

1 Host defense mechanisms induce genome instability leading to
2 rapid evolution in an opportunistic fungal pathogen

3
4 Amanda Smith¹, Levi Morran², and Meleah A. Hickman^{1,2}

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 * Corresponding author, ashurzi@emory.edu
33 ¹ PhD program in Genetic and Molecular Biology, Emory University
34 ² Department of Biology, Emory University
35
36 Key words: *Candida albicans*, *Caenorhabditis elegans*, fungal genomics, innate immunity,
37 Reactive oxygen species, genetics
38

39 **Abstract**

40

41 The ability to generate genetic variation facilitates rapid adaptation in stressful
42 environments. The opportunistic fungal pathogen *Candida albicans* frequently
43 undergoes large-scale genomic changes, including aneuploidy and loss-of
44 heterozygosity (LOH), following exposure to host environments. However, the specific
45 host factors inducing *C. albicans* genome instability remain largely unknown. Here, we
46 leveraged the genetic tractability of nematode hosts to investigate whether innate
47 immune components, including antimicrobial peptides (AMPs) and reactive oxygen
48 species (ROS), induced host-associated *C. albicans* genome instability. *C. albicans*
49 associated with immunocompetent hosts carried multiple large-scale genomic changes
50 including LOH, whole chromosome, and segmental aneuploidies. In contrast, *C.*
51 *albicans* associated with immunocompromised hosts deficient in AMPs or ROS
52 production had reduced LOH frequencies and fewer, if any, additional genomic
53 changes. To evaluate if extensive host-induced genomic changes had long-term
54 consequences for *C. albicans* adaptation, we experimentally evolved *C. albicans* in
55 either immunocompetent or immunocompromised hosts and selected for increased
56 virulence. *C. albicans* evolved in immunocompetent hosts rapidly increased virulence,
57 but not in immunocompromised hosts. Taken together, this work suggests that host-
58 produced ROS and AMPs induces genotypic plasticity in *C. albicans* which facilitates
59 rapid evolution.

60

61 **Introduction**

62

63 The opportunistic fungal pathogen *Candida albicans* is typically commensal and
64 a component of the human microbiome (1). Yet, *C. albicans* is a leading cause of fungal
65 bloodstream infections and 40% of these infections result in mortality (2). In addition to
66 bloodstream infections, *C. albicans* causes non-lethal mucosal infections, including
67 vaginal and oral candidiasis (2). *C. albicans* infection is highly dependent on the host
68 context, including high estrogen levels (3), chronic stress (4), antibiotic use (5–7),
69 uncontrolled diabetes (8, 9), and immunosuppression (10, 11). In the absence of proper
70 immune recognition, fungal proliferation is uncontrolled, leading to infection. However
71 healthy individuals, despite having a fully functioning immune system, also experience
72 *C. albicans* infections. Infections primarily result from the commensal isolates becoming
73 pathogenic rather than an infection acquired from outside sources (12). The transition
74 from commensal to pathogenic may be facilitated by *C. albicans* phenotypic and
75 genotypic heterogeneity. *C. albicans* genetic diversity within and among individuals is
76 very high and often include numerous single nucleotide polymorphisms (SNPs) and loss
77 of heterozygosity (LOH) events (13). This genetic variation may be a direct
78 consequence of the stressors *C. albicans* encounters in the host which include immune
79 stressors and other microbes. Recent work has demonstrated the host environment
80 elevates *C. albicans* genome instability similar to *in vitro* stressors (14–18). However,
81 the specific host components that generate this instability are largely unknown.

82 Genomic variation is quite common in clinical *C. albicans* isolates (13, 19) and
83 includes polymorphisms, copy number variation, loss-of-heterozygosity (LOH), and
84 partial or whole chromosomal aneuploidies (19). This genomic variation indicates that

85 host environments either induce or maintain genetic variation in *C. albicans*. Murine
86 infection models have found that when exposed to different host niches, *C. albicans* has
87 a greater than 10-fold increase in LOH and frequent aneuploidy compared to *in vitro*
88 (14–16). Following host exposure, genomic changes generated in the murine
89 environment often resulted in a more commensal-like phenotype and higher fitness
90 inside the host (15, 16, 18, 20). However, the long-term genotypic and phenotypic
91 consequences have not yet been extensively studied. *Caenorhabditis elegans* has also
92 been used as a host model to assess *C. albicans* genome stability. *C. albicans* genome
93 instability following *C. elegans* host association was detected across multiple *C.*
94 *albicans* strains which resulted in changes to virulence (17). Together, murine and *C.*
95 *elegans* models clearly demonstrate that host environments drive genetic diversity in *C.*
96 *albicans* which cause phenotypic changes. However, it remains unclear what specific
97 host components contribute to *C. albicans* genome instability and how host-induced
98 genome instability contributes to the long-term adaptability of *C. albicans*.

99 *C. albicans* encounters many different stressors within the host environment,
100 including the immune system, which is designed to control and remove pathogens. The
101 immune system recognizes *C. albicans* and other pathogens through pathogen
102 recognition receptors (PRRs) that detect the specific microbial chemical signatures
103 called pathogen-associated molecular patterns (PAMPs) (21). Recognition of pathogens
104 like *C. albicans* triggers production of antimicrobial peptides (AMPs) which recruit
105 phagocytic immune cells to the site of infection. Phagocytic immune cells produce
106 reactive oxygen species (ROS) and reactive nitrogen species to control pathogen
107 proliferation (22). Similar to humans, *C. elegans* produce ROS and AMPs in response to

108 pathogens. AMPs inhibit microbial growth through a variety of methods, including
109 disrupting the cell membrane, and halting DNA, RNA, and protein synthesis (23). *C.*
110 *elegans* AMP production is activated through a mitogen-activated protein kinase
111 (MAPK) signaling cascade (24, 25) and includes SEK-1 (MAPKK), which is homologous
112 to the mammalian MKK3/6 and MKK4 MAPKKs (26). Mutations in *C. elegans* SEK-1
113 increase host susceptibility to *C. albicans* and other microbial pathogens (26–29).
114 Another conserved host defense mechanism is ROS production. Mammals produce
115 ROS via five NADPH oxidases and two dual oxidases (30, 31) while *C. elegans* ROS
116 production is mediated by a single dual oxidase BLI-3 in response to bacterial and
117 fungal pathogens (29, 32–34). BLI-3 mutant hosts are more susceptible to *C. albicans*
118 infection (35). ROS causes cellular toxicity through structural changes to the DNA (36)
119 and generates double strand breaks in *C. albicans* (30). Together, host-produced AMPs
120 and ROS act in various ways in order to inhibit *C. albicans* growth.

121 Here we investigated if host-produced AMPs and ROS induce *C. albicans*
122 genome instability using the model host *C. elegans*. We infected wildtype and two
123 different immunocompromised hosts with mutations in either *sek-1* (AMP production) or
124 *bli-3* (ROS production) with *C. albicans* and measured the frequency and types of
125 genome changes in *C. albicans*. Wildtype hosts elevate genome instability and generate
126 greater genetic diversity in *C. albicans* compared to immunocompromised hosts. To
127 evaluate the impact of greater genetic diversity in *C. albicans* driven by the host immune
128 response, we evolved *C. albicans* virulence in both immunocompetent and
129 immunocompromised hosts for ten passages. Within this relatively short *in vivo*
130 experimental evolution, *C. albicans* rapidly increased virulence when evolved in

131 immunocompetent hosts but not when evolved in immunocompromised hosts. Taken
132 together, our results suggest that host innate immune pathways are a source of genome
133 instability in *C. albicans* and facilitate *C. albicans* adaptation.

134

135 **Results**

136

137 *Host defense pathways elevate C. albicans genome instability*

138

139 We and others, have shown that nematode and murine host environments
140 induce *C. albicans* genome instability compared to *in vitro* (14–18), yet the specific host
141 attributes driving genome instability have not been elucidated. Here, we tested whether
142 components of host innate immune function drove host-associated genome instability
143 by comparing *C. albicans* LOH between yeast extracted from immunocompetent and
144 immunocompromised hosts (Fig. 1A). We used two different immunocompromised host
145 genotypes, one carried a *sek-1* deletion and could not produce AMPs (31), the second
146 host genotype carried a *bli-3* deletion and could not produce ROS (29, 34). *C. albicans*
147 LOH frequency was significantly reduced when extracted from *sek-1* and *bli-3* hosts
148 compared to wildtype (N2) hosts (Figs. 1B, S1A&B) which implicates both *sek-1* and *bli-*
149 *3* immune pathways as a source of pathogen genome instability.

150 Since *C. albicans* genetic background impacts mutation rates (16, 17), we also
151 measured host-induced LOH frequency in a clinical *C. albicans* strain (37). Similar to
152 the laboratory *C. albicans* strain, the clinical strain had a significantly reduced LOH
153 frequency when extracted from *bli-3* hosts compared to wildtype hosts (Fig. 1C). Yet the

154 clinical *C. albicans* LOH frequency extracted from *sek-1* and wildtype hosts was not
155 statistically different. However, *C. albicans* LOH frequency was notably higher in
156 wildtype compared to *sek-1* hosts. Together, these data suggest that the *bli-3* pathway
157 induces *C. albicans* genome instability regardless of pathogen genetic background, and
158 the *sek-1* pathway may only contribute to genome instability in a strain-dependent
159 manner.

160

161 *In vitro and in vivo ROS elevate genome instability in cap1Δ/Δ C. albicans*

162

163 In response to bacterial and fungal pathogens, *C. elegans* produces ROS via the
164 BLI-3 dual oxidase (35). However, *C. albicans* has several mechanisms to combat
165 ROS, including activation of antioxidant genes that detoxify ROS, whose expression is
166 regulated by the Cap1p transcription factor (38, 39). To directly test whether *CAP1*
167 protects *C. albicans* from ROS-induced genome instability, we compared *in vitro* LOH
168 frequencies of wildtype and *cap1Δ/Δ* *C. albicans* strains exposed to 5 mM H₂O₂.
169 Exposure to H₂O₂ elevated the LOH frequency in both wildtype and *cap1Δ/Δ* *C. albicans*
170 strains. Yet, the increase in LOH was significantly higher in *cap1Δ/Δ* that had a 40-fold
171 increase compared to wildtype that had a 15-fold increase (Fig. 2A & S2A). To assess
172 whether *CAP1* mitigates *C. albicans* genome instability from host-produced ROS, we
173 compared LOH frequencies between wildtype and *cap1Δ/Δ* *C. albicans* associated with
174 immunocompetent and immunocompromised hosts. If host-produced ROS induces *C.*
175 *albicans* genome instability, then *cap1Δ/Δ* *C. albicans* will have increased LOH in
176 wildtype and *sek-1* hosts that are capable of producing ROS, but not in *bli-3* hosts that

177 cannot. Compared to *in vitro*, all host environments increased *cap1Δ/Δ* LOH (Fig. S2B).
178 Host-extracted *cap1Δ/Δ* LOH frequencies were higher compared to wildtype *C. albicans*
179 for both wildtype and *sek-1* hosts, but not from *bli-3* hosts (Fig. 2B). Together, these
180 data demonstrate that host-produced ROS elevated *C. albicans* genome instability.
181 Additionally, *cap1p*-mediated ROS detoxification is important for mitigating ROS-
182 induced *C. albicans* genome instability both *in vitro* and *in vivo*.

183 Endogenous and exogenous antioxidants break down ROS through a variety of
184 mechanisms. We next wanted to determine whether antioxidants mitigate *C. albicans*
185 genome instability resulting from host-produced ROS. We compared host-associated *C.*
186 *albicans* LOH in the presence or absence of 25 μ M of lipoic acid, an antioxidant
187 involved in the breakdown of ROS (34). In the presence of lipoic acid, host-associated
188 *C. albicans* LOH was significantly reduced when extracted from wildtype and *sek-1*
189 hosts (Figs. 2C & S2C). In contrast, lipoic acid did not decrease *C. albicans* LOH when
190 extracted from *bli-3* hosts, (Figs. 2C & S2C). This suggests that antioxidants are
191 effective in reducing *C. albicans* genome instability in ROS-producing hosts. Together,
192 these data suggest that both *in vitro* and *in vivo* ROS elevates genome instability in a
193 *cap1Δ/Δ* mutant, and that *C. albicans* genome instability caused by host-produced ROS
194 can be alleviated with the addition of antioxidants.

195

196 *Host-produced AMPs and ROS cause aneuploidy and abundant LOH events in C.*
197 *albicans*

198

199 LOH assays are an easy, useful and established way to measure *C. albicans*
200 genome instability (40, 41), however, they are limited to measuring a heterozygous
201 marker at a single genomic location. To characterize whether host immunity drives other
202 genomic alterations, we whole-genome sequenced single colony isolates associated
203 with wildtype, *sek-1* and *bli-3* hosts that were isolated either on media that selected for
204 LOH events (2-DOG; Fig. 3A) or media that did not select for LOH events (YPD; Fig.
205 S3). Among LOH-selected isolates extracted from wildtype hosts, *GAL1* LOH on Chr1
206 was mediated via break-induced recombination (4/6) or via whole chromosome loss and
207 reduplication (1/6). For the break-induced recombination LOH events, there was no
208 evidence for a common breakpoint or recombination hotspot mediating host-induced
209 *GAL1* LOH. Additional large-tract LOH events (42, 43), homozygous from the site of the
210 DNA break to the end of the chromosome, and whole-chromosomal, and segmental
211 aneuploidies were identified in 5/6 LOH-selected isolates from wildtype hosts (Fig. 3A).
212 However, no aneuploidy was detected in *C. albicans* from immunocompromised host
213 backgrounds (Fig. 3A). Four isolates carried a long-tract LOH or segmental aneuploidy
214 on Chr2 with breakpoints ranging between positions 1,795,723 and 2,155,170; four
215 carried a 170 kb LOH tract or segmental aneuploidy on Chr6, whose breakpoint
216 corresponds with position 861,044, the beginning of a major repeat sequence (MRS).
217 One isolate was trisomic for Chr7 and tetrasomic for Chr6. Even among non-LOH
218 selected isolates associated with wildtype hosts, 50% had undergone whole-
219 chromosome LOH on Chr2 (Fig. S3). But no large-scale genomic changes were
220 detected in non-LOH selected isolates associated with *sek-1* hosts (Fig. S3A). Thus,

221 immune components in wildtype hosts induced large-scale genomic changes in *C.*

222 *albicans*.

223

224 *C. albicans* evolves rapidly in immunocompetent, but not immunocompromised hosts

225

226 Thus far, our results support a model that innate immunity generates *C. albicans*

227 genetic variation by inducing genome instability. As genetic variation is a fundamental

228 requirement for a response to natural selection, we hypothesized that *C. albicans* would

229 evolve more rapidly in immunocompetent hosts, as compared to immunocompromised

230 hosts. To test this hypothesis, were performed *in vivo* experimental evolution utilizing

231 immunocompetent and immunocompromised hosts and selected for increased *C.*

232 *albicans* virulence. Given that exposure to both *bli-3* and *sek-1* hosts reduced genome-

233 wide genetic diversity in *C. albicans* (Fig. 3), we selected AU-37 (*glp-4*; *sek-1*) as our

234 immunocompromised hosts for logistical purposes (see methods). We infected six

235 parallel populations of 50 hosts for both immunocompetent and immunocompromised

236 hosts. When a host population reached 50% death, we extracted *C. albicans* from the

237 dead hosts to infect a new host population, selecting for *C. albicans* associated with

238 early host death (Fig. 4A). We evolved *C. albicans* in this manner for a total of ten

239 passages (Fig. 4A). After five passages in immunocompetent hosts, the average time to

240 50% death was ~8 days which was significantly lower than the initial passage with an

241 average of 12 days (Fig. 4B), indicating increased virulence in *C. albicans*. This

242 increased virulence was subsequently maintained throughout the remainder of the

243 evolution experiment (Fig. 4B). In contrast, there was no change in the average time to

244 50% death in immunocompromised hosts throughout ten passages, despite being more
245 susceptible initially to *C. albicans* infection compared to immunocompetent hosts, (Fig.
246 4C). Therefore, *C. albicans* did not respond to selection for increased virulence in the
247 immunocompromised hosts within ten passages. Together, these results support our
248 hypothesis that host immunity-induced genomic changes generated in *C. albicans*
249 populations facilitated a strong response to this selection regime.

250 To validate that increased virulence observed from immunocompetent hosts was
251 a direct result of our selection pressure and not the passaging itself, we passaged *C.*
252 *albicans* in parallel experimental conditions but in the absence of hosts. We then
253 infected immunocompetent and immunocompromised hosts with the 'no-host' evolved
254 (grey, P10) *C. albicans* and found that 'no-host' evolved *C. albicans* did not exhibit
255 changes in virulence relative to the ancestral (P0) state, regardless of host immune
256 status (Fig. 4D). Thus, selection for virulence was responsible for the increase in
257 virulence in *C. albicans* evolved in immunocompetent hosts.

258

259 **Discussion**

260

261 We previously reported that healthy, immunocompetent hosts induce *C. albicans*
262 genome instability. We followed this up by investigating whether host innate immune
263 pathways drive pathogen genome instability(17). By using wildtype and two
264 immunocompromised hosts deficient for AMP production (*sek-1*) and ROS production
265 (*bli-3*), we compared the differences in host-associated *C. albicans* genome stability and
266 mutational landscape. *C. albicans* associated with either immunocompromised host had

267 reduced relative LOH frequencies compared to those associated with wildtype hosts
268 (Figure 1). Similar to several other host passaging experiments and whole-genome
269 sequencing results from clinical isolates (14, 16, 19), many of our isolates extracted
270 from wildtype hosts contained large-scale genomic changes including whole and
271 segmental chromosomal aneuploidy and/or additional LOH events (Figure 3). We
272 detected the presence of an extra copies of Chr6 following host exposure, consistent
273 with previous observations of host-induced genomic alterations that used a murine OPC
274 infection model (14). The aforementioned study suggested Chr6 aneuploidy produces
275 more commensal-like phenotypes inside the host environment. Whether this occurred in
276 our isolate with chr6 aneuploidy following host exposure has yet to be investigated. We
277 also detected an extra copy of Chr7 in one isolate following wildtype host exposure. In a
278 gastrointestinal (GI) murine model of candidiasis, Chr7 trisomy results in higher *C.*
279 *albicans* fitness within the GI tract compared to the euploid strain (16). Therefore,
280 specific aneuploidies may enable host adaptation. Following immunocompromised (sek-
281 1 or bli-3) host-associated, *C. albicans* isolates did not carry any detectable aneuploidy
282 and only a small number (2/8) had an LOH event that was not selected for (Figure 2).
283 These results suggest that both AMPs and ROS act as stressors on *C. albicans* that
284 enable the generation of genetic variation which might lead to phenotypic changes that
285 create a more commensal host-pathogen relationship.

286 The host has a variety of mechanisms capable of controlling microbial growth.
287 Because *C. albicans* is normally, it must strike a delicate balance with the host to evade
288 detection. Overgrowth of *C. albicans* initiates an immune response that initially includes
289 the production of AMPs. AMPs then recruit phagocytes to the site of infection which

290 produce ROS (22). We found that the removal of host-produced AMPs and ROS
291 decrease LOH frequency in *C. albicans* and overall genomic changes compared to *C.*
292 *albicans* extracted from wildtype hosts (Figures 1 & 3). We only found a significant
293 decrease in the relative LOH frequency in both the laboratory and bloodstream *C.*
294 *albicans* extracted from *bli-3* hosts compared to wildtype hosts. However, we did not
295 detect a significant decrease the relative LOH frequency in the bloodstream strain
296 extracted from *sek-1* hosts (Figs 1B&C). This suggests that host-produced ROS
297 generates genome instability regardless of pathogen background. However, the *sek-1*
298 pathway may only produce AMPs in response to certain strains of *C. albicans*. We
299 propose that the differences observed in genome instability between different strains of
300 *C. albicans* is potentially due to recognition of different PAMPs by host PRR which can
301 trigger different immune responses (46).

302 Because host-produced ROS represented a conserved source of genome
303 instability across two different strains of *C. albicans*, we further investigated the role of
304 host-produced ROS in generating genome instability. *C. albicans* has several
305 mechanisms for detoxify ROS, one of which is regulated by the transcription factor
306 *Cap1p*. *Cap1Δ/Δ* mutants are more susceptible to *in vitro* ROS killing (38, 47). Here we
307 show that *cap1Δ/Δ* *C. albicans* genome instability was increased compared to wildtype
308 *C. albicans* in hosts capable of producing ROS (N2 and *sek-1*) but not in *bli-3* hosts
309 incapable of producing ROS (Fig. 2B). These findings suggest that host-produced ROS
310 through the *bli-3* dual-oxidase induces genome instability in *C. albicans* and that *Cap1p*
311 is important for detoxification of host-produced ROS. Recent work in *E. coli*,
312 demonstrated that when exposed to low levels of ROS, *E. coli* exhibits a priming

313 response in which evolution in ROS occurs faster and cells develop greater resistance
314 as opposed to non-primed cells (48). Our results suggest that host-produced ROS might
315 be priming *C. albicans* allowing for tolerance of greater stress.

316 Although counterintuitive, LOH increases genetic diversity by unmasking
317 recessive alleles, leading to phenotypic changes (43). For example, LOH of drug-
318 resistant alleles of *ERG11*, *TAC1* or *MRR1* increases antifungal drug resistance (49–
319 51). Similarly, aneuploidy offers a short-term solution that organisms use during
320 adaptation (52–54) and have been shown to be advantages under certain conditions
321 including the host environment(14–16). Because we detected large-scale LOH events
322 and aneuploidy in isolates exposed to immunocompetent hosts, we suggest that these
323 genetic changes facilitate rapid adaptation to the host. Through experimental evolution
324 in immunocompetent and immunocompromised *C. elegans* hosts, we found that *C.*
325 *albicans* evolved increased virulence rapidly in immunocompetent hosts, but not in
326 immunocompromised hosts (Figure 4). Our work identifies AMPs and ROS as important
327 conserved innate immune responses that generate genome instability in the fungal
328 pathogen, *C. albicans*. We propose that the generation of genetic variation in response
329 to host-produce ROS and AMPs represents a way in which *C. albicans* can quickly
330 respond to host stressors thus further tolerating these stressors or avoiding further
331 immune attack. Finally, we demonstrate that immunocompetent hosts facilitate rapid
332 evolution under selection for increased virulence. We hypothesize this is a result from
333 the combination of strong selective pressure and the greater genetic variation generated
334 in *C. albicans* by the innate immune response. Therefore, the host environment can
335 significantly alter the evolutionary trajectories of *C. albicans* populations. While many

336 factors may contribute to the shift from commensal to pathogen in *C. albicans*
337 populations, it is clear that the host immune system can determine the level of genetic
338 variation available for a response to selection. Thus, identifying the selective pressures
339 that drive the shift from commensal to pathogen are critical for understanding *C.*
340 *albicans* evolution within hosts.

341

342

343 **Methods**

344

345 *Strains and Maintenance*

346 *C. albicans* and *C. elegans* strains for this study are listed in Table S1. Yeast
347 strains (55–57) were stored at -80°C and maintained on YPD (yeast peptone dextrose;
348 1% yeast extract, 2% bactopeptone, 2% glucose, 0.004% adenine, 0.008% uridine) at
349 30°C. Strains were initially struck onto YPD agar plates from frozen glycerol stocks and
350 incubated at 30°C for 48 hours and single colonies used as the “parental strain” in
351 subsequent in vivo experiments. Nematode populations were maintained on plates
352 containing nematode growth media (NGM) with *E. coli* (OP50) for a food source. *C.*
353 *elegans* were transferred to a new plate containing freshly seeded *E. coli* every three to
354 four days. For genome stability assays, treatment plates were seeded with both *C.*
355 *albicans* and *E. coli* and supplemented with 0.2 g/L streptomycin to inhibit overgrowth of
356 *E. coli*. For fecundity and genome stability assays, NGM was supplemented with
357 0.08g/L of uridine and 0.08g/L of histidine to facilitate growth of auxotrophic *C. albicans*
358 strains.

359

360 *Host-associated C. albicans genome stability*

361 *Host preparation:* NGM plates are seeded with a mixture of *E. coli* and *C.*
362 *albicans* 24 h prior to host preparation. To seed plates, single colonies of *C. albicans*
363 were inoculated into 3 mL YPD and incubated overnight at 30°C. Cultures were
364 adjusted with ddH₂O to a final concentration of 3.0 OD₆₀₀ per mL. Simultaneously, a
365 single colony of *E. coli* was inoculated into 50 mL LB and incubated for 24-48 h at 30°C.
366 The *E. coli* culture was pelleted and washed twice with 1 mL ddH₂O. The pellet was
367 weighed and diluted to final concentration of 200 mg/mL. For *in vitro* treatments, 250 µL
368 *C. albicans* was spread onto NGM + streptomycin agar plates and incubated overnight
369 at 30°C. For *in vivo* treatment plates, 6.25 µL *C. albicans*, 31.25 µL *E. coli*, and brought
370 to a final volume of 250 µL with ddH₂O, was spread onto NGM + streptomycin agar
371 plates and incubated overnight at 30°C. For experimental evolution experiments, *C.*
372 *albicans* treatment plates had 1.25 µL of *C. albicans* and 6.25 µL of *E. coli* and were
373 brought to a final volume of 50 µL. The entire 50 µL was spotted onto the center of a 35-
374 mm-diameter NGM plus streptomycin agar plate, followed by incubation at room
375 temperature overnight before the addition of eggs or transferred nematodes.

376 To synchronize *C. elegans* populations, nematodes and eggs were washed off
377 plates with M9 buffer, transferred to 15 mL conical tubes, and pelleted via centrifugation
378 (2 min at 1200 rpm). The pellet was resuspended in 2 mL of 25% bleach, mixed via
379 inversion for 2 min, and centrifuged for 2 min at 1200 rpm. The pellet was washed twice
380 with 3 mL ddH₂O and resuspended with 1 mL ddH₂O. To determine the concentration of
381 eggs, 10 µL was pipetted onto a concave slide, eggs were visualized microscopely and

382 counted, and the suspension was adjusted to a concentration of ~100 eggs per 100 μ L
383 with M9.

384

385 *Host-associated yeast extractions:* Yeast extractions were performed as
386 described previously (17). Hosts exposed to *C. albicans* were washed from plates with 3
387 mL M9 and pelleted via centrifugation (2 min at 2,000 RPM). The supernatant was
388 removed and the pellet was resuspended with 1 mL 3% bleach, transferred to a
389 microcentrifuge tube, and incubated for three minutes and subsequently centrifuged for
390 1 min at 12,000 rpm. The supernatant was removed and washed with 1 mL of M9 and
391 centrifuged for one minute at 12,000 rpm. The wash was repeated two more times to
392 ensure all bleach was removed. 100 μ L aliquots of nematode suspension were
393 transferred to 0.6 mL clear microtubes for manual disruption with a motorized pestle.
394 After one minute of manual disruption, the worm intestine solution was then diluted
395 accordingly with an M9 buffer and plated on YPD + 0.034mg/L chloramphenicol to
396 prevent any bacterial colonies from arising.

397

398 *GAL1 Loss of Heterozygosity assay*

399 *In vitro:* Single colonies of *C. albicans* were inoculated in 3 mL YPD grown
400 overnight at 30°C and subsequently diluted to 3 OD in ddH₂O. 250 μ L was plated and
401 spread onto NGM + streptomycin plates and incubated overnight at 30°C and
402 transferred to 20°C for four days to mimic the conditions of the *in vivo* LOH assay. On
403 day four, yeast cells were washed off with ddH₂O, harvested by centrifugation, washed
404 once with ddH₂O, resuspended in 1 mL of ddH₂O and serially diluted for single colony

405 growth. To determine the total cell viability, 100 μ L of 10^{-6} dilution was plated onto YPD
406 and grown for 48 h at 30°C. To identify cells that lost *GAL1*, 100 μ L of 10^{-2} and 10^{-3}
407 dilution was plated onto 2-deoxygalactose (2-DOG; 0.17% yeast nitrogen base without
408 amino acids 0.5% ammonium sulfate, 0.0004% uridine, 0.0004% histidine, 0.1% 2-
409 deoxygalacose, 3% glycerol) and colony forming units (CFUs) counted following 72
410 hours incubation at 30°C. LOH assays performed with α -Lipoic acid were performed as
411 described above but α -Lipoic acid (Sigma-Aldrich #1077-28-7) was dissolved in 100%
412 ethanol and added to NGM media containing 0.2 g/L streptomycin sulfate to a final
413 concentration of 25 μ M.

414 *In vivo*: The approach was very similar as the *in vitro* LOH assay described
415 above, with the following changes. A population of ~100 nematodes were plated on
416 each treatment plate containing both *C. albicans* and *E. coli*. On day four, yeast were
417 extracted as described in the previous section. A dilution of 10^{-1} and 10^{-2} was plated on 2-
418 YPD + chloramphenicol to enumerate total growth and undiluted cells were plated on 2-
419 DOG to select for the loss of *GAL1*. Three technical replicates were used for each *C.*
420 *albicans* strain for both *in vitro* and *in vivo* experiments. At least three biological
421 replicates were used for each genome stability assay.

422

423 *Hydrogen Peroxide Exposure and Genome Stability:*

424 Six single colonies of *C. albicans* were inoculated in either 2 ml of YPD or in 2
425 mL of YPD containing 5 mM H₂O₂, grown for 20 h at 30°C. Cultures were centrifuged at
426 2000 rpm for 2 minutes. The supernatant was removed, and the pellet was washed

427 once with 1 mL of ddH₂O. Cultures were serially diluted for single colony growth. Loss-
428 of-heterozygosity assays were performed to determine the frequency of LOH.

429

430 *Whole genome sequencing and analysis*

431 Genomic DNA was isolated with phenol chloroform as described previously (58). Whole
432 genome sequencing was performed through the Microbial Genome Sequencing Center
433 using a single library preparation method based on the Illumina Nextera kit. Libraries
434 were sequencing using paired end (2 x 150 bp) reads on the NextSeq 550 platform.

435 Adaptor sequences and low-quality reads were trimmed using Trimmomatic (v0.39
436 LEADING:3 TRAILING: 3 SLIDINGWINDOW: 4:15 MINLEN: 36 TOPHRED33) (59). All
437 reads were mapped to the phased *C. albicans* reference genome using the haplotypo
438 python script 'mapping.py'. This tool uses the Burrows-Wheeler Aligner MEM (BWA
439 v0.1.19) algorithm to align the sequencing reads to the reference genome followed by
440 Samtools (v0.1.19) to sort, mark duplicates, and create a BAM file. The average
441 coverage and read depth for each isolate we calculated using samtools 'coverage'
442 (Supplemental File 1). Variant files were created using the haplotypo python script
443 'var_calling.py' using the BCFtools calling method with a minimum coverage of 30.

444 Variants were filtered using the following parameters "DP<=30 || QD < 2.0 || MQ < 40.0
445 || FS > 60.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0 Identification of
446 aneuploidy, CNVs, and LOH were conducted using whole genome sequencing data and
447 the Yeast Mapping Analysis Pipeline (YMAP). BAM files were uploaded to YMAP and
448 plotted using the *Candida albicans* reference genome (A21-s02smo8-r09) with
449 corrections for chromosome end bias and GC content (60).

450 *Experimental Evolution*

451 Wildtype SC5314 *C. albicans* was evolved in immunocompetent (glp-4) and
452 immunocompromised (glp-4; sek-1) nematode host backgrounds. We chose to use the
453 glp-4 background because of the temperature sensitive sterility mutation. At 25 °C, the
454 glp-4 nematodes are unable to reproduce allowing us to track the survival of a single
455 generation of nematodes (45). Additionally, we chose to use the sek-1 background for
456 our immunocompromised host because of the availability of sek-1 and glp-4 mutations
457 in the same background. This allows for complete control over tracking the same
458 population of 50 worms for each passage, which was required for our selection regime.
459 For each host background, experimental evolution was performed with six replicate
460 evolved lines. NGM plates were seeded with *C. albicans* and *E. coli* 24 h prior to the
461 start of the evolution. On Day 1, nematodes were synchronized and incubated at 25°C
462 for 48 h. On Day 3, 50-L4 nematodes were transferred to a newly seeded NGM plate
463 containing both *C. albicans* and *E. coli*. Every day the host population was monitored for
464 survival and dead nematodes were transferred to a 1.5 mL microcentrifuge tube
465 containing 500 µL M9 buffer. Every other day, the remaining live nematodes were
466 transferred to newly seeded plates to replenish their food supply. Once the host
467 population reached 50% mortality, *C. albicans* was extracted from only the 25 dead
468 nematodes by centrifuging the 1.5mL microcentrifuge tube for 30 seconds at maximum
469 speed. The supernatant was removed and 500 uL of 3% bleach was added for 2 min. to
470 kill any microbes on the nematode surfaces and centrifuged for 30s at maximum speed.
471 The supernatant was removed and the nematode pellet was washed three times with
472 500 uL M9. The nematodes were manual disrupted using a motorized pestle for one

473 minute and all the intestinal extracts were inoculated into 2 mL YPD containing
474 0.034mg/L chloramphenicol to prevent any bacterial growth. This inoculum was used to
475 seed a new population of 50 hosts in the subsequent passage.

476

477 **Statistical analysis:**

478 Statistical analysis was performed using GraphPad Prism 8 software. Data sets were
479 tested for normality using the D’Agnostino & Pearson omnibus normality test.

480

481 **Acknowledgments/Author Contributions:**

482 We would like to thank Eduardo Scopel Ferreira Da Costa (University of Georgia),
483 Abdul-Rhanman Adamu Bukari (University of Manitoba), and Venkat Talla (Emory
484 University) for helpful discussions regarding sequencing analysis. We would also like to
485 thank Ognenka Avramovska for thoughtful conversations and critical reading of the
486 manuscript. This research is supported by NSF DEB-1943415 (MAH), NSF DEB-
487 1750553 (LTM), and Emory University startup funds (MAH).

488

489 ACS and MAH designed the study. ACS conducted all of the experiments. ACS and
490 MAH analyzed the data. ACS, LTM, and MAH wrote, reviewed and edited the
491 manuscript.

492

493 **Data Availability:**

494 All supplemental files and relevant data will be posted on the Dryad Digital Repository,
495 pending manuscript acceptance. Raw sequencing reads will be deposited NCBI
496 sequence read archive pending manuscript acceptance.

497

498

499

500 **References**

501

- 502 1. Perlroth J, Choi B, Spellberg B. 2007. Nosocomial fungal infections: epidemiology, diagnosis,
503 and treatment. *Med Mycol* 45:321–346.
- 504 2. Pfaller MA, Diekema DJ. 2007. Epidemiology of Invasive Candidiasis: a Persistent Public
505 Health Problem. *Clin Microbiol Rev* 20:133–163.
- 506 3. Sobel JD. 2007. Vulvovaginal candidosis. *Lancet* 369:1961–1971.
- 507 4. Akimoto-Gunther L, Bonfim-Mendonça P de S, Takahachi G, Irie MMT, Miyamoto S,
508 Consolaro MEL, Svidzinsk TIE. 2016. Highlights Regarding Host Predisposing Factors to
509 Recurrent Vulvovaginal Candidiasis: Chronic Stress and Reduced Antioxidant Capacity. *Plos
510 One* 11:e0158870.
- 511 5. Ahmad A, Khan AU. 2009. Prevalence of *Candida* species and potential risk factors for
512 vulvovaginal candidiasis in Aligarh, India. *Eur J Obstet Gyn R B* 144:68–71.
- 513 6. Grigoriou O, Baka S, Makrakis E, Hassiakos D, Kapparos G, Kouskouni E. 2006. Prevalence
514 of clinical vaginal candidiasis in a university hospital and possible risk factors. *Eur J Obstet Gyn
515 R B* 126:121–125.
- 516 7. Gonçalves B, Ferreira C, Alves CT, Henriques M, Azereido J, Silva S. 2015. Vulvovaginal
517 candidiasis: Epidemiology, microbiology and risk factors. *Crit Rev Microbiol* 42:1–23.
- 518 8. Gunther LSA, Martins HPR, Gimenes F, Abreu ALP de, Consolaro MEL, Svidzinski TIE.
519 2014. Prevalence of *Candida albicans* and non-albicans isolates from vaginal secretions:
520 comparative evaluation of colonization, vaginal candidiasis and recurrent vaginal candidiasis in
521 diabetic and non-diabetic women. *Sao Paulo Med J* 132:116–120.
- 522 9. Leon EM de, Jacober SJ, Sobel JD, Foxman B. 2002. Prevalence and risk factors for vaginal
523 Candida colonization in women with type 1 and type 2 diabetes. *Bmc Infect Dis* 2:1.
- 524 10. Iliev ID, Leonardi I. 2017. Fungal dysbiosis: immunity and interactions at mucosal barriers.
525 *Nat Rev Immunol* 17:635–646.

526 11. Underhill DM, Iliev ID. 2014. The mycobiota: interactions between commensal fungi and the
527 host immune system. *Nat Rev Immunol* 14:nri3684.

528 12. Nucci M, Anaissie E. 2001. Revisiting the Source of Candidemia: Skin or Gut? *Clin Infect*
529 *Dis* 33:1959–1967.

530 13. Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux M-E. 2019. Within-
531 Host Genomic Diversity of *Candida albicans* in Healthy Carriers. *Sci Rep-uk* 9:2563.

532 14. Forche A, Cromie G, Gerstein AC, Solis NV, Pisithkul T, Srifa W, Jeffery E, Abbey D, Filler
533 SG, Dudley AM, Berman J. 2018. Rapid Phenotypic and Genotypic Diversification After
534 Exposure to the Oral Host Niche in *Candida albicans*. *Genetics genetics*.301019.2018.

535 15. Forche A, Solis NV, Swidergall M, Thomas R, Guyer A, Beach A, Cromie GA, Le GT,
536 Lowell E, Pavelka N, Berman J, Dudley AM, Selmecki A, Filler SG. 2019. Selection of *Candida*
537 *albicans* trisomy during oropharyngeal infection results in a commensal-like phenotype. *Plos*
538 *Genet* 15:e1008137.

539 16. Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ. 2018. Global
540 analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. *Proc*
541 *National Acad Sci* 115:201806002.

542 17. Smith AC, Hickman MA. 2020. Host-Induced Genome Instability Rapidly Generates
543 Phenotypic Variation across *Candida albicans* Strains and Ploidy States. *MspHERE* 5:e00433-20.

544 18. Forche A, Magee PT, Selmecki A, Berman J, May G. 2009. Evolution in *Candida albicans*
545 populations during a single passage through a mouse host. *Genetics* 182:799–811.

546 19. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q,
547 Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo CA. 2014. Genetic and
548 phenotypic intra-species variation in *Candida albicans*. *Genome Res* 25:413–25.

549 20. Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, Lai GC, Srinivasan
550 KG, Yurieva M, Liao W, Poidinger M, Zolezzi F, Rancati G, Pavelka N. 2018. Experimental
551 evolution of a fungal pathogen into a gut symbiont. *Science* 362:589–595.

552 21. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen Recognition and Innate Immunity. *Cell*
553 124:783–801.

554 22. Netea MG, Brown GD, Kullberg BJ, Gow NAR. 2008. An integrated model of the
555 recognition of *Candida albicans* by the innate immune system. *Nat Rev Microbiol* 6:67–78.

556 23. Shai Y. 2002. Mode of action of membrane active antimicrobial peptides. *Peptide Sci*
557 66:236–248.

558 24. Kim DH, Ausubel FM. 2005. Evolutionary perspectives on innate immunity from the study
559 of *Caenorhabditis elegans*. *Curr Opin Immunol* 17:4–10.

560 25. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M,
561 Hisamoto N, Matsumoto K, Tan M-W, Ausubel FM. 2002. A Conserved p38 MAP Kinase
562 Pathway in *Caenorhabditis elegans* Innate Immunity. *Science* 297:623–626.

563 26. Tanaka-Hino M, Sagasti A, Hisamoto N, Kawasaki M, Nakano S, Ninomiya-Tsuji J,
564 Bargmann CI, Matsumoto K. 2002. SEK-1 MAPKK mediates Ca²⁺ signaling to determine
565 neuronal asymmetric development in *Caenorhabditis elegans*. *Embo Rep* 3:56–62.

566 27. Feistel DJ, Elmostafa R, Nguyen N, Penley M, Morran L, Hickman MA. 2019. A Novel
567 Virulence Phenotype Rapidly Assesses *Candida* Fungal Pathogenesis in Healthy and
568 Immunocompromised *Caenorhabditis elegans* Hosts. *MspHERE* 4.

569 28. Feistel DJ, Elmostafa R, Hickman MA. 2020. Virulence phenotypes result from interactions
570 between pathogen ploidy and genetic background. *Ecol Evol* 10:9326–9338.

571 29. Hoeven R van der, McCallum KC, Cruz MR, Garsin DA. 2011. Ce-Duox1/BLI-3 Generated
572 Reactive Oxygen Species Trigger Protective SKN-1 Activity via p38 MAPK Signaling during
573 Infection in *C. elegans*. *Plos Pathog* 7:e1002453.

574 30. Thomson GJ, Heron C, Austriaco N, Shapiro RS, Belenky P, Bennett RJ. 2019.
575 Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in
576 polyploid fungal cells. *Embo J* 38:e101597.

577 31. Irazoqui JE, Urbach JM, Ausubel FM. 2010. Evolution of host innate defence: insights from
578 *Caenorhabditis elegans* and primitive invertebrates. *Nat Rev Immunol* 10:47–58.

579 32. Moribe H, Konakawa R, Koga D, Ushiki T, Nakamura K, Mekada E. 2012. Tetraspanin Is
580 Required for Generation of Reactive Oxygen Species by the Dual Oxidase System in
581 *Caenorhabditis elegans*. *Plos Genet* 8:e1002957.

582 33. Hoeven R van der, Cruz MR, Chávez V, Garsin DA. 2015. Localization of the Dual Oxidase
583 BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of *Caenorhabditis*
584 *elegans*. *Plos One* 10:e0124091.

585 34. Chávez V, Mohri-Shiomi A, Garsin DA. 2009. Ce-Duox1/BLI-3 Generates Reactive Oxygen
586 Species as a Protective Innate Immune Mechanism in *Caenorhabditis elegans* ^v. *Infect Immun*
587 77:4983–4989.

588 35. Jain C, Pastor K, Gonzalez AY, Lorenz MC, Rao RP. 2013. The role of *Candida albicans*
589 AP-1 protein against host derived ROS in in vivo models of infection. *Virulence* 4:67–76.

590 36. Jena NR. 2012. DNA damage by reactive species: Mechanisms, mutation and repair. *J*
591 *Biosciences* 37:503–517.

592 37. Marr KA, White TC, Burik JH van, Bowden RA. 1997. Development of Fluconazole
593 Resistance in *Candida albicans* Causing Disseminated Infection in a Patient Undergoing Marrow
594 Transplantation. *Clin Infect Dis* 25:908–910.

595 38. Alarco A-M, Raymond M. 1999. The bZip Transcription Factor Cap1p Is Involved in
596 Multidrug Resistance and Oxidative Stress Response in *Candida albicans*. *J Bacteriol* 181:700–
597 708.

598 39. Dantas A da S, Day A, Ikeh M, Kos I, Achan B, Quinn J. 2015. Oxidative Stress Responses
599 in the Human Fungal Pathogen, *Candida albicans*. *Biomol* 5:142–165.

600 40. Forche A, May G, Magee PT. 2005. Demonstration of Loss of Heterozygosity by Single-
601 Nucleotide Polymorphism Microarray Analysis and Alterations in Strain Morphology in *Candida*
602 *albicans* Strains during Infection. *Eukaryot Cell* 4:156–165.

603 41. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen K, Berman
604 J. 2011. Stress Alters Rates and Types of Loss of Heterozygosity in *Candida albicans*. *Mbio*
605 2:e00129-11.

606 42. Llorente B, Smith CE, Symington LS. 2008. Break-induced replication: What is it and what
607 is it for? *Cell Cycle* 7:859–864.

608 43. Feri A, Loll-Krippleber R, Commere P-H, Maufrais C, Sertour N, Schwartz K, Sherlock G,
609 Bougnoux M-E, d'Enfert C, Legrand M. 2016. Analysis of Repair Mechanisms following an
610 Induced Double-Strand Break Uncovers Recessive deleterious Alleles in the *Candida albicans*
611 Diploid Genome. *Mbio* 7:e01109-16.

612 44. Kino K, Sugiyama H. 2001. Possible cause of G·C→C·G transversion mutation by guanine
613 oxidation product, imidazolone. *Chem Biol* 8:369–378.

614 45. Rastogi S, Borgo B, Pazdernik N, Fox P, Mardis ER, Kohara Y, Havranek J, Schedl T. 2015.
615 *Caenorhabditis elegans* glp-4 Encodes a Valyl Aminoacyl tRNA Synthetase. *G3 Genes Genomes*
616 *Genetics* 5:2719–2728.

617 46. Zheng N-X, Wang Y, Hu D-D, Yan L, Jiang Y-Y. 2015. The role of pattern recognition
618 receptors in the innate recognition of *Candida albicans*. *Virulence* 6:347–361.

619 47. Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJP, Quinn J. 2006. Role of
620 the Hog1 Stress-activated Protein Kinase in the Global Transcriptional Response to Stress in the
621 Fungal Pathogen *Candida albicans*. *Mol Biol Cell* 17:1018–1032.

622 48. Rodríguez-Rojas A, Kim JJ, Johnston P, Makarova O, Eravci M, Weise C, Hengge R, Rolff
623 J. 2020. Non-lethal exposure to H₂O₂ boosts bacterial survival and evolvability against oxidative
624 stress. *Plos Genet* 16:e1008649.

625 49. White TC. 1997. The presence of an R467K amino acid substitution and loss of allelic
626 variation correlate with an azole-resistant lanosterol 14alpha demethylase in *Candida albicans*.
627 *Antimicrob Agents Ch* 41:1488–1494.

628 50. Dunkel N, Blaß J, Rogers PD, Morschhäuser J. 2008. Mutations in the multi-drug resistance
629 regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1
630 overexpression in fluconazole-resistant *Candida albicans* strains. *Mol Microbiol* 69:827–840.

631 51. Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, Berman J, Bille J,
632 Sanglard D. 2006. A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is
633 Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in
634 *Candida albicans*. *Genetics* 172:2139–2156.

635 52. Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, Perera A, Staehling-
636 Hampton K, Seidel CW, Li R. 2008. Aneuploidy Underlies Rapid Adaptive Evolution of Yeast
637 Cells Deprived of a Conserved Cytokinesis Motor. *Cell* 135:879–893.

638 53. Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, Kupiec M, Pilpel Y, Dahan O.
639 2012. Chromosomal duplication is a transient evolutionary solution to stress. *Proc National Acad
640 Sci* 109:21010–21015.

641 54. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL,
642 Li R. 2010. Aneuploidy confers quantitative proteome changes and phenotypic variation in
643 budding yeast. *Nature* 468:321–325.

644 55. Gillum AM, Tsay EYH, Kirsch DR. 1984. Isolation of the *Candida albicans* gene for
645 orotidine-5'-phosphate decarboxylase by complementation of *S. cerevisiae* ura3 and *E. coli* pyrF
646 mutations. *Mol Gen Genetics Mgg* 198:179–182.

647 56. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang Y-M, Su C,
648 Bennett RJ, Wang Y, Berman J. 2013. The ‘obligate diploid’ *Candida albicans* forms mating-
649 competent haploids. *Nature* 494:55.

650 57. Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a
651 *Candida albicans* homozygous deletion library decouple morphogenetic switching and
652 pathogenicity. *Nat Genet* 42:590–598.

653 58. Selmecki A, Forche A, Berman J. 2006. Aneuploidy and Isochromosome Formation in Drug-
654 Resistant *Candida albicans*. *Science* 313:367–370.

655 59. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
656 sequence data. *Bioinformatics* 30:2114–2120.

657 60. Abbey DA, Funt J, Lurie-Weinberger MN, Thompson DA, Regev A, Myers CL, Berman J.
658 2014. YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in
659 eukaryotic pathogens. *Genome Med* 6:100.

660

661

662

663 Figure Legends:

664

665 Figure 1: Host immunity impacts *C. albicans* genome stability

666 **A)** Experimental overview of in vivo experiments. **B)** Laboratory *C. albicans* LOH
 667 frequency following host association relative to the LOH frequency of *C. albicans* no
 668 host control for N2 (wildtype, grey, n = 8), *sek-1* (green, n = 9), and *bli-3* (blue, n = 8). **C)**
 669 Bloodstream *C. albicans* LOH frequency following host association relative to the LOH
 670 frequency of *C. albicans* no host control for N2 (grey, n = 11), *sek-1* (green, n = 11), and
 671 *bli-3* (blue, n = 8). Plotted are the means and standard deviation (SD). Asterisks indicate
 672 significant differences (**** p < 0.0001, ** p < 0.01, ns = not significant; Kruskal-Wallis
 673 with post-hoc Dunn's multiple test).

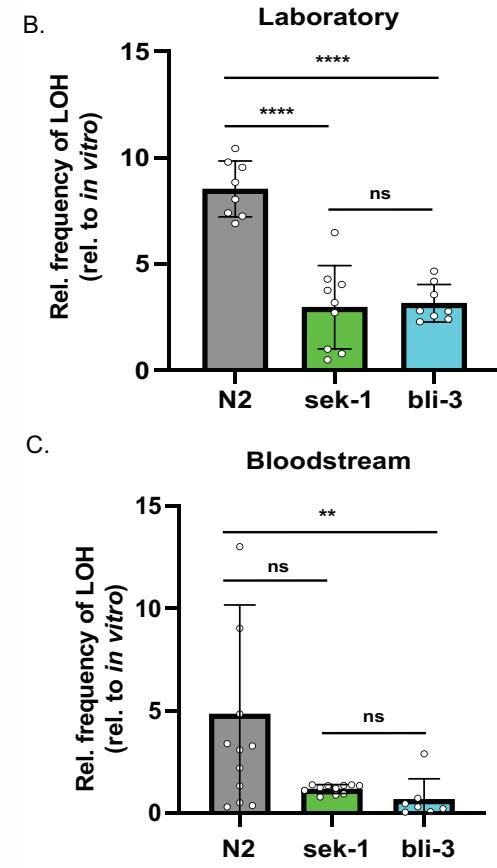
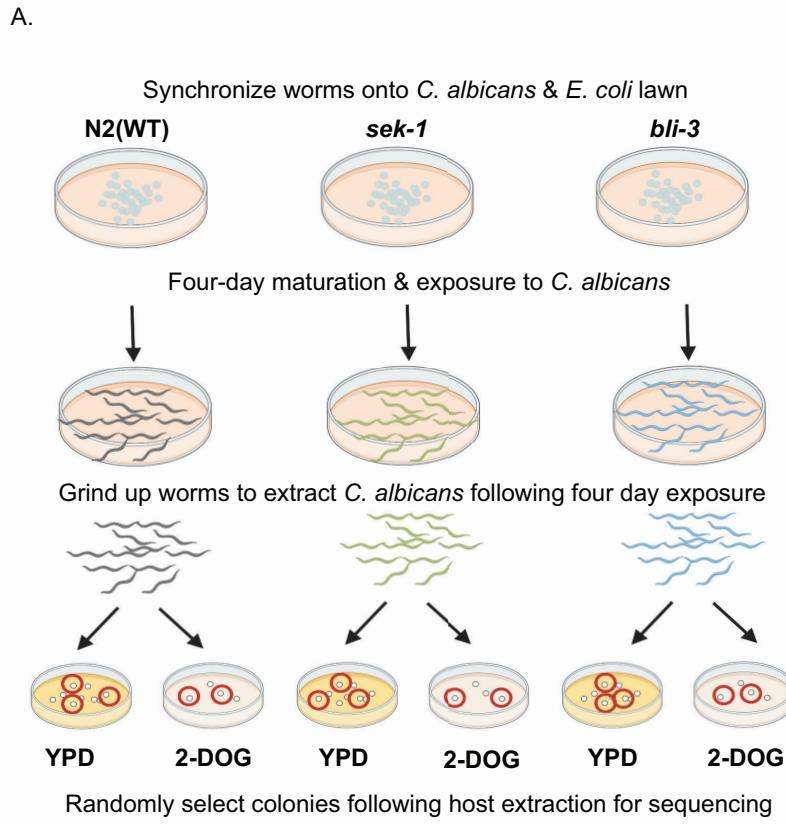
674

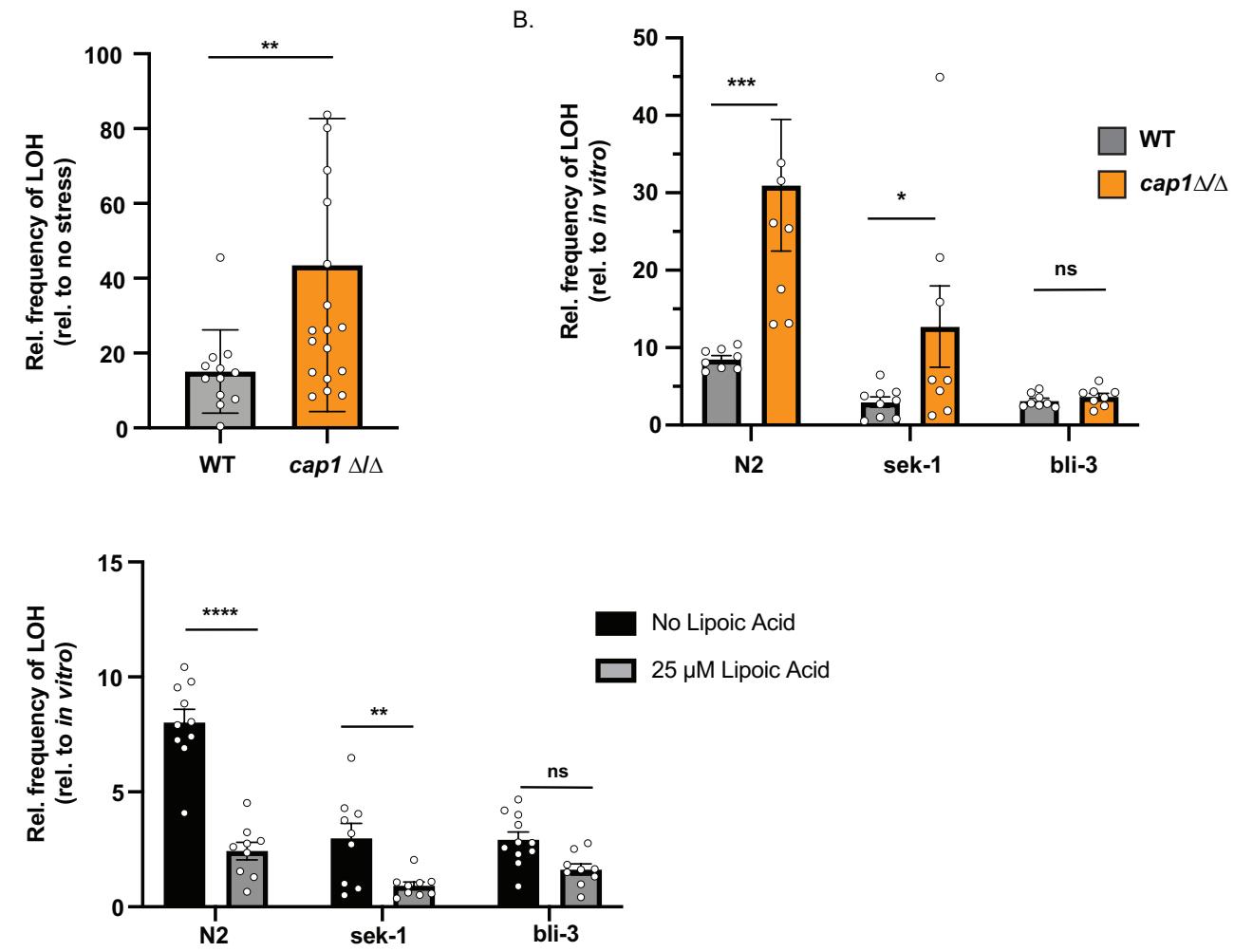
**675 Figure 2: *C. albicans cap1* Δ/Δ strain is more susceptible to *in vitro* and *in vivo*
 676 ROS**

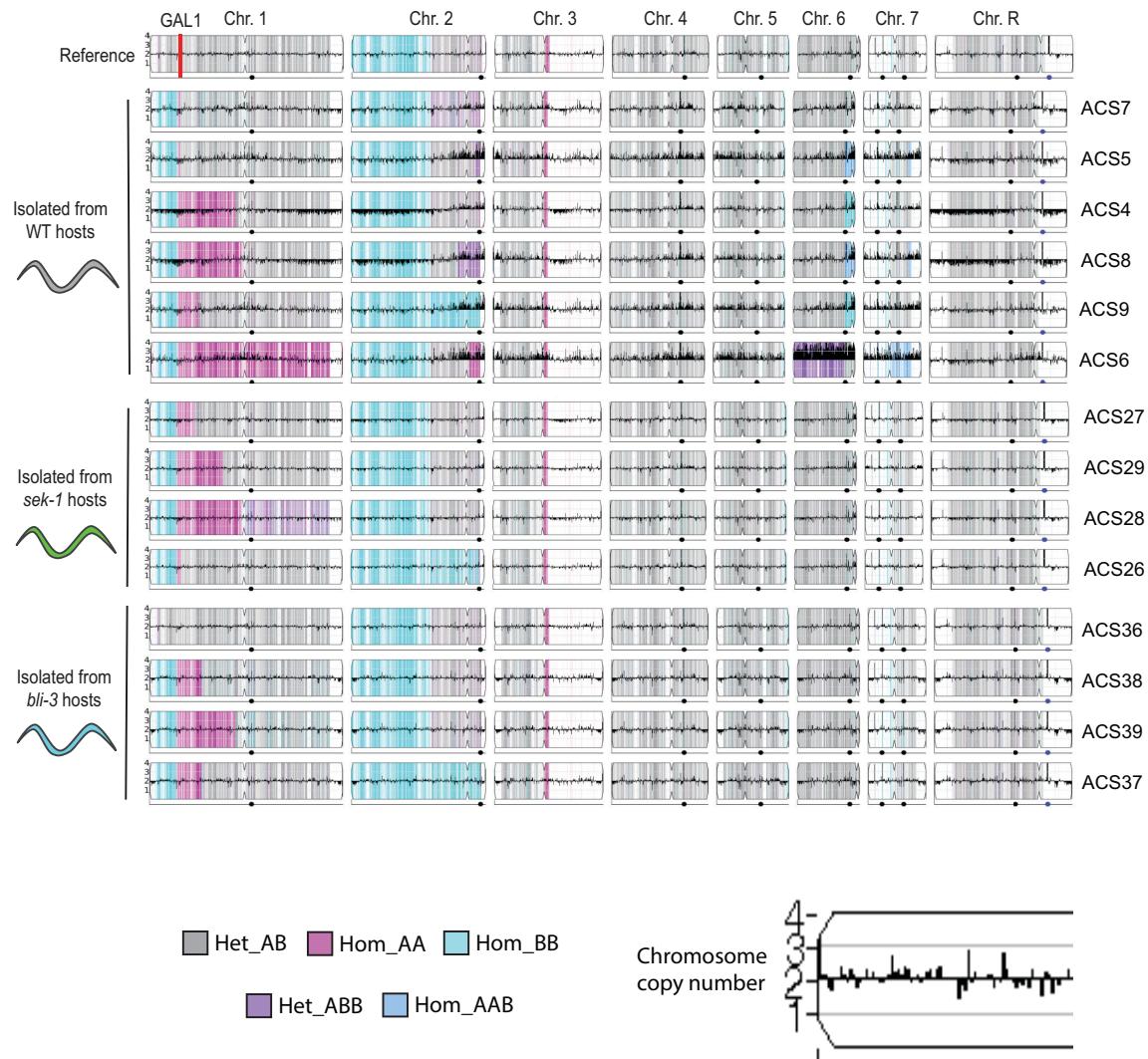
677 **A)** Plotted are the LOH frequencies of *C. albicans* exposed to 5mM H₂O₂ for 24 h
 678 relative to the frequencies of LOH of *C. albicans* without stress exposure. Plotted are
 679 the means and SD for both wildtype (WT) (grey, n = 12) and *cap1* Δ/Δ (orange, n = 19).
 680 Each data point represents an individual measurement. **B)** Plotted are the LOH
 681 frequencies of *C. albicans* exposed to each host environment relative to the no host
 682 frequency of LOH. Plotted are the means and SD. **C)** *C. albicans* LOH frequency
 683 following host exposure relative to the no host LOH frequency with 25 μ M of alpha-lipoic
 684 acid (grey, N2: n = 9, *sek-1*: n = 9, *bli-3*: n = 9) and without 25 μ M of alpha-lipoic acid
 685 (black, N2: n = 16, *sek-1*: n = 9, *bli-3*: n = 19). Each data point represents an individual
 686 measurement. Plotted are the means and SD. Asterisks indicate significant differences
 687 (**** p < 0.0001, *** p < 0.005, ** p < 0.01, * p < 0.05, ns = not significant; Mann-
 688 Whitney U test).

689

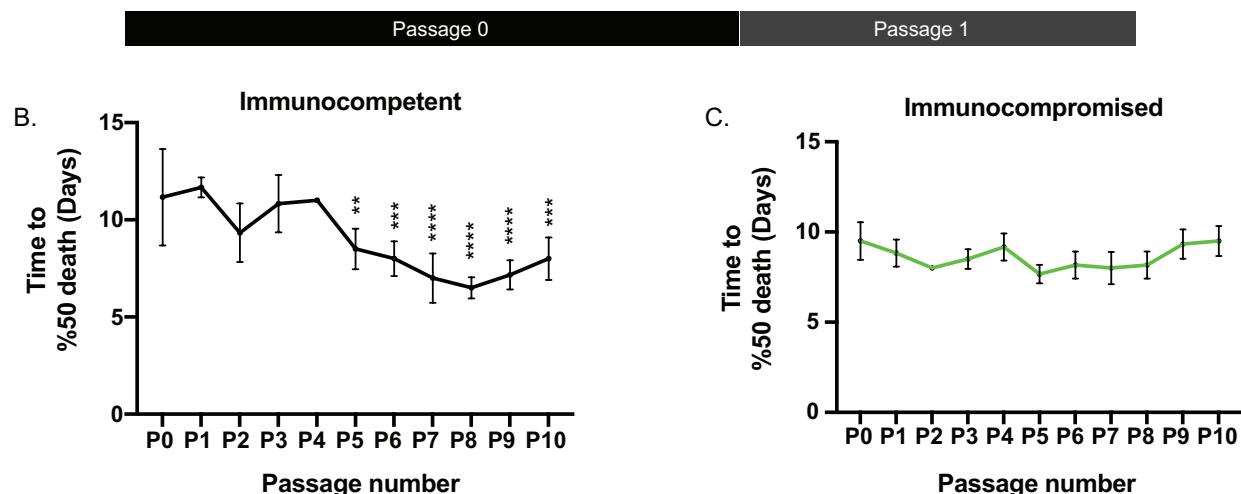
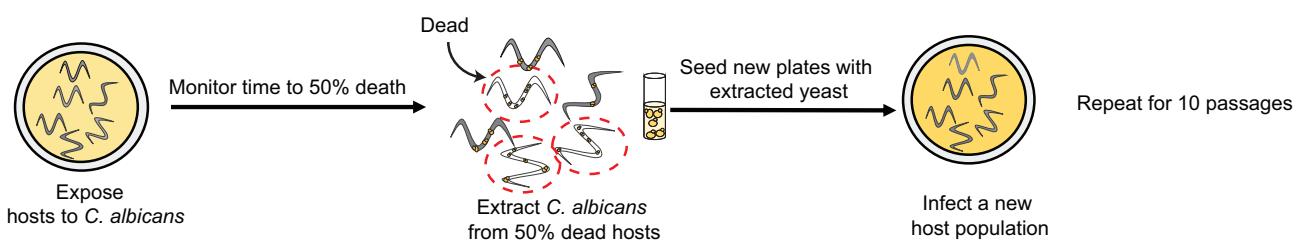
690 Figure 3: Genome-wide changes following host association

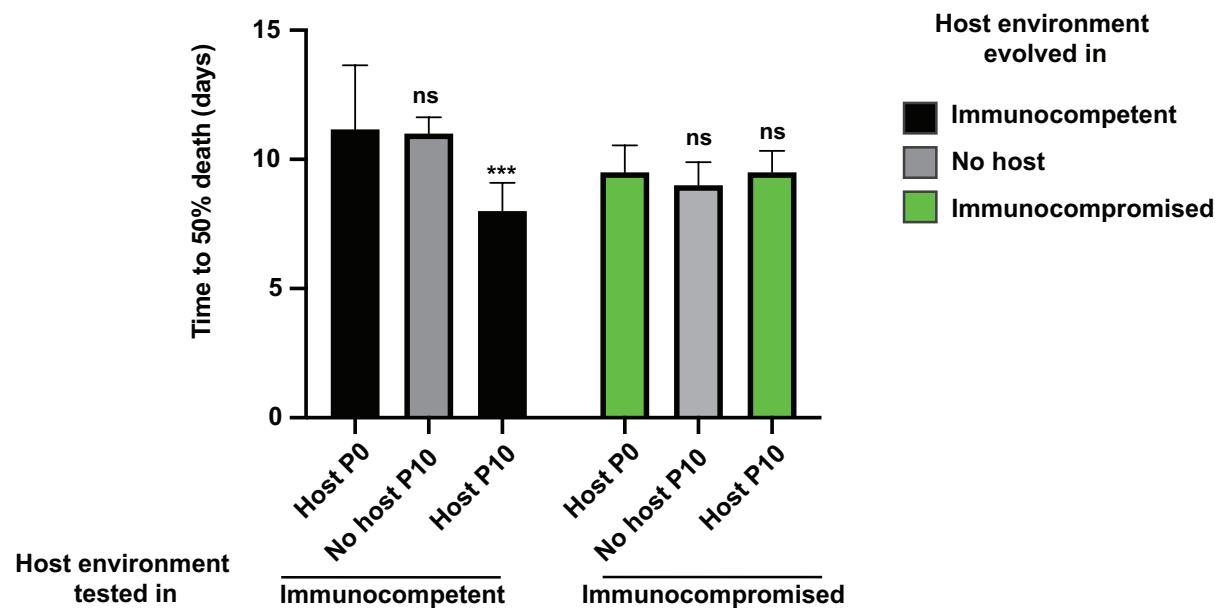


691 YMAPs of *C. albicans* following four-day exposure to N2 (WT), *sek-1*, and *bli-3* hosts
 692 with GAL1 LOH selection. Reference strain with the location of GAL1 on chromosome 1
 693 indicated with a red line is displayed at the top. Y-axis on each chromosome indicates
 694 the chromosomal copy number. Chromosomal color indicates allelic ratio (grey =
 695 heterozygous, cyan/pink = homozygous, darker blue/purple = heterozygous with >2
 696 alleles).


697


698 Figure 4: *C. albicans* evolves rapidly in immunocompetent hosts

699 **A)** Experimental schematic **B)** Time to 50% death for ten passages in healthy,
 700 immunocompetent (*glp-4*) hosts. Plotted are the mean (n = 6) and SD for each passage
 701 infected with *C. albicans*. **C)** Time to 50% for ten passages in immunocompromised
 702 (*glp-4; sek-1*) hosts infected with *C. albicans*. Plotted are the mean (n = 6) and SD for
 703 each passage. Asterisks represent significant differences compared to the initial (P0)
 704 time point (**** p < 0.0001, *** p < 0.005, ** p < 0.01, * p < 0.05, Kruskal-Wallis with
 705 post-hoc Dunn's multiple test). **D)** Time to 50% death for immunocompetent and



706 immunocompromised hosts infected with *C. albicans* from the initial passage (Host P0),
707 *C. albicans* evolved for ten generations in the absence of hosts (No host P10), and *C.*
708 *albicans* evolved in the host environment for ten generations (Host P10). Asterisks
709 represent significant differences compared to the initial (P0) time point (** p < 0.005, ns
710 = not significant, Kruskal-Wallis with post-hoc Dunn's multiple test).



A.

D.

