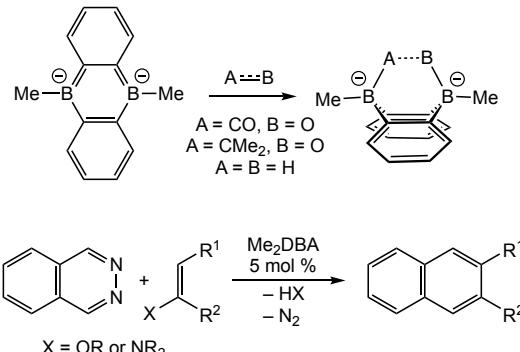


COMMUNICATION

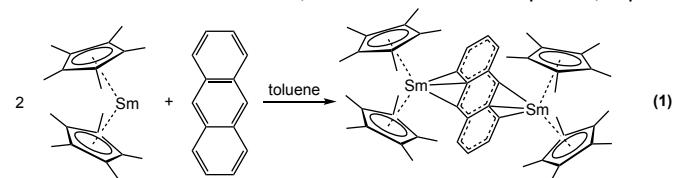
Cooperative Dinitrogen Capture by a Diboraanthracene/Samarocene Pair

Received 00th January 20xx,
Accepted 00th January 20xx


DOI: 10.1039/x0xx00000x

The combination of a boron Lewis acid and a decamethylsamarocene, specifically 9,10-Me₂-9,10-diboraanthracene with (C₅Me₅)₂Sm^{II}(THF)₂, in toluene leads to cooperative reductive capture of N₂. The product crystallizes as the salt, [(C₅Me₅)₂Sm^{III}(THF)₂][(C₅Me₅)₂Sm^{III}(η²-N₂B₂C₁₄H₁₄)], 1, which formally is comprised of an (N=N)²⁻ moiety sandwiched between a [(C₅Me₅)₂Sm^{III}]¹⁺ metallocene cation and the diboraanthracene ditopic Lewis acid.

The conversion of atmospheric N₂ into bioavailable forms is essential to all life. As such, the activation of N₂ has driven scientific exploration for decades, with considerable attention paid to the role of d- and f-block metals in this process in biological and synthetic contexts. A range of mono- and polynuclear metal complexes have been shown to mediate N₂ reduction, in some cases catalytically.¹⁻³ New approaches to N₂ activation continue to emerge, however. Recent pathbreaking studies by Braunschweig describe a low-valent boron compound capable of N₂ reduction.⁴⁻⁶ Szymczak has explored the role of Lewis acids⁷ and hydrogen bonding⁸ in the activation of mononuclear transition metal N₂ complexes, and Simonneau has shown that borane adducts of Mo and W N₂ complexes enable hydroboration and hydrosilylation of the bound N₂ ligand via Frustrated Lewis Pair (FLP) reactivity.^{9, 10} FLP activation of dinitrogen has also been observed with uranium.¹¹⁻¹⁶

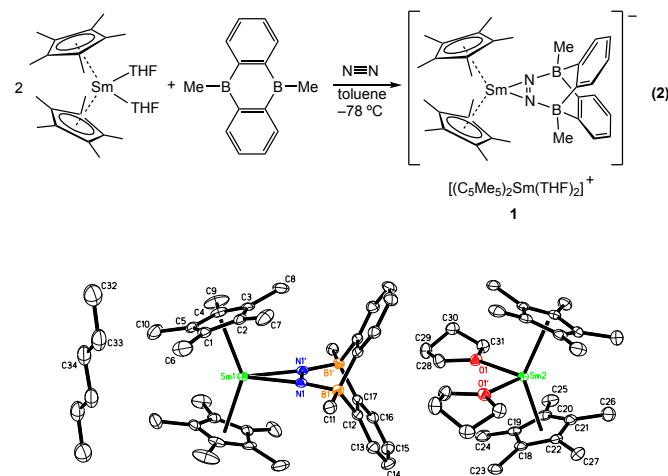

Along these lines, we became interested in the interplay of divalent lanthanide reducing agents^{17, 18} and the redox-active diboron heterocycle 9,10-dimethyl-9,10-diboraanthracene (Me₂DBA).¹⁹ Reduced diboraanthracene (DBA) and related diboron heterocycles have been shown to activate a range of E-H bonds²⁰⁻²² and unsaturated substrates (including CO₂ and O₂),

but notably excluding N₂) via 1,4 cycloaddition chemistry at boron (Figure 1, top).²³⁻²⁵ DBA can also function as a ditopic Lewis acid in the activation of phthalazines towards Diels-Alder reactions that ultimately liberate N₂ (Figure 1, bottom).^{25, 26} The 9,10-dihydrocarbyl-substituted DBA species exhibit rich redox chemistry and can stabilize unusual species like anionic Au¹⁻.²⁷

Figure 1. Examples of small molecule activation using Me₂DBA. Top: bond activation by Me₂DBA dianions; bottom: Me₂DBA-catalyzed Diels-Alder reactions of phthalazines with N₂ loss.²³⁻²⁶

The Sm(II) metallocenes, (C₅Me₅)₂Sm(THF)₂²⁸ and (C₅Me₅)₂Sm²⁹ were of interest as reducing agents since two equivalents of (C₅Me₅)₂Sm reduce anthracene to a (C₁₄H₁₀)²⁻ dianion that should be bent, but was found to be planar, eq 1.³⁰

In addition, unsolvated (C₅Me₅)₂Sm is capable of N₂ reduction.³¹ It was of interest to see how this chemistry translated to 9,10-dihydrocarbyl-substituted 9,10-diboraanthracenes. However, because (C₅Me₅)₂Sm is so reactive,³¹ initial studies were conducted with the solvated (C₅Me₅)₂Sm(THF)₂. This led to the unexpected cooperative capture and reduction of N₂ by the Me₂DBA/(C₅Me₅)₂Sm(THF)₂ pair. This reaction bears


^a Department of Chemistry, University of California, Irvine, California 92697-2025, United States. E-mail: wevans@uci.edu

^b Department of Chemistry, University of California, Riverside, California 92521, United States. E-mail: hill.harman@ucr.edu

† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

resemblance to FLP chemistry³²⁻³⁴ in that neither of the two components reacts with N₂ on its own.

Addition of 1.0 equivalents of bright yellow 9,10-dimethyl-9,10-diboraanthracene to 2.0 equivalents of purple (C₅Me₅)₂Sm(THF)₂ in toluene in an N₂-containing glovebox at -78 °C generated a brown mixture that became orange after 8h at -78 °C. Layering hexanes over the orange solution at -35 °C generated yellow single crystals of [(C₅Me₅)₂Sm^{III}(THF)₂]⁺[(C₅Me₅)₂Sm^{III}(η²-N₂B₂C₁₄H₁₄)], **1**, which were characterized by single crystal X-ray diffraction, IR, and NMR spectroscopy, Figure 2, eq 2. Reactions with a 1:1 stoichiometry gave smaller yields of the same product, **1**.

Figure 2. ORTEP diagram of [(C₅Me₅)₂Sm^{III}(THF)₂]⁺[(C₅Me₅)₂Sm^{III}(η²-N₂B₂C₁₄H₁₄)] with hexane in the lattice with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

The [(C₅Me₅)₂Sm]⁺ unit in the anion and the [(C₅Me₅)₂Sm(THF)₂]⁺ counter-cation each have 2.42 Å Sm-(C₅Me₅ ring centroid) distances, consistent with a Sm(III) assignment.^{35, 36} For comparison, the analogous distances in bona fide Sm(II) metallocenes are much longer, as in the 2.60 Å distance observed in (C₅Me₅)₂Sm(THF)₂.^{28, 36} Likewise, the N-N distance in **1** is 1.252(3) Å, in the range expected for a (N=N)²⁻ unit.³⁷ The symmetry equivalent 2.3560(2) Å Sm-N bond distances are similar to the 2.347(6) and 2.368(6) Å distances in [(C₅Me₅)₂Sm]₂(μ-η²:η²-N₂) which has 2.45 Å Sm-(C₅Me₅ ring centroid) distances.²⁵ The 1.598(3) Å distances of the new B-N linkages are in the single bond range, cf. the single bond in H₃B-NH₃ is 1.58(2) Å.³⁸

The ¹H NMR spectrum of freshly isolated material had resonances that could be attributed to the two types of C₅Me₅ ligands in **1** and the diboraanthracene protons, but the paramagnetism of Sm(III) did not allow a definitive assignment (Figure S1). The ¹¹B NMR displayed a single resonance at -0.9 ppm well shifted from the starting material resonance at 68 ppm, consistent with the presence of a four-coordinate boron species (Figure S2).^{32, 39} The complex reacts with potassium graphite and MeI, but neither reaction cleanly separated the functionalized heterocycle (see SI).

Addition of 9,10-dimethyl-9,10-diboraanthracene to (C₅Me₅)₂Sm(THF)₂ in toluene under argon at -78 °C also generated a brown mixture, but the mixture never turned orange as in the formation of **1** and no crystallographically definable products could be isolated. The brown product, which displayed an EPR spectrum characteristic of an organic radical and a UV-visible spectrum distinct from **1** (Figures S4 and S5), did react with N₂ to generate **1**. Hence, the reaction appears to go stepwise. Complex **1** can also be generated from the reaction of (C₅Me₅)₂Sm with Me₂DBA under Ar followed by exposure to N₂ and THF, but again, no complex was isolable from the reaction under Ar.

Reactions of a bulkier DBA derivative, 9,10-bis(2-diisopropylphosphino)phenyl-9,10-diboraanthracene, and simple triphenylborane, BPh₃, with (C₅Me₅)₂Sm(THF)₂ in toluene were attempted under dinitrogen but ¹H NMR spectroscopy indicated that no reaction occurred. B(C₆F₅)₃ reacts with (C₅Me₅)₂Sm(THF)₂ to form a red solution that contains multiple boron-containing species based on the ¹¹B NMR spectrum and an IR spectrum distinct from the starting materials, but crystalline products analogous to **1** were not isolated (see SI).

In conclusion, the ditopic Lewis acid 9,10-dimethyl-9,10-diboraanthracene in the presence of the Sm(II) reducing agent, (C₅Me₅)₂Sm(THF)₂, can capture and reduce dinitrogen. Neither the diboraanthracene nor (C₅Me₅)₂Sm(THF)₂ react with dinitrogen on its own. Although the new dinitrogen containing heterocycle was not readily cleaved from the product, this reaction shows the potential for the cooperative activation of small molecules with diboraanthracenes and organometallic reducing agents as unusual as (C₅Me₅)₂Sm(THF)₂.

We thank the U.S. National Science Foundation for support under grants CHE-1752876 (to W.H.H.) and CHE-1855328 (to W.J.E.).

Conflicts of interest

There are no conflicts to declare.

Notes and references

1. G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith and T. W. Hamann, *Chem. Rev.*, 2020, **120**, 5437.
2. N. Stucke, B. M. Flöser, T. Weyrich and F. Tuczek, *Eur. J. Inorg. Chem.*, 2018, **2018**, 1337.
3. Y. Nishibayashi, *Dalton Trans.*, 2018, **47**, 11290.
4. M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels and H. Braunschweig, *Science*, 2018, **359**, 896.
5. M.-A. Légaré, M. Rang, G. Bélanger-Chabot, J. Schweizer, I. Krummenacher, R. Bertermann, M. Arrowsmith, M. Holthausen and H. Braunschweig, *Science*, 2019, **363**, 1329.
6. M.-A. Légaré, G. Bélanger-Chabot, M. Rang, R. D. Dewhurst, I. Krummenacher, R. Bertermann and H. Braunschweig, *Nat. Chem.*, 2020, **12**, 1076.
7. J. B. Geri, J. P. Shanahan and N. K. Szymczak, *J. Am. Chem. Soc.*, 2017, **139**, 5952.

8. J. P. Shanahan and N. K. Szymczak, *J. Am. Chem. Soc.*, 2019, **141**, 8550.

9. A. Coffinet, D. Specklin, L. Vendier, M. Etienne and A. Simonneau, *Chem. Eur. J.*, 2019, **25**, 14300.

10. A. Simonneau, R. Turrel, L. Vendier and M. Etienne, *Angew. Chem. Int. Ed.*, 2017, **56**, 12268.

11. L. Chatelain, E. Louyriac, I. Douair, E. Lu, F. Tuna, A. J. Wooles, B. M. Gardner, L. Maron, and S. T. Liddle, *Nat. Commun.*, 2020, **11**, 337.

12. S. Liddle, L. Doyle, and A. Wooles, *Angew. Chem. Int. Ed.*, 2019, **58**, 6674.

13. D. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, and S. T. Liddle, *Science*, 2012, **337**, 717.

14. D. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, and S. T. Liddle, *Nat. Chem.*, 2013, **5**, 482.

15. D. M. King, P. A. Cleaves, A. J. Wooles, B. M. Gardner, N. F. Chilton, F. Tuna, W. Lewis, E. J. L. McInnes, and S. T. Liddle, *Nat. Commun.*, 2016, **7**, 13773.

16. S. F. McWilliams, D. L. J. Broere, C. J. V. Halliday, S. M. Bhutto, B. Q. Mercado, and P. L. Holland, *Nature*, 2020, **584**, 221.

17. F. Nief, *Dalton Trans.*, 2010, **39**, 6589.

18. M. R. MacDonald, J. E. Bates, J. W. Ziller, F. Furche and W. J. Evans, *J. Am. Chem. Soc.*, 2013, **135**, 9857.

19. H. Schulz, H. Pritzkow and W. Siebert, *Chem. Ber.*, 1991, **124**, 2203.

20. E. von Grotthuss, M. Diefenbach, M. Bolte, H.-W. Lerner, M. C. Holthausen and M. Wagner, *Angew. Chem. Int. Ed.*, 2016, **55**, 14067.

21. Y. Su, Y. Li, R. Ganguly and R. Kinjo, *Angew. Chem. Int. Ed.*, 2018, **57**, 7846.

22. J. W. Taylor and W. H. Harman, *Chem. Commun.*, 2020, **56**, 13804.

23. A. Lorbach, M. Bolte, H.-W. Lerner and M. Wagner, *Organometallics*, 2010, **29**, 5762.

24. B. Wang, Y. Li, R. Ganguly, H. Hirao and R. Kinjo, *Nat. Commun.*, 2016, **7**, 11871.

25. J. W. Taylor, A. McSkimming, C. F. Guzman and W. H. Harman, *J. Am. Chem. Soc.*, 2017, **139**, 11032.

26. S. N. Kessler and H. A. Wegner, *Org. Lett.*, 2010, **12**, 4062.

27. J. W. Taylor, A. McSkimming, M.-E. Moret and W. H. Harman, *Angew. Chem. Int. Ed.*, 2017, **56**, 10413.

28. W. J. Evans, J. W. Grate, H. W. Choi, I. Bloom, W. E. Hunter and J. L. Atwood, *J. Am. Chem. Soc.*, 1985, **107**, 941.

29. W. J. Evans, L. A. Hughes and T. P. Hanusa, *J. Am. Chem. Soc.*, 1984, **106**, 4270.

30. W. J. Evans, S. L. Gonzales and J. W. Ziller, *J. Am. Chem. Soc.*, 1994, **116**, 2600.

31. W. J. Evans, T. A. Ulibarri and J. W. Ziller, *J. Am. Chem. Soc.*, 1988, **110**, 6877.

32. C. Tang, Q. Liang, A. R. Jupp, T. C. Johnstone, R. C. Neu, D. Song, S. Grimme and D. W. Stephan, *Angew. Chem. Int. Ed.*, 2017, **56**, 16588.

33. D. W. Stephan, *Science*, 2016, **354**, aaf7229.

34. D. W. Stephan and G. Erker, *Angew. Chem. Int. Ed.*, 2010, **49**, 46.

35. W. J. Evans, T. A. Ulibarri, L. R. Chamberlain, J. W. Ziller and D. Alvarez, *Organometallics*, 1990, **9**, 2124.

36. W. J. Evans and S. E. Foster, *J. Organomet. Chem.*, 1992, **433**, 79.

37. M. E. Fieser, D. H. Woen, J. F. Corbey, T. J. Mueller, J. W. Ziller and W. J. Evans, *Dalton Trans.*, 2016, **45**, 14634.

38. W. T. Klooster, T. F. Koetze, P. E. M. Siegbahn, T. B. Richardson and R. H. Crabtree, *J. Am. Chem. Soc.*, 1999, **121**, 6337.

39. A. Lorbach, M. Bolte, H. W. Harman, and M. Wagner, *Chem. Commun.*, 2010, **46**, 3592.