENSQUARE protocol. The steps of
the protocol are shown in order where each step is an in-
vocation of the contract C. Starting with (1) the client post-
ing a request to C, (2) services posting their solutions to C,
(3) later revealing the asking prices for their solutions, (4)
and claim the reward, and finally (5) the client refunding the
coins from the contract. The complaint step (not shown) is
performed during the time interval ¢, in rare cases where
invalid solution is registered. We have tyy; + teynp) < task-

users in the network may verify the proof 7 locally and complain
to the contract if the proof is invalid. This can be done by any other
user in the network within ., amount of time after the solution
was posted to the contract. If a complaint is registered against a
solution, the contract then verifies the proof, and if the proof is
indeed invalid, the solution is marked as invalid and cannot receive
any reward price.

The above solution is still not complete, as someone still has

to pay for the verification in the contract for a complaint, and
there is still the possibility of spamming with false complaints. We
solve both issues by letting the complainant lock a complaint fee
V¢ to the contract while registering a complaint. The on-chain cost
of verification is paid from the fee V. irrespective of whether the
complaint is valid or is spam. This discourages users from spamming
the contract with complaints. On the other hand, to incentivize valid
complaints, we ask the servers to lock a collateral amount Vs along
with their solutions, which will be transferred to the complainant
if his complaint against the solution is valid. If the server’s solution
is invalid and a complaint is registered against this solution, the
complainant is reimbursed with the Vs coins of the server that was
locked as collateral. The overall effect of the above two measures is
that, only in cases where invalid solutions are registered, on-chain
cryptographic computation is necessary, and the cost is covered in
an incentive-compatible way.
Putting things together - OPENSQUARE. A sketch of our OPEN-
SQUARE protocol is given in Figure 1. The client has (g, T, N) (where
N is a RSA modulus) and posts a request to the contract C (Step 1)
in the form of a transaction containing

((9, T, N), tso15 tand’ tcmpl’ task: K, (P R), Vs, Vo)

that contains all the relevant information regarding the modular
squaring problem, the reward distribution R and the duration of

different phases of the contract. The transaction also locks p amount
of coins as the reward amount.

The solving phase t,,; immediately follows once the request has
been registered at the contract. A service with public key pk, has
time until ¢, to register the solution

T T
(yl =g yp = x* ,n,pk)

at the contract, where x := H(g, pk) (step 2). The solution also has
a commitment A to an asking price, and locks V5 amount of coins as
collateral of the service. The service is guaranteed to receive back
the collateral later if no valid complaint is made against its solution.

Every party has until ¢,,,; amount of time after a solution is
registered, to complain about the solution. The complaint also pays
a complain fee, V; amount of coins to the contract. If the complaint
is valid (i.e., the solution is wrong), the collateral amount V; of the
corresponding service is transferred to the complainant. On the
other hand, if the solution is valid, no action is taken.

After the solving phase is over, the services have until ¢,
amount of time to reveal the asking price of their solutions (step
3). It is important to note that parties only reveal their asking price
after the solving phase is over. This prevents services from regis-
tering solutions and commitments to asking prices, depending on
the asking price of other services.

Once the asking phase is over, services can claim their rewards

for posting a valid solution (step 4). The contract determines the
reward p* for the service, based on the reward distribution R and
the asking price of the service. The contract returns the reward p*
and the collateral V; locked by the service to the service. The client
can recollect any of the remaining coins locked in the contract after
time tpfmy has passed (step 5). We model this work flow through a
procurement auction with entry costs. Essentially it’s a combinato-
rial multi-unit reverse auction where services have unit demand
and potentially different participation costs.
Unsatisfactory Alternate Approach. An alternate approach is
where the servers first commit and open their asking prices, and the
reward distribution function of the client determines the rewards
for each servers. With this knowledge, the servers perform the
repeated squaring and post their solutions. This way, the servers
can invest in the computation depending on the reward price that
they are guaranteed by the function R. As only a few servers are
selected here, unlike in OPENSQUARE, servers are guaranteed reward
for their computation.

However, there is a potential DoS attack: the servers may, after
the reward price guarantee, fail to post solutions. We can require the
servers which are guaranteed a non-zero reward price to lock a col-
lateral V; to the contract along with their asking price commitment
to prevent this attack; they shall get back the collateral amount
only if they post a valid solution, and otherwise, the collateral Vs is
transferred to the client.

Firstly, the alternative approach cannot address the inherent
disparity between cost of computation to the servers and value of
the computation to the client. Assume that the client will lose L
coins in value in his extraneous application if his squaring com-
putation request does not get solved within ¢,;, and that required
computation cost is < L. This forces the client to set the solution
collateral as Vs > L, so that in case the chosen server fails to post

a valid solution, the client is not at a loss. This leads to two prob-
lems: (a) the client by setting Vi publicly reveals information about
the request’s value L which is a privacy concern, and (b) if L is
very large (depending on the client’s application), many servers
may simply not possess enough collateral V5 > L to participate in
the auction. This can centralize the outsourcing market with only
wealthy servers remaining, which we would like to avoid due the
selective censoring possible.

Secondly, a server that crashes and is not able to post a solution
within the solving phase, is bound to lose its collateral Vg and
the cost of computation it has performed so far. In contrast, in
OPENSQUARE, a crashing server only loses the cost of computation
performed so far. Nevertheless, our cryptographic protocol as well
as our smart contract can be easily adopted to this alternative. We
discuss some game-theoretic aspects of this approach in Section 4.3.

1.3 Related Work

Time-lock puzzles were first proposed by Rivest, Shamir and Wag-
ner [36] that used the sequentiality of repeated modular squaring
in the RSA group as the fundamental building block for realizing
the timed primitive. The same building block was used along with
techniques to introduce homomorphism, in the time-lock puzzle
constructions of Malavolta and Thyagarajan [27]. The above two
constructions of time-lock puzzles enjoy being implemented in
practice and leading to several applications [9, 17, 26, 40, 41]. Prac-
tical constructions of verifiable delay functions [8, 44, 35] use the
same building block as the TLPs above. VDFs have found them-
selves several applications [31, 12, 39] in the context of blockchain
consensus [15, 31].

Theoretical lower bounds have been studied on the adversar-
ial speed up for the repeated modular squaring operation [45].
In terms of practical studies, Thyagarajan et al. [40] studied the
varying times required by different AWS machines with different
computing powers, for computing the same number of squaring
operations. With the advent of VDFs, there has been tremendous
amount of development in building specialized hardware like ASICs
that achieve high efficiency for repeated modular squaring [1, 30,
2]. There have also been VDF competitions [42], where winners are
rewarded for achieving non-trivial speed up in computing a said
number of sequential squarings.

Standard auction design often aims to maximize seller revenue
or lower buyer cost (optimal mechanism design) [34], and/or maxi-
mize social welfare or minimize social cost. In our setting, for the
decentralized protocol to prosper, the system explicitly asks for
liveness guarantees from a mechanism. Although market thickness
- increasing the amount of bidders - outweighs the benefit from
finding an optimal reserve price for less bidders [10], an auction
usually does not concern itself with attracting bidders. The scene
complicates when we consider entry costs since services perform
computations, pay gas, etc before they submit bids. In an auction
with entry cost, an auctioneer can potentially exert admission fees
and/or entry cap [32], hold preliminary auctions [47, 6], organize
sequential entry [29, 11, 37] to limit the number of entrants and
increase seller revenue. But the smart contract auctioneer in our
design does not have active coordination and our goal is to accom-
modate more bidders (if feasible) instead of limiting the number

of entrants to wholeheartedly minimize buyer cost. So these de-
signs are not applicable. Besides, each service only submits the bid
once so ascending/English or iterative auctions including Walrasian
auction do not apply.

Essentially we desire a reverse auction design considering en-
try costs that induces more entrants and keeps the price low for
users. Samuelson [38] discusses inducing optimal entry in a procure-
ment auction with entry setting and picks one winner. Maskin [28]
presents the optimal selling procedure for unit demand buyers in
multi-unit standard auction without entry costs. We follow the
philosophy in these two works to construct a multi-unit reverse
auction with entry.

2 PRELIMINARIES

We introduce the formal notions and briefly recall the relevant
cryptographic background. The security parameter is denoted by
A € Nand x « A(in;r) is the output of the algorithm A on input
in using r « {0, 1}* as its randomness. We often omit this random-
ness and only mention it explicitly when required. We consider
probabilistic polynomial time (PPT) machines as efficient algorithms
and use parallel random access machines (PRAM) to model machines
with parallel processing power.

Verifiable Delay Functions. The primitive was proposed by Boneh
et al. [8], that allows to enforce a delay on some computation. It
has teh following interfaces. The setup algorithm Setup outputs
the public parameters with respect to the security parameter 1%
and a time parameter T. The public parameters encode the function
domain X and the range Y. The instance generation algorithm Gen
outputs a random instance x from the domain X. The evaluation
algorithm Eval outputs a delayed output y € Y and a proof of
correct computation 7, for a given instance x. We finally have the
verify algorithm Verify that verifies if the output y and the proof x
are valid with respect to an instance x or not.

In terms of efficiency, we require that the setup and the instance
generation algorithms run in time p(A) for some polynomial p,
whereas the running time of the verification algorithm must be
bounded by p(log(T), A). For the evaluation algorithm, we require
it to run in parallel time exactly T. We require the notion of sequen-
tiality and soundness. Sequentiality intuitive says that a PRAM
adversary cannot compute the correct delayed output y for some
random instance x, significantly before time T. The soundness prop-
erty guarantees that the adversary cannot convince a honest verifier
to output 1 given a proof and an incorrect delayed output y” # y.
The formal definitions are deferred to Appendix A.

Wesolowski [44]’s VDF construction satisfies the above notions.
His work also considers the notion of watermarked VDF which will
be useful in our work. Intuitively, watermarking a VDF evaluation
with an identifier (or a public key) pk means that another user
cannot claim the VDF evaluation as his own. In other words, if an
evaluator watermarks his evaluation (y, 7) with his public key pk,
another user with identifier pk” # pk cannot compute (y, 7’) faster
than T. To facilitate this we extend the syntax by letting Eval and
Verify additionally take a public key pk as input. For the sake of
completeness, we describe the watermarked VDF construction Fig-
ure 2 that we use in this work. We consider two hash functions
Hp :{0,1}* — PRIMESy, and H : {0, 1}" — Zj;, where PRIMES,,

Setup(1%4, T): Sample A bit primes p and g. Set N := pq.
Output pp := (T, N).

Gen(pp): Sample x « Zy; and output x.

Eval(pp, x, pk): Parse pp := (T, N). Set x2 := H(x, pk).
Compute y; = x2" mod N and Y2 = (xz)2T mod N. Generate
£ := Hp(x,y1, X2, y2) and compute q and r such that

2T = qt +r. Set == (£,x9, (x2)9) and output ((y1,y2), 7).
Verify(pp, x, y, 7, pk): Parse y := (y1,y2) and x := (¢, Q1, Q2).

Compute x3 = H(x, pk). Check if £ z Hpy(x,y1,%2,92), and

output 0 otherwise. Check if y; < (01)x" and

Y2 2 (02)!(x2)", where r := 2T mod ¢.If any of the check
fails, output 0.

Figure 2: Modification of the watermarked VDF construc-
tion from [44] that is used in OPENSQUARE.

consists of all 21 bit primes. The VDF proofs can also be aggregated
by the prover for faster verification as described in [44].

Ethereum Smart Contracts. Ethereum [46] is a decentralized
virtual machine (Ethereum Virtual Machine or EVM) that runs smart
contracts. Smart contracts facilitate complex conditional payments
between users apart from standard coin transfers. A smart contract
is a program written in EVM bytecode. It can transfer money to
users based on its programming. It is triggered using transactions
which contain information about the function to call and input data.
The miners include these transactions in the blocks and update
the global state. The miners receive transaction fees as incentive
to process execute transactions. In Ethereum, the term gas is used
to denote a unit of computation. The fees is paid via gas price
which is the amount of ETH per gas a user is willing to pay. The
miners are incentivized to process higher gas priced transactions!.
Every instruction inside the contract has a pre-defined amount
of gas as its corresponding fee. This is specified in the Ethereum
reference [46]. The caller of a contract has to pay the amount of gas
that is enough to perform all the steps of the contract call. Every
call starts with a minimum gas cost of 21, 000 to setup the EVM, and
for every instruction such as loading the arguments, moving values,
etc. are charged with a fixed gas cost per operation. For instance, a
Keccak256 opcode charges 30 gas to hash an empty string, 36 gas
to hash any amount of data up to 32 bytes, and 42 gas for data of
size 33 — 64 bytes, and so on. The fee to the miner is paid in Ether!.
Mechanism Design. Game theory studies interactions between
competing, strategic and rational agents, and one aims to solve for
equilibrium outcomes according to solution concepts. Mechanism
design (MD) fixes a set of desrired outcomes, and one can design
mechanisms for agents to interact with each other that yield these
outcomes. The insight of MD is to account for both resource and
incentive constraints [33]. One special type of mechanism is direct-
revelation mechanisms where there exists a hypothetical mediator

This is an over-simplification. Actually, a user pays x = gas limitx gas price. A miner
executes the transaction and observes that the transaction costs x’. The miners make
a profit out of x — x’. So it is not technically correct that the miners just take a look at
the gas price. Actually they maintain a priority queue in their mempool and reap the
most profitable transactions while mining every block.

that collects private information from agents and recommends
actions to them. If the mechanism encourages compiliant/honest
behaviors from agents, then it is called incentive compatible (IC).
Reverse and forward auction. One basic mechanism is auction [25].
Two typical objective functions for auctions are to maximize social
welfare (minimize social cost) and to maximize seller revenue (mini-
mize buyer cost). A procurement/reverse auction has a single buyer
and multiple suppliers, who place bids to earn the opportunity to
provide the buyer an item at a price. In a standard/forward auction,
a seller seeks to sell item(s) to potential buyers. A reverse auction
with a ceiling price is mathematically equivalent to a standard
auction. So the discussions in both contexts can translate.

Unit demand bidders A unit demand bidder desires only a single
item, which can be one of multiple homogeneous or heterogeneous
goods. For k identical items with unit demand bidders (what we con-
sider in this work), k-Vickrey auction achieves dominant-strategy
incentive compatibility and social welfare maximization. Note that
an auction is dominant-strategy incentive compatible (DSIC) if for all
bidders, truth-telling (weakly) dominates other strategies. k-Vickrey
auction has allocation rule that allocates the items to k highest bid-
ders and payment rule that the winners pay the (k + 1)-th highest
bid. Likewise, to procure k identical items, one can construct a
reverse version of k-Vickrey auction and set a ceiling price.

3 DECENTRALIZED REPEATED MODULAR
SQUARING SERVICE

In this section, we present our OPENSQUARE protocol, where a
client can use a smart contract to post a request, and the services
are required to compute the requested number of repeated modular
squarings as the solution, and get paid. The client can be a user
wanting to solve a time-lock puzzle [36] or compute a delay func-
tion [8, 35, 44], and outsources the necessary computation through
our decentralized solving service protocol. We model the core func-
tionality of OPENSQUARE in the form an ideal functionality Fsqg
in the UC framework [13], which can be found in Appendix B.

For simplicity, we consider a single client and a set of services
to constitute the entire user set in the system. The users interact
with a smart contract Copsq on the chain by posting transactions.
The client has (g, T, N) (where N is a RSA modulus) that he obtains
from the application he is participating in, that requires him to
solve a time-lock puzzle or evaluate a VDF. The problem ¢ that
the client wants solved is to compute gZT mod N. The client can
outsource this computation through OPENSQUARE and obtain the
solution to ¢.

3.1 OpPENSQUARE Smart Contract

We now describe the smart contract Copsq, Which is posted on
the chain and facilitates the above operations. On a high level, the
contract offers the following interfaces: (1) request registration func-
tion NewRequest() to receive a request and reward amount from
the client, (2) a solution submission function SubmitSolution() to
receive solutions and service collaterals from services, (3) an ask-
ing price function Ask() to let services reveal their asking prices,
(4) a reward claim function Claim() to let services claim their re-
ward amounts and their locked collateral, (5) a complaint function
Complaint() to receive complaints from any user about a solution

along with the complaint fee and finally (6) the refund function
Refund() that transfers leftover reward coins from the contract to
the client. The contract is described in detail in Figure 3. We require
a hash function H' : {0,1}* — {0, 1}*.

3.2 OPENSQUARE Protocol

The client having (g, T, N) posts a request that offers a reward up
to p coins with a reward distribution function R. He also deter-
mines the duration of the different phases, particularly the solving
phase, asking phase, complaint phase, and the refund time. If some
service has posted a solution (y,) to the contract, the client veri-
fies if the solution is valid with respect to the service’s public key
using the algorithm Verify(). If it is valid, the client has obtained
y = (y1,y2) withy; = ng and does not need to act further on the
solution. If at least one of the services posts a valid solution, the
client can use it for its application (time-lock puzzle or VDF). Valid
solutions recorded after this point are of no use to the client except
to incentivize services to participate in the service protocol Sec-
tion 4. During the refund phase, the client recovers any coins left in
the contract that is left over after rewarding the services for their
solution.

To post a solution, the service runs the evaluation algorithm
Eval() of the watermarked VDF Figure 2 to compute (y, 7) where
Yy = ng and yp = ¥ withx == H (g, pk). Here pk is the public
key of the service, to which the service obtains any reward from
the contract. The service also sends a commitment h to its asking
price as part of the solution. It later reveals the asking price a
and randomness r such that h = H’(a, r) during the asking phase.
The service claims its collateral and any reward determined by the
reward distribution function from the contract before the request
is inactivated.

Any party can complain against a candidate solution from a

service. The complaint has to be made within .y, amount of time
after the solution is posted to the contract. The complaint is valid if
Verify() algorithm returns 0 on the particular solution. A detailed
description of our protocol is given in Figure 4.
Security. Our protocol with the aid of the contract Copsq securely
realizes the ideal functionality Fg.js when ¢ is that of the repeated
modular squaring problem. The security intuitively follows from
the soundness of the watermarked VDF, which ensures that only
valid solutions are rewarded according to the reward distribution
function R chosen by the client. Invalid solutions can be complained
against, and no reward is possible. The formal theorem statement
and the security analysis are deferred to Appendix C.

3.3 Discussion

In this section, we discuss several important properties and exten-
sions for our protocol.

Unlinkable Outsourcing of Puzzle Solving. As noted earlier,
the client can use our protocol to outsource solving of time-lock
puzzles [36, 27]. Time-lock puzzle constructions from [36, 27] have
their puzzles Z of the form Z := (Z1, Z3). To solve the time-lock
puzzle, the user has to compute (Zl)2T mod N and using this value,
he can retrieve the embedded message from Z,. In our protocol,

T
the client can outsource the computation of (Z;)>° mod N by

setting the request as (Z1, T, N). However, if the puzzle Z is part
of some application and is known to the users in the system, it is
possible that the services can launch a denial of solving attack on
the client. That is, the services may not want the client to know
the embedded message inside the puzzle in time, and therefore not
solve the request. This attack works because the request (Z1, T, N)
is linkable to the puzzle Z.

We can prevent this attack, by making the request unlinkable
to the corresponding time-lock puzzle. The client can do this by
re-randomizing the request, set Z| := Z; - g" for some random r
chosen uniformly over the randomness domain and generator g.
The request is now set as (Zl’, T, N) and since r is chosen uniformly
at random, Z; looks completely random and unlinkable to Z; in the

T
eyes of the services. The services then compute (Z])> mod N as
part of their solution.

. T
What is remaining to show is how the client can retrieve le

from (Z])ZT efficiently, without having to compute Z IZT from scratch.
Fortunately, this is possible with the RSW-based homomorphic time-
lock puzzle constructions from [27]. Their constructions have a
setup algorithm run at the beginning of the system that returns

(g, gZT, T, N) to users as part of the public parameters, where g is
the generator of I’} (subgroup of Z3; with Jacobi symbol +1). Now

given (Zl’)2T and the public parameters (g, ng, T, N) the client with

T\7
knowledge of r, can first compute (92) and retrieve

T

T
_@r @t @t

))

Reward Distribution. Notice that the reward distribution func-
tion R is a function of the asking prices. Also the client rewards k
valid solutions with possibly differing reward amounts and this is
checked in step e. of the Claim() function of the contract. This is
to incentivise a large pool of services to participate and post valid
solutions. We discuss this in more detail in Section 4.

Non-transferrability of Solutions. Services post their solutions
in plain and only commit to their asking price which they later
reveal during the asking phase. This could lead to services copying
solutions of other services as their own. Using the watermarked
VDF (Figure 2) evaluation, we simultaneously ensure the following:

=z

(1) the client learns ng the solution he is looking for, and (2) no
service can produce a valid solution by copying another solution in
significantly better time than T. The latter guarantee follows from
the watermarking and the sequentiality of the squaring operation
(Section 2).

Sybil Resistance. During solving, services have to evaluate y; :=
ng and yp := sz, where x := H(g, pk) (as in Figure 2). Notice
that y is specific to the service’s public key pk and since the hash
function H is modelled as a random oracle (and is therefore colli-
sion resistant), with overwhelming probability y, is not valid with
respect to a public key pk” where pk’ # pk. This means that the
service would have to compute a fresh y;, for a different public
key pk’, which by the sequentiality property of the VDF ensures
that the service has to spend time T in computing y;. Therefore we

The contract Copsq maintains hash maps Macr, Mgsp, Mgk that are initialised to empty maps during the contract creation. The
contract implements the following functionalities:
e NewRequest():
. A transaction txreq from pkc calls the function with inputs (Rq, tsor, tRfuds tempis tasks K R, Vs, Ve)
. Request id is generated as RqID := H’(Rq)
. Parse reward R := (p, R), where p is the reward budget and R is the reward distribution function.
. Ensure the transaction txeq sends p coins to the contract, where the address is denoted by addrrq1p
- Ensure tpg > task > ol and templ < tRfnd — sol
. Record the current block number as Bt and set ctrrqrp := 0
g Add (R, Vs, Ve, tsol, templs tRfnds tasks ks Pk, Bstrt) to active request map M using the request id RqID as key, and return RqID
e SubmitSolution():
a. A transaction txresp from pks calls the function with inputs (RqID, y, 7, h), in the block Buym

- 0 A0 TP

c. Generate response id RspID := H'(y, , pks, h)
d. Ensure Bpym < Bstrt + tgo) and transaction txresp locks V5 amount to the contract, at the address denoted by addrrsp1p
e. Store (RQID, h, Byym) in the response map Mgsp using the key RspID
o Ask():
a. A transaction tx 4 from pkg calls the function with inputs (RqID,RspID, a,r). Let B}, be the current block number
b. Retrieve (-, -, -, tso1, s s tasks *» » Bstrt) <— Macr using RQID as the key. If no such entry exists in the list, then do nothing and return 0
c. Ensure the Bstrt + tgo; < Bhym < Bstrt + task
d. Retrieve (RQID, h, Bpym) < MRsp using the key RspID
e. It h # H'(a,r), then return 0. Else store a in M4 with keys RqID and RspID and return 1
e Claim():
. A transaction txj;n, from pkg calls the function with inputs (RqID,y, 7, pks, h). Let B},,,,, be the current block number
. Retrieve (R, Vs, ", *, templs tRfnd> Lasks K - Bstrt) <= Macr using the key RqID. If no such entry exists, then return 0
. Compute RspID := H'(y, , pks, h)
. Retrieve (RqID’, h, Bpum) < MRsp using the key RspID, and if no such entry exists or RqID’ # RQID, do nothing and return 0
. Check if ctrrqip = k, if so, transfer Vi coins to pks and remove the entry (RqID’, h, Byum) with key RspID from Mpgsp
. If we have ctrrqp = j < k, ensure By, > Bpum + templ and By, > Bstrt + task-
. Retrieve a list A consisting of all a in Mg with key RqID, and a* in Mg with key RspID
. Parse R := (-, R) and retrieve the remaining reward p for the request from the contract address addrgqrp. Compute
R(A a*, j) = p*. If p* < p, transfer p* coins from addrrqrp and Vs coins from addrgsp1p to pks.
i. Set ctrrqrp = j + 1 and remove the entry (RqID’, h, Bpym) with key RspID from MRgsp and return 1.

R -0 a0 o

e Complaint():
a. A transaction {xgy,,; from pk calls the function with inputs (Rq, y, 7, h, pks). Let By, be the current block number
b. Compute RqID := H’(Rq) and retrieve (R, Vs, Ve, tsops templs ERfnd> Lasks K PkCs Bstrt) < Macr using the key RqID. If no such entry

exists in the list, then do nothing and return 0.

c. Compute RspID := H'(y, 7, pks, h) and retrieve (RqID’, b, Bpym) < MRgsp using the key RspID. If no such entry exists in Mgy or
if RQID # RQID’, do nothing and return 0

. Ensure B}, < Bnum + templ

. Ensure the transaction £x;p; locks Ve amount of coins to the contract

. Parse Rq := (req, T)

. Check whether Verify((T, N), y, 7, pks) = 0, if so transfer Vi coins from addrgsp1p to pk4. Remove (RqID, h, Byym) from the list
MRsp with key RspID, and return 1
h. If the above check fails, return 0

e Refund():
a. A transaction fxgefyng from pk calls the function with inputs (RqID). Let B},,,,, be the current block number

. Retrieve (R, Vs, Ve, tsol, templs tRfnd> Lask k. PkC, Bstrt) <= Macr using the key RqID.

. Ensure B}, > Bstrt + tRfnd

. Parse R := (,R)

. Transfer the remaining p coins (corresponding to RqID) from the contract address addrrqrp to pkc, and remove the entries from
the active list Mact, Mpsp and Mg for the request id RqID, and return 1

@ - o &

o o o

Figure 3: Description of the main functions of contract Copsq

sending p coins to the contract Copsq’s address.
e Store the id of his request RqID.

input RqID, on the chain.

R:= (p,R) and Rq := (¢, T, N).

(RaID, y, m, pkg, h).

req := (g, T, N) corresponding to RQID.

Client routine
The client has public parameters (T, N) and has an element g € Zj; that he wants to be evaluated. The client does the following steps:

e Set a request req := (g, T, N) and choose ts, tRfnds templ> task- Assign a reward procedure R := (p, R). Chooses Vs and V¢ as the coins
to lock during registering solution and making a complaint, respectively.
Post a transaction txreq on the chain that calls Copsq-NewRequest() with inputs (Rq, tsop, tRmds templs tasks ks R Vs, Ve) along with

e If there is a call to Copsq-SubmitSolution() in some transaction with public key pkg, with inputs (RqID, y, , h), such that
Verify((T, N), g, y, 7, pkg) = 1, then retrieve y as the required solution.
After tpfmg number of blocks have passed since posting the request req, post a transaction txgefund that calls Copsq-Refund() with

Service routine
The service observes a request id RqID in the contract Copsq. It does the following steps:
* Retrieve the transaction txreq that called the contract Copsq, with inputs (Rq, tsop tRfds templs tasks R Vs, Ve). Here we have

e Runs the VDF evaluation (y,) < Eval((T, N), g, pkg), where pkg is the service’s key.

e Choose a asking price a that is smaller than p and commit to it by setting h := H’(a,r) where r < {0, 1}*.

e Post a transaction txresp on the chain which calls Copsq-SubmitSolution() with input (RQID, y, 7, k). The transaction additionally
locks Vs coins to the contract Copsq. Store the response id RspID generated by the contract Copsq-

e Post a transaction tx,g on the chain that calls Copsq-Ask() with inputs (RqID, RspID, a,r).

e To claim the reward (and the locked Vs coins), post a transaction x4, on the chain that calls Copsq.Claim() with inputs

Complaint routine
Any user on the networks can complain against a response with id RspID for the request RqID. The user does the following:

e Retrieve the transaction txresp that recorded the response RspID with inputs (RQID, y, 7,) and public key pkg. Retrieve the request

e Check if Verify ((T, N), g,y, 7, pkg) = 0.If so, post a transaction txp; on the chain that calls Copsq-Complaint() with inputs
(Rq, y, m, h, pks). The transaction additionally locks V. coins to the contract.

Figure 4: OPENSQUARE routines for Clients, Servers and any user in the blockchain network.

ensure that solutions are only rewarded if T computational steps
are performed in computing it and services cannot simply duplicate
their solutions with different public keys and get rewarded.
Optimistic Low On-chain Computational Cost. In the opti-
mistic scenario where the client and the services are honest, no ex-
pensive cryptographic operation needs to be performed by the con-
tract. Since all users are honest, no wrong solutions are registered
at the contract, and no (rational) user has to call the Complaint()
function of the contract. Only operations the contract performs
are hashing operations, storing and retrieving elements from hash
maps, and transferring of coins between the contract address and a
user address.

Solution Collateral and Complain Fee. Cryptographic opera-
tions (verification algorithm Verify() of the watermarked VDF)
are run in the Complaint() function. Miners who run the con-
tract perform the computation and expect to be reimbursed for
the computational cost, usually paid from the user who calls the
function of the contract. In our protocol, the complainant calls the
Complaint() function of the contract, and the cost of computing
the Complaint() function is compensated from the complaint fee
Ve. Therefore it is important that the complain fee V; is sufficient
enough to run the Complaint() function of the contract for the
request. To incentivize complainants to complain against wrong

solutions, we set the solution collateral Vi > V,. In the event of a
successful complaint, the complainant loses V; coins but gains the
service’s collateral Vs coins, which is more than what he lost, thus
encouraging users to complain against wrong solutions.

4 OPENSQUARE MECHANISM DESIGN

In this section, we define the reward distribution function in OPEN-
SQUARE through a (multi-unit) reverse auction with entry costs
such that the protocol achieves the following objectives:

o Participation/Liveness: each request req feasible for the sys-
tem is solved within the solve phase ty, within posted reward
budget p with high probability. The optimal solving probability
is 1. By feasible, we mean that there exists at least a service that
can accomplish the computations in time ¢y, and post a valid
response with an asking price no greater than the budget.

e Minimized buyer cost: the amount of reward distributed for
valid solutions is minimized to ensure the clients pay less.

The first goal is concerned with offering incentives for providing
the service and the second goal is to enhance the affordability of the
service. For the liveness goal, instead of only considering maintain-
ing “enough” services in the market so that a constant number of
requests can be attended at a time, we aim to keep as many services

in the market as possible. One motivation is to prepare for high
throughput in case of a potential outburst of request volumes. An-
other important reason is to accommodate more services to protect
users against DDoS attacks.

Modelling. We model OPENSQUARE protocol as a procurement
auction with entry costs, and the number of participants is not
fixed. Potential bidders (services) know who might be in the same
auction (request) but only know the entrants after they bid. In the
decentralized setting, we assume the auctioneer (contract Copsq)
can neither cap the number of entrants directly nor coordinate
potential bidders actively, e.g matching services to requests.

We assume standard risk neutral® agents with quasi-linear utili-
ties®. Note that here risk-neutral assumption can also be relaxed to
risk averse [21], which reduces procurement costs. Agents have a
unit supply for requests so that one bidder only participates in one
auction at a time. This is because of the sequential nature of the
repeated modular squaring and that services cannot copy solutions
(non-transferability and Sybil resistance).

We focus on direct mechanisms where participants reveal their
private values to the mechanism. The nature of OPENSQUARE im-
poses endogenous and potentially heterogeneous entry costs (com-
putations, amortized setup costs, etc.) before bidding. The entry
costs are deadweight loss, which is not compensated directly and
not received by any party. These costs may not be homogeneous
because we assume non-identical services which potentially scatter
geographically and differ in computational capacity.

The client and other services have complete information over a
service’s types but not its private values. Further we assume services
have independent identical cost distribution (F, f, ¢, c), where F is
the cumulative distribution function (CDF), f is the probability
density function (PDF), ¢ and ¢ are the supports. Their actual cost
values are independent private values (IPV) drawn from F. We
adopt the regularity assumption on the cost distribution, meaning

that for a cost ¢; the virtual value function, % is monotone non-
decreasing in c;. This means that F is log-concave function, eg.,
uniform, normal and exponential distribution.

4.1 Single Request Auction with Entry

Let C be a client who wants her request (g, T, N) solved. Client C can
assess the historic request complexity, the corresponding solving
times, and payments to decide whether its request is feasible for
this system. The auctioneer picks k winners (k > 1) from a single-
request auction. C is satisfied as long as she obtains the solution
and pays as little as possible. We first represent the service in an
auction fashion.

A single buyer C wants to obtain at least one indivisible solution
to her request req from n potential services in time ty, through a
sealed-bid reverse auction. C sets a ceiling price p. This gives r =
p/k as the individual ceiling price for winners. Auctioneer selects
and pays k winner(s) on behalf of C. Services capable of performing
such computations within ceiling price r consider participating. To
make an entry decision, each service S; draws a projected cost c;
from F. After performing repeated squarings, S; realizes cost a; for

2For a risk-neutral agent, receiving an amount ., vip; deterministically is the same
as receiving each v; with probability p; fori € {1,...,n}.
3Utility for obtaining an item of value v at price p is (v — p).

providing the solution and places bid b; = b(a;), where b(-) is a
monotonically increasing function in a;.

We denote the set of services N := {51, ..., S, }. We define the
auction as a vector of two functions A = (x,p) where x is the
allocation/demand function and p is the payment function. The
reward distribution function R comprises of configuration of p
(reward budget), k (number of winners) and the auction (x, p). In
the first stage of the game, services simultaneously determine entry
and in the second round, if at least one service participates, we run
a potentially multi-unit sealed-bid auction with a ceiling price r.

4.1.1 Model entry. The entry decision is made after potential bid-
ders learn their types. Services can approximate the computation
costs for a given request. They make entry decisions simultaneously
because, in our setting, there’s no meaningful identity bound with
services or coordinator to guide sequential entries. Even the auc-
tioneer only knows which services are in the auction after receiving
valid bids from them.
Solution concept. In the first stage of the game where services
decide entry, similar to [38], we solve for the equilibrium where
services with some break-even cost ¢* are indifferent towards entry
(we determine c* as we proceed). If a service has costs above c*, it
does not participate. Our focus for the entry game is to determine
the number of bidders we can accommodate by picking k winners.
Order of events. (1) Auctioneer has access to F and designs the
auction; (2) services learn their types by drawing a projected cost
from F; (3) services decide whether to enter into the auction; (4)
auction participants submit bids along with solutions; (4) auctioneer
decides and realizes payments after the auction closes.

In an auction A with individual ceiling price r, a service S; with
borderline projected cost ¢* has winning probability

(1-F(c))m*k

Adding more agents decreases this probability. Server S;’s optimal
bid is r and its expected profit from participating in the auction is

a(c*) = (r—c") (1 - F(c*))"*

When 7(c*) = Cps the bid-preparation cost, S; is indifferent towards
entry and this is the equilibrium entry condition. Here c;, is known,
can be related to computation costs, and is the same for all potential
bidders with break-even projected cost ¢*.

To have a “desired” ¢*, we start with minimizing buyer cost. We
calculate buyer cost Cp, as follows.

Cp =co(1 = F(c*))" +/ kefi) (c)de

o
+n / F(c)(1~ F(c)" Xdec + nepF(c*)
4
where f{)(c) = n(’klj)(l — F(c))"kF(c)k=1 f(c) is the PDF of the
k-th order statistics (with f(;) being the PDF for the minimum),
and co is the price the client needs to pay to obtain a solution in an
alternative way (outside OPENSQUARE) or bear the loss of not being
able to attain a solution. The first term captures the cost of not
receiving the solution. The second term is the cost of obtaining k
solutions. The third term computes the expected profit for bidders.
The last term computes the expected entry costs for all services.

We took the first order differentiation of Cj, on ¢* and arrives at the
first-order condition in Equation (1).

F(c*)
f(e*)

1 [1-F(c)]"* = ¢,
(1)

After knowing c*, we can determine r since 7(c*) = cp. The aggre-
gate user ceiling price p = rk. For a given c*, the probability of a
service having lower cost is F(c*), then the expected number of
entrants is nF(c*).

fo(a-r(e = 7 et

4.1.2 Second stage auction. After services making their entry deci-
sion, we can start the auction. Suppose n* < n services are entrants.
Given bids as input, x(bj, . .., by*) gives the allocation (x1, ..., Xp*)
where each x; is the probability of S; being the winner in an auc-
tion and p(b1, ..., by) gives the payment (p1, . .., py+). Note that x
gives the ex post winning probability computed by auctioneer after
receiving all bids. For the two aforementioned desired goals, we
realized participation through interim Individual Rationality (IR) in
the entry phase. To achieve minimized buyer cost, we set the ceiling
price r and run a sealed-bid multi-unit auction.

o The allocation rule x: is to pick the smallest k bidders below the
ceiling price as winners.
o The payment rule p: is to pay each winner the minimum of the

(k + 1)-th bid and the ceiling price.

This is dominant-strategy incentive compatible (DSIC) because
services have unit supply. We state the following theorem in the
IPV setting, which follows from our ceiling price condition. Since we
do not change n arbitrarily after derivation, we achieve minimized
cost for obtaining k solutions. The proof sketch can be found in
Appendix D.

THEOREM 4.1. In single-request auction with n services as potential
bidders wheren > 1, R = (p, k, x, p) as defined induces optimal entry.

4.2 Multi-Request Auction with Entry

We now consider ! requests: (g1, T1, N1), ..., (91, T;, Nj). Each ser-
vice has a unit supply and only enters one auction at a time. Let
the I requests be feasible for the system. Because cost distribu-
tions are public, services are aware of the capacity of all services,
meaning that given a request (gm, Trm, Nm), m € [1], Si knows how
many services are capable of solving it (in time within budget). Let
s = (s1,...,s7) record the number of services capable of solving
the corresponding request and f! = (fi, ..., f;) be the feasibility
vector indicating whether S; is capable of solving the correspond-
ing request. We have a special case: if 3, f! = 0, then S; does not
participate and if 3, ¥ > 1, it plays in the first stage entry game.

Difficulties. Unlike in a single-request environment, where a cost-
minimizing multi-unit auction suffices, in a multi-request envi-
ronment, the marketplace needs to dynamically balance between
supply and demand. Furthermore, the auctioneer cannot enforce
(p, k) configurations on requests. This means that computing VCG*
payments or minimum weight bipartite matching® like price vec-
tors in Walrasian equilibrium cannot be meaningfully implemented,

4Vickrey-Clark-Groves (VCG) auction is a typical sealed-bid auction for multiple items
that maximize welfare.
SHere we can compute bipartite matching because bidders have unit supply.

even in static settings. Individual single request auctions may be
correlated but are not coordinated. And the ascending auction is
not a choice because we prefer a one-time sealed bid auction.
Solution concept. In the multi-request entry game, we continue
to first solve for the equilibrium where services with the break-
even cost ¢* for an auction are indifferent towards entry. But the
difficulty is that S; does not know how many bidders are in each
request auction and there is no meaningful way to solve for the
maximum expected returns in general without knowing the number
of competitors. Since there exist multiple distinct requests, we first
internalize the existence of other requests by including opportunity
costs for entering into one request auction but not another. We
then look at how bidders decide on a specific auction to enter.
Order of events. The order of events in a single auction is similar
to before. Now in step (3), services decide which auction to enter.
We organize the auctions according to the number of services
capable of solving them (in time within the ceiling price) in ascend-
ing order. Without loss of generality, let s be ascending so that we
do not need permutation. s; = (s - fl) gives the number of potential
bidders in auctions feasible for a service S;. S; can calculate for each
auction A,, in its feasibility set (where f! is 1) its opportunity cost
as follows: for fi(w) = 1 (fi = 1 at index w), (1) first locate all the
other auctions that is not compatible with auction A,, and denote
the incompatible set as I,,. By incompatible we mean after solving
request (g, Ty, Na), the other request auction becomes infeasible.
(2) For each single-request auction in I,,, we calculate its expected
returns with the number of participants at its maximum and we
set the opportunity cost ¢, , to be the maximum of these expected
returns. If I, is 0, we set ¢f, = 0 and let 7;(c},) = cp + ¢} be
the break-even entry condition. Following the procedure in single-
request environment, a client can solve for ¢}, (Equation (1)) and
determine (p, r) to induce desired entry s(w)F(c3,).
Choice of the auction. Bidders have to choose one of the [auc-
tions to participate in. Suppose S; is faced with two feasible request
auctions Ay, Ay which have nj, ny potential bidders, break-even
prices], c; and unit ceiling price ry, r2. Let S; have projected cost
¢1 < ¢ for Ay and ¢z < ¢ for A;. S;’s expected profits from the
two auctions are:

mi(e1) = (r1 = e1)(1 = F(ey))™m=k
ma(c2) = (rz — e2) (1 = F(ez))™ ke

where ny = s(1)F(c]) and ny = s(2)F(c}). By comparing the two
numbers, S; can decide which auction to participate in.

We note that in the special case where all requests are feasible
for all services, we can simply solve for symmetric equilirbium. For
example, let services enter into A; with probability p, and A, with
probability 1 — p. We solve for p in

& o

/ "F(e)(1 - F(e)P"kde = / F(o)(1 - F(e)1-Pnkge

€1 c2

But symmetric equilibrium does not work in general because ser-
vices are heterogeneous and have different feasible request sets (eg.
half of the services can only solve the request in Ay). The solved
probability is therefore not necessarily “symmetric”.

In the above analysis, we are implicitly assuming there is contin-
ual arrival of feasible requests so that a unit supply service always

chooses one request auction to join without worrying about being
idle after solving this request. This suffices if the marketplace is
active. But in the case where there might not be a new request for a
long period, a service can arrange current requests into compatible
bundles and calculate the expected returns from each bundle. By
compatible we mean, after a service solving one request, the other
request is still feasible for it. Participating in auctions in the optimal
bundle would be the ideal procedure to follow.

Same as before, we run a sealed-bid auction with a ceiling price
r in the second stage. We have the following theorem. It follows
from Theorem 4.1, we provide a proof sketch in Appendix D.

THEOREM 4.2. In l-request auctions with n services as potential
bidders wheren > I, R = (p, k, x, p) as defined induces optimal entry.

4.3 Discussion

We discuss here some of the relevant properties and how OPEN-
SQUARE’s mechanism design deals with various scenarios.
Comparison with alternate approach. In Section 1.2, we briefly
discussed an alternate approach for outsourcing requests. Translat-
ing it to the setting of auctions, we have first the bidders submitting
bids and the auctioneer selecting winners. These selected bidders
then perform repeated squarings and offer solutions. One adversar-
ial behavior is to bid close to zero to become a winner then crash.
In our design, potential bidders compute the solution then submit
bids. The malicious parties can still underbid but the client will
receive a solution. The negative effect is that honest services might
be driven out of the market. Suppose the adversary utilizes k of the
services it controls in each attack and has an attacking budget B. If
the extra cost of computations while they underbid exceeds B, they
stop attacking.

Assume for the worst case, the adversary services maintain the
best machine in the system. Consider each service’s cost as i.i.d ran-
dom variables X1, ..., Xy, following distribution F. The minimum
or the first-order statistics Xy has PDF F(q)(x) =1 - [1 - F(x)]",
CDF f1)(x) = nf(x)[1-F(x)] "=1 The expected number of attacks
__ B
k [xfay (x)dx
the attack is not selective (targeting a specific service), this cost
is shared by all other services. Let the adversary control « of the
services in the system and let an honest service has an upper bound
B’ for loss that it can bear with. Then as long as ﬁ < B/, the
attack is not successful. This indicates that if n approaches infinity,
B’ can be arbitrarily small given that B is finite. But when the attack
is selective, then as long as

B [xf(x)dx
= < B/

k/;xf(l)(x)dx -

the attack is not successful.

To shift or not to shift. In a dynamic setting, new requests arrive.
Will a service shift to other auctions in the middle of one auction?
This is important because the number of entrants may change
and in the worst case, if all services in one auction shift to other
auctions, the liveness guarantee may be compromised. This is only
meaningful in the multi-request auction setting. In the following

the adversary carries out in the worst case is

scenario, a service S; considers shifting to other auctions from
the current auction A,,: a new request arrives and it enlarges the
computations S; can perform in S;’s current feasibility set by more
than the computations it has already spent on A,,. This can happen
with a higher probability when S; just started computations for
Ay, and the new request fits perfectly into the schedule of other
available requests. We argue that not all entrants in the current
auction A,, shift due to the winning probability increases in A,,.
And since we assumed n > [, the new request does not induce
entrance of all services in a reasonable configuration of p, k.
Buyer incentive to choose higher k while fixing r. In single-
request environment, the buyer prefers k = 1 since n > 1. Butina
multi-request environment, the request posters are also competing
to acquire solutions from services. Given that the user configures
(p, k) properly, the probability of not receiving a solution is [1 —
F(c*)]™, where ng is the number of services solving this request
and c* is obtained from the first-order condition (Equation (1)). To
obtain a solution with high probability, the key would be to increase
ng to a certain amount. Intuitively, increasing k directly raises the
probability of winning an auction, and increasing budget p enlarges
the possible profit from each winning. The configuration of (p, k)
and the number of capable servers determine expected profits for
bidders. The concrete relationship between them is non-linear but
increase k for a fixed r boosts profits, which raises ng. Overall
in a seller’s market where demand exceeds supply, the client is
incentivized to increase k for a fixed r.

Link to private value. As noted before, in the alternate approach
the collateral is directly tied to the client’s request value to avoid
losses during a DoS attack. In our market equilibrium, demand and
supply determine the client’s configuration of (p, k). The value of
the request indeed affects a client’s configuration because it changes
¢o in Equation (1), but more noise is still in play: the request’s
difficulty, the remaining solving time, and configurations of other
requests.

Tractability. The mechanism is tractable in polynomial time be-
cause the procurement procedure and determining configurations
of p, k take polynomial time.

5 EVALUATION

In this section, we evaluate the OPENSQUARE protocol by implement-
ing the contract Copsq and measure the gas costs for the various
steps in our protocol presented in Figure 3. While gas costs can in
principle be calculated by hand using [46], this is a highly complex
task for the case of Copsq due to its intricate logic. We therefore
implement Copsq in Solidity [3]. As Solidity only supports maps
and arrays, in order to maintain the top k asking prices, we use a
version of bubble sort, so that we can update our list in O(n) time.
This helps save gas costs, and dissuades servers from asking if their
asking price is larger than the top k asking prices. Our source code
can be found here [5].

5.1 The OPENSQUARE Smart Contract

In the OPENSQUARE smart contract Copsq, we use an RSA modulus
of size 2048 for our tests and embed this in our smart contract. To
implement the VDF from [44] on Ethereum, and use the code from
the public implementations [23].

We present the gas costs for all the functions of Copsq in Table 1.
A limitation of the EVM is that it can only have access to 16 stack
variables at any time. This means that we must carefully arrange the
variable declarations so that at any point in time, we only access the
last 16 local variables. This forces us to split the NewRequest() func-
tion into two partial functions NewRequest; () and NewRequest, ().
We also implement the logic of issuing complaints, by allowing
mini-complaints, where users can complain about specific steps in
the verification of a solution. This greatly reduces the gas costs for
issuing complaints and in turn reduces the solution collateral Vg
and the complaint fee V.. Wesolowski’s VDF [44] makes use of a
hash function Hp, that hashes to a large prime. The implementation
in [23] requires a random nonce value for doing the same, which we
assume is available in Copsq. The contract uses this nonce during
a complaint to check the correctness of the hash operation using a
single run of the Miller Rabin Primality testing algorithm.

The ask() function is implemented using bubble sort so that all
the opened bids are always in increasing order. We estimate the
gas cost for the function by considering the worst case for a bubble
sort and the plot is shown in Figure 5.

o

2 Ask Functi -7
——— S| unction <

£ 250 =7

~ -

] ,f/

[72] -

S 200 A e

0 ’/’

3] ’/

) -

o 150 A P

g /”

o ,/’

*gloo- ~7

= 5 10 15

Number of solvers (k)

Figure 5: The gas cost of the Ask function, for increasing
values of k, which represents the number of servers. These
costs are obtained by assuming that the last server to ask is
the cheapest (worst case).

Optimisations. In SubmitSolution(), we employ an optimization
where the server submits x7, y1, y2, and = = (¢, Q1, Q2); we compute
h1 = H(y1,y2), h2 = H(y1, Q1) and hs = H(y2, Q2), where H is the
Keccak256 hash function; and only store h = H(h1, h2, h3, pks).
This reduces the storage requirements and also helps in our com-
plaint function implementation.

For implementing Complaint(), we split the complaints into in-
dependent functions which can trigger one of the following checks,
thus minimising computational cost:

(1) Check if £ or £ + 1 is computed correctly.

(2) Check if ¢ is a prime.

(3) Check if Qfxr = y; where r = 27 mod ¢ (Left)
(4) Check if ngz = yp where r = 2T mod ¢ (Right)

By splitting the complaint into multiple partial functions, we
reduce the complaint fee V. as the complainant only needs to pay
for the computational cost of one of the above checks, and not all.

Table 1: Summary of gas costs for the various steps in Fig-
ure 3. The numbers have variations up to 1% as Ethereum
counts the number of non-zero words and charges accord-

ingly.

Type Operation Gas Cost (in gas)

Deployment 4,996, 164
NewRequest; () 288, 063
NewRequest, () 275, 463
Optimistic SubmitSolution() 166, 459
Claim() 85,470
Refund() 144,674
Invalid prime 102,521
Complaints Invalid hash to prime 65,502
Left/Right check 237, 868

6 CONCLUSION

In this work we address two main real-world issues with using
repeated modular squaring based timed-cryptographic primitives
like Time-Lock Puzzles (TLP) and Verifiable Delay Functions (VDF).
Specifically, the computational effort in performing the operation
and the prediction of the number of squarings to be performed so
that security holds in the real world. We address both problems by
giving a decentralized repeated modular squaring service protocol
OPENSQUARE. Our game-theoretic analysis shows that our protocol
is cost effective and incentive driven. Our protocol can be imple-
mented in practice right away, thus help realize several applications
of TLP and VDF. An interesting future direction is to develop sound
heuristics for setting the time parameter of these primitives based
on the results of running OPENSQUARE on a system like Ethereum.

ACKNOWLEDGEMENTS

We would like to thank Giulio Malavolta for insightful discussion in
the beginning of this work, and Alexandros Psomas for his pointer
to unit demand bidders and general comments on formatting a
mechanism, and anonymous reviewers for valuable comments.
The work was partially supported by the Deutsche Forschungsge-
meinschaft (DFG - German Research Foundation) under 442893093,
and by the state of Bavaria at the Nuremberg Campus of Technology
(NCT). This work has also been partially supported by the Army
Research Laboratory (ARL) under grant W911NF-20-2-0026, and
the National Science Foundation (NSF) under grant CNS-1846316.

REFERENCES

[1] 2021. https://www.vdfalliance.org.

[2] 2021. https://www.coindesk.com/ethereum- foundation-
weighs-15-million-bid-to-build-randomness-tech. (2021).

[3] 2021. (2021). \url{https://docs.soliditylang.org/en/develop/
index.html}.

[4] Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin
to design fair protocols. In CRYPTO 2014, Part II (LNCS).
Juan A. Garay and Rosario Gennaro, editors. Volume 8617.
Springer, Heidelberg, (August 2014), 421-439. por: 10.1007/
978-3-662-44381-1_24.

https://www.vdfalliance.org
https://www.coindesk.com/ethereum-foundation-weighs-15-million-bid-to-build-randomness-tech
https://www.coindesk.com/ethereum-foundation-weighs-15-million-bid-to-build-randomness-tech
\url{https://docs.soliditylang.org/en/develop/index.html}
\url{https://docs.soliditylang.org/en/develop/index.html}
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Adithya Bhat. 2021. Source code of the contract. https://
github.com/verifiable-timed-signatures/OpenSquare. (2021).
Vivek Bhattacharya, James W Roberts, and Andrew Sweet-
ing. 2014. Regulating bidder participation in auctions. The
RAND jJournal of Economics, 45, 4, 675-704.

Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth,
Vinod Vaikuntanathan, and Brent Waters. 2016. Time-lock
puzzles from randomized encodings. In ITCS 2016. Madhu
Sudan, editor. ACM, (January 2016), 345-356. DoI: 10.1145/
2840728.2840745.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch.
2018. Verifiable delay functions. In CRYPTO 2018, Part 1
(LNCS). Hovav Shacham and Alexandra Boldyreva, editors.
Volume 10991. Springer, Heidelberg, (August 2018), 757-788.
DOI: 10.1007/978-3-319-96884-1_25.

Dan Boneh and Moni Naor. 2000. Timed commitments. In
CRYPTO 2000 (LNCS). Mihir Bellare, editor. Volume 1880.
Springer, Heidelberg, (August 2000), 236—-254. por: 10.1007/3-
540-44598-6_15.

Jeremy Bulow and Paul Klemperer. 1994. Auctions vs. ne-
gotiations. Technical report. National Bureau of Economic
Research.

Jeremy Bulow and Paul Klemperer. 2009. Why do sellers
(usually) prefer auctions? American Economic Review, 99, 4,
1544-75.

Benedikt Biinz, Steven Goldfeder, and Joseph Bonneau. 2017.
Proofs-of-delay and randomness beacons in ethereum. In.
Ran Canetti. 2001. Universally composable security: a new
paradigm for cryptographic protocols. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science. IEEE,
136-145.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish.
2007. Universally composable security with global setup.
In TCC 2007 (LNCS). Salil P. Vadhan, editor. Volume 4392.
Springer, Heidelberg, (February 2007), 61-85. por: 10.1007/
978-3-540-70936-7_4.

Jing Chen and Silvio Micali. 2017. Algorand. (2017). arXiv:
1607.01341 [cs.CR].

Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel
Kaptchuk, and Ian Miers. 2017. Fairness in an unfair world:
fair multiparty computation from public bulletin boards. In
ACM CCS 2017. Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors. ACM Press, 719-728.
DOI: 10.1145/3133956.3134092.

C. Dwork and M. Naor. 2000. Zaps and their applications.
In Proceedings 41st Annual Symposium on Foundations of
Computer Science, 283-293. por: 10.1109/SFCS.2000.892117.
Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018.
FairSwap: how to fairly exchange digital goods. In ACM CCS
2018. David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors. ACM Press, (October 2018), 967—
984. por: 10.1145/3243734.3243857.

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse,
and Kristina Hostakova. 2019. Multi-party virtual state chan-
nels. In EUROCRYPT 2019, Part I (LNCS). Yuval Ishai and
Vincent Rijmen, editors. Volume 11476. Springer, Heidelberg,
(May 2019), 625-656. po1: 10.1007/978-3-030-17653-2_21.

Milton Harris and Artur Raviv. 1981. Allocation mechanisms
and the design of auctions. Econometrica: Journal of the
Econometric Society, 1477-1499.

Charles A Holt Jr. 1980. Competitive bidding for contracts
under alternative auction procedures. Journal of political
Economy, 88, 3, 433-445.

Jonathan Katz, Ueli Maurer, Bjorn Tackmann, and Vassilis
Zikas. 2013. Universally composable synchronous computa-
tion. In TCC 2013 (LNCS). Amit Sahai, editor. Volume 7785.
Springer, Heidelberg, (March 2013), 477-498. por: 10.1007/
978-3-642-36594-2_27.

Kilic. 2021. Kilic/evmvdf. (2021). https://github.com/kilic/
evmvdf.

Jodie Knapp and Elizabeth A. Quaglia. 2020. Fair and sound
secret sharing from homomorphic time-lock puzzles. In Prov-
able and Practical Security.

Vijay Krishna. 2009. Auction theory. Academic press.
Huijia Lin, Rafael Pass, and Pratik Soni. 2017. Two-round
and non-interactive concurrent non-malleable commitments
from time-lock puzzles. In 58th FOCS. Chris Umans, editor.
IEEE Computer Society Press, (October 2017), 576—-587. DOI:
10.1109/FOCS.2017.59.

Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan.
2019. Homomorphic time-lock puzzles and applications. In
CRYPTO 2019, Part I (LNCS). Alexandra Boldyreva and Daniele
Micciancio, editors. Volume 11692. Springer, Heidelberg, (Au-
gust 2019), 620-649. po1: 10.1007/978-3-030-26948-7_22.
Eric Maskin and John Riley. 2000. Optimal multi-unit auc-
tions’. International library of critical writings in economics,
113, 5-29.

R Preston McAfee and John McMillan. 1987. Auctions with
entry. Economics Letters, 23, 4, 343-347.

Ahmet Can Mert, Erdinc Ozturk, and Erkay Savas. 2020. Low-
latency asic algorithms of modular squaring of large integers
for vdf evaluation. IEEE Transactions on Computers, 1-1. DOI:
10.1109/TC.2020.3043400.

2021. Minimal vdf randomness beacon. https://ethresear.ch/
t/minimal-vdf-randomness-beacon/3566. (2021).

Diego Moreno and John Wooders. 2011. Auctions with het-
erogeneous entry costs. The RAND Journal of Economics, 42,
2, 313-336.

Roger B Myerson. 1989. Mechanism design. In Allocation,
Information and Markets. Springer, 191-206.

Roger B Myerson. 1981. Optimal auction design. Mathematics
of operations research, 6, 1, 58—73.

Krzysztof Pietrzak. 2019. Simple verifiable delay functions. In
ITCS 2019. Avrim Blum, editor. Volume 124. LIPIcs, (January
2019), 60:1-60:15. por: 10.4230/LIPIcs.ITCS.2019.60.

R. L. Rivest, A. Shamir, and D. A. Wagner. 1996. Time-lock
Puzzles and Timed-release Crypto. Technical report. Cam-
bridge, MA, USA.

James W Roberts and Andrew Sweeting. 2013. When should
sellers use auctions? American Economic Review, 103, 5, 1830—
61.

William F Samuelson. 1985. Competitive bidding with entry
costs. Economics letters, 17, 1-2, 53-57.

https://github.com/verifiable-timed-signatures/OpenSquare
https://github.com/verifiable-timed-signatures/OpenSquare
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://arxiv.org/abs/1607.01341
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://github.com/kilic/evmvdf
https://github.com/kilic/evmvdf
https://doi.org/10.1109/FOCS.2017.59
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1109/TC.2020.3043400
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://doi.org/10.4230/LIPIcs.ITCS.2019.60

[39] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas

Stifter, and E. Weippl. 2020. Randrunner: distributed ran-
domness from trapdoor vdfs with strong uniqueness. JACR
Cryptol. ePrint Arch., 2020, 942.

[40] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio

Malavolta, Nico Déttling, Aniket Kate, and Dominique Schroder.

2020. Verifiable timed signatures made practical. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’20). Association for Com-
puting Machinery, Virtual Event, USA, 1733-1750. ISBN:
9781450370899. por1: 10.1145/3372297.3417263. https://
doi.org/10.1145/3372297.3417263.

[41] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Fritz
Schmidt, and Dominique Schréder. 2020. Paymo: payment
channels for monero. Cryptology ePrint Archive, Report
2020/1441. https://eprint.iacr.org/2020/1441. (2020).

[42] [n.d.] Vdf fpga competition round 2 results. https://github.
com/supranational/vdf-fpga-round2-results. ().

[43] [n.d.] Verifiable delay functions and attacks. https://ethresear.
ch/t/verifiable-delay-functions-and-attacks/2365. ().

[44] Benjamin Wesolowski. 2019. Efficient verifiable delay func-
tions. In EUROCRYPT 2019, Part III (LNCS). Yuval Ishai and
Vincent Rijmen, editors. Volume 11478. Springer, Heidelberg,
(May 2019), 379-407. por: 10.1007/978-3-030-17659-4_13.

[45] Benjamin Wesolowski and Ryan Williams. 2020. Lower bounds
for the depth of modular squaring. Cryptology ePrint Archive,
Report 2020/1461. https://eprint.iacr.org/2020/1461. (2020).

[46] Gavin Wood et al. 2014. Ethereum: a secure decentralised
generalised transaction ledger. Ethereum project yellow paper,
151, 1-32.

[47] Lixin Ye. 2007. Indicative bidding and a theory of two-stage
auctions. Games and Economic Behavior, 58, 1, 181-207.

A MORE PRELIMINARIES

Time-Lock Puzzles. We recall the definition of standard time-lock
puzzles [7]. For conceptual simplicity we consider only schemes
with binary solutions.

Definition A.1 (Time-Lock Puzzles). A time-lock puzzle is a tuple
of two algorithms (PGen, PSolve) defined as follows.

o Z — PGen(T, m): the puzzle generation algorithm takes as input
a hardness-parameter T and a solution m € {0, 1}, and outputs a
puzzle Z.

o m « PSolve(Z): the puzzle solving algorithm is a deterministic
algorithm that takes as input a puzzle Z and outputs a solution
m.

Definition A.2 (Correctness). For all A € N, for all polynomials T
in A, and for all m € {0, 1}, it holds that m = PSolve(PGen(T, m)).

Definition A.3 (Security). A scheme (PGen, PSolve) is secure
with gap ¢ < 1 if there exists a polynomial T(-) such that for
all polynomials T(-) > T(-) and every polynomial-size adversary
A = {A)})en of depth < T?(A), there exists a negligible function
negl(1), such that for all A € N it holds that

Pr[b — A(Z): Z « PGen(T(A),b) | < = +negl(}).

N

Verifiable Delay Functions. We recall the formal definition of
the verifiable delay functions from [8].

Definition A.4. A verifiable delay function (VDF) scheme, consists
of a tuple of 4 PPT algorithms (Setup, Gen, Eval, Verify) that are
defined below:
pp — Setup(14, T): the setup algorithm takes as input a security

parameter 1" and a time parameter T, and outputs the public pa-
rameters pp. The public parameters encode an input domain X and
output domain Y.

x < Gen(pp): the instance generation algorithm takes as input the
public parameters, and internally samples x « X to output x.

(y,) < Eval(pp, x): the evaluation algorithm takes as input the

public parameters pp, an instance x, and outputs a result y € Y,
and a proof 7.
0/1 « Verify(pp, x,y, 7): the verification algorithm takes as input

the public parameters pp, an instance x, a result y, and a proof 7,
and outputs 1 if the result y is valid with respect to x and outputs 0
otherwise.

Definition A.5 (Completeness). A verifiable delay function scheme
ITypr (Setup, Gen, Eval, Verify) is said to be complete if forall A, T €
N, the following holds:

pp — Setup(l’l,T)
x < Gen(pp) =1.
(y, m) < Eval(pp,x)

Pr|Verify(pp, x,y, m) = 1

Definition A.6 (Sequentiality). A verifiable delay function scheme
(Setup, Gen, Eval, Verify) is said to be sequential if for all A, T € N,
all pairs of PPT adversaries (A1, Az) such that the parallel running
time of Aj is is bounded by T € N, there exists a negligible function
negl such that

pp — Setup(l/l,T)
(st) « A1(pp)
x < Gen(pp)

(y,) «— Aa(st,x)

< negl(4).

Pr|(y,) < Eval(pp, x)

Definition A.7 (Soundness). A verifiable delay function scheme
(Setup, Gen, Eval, Verify) is said to be sound, if for all , T € N, all
PPT adversaries A, there exists a negligible function negl, such
that

. (y,-) # Eval(pp, x)A |pp « Setup(l’l,T)
Verify (pp,x, y,) = 1| (x, y,) — A(pp)
< negl(4).

Universal Composability. Our security model for OPENSQUARE
is in the universal composability framework from Canetti [13]. We
also consider the extension to a global setup [14], that helps model
concurrent executions. We consider static corruptions, where the
adversary announces at the beginning which parties he corrupts.
We denote the environment by &. For a real protocol IT and an
adversary A we write EXEC, # g to denote the ensemble corre-
sponding to the protocol execution. For an ideal functionality #

https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://eprint.iacr.org/2020/1441
https://github.com/supranational/vdf-fpga-round2-results
https://github.com/supranational/vdf-fpga-round2-results
https://ethresear.ch/t/verifiable-delay-functions-and-attacks/2365
https://ethresear.ch/t/verifiable-delay-functions-and-attacks/2365
https://doi.org/10.1007/978-3-030-17659-4_13
https://eprint.iacr.org/2020/1461

Functionality £, running with a set of parties Py, ..., Py
stores the balance p; € N for every party P; , where i € [n]
and a partial function K for frozen cash. It accepts queries of
the following types:

Update funds: Upon receiving message (update, P;, p) with
p > 0 from &, set p; := p and send (updated, P;, p) to every
entity.

Freeze funds: Upon receiving message (freeze, id, P;, p)
from an ideal functionality of session id check if p; > p. If
this is not the case, reply with (nofunds, P;, p). Otherwise set
pi = pi — p, store (id, p) in K and send (frozen, id, P;, p) to
every entity.

Unfreeze funds: Upon receiving message

(unfreeze, id, P, p) from an ideal functionality of session id,
check if (id, p”) € K with p” > p. If this check holds update
(id, p”) to (id, p" — p), set pj := pj + p and send

(unfrozen, id, P}, p) to every entity

Figure 6: Global ledger functionality £ [18].

and an adversary S we write EXEC# g g to denote the distribution
ensemble of the ideal world execution.

Definition A.8 (Universal Composability). A protocol r UC-realizes
an ideal functionality ¥ if for any PPT adversary A there exists
a simulator S such that for any environment & the ensembles
EXEC. a1,& and EXEC# g g are computationally indistinguishable.

We make use of a ledger functionality £ described in Figure 6
that is borrowed from [18]. The functionality lets parties transfer
coins between them while allowing coins to be locked and unlocked
at contracts. The functionality has a partial function K : {0,1}* —
N that maps a contract identifier id to an amount of coins that is
locked for the execution of contract id. The parties cannot directly
interact with the functionality, but other ideal functionalities can
adjust balances of parties based on freeze and unfreeze messages.
Freeze messages, transfer coins from the balance of a party to a
contract, while unfreeze message, transfers the frozen coins back
to the user’s account.

We assume synchronous communication between parties, where
the execution of the protocol happens in rounds. We model this
via an ideal functionality called the clock functionality denoted
by Felock from [22, 19], where all honest parties are required to
indicate that are ready to proceed to the next round before the clock
proceeds. The exact clock functionality that we consider is fully
described in [14]. In the functionality all entities are always aware
of the given round and users can abort a session at any given round
by sending a an abort message.

B UC FORMULATION OF A DECENTRALIZED
SOLUTION SERVICE

We present here the security formulation of a decentralized solu-
tion service in the form of an ideal functionality. The goal is to
model our OPENSQUARE protocol but abstracting away the specific
computational details.

The main property that a solution service must guarantee is a fair
exchange of digital goods: a solution to a problem ¢ and p coins as
reward. More precisely, there are services Sy, ..., S, and a client C.
The client has a problem ¢ he wishes to get solved and is willing to
offer certain price of up to p coins according to a certain distribution
R. The services may propose solutions to the problem and ask for
a certain price for their service. Finally the services are rewarded
according to their asking price and the reward distribution R.

Dziembowski, Eckert and Faust [18] gave a UC formulation of
a similar exchange where there is a single seller willing to sell a
witness w for the circuit ¢, in exchange for a price p from the buyer.
However, their formulation falls short in certain crucial aspects
for the decentralized solution notion we want. It is immediate to
see that in our formulation we have multiple services (or sellers)
whereas their setting is tailored for a single seller. Secondly, the
price p for the exchange is fixed ahead and known to both the
seller and the client in their formulation. Whereas, in the case of
decentralized solution service, the services do not yet know the
solution to the problem, and therefore have to perform some com-
putation to generate the solution. Only after the computation can
the services determine their price and they quote the asking price.
Thirdly, in our setting, depending on the problem ¢ and the reward
distribution R, services can decide to continue or abort in attempt-
ing to solve the problem. This is in contrast to their setting where
both the seller and the client interact with the functionality having
agreed to the price p ahead of time. Similar issues persist with other
formulations of blockchain based cryptographic fairness [16, 4].

B.1 Ideal Functionality

The formal description of our functionality Fs,s is given in Figure 7.
The functionality captures decentralized solving service between a
client C and n services Sy, . .., Sy. On a high level, a client sends a
request to the functionality. The request specifies the problem, and
the reward distribution. The client is also required to lock a reward
amount to the ideal functionality. The services can send solutions
to the functionality along with their asking price. Finally, valid
solutions are rewarded based on the reward distribution chosen
by the client and the asking price quoted by the service for the
solution. Remaining coins are refunded back to the client.

In more detail, during the request phase, the client sends a request
(req,id, @, R) where R = (p, addrc, R). Here ¢ is the computational
problem modelled here as a circuit ¢ : {0, 1}* — {0, 1}, the reward
amount is p, the address of the client is addrc and the reward
distribution function R : {0,1}* — {0, 1}*. The function R is
publicly verifiable, and we elaborate on this later. The functionality
freezes the p coins at an address of the functionality specific to the
session. The functionality also sends the request and the reward
distribution function to all the services.

During the service phase, services can either abort or send a solu-
tion (Sol, id, s, a, addr) where s is the solution, a is the asking price
and addr is the address of the service. The functionality records the
solution in a list Ly specific to the session with identifier id. After
receiving messages from every service, the functionality returns
the asking prices of all the services to the simulator.

During the payout phase, the functionality eliminates all the in-
valid solutions by checking if ¢ (s, addr) = 0, where s is the solution

The ideal functionality Fses (in session id) interacts with a
client C, services Sy, . . ., Sp, the ideal adversary S and the
global ledger L.

Request Phase

e Upon receiving (Req, id, ¢, R) with R := (p, addrc, R) and
p € Nfrom C, leak (Req, id, ¢, R) to S, store the circuit ¢
and the reward R.

e Initialize a list Lijq := 0

e Send (freeze, id, C, p) to L. If the response is
(frozen, id, C, p), send (Req, id, ¢, R) to all services
(81,...,Sn), and then go to service phase.

Service Phase

e Upon receiving (abort, id) from all of the services, then
send (unfreeze, id, C, p) to L and terminate.

o Otherwise, upon receiving (Sol, id, s;, a;, addr;) from
service S;, register Lig == Liq||(i, s, ai, addr;), and leak
(i,si) to S.

o At the end of the phase, leak all a; values obtained in this
phase to S, and accept no more messages with Sol.

Payout Phase

e For k € [|Li4l], parse Lig[k] = (i,s, a, addr) check if
¢(s,addr) = 1, if so do nothing. Otherwise, remove
(i,s, a, addr) from the list L;q.

o If Lig # 0, compute {(i, pi, addri) }ier,y)] < R(Lids p)-
Send (unfreeze, id, S;, p;) for all i € [|Li4]] and
(unfreeze,id, C, p — Yie[|14 P1) to L and send
(sold,id, {si}ie[1,4))) to the client C.

o If Lig = 0, then send (unfreeze, id, C, p) to £ and send
(unsold, id) to the client C.

Figure 7: Ideal functionality ¥, s for solution services.

and addr is the address of the service that registered the solution.

The functionality then uses the reward distribution function R with
inputs all the valid solution and the reward price p. The function
returns a set {(i, pi;,addri)}ieqry] < R(Lig, p), containing the
index of the service, the price to be paid p; and the address of the
service addr; to which the price would be paid. The functionality
unfreezes the coins from the p coins that was frozen, and transfers
these coins to the services, that is, p; coins are transferred to addr;
of service S;. The remaining coins after transferring the rewards to
services, are transferred to the client. If there was no valid solution,
all the p coins are refunded to the client.

Fairness and Public Verifiablity of R. The functionality ensures
fairness in that the services receive rewards according to the reward
distribution R as specified by the client and known to the services,
if and only if the service recorded a valid solution to the problem
¢. Moreover, provided the reward distribution function R returns
reward prices such that };e|r,,1pi < p and this is verifiable
by the services during the request phase, we are guaranteed that
the reward amount p is enough to reward all the solutions. If this
property of R is not publicly verifiable, services can simply abort
during the service phase. This ensures that the services can be
rewarded correctly according to R from the reward p if they record
a valid solution.

C SECURITY ANALYSIS

We prove the following theorem that formally states the security
of our OPENSQUARE protocol.

THEOREM C.1. Let (Setup, Gen, Eval, Verify) be a watermarked
VDF that is sequential and sound. Then our OPENSQUARE protocol
run between a client, and n servers with access to the smart contract
Copsq» a global ledger L (Figure 6), and a clock functionality Feiock.
UC-realizes the functionality Fso|s-

Proor skeTcH OF THEOREM C.1. Since there is no secrecy re-
quirement, our simulation strategy is fairly simple. The simulator is
the ideal world adversary that interacts with the functionality Fsog
and simulates the view of the adversary ‘A. We have two cases,
where either the client is honest or a server is honest.

In the later case, assume that all entities except server S; are cor-
rupt. In this case the simulator simply relays the messages between
the adversary and the ideal functionality.

In the former case, we describe the simulator by making use of
two hybrid executions. The first hybrid execution is that of the real
world protocol.

The second hybrid, is the same as the first hybrid except that the
simulation aborts if the adversary posts a solution (RspID,y, , h)
for a request req := (g, T, N) from a public key pk such that Verify
((T,N),y, @, pk) = 1, and Eval((T,N), g, pk) # y.

The execution in the first and the second hybrid are indistin-
guishable. Notice that the only difference between the hybrids is
the event that an abort happens in the second hybrid. But the proba-
bility with which the abort event happens in the second hybrid can
be bound by a negligible function following from the soundness of
the watermarked VDF. O

D AUCTION

D.1 Single request auction

THEOREM 4.1. In single-request auction with n services as potential
bidders wheren > 1, R = (p, k, x, p) as defined induces optimal entry.

REMARK 1. Here by “optimal”, we mean the auction achieves min-
imized costs. The entry induced by the configuration of (p,r) is as
desired by the client.

ProOF. We set unit ceiling price r in such a way that in equilib-
rium, the expected buyer cost for k solutions is minimized. Note
that we do not vary n, the number of potential bidders, after the
derivation. So we do not discuss the potential effects brought by
a greater or smaller n. Since services have unit demand and cost
distribution F is regular, the expected buyer cost is minimized by
procuring up to k solutions from up to k services with the lowest
bids below the unit ceiling price.

Additionally, we state the revenue equivalence theorem in the
standard auction context. Recall that reverse auction with ceiling
price has mathematically equivalent forward auction form.

THEOREM D.1 (REVENUE EQUIVALENCE THEOREM). In the IPV
setting, any two auctions in which the following hold in equilibrium:
(1) the bidder with the highest valuation wins the auction; (2) any
bidder with the lowest possible valuation pays 0 in expectation. Then
the expected payoffs to each type of each bidder, and the seller’s
expected revenue are the same in both auctions.

One example is a Bayesian Nash Incentive Compatible variation
of first price auction and second price auction. Harris and Raviv [20]
show that Revenue Equivalence Theorem continues to hold for unit
demand bidders in multi-unit auctions for uniform distribution of
bidders’ valuations. Maskin [28] shows it for general distributions
of valuations as long as regularity assumption holds.

THEOREM D.2 (REVENUE EQUIVALENCE THEOREM, MULTI-UNIT).
Assume that each of n risk-neutral agents has an independent private
valuation for a single unit of k identical goods at auction, drawn from
a common cumulative distribution F (v) that is strictly increasing and
atomless on [v,v]. Then any efficient auction mechanism in which
any agent with valuation v has an expected utility of zero yields the
same expected revenue, and hence results in any bidder with valuation
v; making the same expected payment.

In our second-stage auction, the bidders with the lowest costs win
the auction since bidding function b(c) is monotone non-decreasing
in ¢ and we pick the lowest k bidders below ceiling price as winners.
A bidder with costs higher than the ceiling price or higher than the
winners has utility 0. Revenue equivalence theorem applies. Maskin
also provides detailed proof for the optimality of a selling procedure,
selling up to k units to buyers with the highest bidding price above
a reserved price, for multi-unit auction in [28, Proposition 4]. O

D.2 Multi-request Auction

THEOREM 4.2. In l-request auctions with n services as potential
bidders wheren > I, R = (p,k,x,p) as defined induces optimal
entry.

PROOF SKETCH. Potential bidders have unit demand, so we only
need to show that there is a sufficient number of bidders for an

auction, and then we can consider a single-request auction environ-
ment. If a request is not feasible for the system, we do not guarantee
a solution. If a request is feasible, then by considering the number
of capable services and solving for the ceiling price, the user can
attract the desired amount of potential bidders to the auction.

Let Ay, ..., A; be the [auctions with ascending break-even prices.
The number of services with costs lower than each break-even price
(interested in entry) is also ascending. In the procedure of configur-
ing an auction A,,, the client takes into account the opportunity
costs of not attending the best auction Ap,,; other than A,, and
covers the expected returns in Ap,;. This means that this auction
is better than Ap,; in its full load (all capable services participate in
it). We show that with high probability, at least one capable service
bid in A,,.

A service S; with cost c;,, for auction A,, calculates the profits
from participating in auction A, as Ty (ciw) = (rw — ciw)[1 —
F(ciw)] nw=kw where n,y increases with w. For auction A,, to have
no bidders, we need Vj # w, mj(cij) = (rj—cij)[1 —F(cij)]"f_kf >
(rw—Cciw). We know from the approach the client uses to determine
the auction that 7j(c;j) < mw(ciw) at their full load. This means
that 7j(cij) < (rw — ciw). Since we assume n > [, by law of
large numbers, we know the costs drawn by the n services are
close to the mean value with high probability and n,n; > 1
with high probability (the probability of n,, = s(w)F(c},) > 1,

nj = s(j)F(c!.) > 1). Therefore, this reasoning can apply to all
sich auction & j including the A, and still have%t leastrc,)rr)ley bidder

in this auction A,, with high probability.

Note that if there’s no existing auction to compare to when a
client starts the request, we go back to the single-request auction
environment. m]

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Solution Overview
	1.3 Related Work

	2 Preliminaries
	3 Decentralized Repeated Modular Squaring Service
	3.1 OpenSquare Smart Contract
	3.2 OpenSquare Protocol
	3.3 Discussion

	4 OpenSquare Mechanism Design
	4.1 Single Request Auction with Entry
	4.2 Multi-Request Auction with Entry
	4.3 Discussion

	5 Evaluation
	5.1 The OpenSquare Smart Contract

	6 Conclusion
	A More Preliminaries
	B UC Formulation of a Decentralized Solution Service
	B.1 Ideal Functionality

	C Security Analysis
	D Auction
	D.1 Single request auction
	D.2 Multi-request Auction

