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Abstract—One of the biggest challenges in wireless multimedia
communications is to provide satisfactory Quality of Experience
(QoE) to the users. Recently, numerous QoE maximization
metrics and techniques have been proposed to jointly improve
the network performance and user satisfaction. However, these
methods are built upon postulates of Expected Utility Theorem
(EUT). In this paper, we discuss the limitations of EUT in model-
ing QoE and explore the nuances in Prospect Theory (PT) such
as asymmetrical s-shaped value function and reference point
dependence to develop a prospect-theoretic QoE maximization
framework by incorporating price in QoE model. An algorithm
to determine the amount of data that users should purchase
at any given cost such that their QoE is maximized, is also
presented. As an exemplary scenario, we consider a simplified
multimedia communication network with two users, where both
users request the same multimedia content and aim to achieve
the best possible QoE. Traditional EUT-based price-QoE model
has been adopted for the first user, while the proposed PT-based
prospect theoretic multimedia pricing QoE model has been used
for the second user. Simulation studies conducted with H.265
multimedia codec data reveal that PT user achieved higher QoE
in comparison to EUT user at a lower cost. Results also indicated
that PT-based modeling can improve system throughput and
network revenue.

Index Terms—Quality of Experience (QoE), Smart Media
Pricing, Prospect Theory.

I. INTRODUCTION

With multimedia becoming the predominant traffic in wire-

less communication networks with enormous increase be-

tween 2017-2022 [1], improving the Quality of Experience

(QoE) observed by the users is of paramount importance. The

human perception of QoE is a complex function that varies

from one service to another, and is also a context dependent

function that depends upon the pervious and subsequent

services. Therefore, researchers have always found it difficult

to come up with a concrete mathematical model to describe

QoE in wireless multimedia communications.

Expected Utility Theorem (EUT) has been widely used to

develop QoE models in the past. However, EUT assumes

that people are introspective, rational and uninfluenced by

real life situations while making a decision. Kahneman and

Tversky revealed that the decision-making ability of human

under risk, violate the fundamentals of EUT and presented

a critique called Prospect Theory (PT) [2]. Shortcomings of

EUT and precepts of PT that quantify the QoE from a human

phycological standpoint are discussed in detail in section II.

Recently, Smart Media Pricing (SMP) [3] was introduced

based on the idea of leveraging price-QoE in wireless mul-

timedia network protocol scheduling. SMP was built upon

traditional QoE model based on rate distortion and power

distortion by adding price as a third dimension. In this work,

we take a step further by integrating PT to the SMP model to

develop Prospect Pricing, which possesses a potential to fur-

ther improve the network performance in terms of throughput

and revenue.

In order to test the efficiency of the proposed framework,

we consider a wireless communication setting with two users

and a base station as shown in Fig. 1. QoE models incorpo-

rating economic price using EUT and PT has been developed

for EUT user and PT user respectively. The detailed devising

of QoE model is presented in section III. The users, under

similar channel condition, request same multimedia using

certain encoding schema based on their QoE model and base

station encodes the content using the schema decided by users

and transmit it to them.

Fig. 1. System Model - QoE maximization - EUT user versus PT user

The QoE maximization problem is then translated into

an optimization problem where both users determine the

encoding schema, in terms of multimedia frame length (bits),

to purchase for the price announced by the base station. The

flexibility provided by H.265 video encoding technique has

been leveraged to code multimedia content of varying data

sizes [4]. Concave optimization techniques and an algorithm

based on the rudiments of PT have been used to achieve the

optimality of the EUT and PT user respectively. The solution

to the optimization problem is elaborated in Section IV.

Several researchers in the past have devised QoE models

to simultaneously improve network profits and user satisfac-

tion. Profit-driven QoE model for HetNets with differential

services [5], Markov decision process-based network assisted
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mobile streaming [6], multimedia resource allocation [7] and

downlink power level optimization in non-orthogonal multiple

access wireless multimedia [8] have been proposed. However,

these QoE models do not evaluate user satisfaction from a

human psychological point of view.

Last decade has withnessed an increasing number of re-

searchers from various fields exploring PT. However, not

until recently PT has been applied to the study of wireless

communications. Authors in [9] and [10] have applied PT to

psychologically model wireless network access among users

and end-user subjective perceptions in autonomous wireless

communications. These models however do not consider user

perceptions to be continuously shifting dynamic function. In

this research, similar to [11], we have used dynamic value

function to model QoE function of the user.

II. PROSPECT THEORY

Kahneman and Tversky presented a critique of Expected

Utility Theory (EUT) called Prospect Theory (PT), which

modeled the human decision-making behavior. A paradox

to explain deviation of EUT, developed by Kahneman and

Tversky [12] has been tabulated below.

TABLE I
ILLUSTRATION : DECISION-MAKING VIOLATES EUT

Choice A Choice B
Game 1 80% chance to win $4000 Sure win of $3000
Game 2 20% chance to win $4000 25% chance to win $3500

Examining game 1, a player has 80% chance of winning

$4000 and a 100% chance of winning $3000 by choosing

A and B respectively. Therefore, under EUT, the player gets

a utility of $3200 (0.80 X 4000) and $3000 (1 X 3000) by

playing choice A and B respectively. Similarly, in game 2,

a player has 20% and 25% of winning $4000 and $3500 by

playing choices A and B. EUT yields a utility of $800 and

$875.

The games shown in table above were presented to 100

random participants. It was observed that 80% of the re-

spondents choose choice B in game 1. This result which

contradicts EUT also demonstrates the risk-aversive behavior

of human preferring sure win to a probable one. Interestingly,

65% responded with choice A for game 2, illustrating the

risk-seeking attitude of people for low probable events. These

results create a paradox which cannot be modeled using EUT.

PT classifies the biases observed in decision making into

certainty effect (risk aversion), loss aversion and isolation

effect. The certainty effect states that human tend to be risk

aversive for gains by overweighting options that are highly-

probable or certain (as observed in results of game 1). It is

the inherent nature of mankind to behave in a certain way that

would minimize the loss even if the probability of losing is

minimal. In the process of minimizing losses, players tend to

become risk seeking and gamble over a sure loss. This effect

is called loss aversion. Isolation effect is the people’s tendency

to disregard the options that are common in both the choices.

The German phycologist Hedwig Von Restorff documented

isolation effect as the stimulus that differs from the rest and

which is most likely to be remembered when multiple stimuli

are presented [13].

In order to mathematically formulate the distortions caused

due to human cognition, PT provides the weighting function,

value function and reference point dependence to capture the

effects of risk aversion, loss aversion and isolation.

A. Weighting Function

The decision-making probabilities are always measured

linearly under EUT. However, human tend to overweight low

probability and underweight high probabilities in an effort

to minimize losses. PT introduces a non-linear probability

weighting function to map true probabilities to subjective

probabilities and is governed by proposition 1 stated below.

Proposition 1: A weighting function has the following prop-
erties: (a) w(0) = 0 and w(1) = 1. (b) w has a unique
inverse, w−1, and w−1 is also a strictly increasing function
w(ε) : [0, 1] onto

→ [0, 1]. (c) w and w−1 should be continuous.

B. Value Function

Losses hurt human more than gains excite them. PT postu-

lates an asymmetrical and s-shaped value function to capture

this loss aversive effect. The characteristics of the value

function are specified in proposition 2.

Proposition 2: A value function has the following properties:
(a) value function is defined on the deviations from the
reference point; (b) generally concave for gains and convex
for losses; (c) steeper for gains than for losses.

C. Reference Point

The value function captures the human valuation on a given

outcome based on profits and losses about a set reference

point. The choice of reference point significantly affects the

valuation of the user perceived value function. The inflection

point in the value function is decided by the reference point.

A typical weighting function and value function is shown in

Fig.2. below.
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Fig. 2. Typical weighting and value function as prescribed by PT

III. SYSTEM MODEL

The primary objective of this research is to mathematically

quantify the QoE of the user from PT perspective and compare

it with EUT based model. In this section, we first define EUT
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based QoE model by assimilating price-based SMP protocol

and later show how to meaningfully integrate PT to our def-

inition. We then introduce PT based dynamic value function

as a suitable paradigm to model subsequent interactions in

wireless multimedia communication and finally present our

problem formulation.

A. SMP based QoE definition

QoE is a per-session measure of user satisfaction in terms of

utility maximization. In each session, the consumer requests

a sequence of multimedia frames denoted by i = 1, 2, ..., N .

SMP recommends QoE to be modelled based of on rate,

power and price distortion. Accordingly, we define the rate

distortion in terms of Packet Error Rate (PER), and multime-

dia quality described by Peak Signal to Noise Ratio (PSNR).

PSNR is expressed using the frames quality contribution qi
and the contributions from its ancestor frames k ∈ πj . Power

distortion is defined as product number of bits in the frame and

amount of power transmitted by the base station to transmit

the bit PBS . Finally, yi is the per bit cost of multimedia data

paid by the consumer to obtain service. The QoE function can

be formulated using a two-level logarithmic model, [7], and

it is given by equation(1).

QoESMP =

log
(
1 +

∑N
i=1 Li

(
αqi

∏
k∈πj

(1− Pk) log (1 + βPBS)
))

−∑N
i=1 Liyi

(1)

The length of the frames (in bits) is denoted by Li and

PER Pk = 1 − (1 − BER)lk is defined as the number of

packets in error after forward error correction divided by

the total number of received packets lk. The parameters α
and β are positive values used to align the rate and power

distortion to currency values. This EUT based SMP-QoE

model will be leveraged by the EUT user in the two-user

wireless communication scenario shown in Fig.1.

B. Prospect Theoretic QoE Definition

While evaluating the user QoE, people are more sensitive

to losses than to gains. In order to capture the loss aversion

characteristic among consumers, we have used the asymmetric

value function as defined in [12] to model our QoE.

v(x) =

{
xκ, for x ≥ 0
−λ(−x)κ, for x < 0

(2)

where k and λ are positive parameter which controls the shape

of the function and steepness of the function in loss region.

The value function shown above has a loss region and

gain region and the point of inflection, also called as refer-

ence point, is centered at origin. Therefore, reference point

becomes critically important while using PT to formulate

problems, as it affects the valuation.

In a typical wireless communication setting, the base station

announces the cost of providing service yi and user decides

amount of data L∗ to purchase at any given cost. The base

station delivers requested content using the encoding scheme

requested with a power distortion and rate distortion suitable

to the current channel conditions. If the consumer receives

data(bits) L̂i ≥ L∗, he/she is more satisfied and so the

observed QoE is in gain region. Similarly, if received data

L̂i < L∗, due to channel conditions or other technicalities,

then perceived QoE is in loss region. In conclusion, L∗ is

a suitable reference point for our QoE model and can be

integrated to the value function as shown in equation (3).

QoEPT =

{
L∗QoESMP L̂i ≥ L∗

−λ (−L∗)QoESMP

; L̂i < L∗ (3)

C. Prospect Theoretic Dynamic QoE Function

The reference point is time-varying and gets updated based

on the multimedia content requested and channel conditions.

The QoE equation shown above therefore has a dynamic point

of inflation which can be computed using game theory or

machine learning techniques. Similar to the reference point,

the value function also is time varying. For example, if a

person expects to win $1000 in a lottery but wins $1100,

he/she feels happy and once again in the second round of

lottery they expect to win another $1000 but win $1100,

he/she feels happier. Although the gain exceeded by a same

margin of $100 both times, the happiness quotient of the

person is higher during the second win. Therefore, if the base

station transmits some L̂i ≥ L∗ for two consecutive services,

the perceived QoE of the user during second service is much

higher than the first service, although same quality of service

was delivered successively. This is true for two or more

consecutive service losses as well. In order to capture this

effect, we adopt the dynamic value function model developed

in[11].

L
min L* L

max

Multimedia data length L

QoE
min

QoE*

QoE
max

Qo
EPT

Dynamic Value Function

prior QoE gain L
i-1

 > L
i-2

prior QoE loss L
i-1

 < L
i-2

Fig. 3. Dynamic value function for QoE modeling

QoEPT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
μ1 L∗QoESMP

; L̂i ≥ L∗

−λ (−L∗)QoESMP
; L̂i < L∗ L̂i−1 > L̂i−2

{
L∗QoESMP

; L̂i ≥ L∗

−λ (−L∗)QoESMP
; L̂i < L∗ L̂i−1 = L̂i−2

{
L∗QoESMP

; L̂i ≥ L∗

−λμ2 (−L∗)QoESMP
; L̂i < L∗ L̂i−1 < L̂i−2

(4)
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The QoE evaluation function becomes steeper towards gain

region after experiencing QoE gain in previous service and

becomes steeper towards loss region after pervious QoE loss

as shown in the equation (4) below. This dynamic QoE model

(visualized in Fig.3) is used by the PT user described in Fig.1.

D. Problem Formulation

The optimization problem can be formulated as maximizing

QoE subjected to the overall multimedia constraint. Limin
and

Limax
are the minimum number of bits required to encode

the requested data and maximum available resource with the

base station for providing service respectively. The goal of

our work is to determine the optimal value for multimedia

content L∗
i to purchase such that QoEPT is maximized.

maximize
∑M

i=1 QoEPT

s.t. Limin < L∗
i < Limax

(5)

IV. QOE MAXIMIZATION SOLUTION

In this section, we derive strategies for both EUT and

PT user to maximize their individual QoE. We do so by

translating the maximization problem into an optimization

problem. The derived strategies are unique and can be applied

to any multimedia communication setting and frame cost yi
announced by the base station.

A. EUT solution for QoE maximization

The goal of the EUT user is devise a strategy to determine

the amount of multimedia data to purchase at any given cost

that would maximize their QoE. The maximization problem

can be translated into an optimization problem and optimality

can be achieved using property 1.

Property 1: A continuous and real QoE equation within a
close interval is concave when the price rate yi is fixed has a
unique maximum value which can be determined by equating
its first derivative to zero.
Validation: We begin by computing the first and second

derivatives of QoESMP function as shown in equations (6)

and (7). Since the QoE equation is both real and differ-

entiable, it has to be continuous within the closed interval

[Limin
, Limax

]. Now by examining the second order derivative

(equation (7)), we can observe that all terms in the equation

are squared and so the function ∂2QoESMP

∂L2
i

is negative at all

times. Therefore, the function is concave and the optimal value

for L∗
i that maximizes the QoE function can be determined

by equating the first derivative to zero.

∂QoESMP

∂L =
∑n

i=1 αqiΠk∈πj(1−Pk) log(1+βPBS)
∑n

i=1 Li(αqi
∏

k∈πj(1−Pk) log(1+βPBS))+1
−∑n

i=1 yi
(6)

∂2QoESMP

∂L2 =

−
∑n

i=1 α2q2i
∏

k∈πj
(1−Pk) log

2(1+βPBS)

(
∑n

i=1 Li(αqi
∏

k επj
(1−Pk) log(1+βPBS))+1)

2

(7)

The optimal multimedia frame size for EUT user is
∑

L∗
i .

However, it is unreasonable and realistically impossible for all

frames to be encoded and transmitted at the optimal length

L∗
i . Therefore, optimality is achieved by taking an equality

condition
∑N

i=1 L
∗
i = L∗ and now by equating the first order

derivative to zero, we have the optimal strategy for the EUT

user as shown in equation (8).

L∗ =

∑n
i=1 αqi

∏
k επj (1− Pk) log (1 + βPBS)− yi∑n

i=1 yi (αqi
∏

k ∈ πj (1− Pk) log (1 + βPBS))
(8)

During implementation, EUT user shall compute the opti-

mal data length values for all possible price values set by the

base-station and form a two-dimensional look-up table. The

best value for multimedia frame length is chosen from the

table ahead of each service flow.

B. Prospect Theoretic solution for QoE maximization

The solution derived in previous section optimizes the

QoESMP function. Since EUT assumes user to be rational

and uninfluenced by external factors, the solution derived is

optimal in a perfect world. PT based model is built upon the

QoESMP function to make it more relevant from an economic

and cognitive standpoint. Therefore, PT based model becomes

significant after few initial rounds of transmission. The PT

user begins the multimedia transactions using data length

L∗ (EUT solution) derived earlier and then L∗ is further

optimized for subsequent interactions using the postulates of

PT using the Lemma 1 shown below.

Lemma 1: When the value function follows the postulates
of prospect theory prescribed in proposition 2, the optimal
value for

∑N
i=1 L

∗
i = L∗ that maximizes the QoE has to be

a monotonically increasing function.
Validation: Let L∗

1 and L∗
2 be the amount of data purchased

by the user using the equation (8) during two subsequent

services with QoESMP
1 & QoESMP

2 being the actual value

for quality of experience. Firstly, considering a case where

user perceived satisfaction evaluated using the PT framework

is QoEPT
1 > QoEPT

2 . Now, during the third transaction, the

user purchases L∗
3 such that L∗

1 < L∗
3 < L∗

3. This can result

in two scenarios: a) QoESMP
1 < QoESMP

3 < QoESMP
2

and b) QoESMP
1 < QoESMP

2 < QoE
SMP

3 . Now, by using

PT value function to compute the user perceived satisfaction,

it can be observed QoE
PT

3 is always smaller than QoEPT
3

due to the s-shaped value function which is steeper in the

loss region. Thus, QoE can be maximized if and only if the

function
∑N

i=1 L
∗
i = L∗ is monotonic.

Secondly, considering the case where the QoEPT
1 <

QoEPT
2 , equation (4) specifies subsequent interactions to be

evaluated with a value function shifted towards gain region.

Hence for QoE to be maximized, the value function must

remain in the gain region s.t. QoEPT
2 < QoEPT

3 and amount

of resource purchased should be non-zero. Therefore, the

function has to be monotonically increasing.

Using Lemma 1 and other channel constrains, we present

an iterative algorithm as Algorithm 1. to determine a strategy

to maximize the QoE for PT user.
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Algorithm 1 Prospect theoretic QoE maximization

1) Functionality:
The algorithm determines an optimal multimedia content buying
strategy based on the previous service provided, for the PT user for
maximizing their QoE.

2) Initialization:
2.1. Initialize the QoE model parameters α, β, μ1 and μ2.
2.2. Define channel and GOP characteristics: bit error rate BER,

transmission power PBS , multimedia quality qj and their
corresponding lengths lj .

3) Iterations:
3.1. PT user uses the L∗ determined using equation 8 for initial few

iterations.
3.2. Define iteration limit M , computation interval L =

linespace[Lmin, Lmax,M ] and multimedia step-size Lstep.
3.3. For j=1:M : iterate and determine L∗

i using equation 8.
3.4. Compute QoESMP and QoEPT using equations 1 and 4.
3.5. if QoEPT

n−1 > QoEPT
n−2:

3.5.1 Set L
∗
i = L∗

i−1 + Lstep

3.5.2 Compute QoE
PT

using L
∗
i

3.5.3 if QoE
PT ≥ QoEPT : Announce L

∗
i as L∗

i and break.

3.5.4 else : update L
∗
i = L

∗
i + Lstep. Go to step 3.5.2

3.6. if QoEPT
n−1 < QoEPT

n−2:

3.5.1 Set L
∗
i = L∗

i + Lstep

3.5.2 Compute QoE
PT

using L
∗
i

3.5.3 if QoE
PT ≥ QoEPT : Announce L

∗
i as L∗

i and break.
3.5.4 else : Update L∗

i = L∗
i + Lstep. Go to step 3.5.2

3.7. else: Announce L∗
i + Lstep as optimal strategy and break.

V. SIMULATION STUDY

In order to validate the efficiency of developed PT QoE

maximization framework and to test its competence against

the EUT model, simulation studies were conducted using

MATLAB. The compressed video data was obtained using

H.265 coder and the following simulations were carried out.

The two users considered in our study, follow the QoE mod-

els shown in equations (1) and (4). For the first simulation,

we have considered an ideal channel with SNR of 30dB. The

bit error rate (BER) was set at 1e − 6 and the initial values

for α and β are 0.1 and 4 respectively. For a fixed multimedia

base price y0 = 0.4, the QoE for both the users have been

simulated. From Fig.4., it can be observed that the PT user

achieves higher QoE by purchasing lesser data from the base

station under same channel characteristics.
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The distortion in human cognition is captured using PT.

In order to model the distortion, we have considered two

channels in Fig.5. In Fig. 5(a), we consider a recovering

channel where the channel noise decreases during the com-

munication. As the channel condition improves, the users can

achieve higher QoE by purchasing lesser data. The amount of

data transmitted by the base station is directly proportional to

the network utilization and so as the conditions convalesce,

the network utilization decreases. PT advocates that users

are happier during subsequent gains and their QoE goal

can be achieved by purchasing lower data than the EUT

user. Therefore, PT based approach works flawlessly in a

recovering channel.

In Fig 5(b), we consider a monotonically deteriorating

channel where the channel noise increases during the mul-

timedia communication. We proved that the amount of data

purchased by the user has to be a monotonically increasing

function to improve the QoE of the user. Therefore, it can be

observed that network utilization gradually increases for the

PT user. It can be observed that the EUT user performed better

initially, this is due to the loss aversion (risk-seeking) attitude

of the PT user. The user ends up utilizing more resources,

hoping to maximize their utility. The graphs also illustrate

that base station is able to achieve higher profits by catering

the PT user.
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PT user performed significantly better in a recovering

channel while EUT user seemed to have an upper hand in

communication happening over a deteriorating channel. In

reality, the channel is continuously time varying and to test

for competency, we consider a time-varying wireless channel.

From Fig. 6, it can be observed that the amount of data

requested by the EUT user fluctuates so much, making it hard

for the user to achieve the QoE goal. In contrast, PT ensures

that the QoE of users is not compromised due to channel

quality.

VI. CONCLUSIONS

In this paper, we have restructured the SMP pricing QoE

model from prospect theoretic perspective, taking into ac-

count the user psychological effect. The s-shaped asymmetric

value function has been used to describe the variation of

user perceived QoE from its actual value. We then adopted

existing dynamic value function to model QoE in subsequent

multimedia transactions. A QoE-maximization game between

an EUT user and a PT user was investigated to evaluate the

competence of proposed model. Simulation results indicated

improvement of QoE for the user and significant reduction in

network utilization, implying higher profit potentials for the

base station by utilizing the saved network resources.
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