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A B S T R A C T

Experimental measurements on commercial adaptive cruise control (ACC) vehicles are becoming
increasingly available from around the world, providing an unprecedented opportunity to
study the traffic flow characteristics that arise from this technology. This paper adds new
experimental evidence to this knowledge base and presents a comprehensive empirical study
on the ACC equilibrium behaviors via the resulting fundamental diagrams. We find that, like
human-driven vehicles, ACC systems display a linear equilibrium spacing-speed relationship
(within the range of available data) but the key parameters of these relationships can differ
significantly from human-driven traffic depending on input settings. At the minimum ACC
headway setting, equilibrium capacities in excess of 3500 vehicles per hour are observed,
together with an extremely fast equilibrium wave speed of 100 kilometers per hour. These fast
waves are unfamiliar to human drivers, and may pose a safety risk. The results also suggest
that ACC jam spacing can be much larger than in human traffic, which reduces the network
storage capacity.

1. Introduction

Adaptive Cruise Control (ACC) technology, as a precursor of automated vehicle technology, has been available for over two
ecades and is now adopted in the car models from more than 20 manufacturers (Wikipedia, 2020). According to Kyriakidis et al.
(2015), about 5% of newly sold cars are equipped with ACC and the proportion is steadily growing. A comprehensive review of
the market ACC systems and their service providers can be seen in Zhou et al. (2021a). It can be expected that the penetration of
ACC vehicles will continue to grow and become very significant, and thus will have profound impacts on traffic flow. The literature
has claimed that ACC has the potential to improve traffic flow such as increasing throughput and traffic stability (Van Arem et al.,
2006; Kesting et al., 2008; Shladover et al., 2012; Delis et al., 2015; Talebpour and Mahmassani, 2016; Zheng et al., 2020; Huang
et al., 2020; Sun et al., 2020). However, most of those claims are based on simulation outcomes and lack the empirical ground.

Understanding the equilibrium behavior of ACC is fundamental to understanding their impacts on the congestion characteristics
of urban networks of the future. But existing literature mostly focuses on the string instability of ACC systems to develop new
controllers (Naus et al., 2010; Ploeg et al., 2011; Bu et al., 2010; Milanés et al., 2013; Milanés and Shladover, 2014). For
xample, Naus et al. (2010) tested Citroen C4s and found that it had worse string stability compared to the cooperative adaptive
ruise control (CACC) newly proposed. Bu et al. (2010) found that the ACC on Infinity FX45s had large time gap variation,
hich implied potential loss of string stability. Since the studies mentioned above mainly aimed to compare the string stability
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of commercial ACC to the new controllers, the experiments often tested only a limited set of the traffic conditions, such as the string
stability under one headway setting in a small speed range.

Fortunately, some recent empirical experiments have emerged to investigate the ACC behaviors in a larger variety of traffic
onditions, including non-equilibrium and equilibrium conditions. Specifically, a recent experiment conducted by Knoop et al. (2019)
tested a seven-ACC platoon on public roads for a 500-km trip. It was observed that the ACC platoon can be cut in by surrounding
human-driven vehicles even with the smallest headway setting, implying that the ACC vehicles may have a relative large time gap.
Shi and Li (2021) recently conducted a set of three-vehicle platoon experiments with two commercial Lincoln MKZ ACC cars. It
was found the platoon became more unstable as the headway was set to a smaller value. The collected data were fitted to a linear
controller (Li, 2020). The estimation of the key model parameters were found different over different speed ranges, which suggested
potential nonlinearity and stochasticity in the ACC controller.

Another important pilot experiment was conducted by Dr. D. Work’s research team and their collaborators, which involved a
few field tests on eight different ACC car models (Gunter et al., 2020b,a), referred to as the Work Experiments. With a primary
focus on string stability, the Work Experiments tested vehicles in a set of car-following (CF) scenarios involving different headway
settings, magnitude of disturbances and driving speeds. The data were then used to calibrate the ACC controller for each car model
via a modified optimal velocity model (Bando et al., 1995). Simulations based on the calibrated models indicate that all eight ACC
systems are string unstable. Another important milestone is the ACC campaign of the Joint Research Centre (JRC) of European
Commission (Makridis et al., 2021), referred to as the OpenACC Experiments, which has conducted a set of experiments to reveal
the impacts of ACC on traffic flow and energy consumption. More than 20 ACC car models were tested. Notably, the JRC tests
had varying platoon settings (from two-car to 10-car platoons), different speed levels, and different perturbations. But all the ACC
systems tested were found unstable in all the perturbation events (He et al., 2020; Makridis et al., 2020). It was found that the ACC
response time varied from 0.6 s to 3.7 s, comparable to the values of human drivers, implying comparable traffic flow if the traffic
flow consists of ACC vehicles. The serial JRC efforts have revealed important features of ACC and provided valuable data to study
ACC behaviors. However, in-depth analysis of the ACC behaviors based on this valuable dataset is not yet available. Recently, we
have conducted extensive field experiments using four different commercial ACC car models (referred to as the MA Experiments)
and investigated their CF behaviors under disturbances (Li et al., 2021). It was found that ACC behaviors were complex and they
largely depend on headway settings, speed levels, and the features of stimulus from the lead vehicle. However, the behaviors of
ACC in steady traffic were not fully studied yet.

It is worth noting that, some naturalistic driving studies involving commercial ACC vehicles have been conducted too. For
example, Alkim et al. (2007) and Viti et al. (2008) tested 20 Volkswagen Passats in public traffic for different speed levels. The
results found the speeds and headway variance were lower when ACC was used (in comparison to the time when ACC was not
used), but the average headway increased. Schakel et al. (2017) used four different ACC car models and found that ACC vehicles
increased spacing and time headway in saturated conditions (60–100 km∕h) compared to human driving, suggesting a potential
reduction in capacity. The research along this line reveals important behavior changes caused by ACC and potential impacts on
traffic flow. Note that, these studies mostly conducted the analysis in an aggregate manner. For example, in Schakel et al. (2017),
the spacing difference (with ACC on and off) was estimated across all drivers in a large speed range (60–100 km∕h), and Alkim et al.
(2007) only analyzed the headway features under three discrete traffic levels, free (>90 km∕h), congested (<40 km∕h), and busy (in
between). Therefore, it is still not yet clear how ACC will behave in different traffic conditions and how that impact will traffic
flow.

Unlike the ACC systems, human-driven vehicles (HDVs) are well studied. For example, the classic Kinematic Wave model (Lighthill
and Whitham, 1955; Richards, 1956), which uses a triangular shape fundamental diagram (FD), can capture the basic traffic
flow features in equilibrium. The simplified Newell’s car-following model (Newell, 2002) is consistent with such a triangular
shape fundamental diagram. The literature has shown that the Kinematic Wave model and Newell’s simplified model well capture
the average behavior of HDVs (Ahn et al., 2004). A lot of modifications have been made to better represent the HDVs. For
example, a reverse-𝜆 shape FD (Koshi, 1983) has been generally observed in empirical data and associated with capacity drop.
It is well recognized that the behaviors of HDVs have large variation. Furthermore, the literature has examined different factors
that contributes to the variation in FD. For example, Zhang and Jin (2002) extended the Kinematic Wave model to describe traffic
with multi-class vehicles. Coifman (2015) and Ponnu and Coifman (2017) investigated the impact of vehicle length and inter-lane
dependency on FDs, respectively. Wang et al. (2013) proposed a stochastic model for the equilibrium traffic. Qu et al. (2017)
proposed an alternated stochastic model, which was applicable to generate explicit stochastic speed-flow relationships with scattered
samples. A more detailed review of the HDV traffic in equilibrium can be seen in Wang et al. (2013).

Clearly, while the literature has provided some valuable results on the equilibrium behaviors of commercial ACC systems, in-
depth analysis is still missing. Note that among the studies that involved the equilibrium behaviors of ACC vehicles, a very common
practice is to calibrate a controller for the ACC and then extracts the equilibrium component; i.e., the equilibrium behavior of ACC
is extracted indirectly. This is probably inspired by the conventional design of controllers, where a controller usually consists of
two elements, a spacing policy that describes the equilibrium condition and an acceleration function that describes how ACC reacts
once it deviates from the equilibrium. Thus, the spacing policy extracted from the calibrated controller yields the ACC equilibrium
behavior. For example, this was practiced in Gunter et al. (2020a,b). Such a practice seems reasonable, but there are some limitations.
Firstly, in reality, the controller design is often proprietary and the controller structure is unknown. Secondly, vehicle behaviors
may not be exactly the same with the controller design due to the errors in low-level execution (Zhou et al., 2021b). Thirdly, for
controllers designed from a non-conventional perspective, such as Artificial Intelligent (AI) based, there may not be an explicit
2
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(CF) behaviors. Zhu et al. (2020), Qu et al. (2020), Jiang et al. (2021) used reinforcement learning to generate CF behaviors with
different rewards. Bojarski et al. (2016) applied an end-to-end approach that trains the vehicles from videos. Note that the AI-based
approach is becoming more and more popular for Level-3 and above automated vehicles (Bojarski et al., 2016; Bansal et al., 2018).
Considering these potential uncertainties in controller design and execution, in this paper, we study the equilibrium behaviors
directly ; i.e., we directly measure the speed-spacing relationships when the vehicles are in equilibrium conditions.

In this paper, we aim to understand the equilibrium behaviors of ACC vehicles based on empirical experiments and predict
the impacts of ACC on traffic flow (e.g., capacity, jam density and wave speed). This is realized by analyzing all the available
experimental evidences worldwide, including our recent experiments (Li et al., 2021) and the rich datasets collected by various
efforts (Gunter et al., 2020a,b; Makridis et al., 2021), which result in a large ACC pool with 17 different car models from eight
manufacturers. Specifically, based on the experimental data, we have directly estimated the microscopic speed-spacing (𝑠 − 𝑣)
relationships of the ACC systems in equilibrium conditions (in the remaining of the paper, the 𝑠 − 𝑣 relationships all refer to the
equilibrium conditions). Then, we have compared the 𝑠 − 𝑣 relationships when the same ACC system is (a) in different positions of
a platoon, (b) in different engine modes, and (c) under different time headway (hereafter headway) settings, and the relationships
across different ACC car models from the same manufacturers. After that, we have translated the 𝑠−𝑣 relationships to the fundamental
diagrams (FD), i.e., the flow-density relationship and conducted a thorough analysis of the 𝑠 − 𝑣 and FD features.

We have the following major findings: (i) a linear 𝑠 − 𝑣 approximation fits well for the ACC systems in the medium (low) to
high speed range but the 𝑠− 𝑣 likely differs in the very low speeds. (ii) Headway is a key parameter for 𝑠− 𝑣 while vehicle position
and engine mode do not change 𝑠 − 𝑣 (pertaining to car models tested in MA experiment). (iii) The ACC 𝑠 − 𝑣 and FDs are very
different from HDVs; i.e., at minimum headway, ACC spacing can be much smaller than HDVs and result in much larger flow, but at
maximum headway, ACC spacing is often much larger than HDVs and flow is much smaller. (iv) ACC jam spacing is much smaller
than HDVs, which will reduce road storage (jam density is smaller). (v) Some ACC systems have extremely large wave speed in the
observed speed range, which may impose safety hazard.

The remainder of this paper is structured as follows: Section 2 introduces the data sources and Section 3 presents methodologies
or the analysis. Section 4 compares the 𝑠− 𝑣 relationships of different ACC systems under varied settings and across different ACC
ystem from the same manufacturer. Section 5 further analyzes the features of 𝑠 − 𝑣 relationships and the FDs. Section 6 presents
he conclusions and discussions.

. Data

The data analyzed in this paper are from four sources, the MA experiments (Li et al., 2021), the Work Experiments (Gunter et al.,
020a,b), the OpenACC experiments (Makridis et al., 2021), and the GA experiments. Data access will be provided through our ACC
ebsite: https://sites.google.com/view/accresources/home.

.1. MA experiments

We briefly introduce the MA experiments (see Li et al. (2021) for more details). The experiments used a three-vehicle platoon for
a set of CF scenarios, where the lead vehicle was an HDV followed by two identical ACC vehicles with the same setting, referred
to as ACC1 and ACC2. A high-accuracy GPS device uBlox EVK-M8T was installed on-board at the same position (upper right of the
windshield) on the three cars collecting the location and velocity data. The mean location and velocity errors of the GPS device were
respectively 0.89 m and 0.10 m/s based on our validation. During the experiments, the lead HDV driver was instructed to produce
driving cycles that consist of steady and non-steady traffic conditions. Specifically, Fig. 1 shows a typical driving cycle, where the
HDV first traveled at a stable speed (using cruise control), then conducted a deceleration–acceleration process, and finally resumed
the initial stable speed. Consecutive driving cycles were separated by extensive stabilization periods (each period lasted at least 30 s
when the speed was smaller than 20.1 m/s (45 mph) and 45 s at higher speed). The periods with stable speed produce the steady
traffic conditions while the deceleration–acceleration (also called an oscillation) represents a disturbance. The parameters of the
driving cycles were varied to produce different combinations, including the initial stable speed and oscillation amplitude.

Four ACC systems (i.e. car models) from three different manufacturers were tested. Their main features are listed in Table 1.
For each system, two headway settings, 1 and 3, were tested. Note that headway 1 is the minimum headway for all systems, while
headway 3 is the maximum headway for ACC system Z, but a medium headway for systems W, X, and Y. Additionally, systems Y
and Z have different engine modes (set on the dashboard as ‘‘normal’’ or ‘‘sport/power’’, indicating how aggressive the powertrain
responses to the pedal command), which were separately tested. For systems X, Y, and Z, a total of 96 driving cycles were conducted
under three speed levels (32 in each speed level) in each headway setting and engine mode. The equilibrium speed range was 15m∕s
(35mph) to 29m∕s (65mph). For system W, 64 driving cycles were conducted under two speed levels. The equilibrium speed range
was about 20m∕s (45mph) to 31m∕s (70mph).

2.2. Work experiments

The Work Experiments (Gunter et al., 2020a,b) used a two-vehicle setup, where an HDV leader with designed speed profiles was
followed by one ACC vehicle. The trajectory data were collected using the same GPS device (uBlox EVK-M8T) as the MA Experiments.
3
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Fig. 1. Designed speed profile for the lead HDV in MA Experiments.

peed ranges of equilibrium conditions vary but mostly are from 15m∕s (35mph) to 33m∕s (75mph). The main features of the car
models are listed in Table 1. Noth the system H is from the same manufacturer as the system W/X (in MA experiments).

In the Work Experiments, the key components of the leader speed profiles are similar to the MA experiments, including repeated
tabilization period and deceleration or/and acceleration process. For each car model, two headway settings (minimum and
aximum) were respectively tested with the same leader profiles.

.3. OpenACC experiments

A total of four experiments were conducted in the OpenACC efforts (Makridis et al., 2021) with different setups. Specifically,
the AstaZero experiment tested five ACC vehicles in a track which mimics a rural road environment. Minimum and maximum
headway settings were tested. The leader was driven in cruise control to produce designed speed profiles similar to the MA and
Work experiments. Another experiment, called ZalaZone, tested ten ACC vehicles (all from different car models) on two test tracks
with similar leader design as in AstaZero. Minimum, maximum, and an additional medium headway settings were tested for each
vehicle. Note that these two experiments used different measurement systems. AstaZero used a differential-GNSS level measurement
solution with a precision of 2 cm∕s in speed and 2 cm in positioning measurement. ZalaZone fused the data from three sources (Race
ogic VBOX, Ublox 9 chipset, and a tracker app). The most precise source (Race logic VBOX) provided the data with 2 cm accuracy
in position and 0.1 km∕h (2.8 cm∕s) in speed. Besides, there are two additional experiments, Ispra-Cherasco and Ispra-VicoLungo,
that tested two and five ACC vehicles, respectively, on public highway with an HDV leader producing random small perturbations.
All vehicles were tested in minimum headway setting.

For our analysis, we only use the AstaZero and ZalaZone data as the other two only have a small number of equilibrium periods,
which are not enough for a meaningful analysis. The equilibrium speed range of AstaZero is about 13m∕s to 27m∕s and ZalaZone
is about 7m∕s to 16m∕s. The main features of the car models are listed in Table 1.

2.4. GA experiments

The GA experiments were conducted by the research team particularly focusing on the ACC car model X. The measurement
device was the same as the one used in the MA experiments. The tests were conducted on an urban arterial with a two-vehicle
platoon setup. The leader was driven in cruise control in multiple speed levels and the following vehicle was always engaged with
ACC. Moreover, when the leader stopped at intersections, the follower ACC was still engaged in the ACC mode, which provides a
direct measurement of the jam spacing for the model X.

3. Methodologies

This section introduces the method to estimate the 𝑠− 𝑣 relationship based on the experiment data, and the statistical approach
to compare two different 𝑠 − 𝑣 relationships.

.1. Estimating the 𝑠 − 𝑣 relationship

We first identify the equilibrium intervals from the data to measure the speed and spacing, which are then used to estimate a
𝑠− 𝑣 relationship using a first-order approximation. In the estimation, we also have to confirm the collected data fall into different
speed levels (captured by speed bins, see more details in Section 3.1.2) to produce a meaningful projection.
4



Transportation Research Part C 134 (2022) 103458T. Li et al.

t
-

Table 1
Tested ACC car models from the three sources of experiments.
Manufacturer Car model Year Drive style ACC speed range Headway range Tested speed range (m/s)

MA experimentsa

3 W 2018 electric SUV full 1–7 (20, 31)
3 X 2018/2019b electric sedan full 1–7 (15, 29)
4 Y 2019 gasoline sedan fullc 1–4 (15, 29)
1 Z 2018/2019b hybrid hatchback fullc 1–3 (15, 29)

Work experimentsa

1 A 2018 gasoline SUV >25 mph 1–3 (15, 33)
1 B 2018 gasoline sedan >25 mph 1–3 (15, 33)
1 C 2018 hybrid hatchback >25 mph 1–3 (15, 33)
1 D 2018 gasoline SUV >25 mph 1–3 (15, 33)
2 E 2018 gasoline SUV >25 mph 1–3 (15, 33)
2 F 2018 gasoline SUV >25 mph 1–3 (15, 33)
2 G 2018 gasoline SUV >25 mph 1–3 (15, 33)
3 H 2015 electric sedan full 1–7 (5, 31)

OpenACC experiments - AstaZero

Tesla Model 3 2019 electric sedan full 1–7 (13, 27)
Audi A6 2018 diesel sedan full 1–4 (13, 27)
BMW X5 2018 diesel SUV full 1–4 (13, 27)
Mercedes A Class 2019 gasoline sedan >15 mph 1–4 (13, 27)

OpenACC experiments - ZalaZone

Tesla Model 3 2019 electric sedan full 1–7 (7, 16)
Tesla Model X 2016 electric SUV full 1–7 (7, 16)
Tesla Model S 2018 electric sedan full 1–7 (7, 16)
Audi A4 2019 gasoline sedan full 1–4 (7, 16)
Audi E-tron 2019 electric SUV full 1–4 (7, 16)
BMW I3 s 2018 electric hatchback full 1–4 (7, 16)
Mercedes GLE450 2018 gasoline SUV >15 mph 1–4 (7, 16)
Jaguar I-Pace 2019 electric SUV full 1–3 (7, 16)
Toyota RAV4 2019 gasoline SUV >25 mph 1–3 (7, 16)
Mazda Mazda3 2019 gasoline sedan >20 mph 1–4 (7, 16)

GA experimentsa

3 X 2018 electric sedan full 1–7 (0, 33)

aThe car models are anonymous in the MA, Work, and GA experiment.
bConstrained by the availability, the two tested cars for model X and Z are manufactured in two continuous years. But they are ensured to be the same generation
and with the same equipment.
cThe ACC function can only be activated above 25 mph. Once activated, it keeps on at lower speed until fully stop.

3.1.1. Identification of traffic states in equilibrium
To estimate the 𝑠−𝑣 relationship, we first need to identify traffic states in equilibrium. From the vehicle trajectories, we recognize

he equilibrium intervals based on five strict thresholds: (i) steady speed, i.e., both the leader and follower speed variation (maximum
minimum) does not exceed 0.45m∕s (1mph) for at least 10 s, (ii) speed difference between the leader and follower is not larger

than 0.45m∕s in the same interval; (iii) stable spacing, i.e., spacing variation does not exceed 1m in the same interval; (iv) moderate
grade, i.e., the roadway grade is not larger than 3% (absolute value) in the same interval and for 10 s before it; and (v) far apart from
disturbances, i.e., the interval is at least 10 s after the end of the previous driving cycle. In general, thresholds (i)–(iv) are sufficient,
while threshold (v) adds another layer to make sure that the extracted segment is not impacted by the disturbance residual. We have
done the comparison with and without (v) using MA experiments and found marginal difference in the outcome. In the following
analysis, we apply (i)–(v) for MA experiments but (i)–(iv) for other experiments to reserve a larger sample. Here we used the wavelet
transform algorithm per Zheng et al. (2011) to identify the start and end of driving cycles. Fig. 2 shows an example of the recognized
interval in equilibrium. Note that if the data has large fluctuations in general, it may be very difficult to find enough equilibrium
intervals. In this case, one may have to relax the thresholds and consider additional criteria such as acceleration, depending on the
features of the data.

3.1.2. Estimation of the speed-spacing relationship of ACC systems
Based on the equilibrium intervals, we can estimate the 𝑠− 𝑣 relationship of an ACC system. Specifically, for each interval 𝑖, we

measure the average speed and spacing, denoted as (𝑣𝑖, 𝑠𝑖). Then we estimate the 𝑠− 𝑣 relationship using a first-order formulation.
Here linearity is assumed as the literature has shown that it is a good approximation for the commercial ACC systems tested (Gunter
et al., 2020a) and also widely used in design of ACC controllers (Naus et al., 2010; Milanés et al., 2013; Zhou et al., 2021b). The
spacing-speed relationship is described as:

𝑠 = 𝜏 𝑣 + 𝛿 , (1)
5
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Fig. 2. An example of an equilibrium interval (ACC system X).

where 𝑠 is the equilibrium spacing at speed 𝑣, 𝜏0 and 𝛿0 are the headway (also referred to as the time-gap) and the constant coefficient
(jam spacing if the 𝑠 − 𝑣 relationship holds at stop), respectively. Here 𝑠 and 𝑣 are directly measured from the data and 𝜏0 and 𝛿0
are to be estimated. We also note that here the spacing 𝑠 is the front to front bumper distance, which is directly provided in the
MA, GA, and Work dataset. On the other hand, the OpenACC dataset only provides the IVS (inter-vehicle spacing) measurement.
Therefore, the spacing for OpenACC data is calculated by IVS adding the leader vehicle length (also provided in the dataset).

To produce a meaningful 𝑠− 𝑣 approximation, we require that the measurements should have a good representation of different
speed levels. Specifically, the measurements are classified into speed bins. Here, each equilibrium interval provides one data point
(𝑣𝑖, 𝑠𝑖), which takes the average (follower) speed and average spacing across that equilibrium interval. In the bin clustering, we
require that (i) the speed range of a bin (maximum speed minus minimum speed of all data points in one bin) does not exceed
2m∕s, and (ii) the speed difference between one data point and its nearest neighbor point (i.e., the speed level is closest) in the bin
should not exceed 0.5m∕s. (i) and (ii) together assure that the data points in the same bin maintain a similar speed level. For one
ACC setting, we require at least three bins to construct the 𝑠 − 𝑣 relationship.1

3.2. Comparison of two different spacing-speed relationships

With the estimated 𝑠 − 𝑣 relationships for the ACC systems, we can see whether the relationships are different between two
systems (or two settings of the same system). This is boiled down to comparing whether the estimated 𝜏0 and 𝛿0 are different from
one system to another. To answer this question, we use the method introduced in Wooldridge (2016). Below we briefly introduce
this method.

For two ACC systems 𝐾 and 𝐽 to be compared, their respective 𝑠 − 𝑣 formulations are below:

𝑠 = 𝜏𝐾0 𝑣 + 𝛿𝐾0 , (2)

𝑠 = 𝜏𝐽0 𝑣 + 𝛿𝐽0 . (3)

1 Note that two bins can also produce a linear line but it is hard to tell how well the linear line fits the actual 𝑠 − 𝑣 relationship.
6
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The questions to be answered are: (i) whether 𝜏𝐾0 is significantly different from 𝜏𝐽0 , and (ii) whether 𝛿
𝐾
0 is significantly different

from 𝛿𝐾0 . To conduct the comparison, we first combine the sample sets of the two systems, 𝑆
𝐾 and 𝑆𝐽 . A dummy variable 𝑐𝐽 is

added, which is set to 1 for the sample belonging to 𝑆𝐽 and 0 for the sample belonging to 𝑆𝐾 . Then, we formulate a new equation
as:

𝑠 = 𝜏𝐾0 𝑣 + 𝛿𝐾0 + 𝜏𝐽−𝐾0 𝑣 ⋅ 𝑐𝐽 + 𝛿𝐽−𝐾0 𝑐𝐽 , (4)

where 𝑣 ⋅ 𝑐𝐽 is the interaction term of 𝑣 and 𝑐𝐽 , which is set to the original 𝑣𝑖 (i.e., 𝑐𝐽 = 1) values for the samples in 𝑆𝐽 and 0
(i.e., 𝑐𝐽 = 0) for the samples in 𝑆𝐾 .

The two terms, 𝑣⋅𝑐𝐽 and 𝑐𝐽 , account for the differences between the system K and J. The corresponding coefficient 𝜏𝐽−𝐾0 indicates
the difference in slope between K and J (i.e., whether 𝜏𝐽0 is significantly different from 𝜏𝐾0 ), and 𝛿𝐽−𝐾0 is the intercept difference
between K and J (i.e., whether 𝛿𝐽0 is significantly different from 𝛿𝐾0 ). Therefore, we address questions (i) and (ii) by conducting a
linear regression on Eq. (4) using the combined sample set to estimate the coefficients for the variables (𝑣, 𝑣 ⋅𝑐𝐽 , 𝑐𝐽 ). If the coefficient
of the interaction term 𝑣 ⋅ 𝑐𝐽 is significant different from zero, 𝜏𝐽0 is significantly different from 𝜏𝐾0 . Similarly, if the coefficient of 𝑐𝐽
is significant, 𝛿𝐽0 is significantly different from 𝛿𝐾0 .

4. Comparison of ACC systems

This section presents a comparison of the 𝑠 − 𝑣 relationships. Our analysis shows that a linear relationship well fits the ACC
systems in the tested speed ranges. In fact, 75% of the regressions have 𝑅2 above 0.8, and 54% of them are above 0.9. Based on
that, we will first compare the 𝑠 − 𝑣 relationships in the same ACC systems when the settings vary, then compare the relationships
across different ACC systems from the same manufacturer.

4.1. The same ACC system with varying settings

Here we compare the 𝑠 − 𝑣 relationships in the same ACC systems when the ACC vehicles are (i) in different positions of a
platoon, (ii) in different engine modes, and (iii) under different headway settings. The analysis is based on the data from the MA
Experiments involving four car models, in which the impacts of these parameter settings were tested with other factors controlled.
Therefore, the measurements are comparable. Other experiments do not have such controlled tests.

To see the impact of vehicle position in a platoon, We estimate one 𝑠 − 𝑣 relationship corresponding to each position and then
compare the 𝑠− 𝑣 relationships across different positions. Similar approach is used to see the difference with different engine mode
and headway settings. We have observed the following remarks:

Remark 1. The 𝑠− 𝑣 relationship remains the same when the same ACC car model is in different position of a platoon. Specifically,
recall that the MA Experiments had a three-vehicle platoon setup where two identical ACC vehicles (always with the same setting)
followed an HDV. That allows us to estimate the 𝑠 − 𝑣 for ACC1 and ACC2; see results in Table A.1 in the Appendix. One can see
that the differences are not significant (95% significance level is assumed for the entire study) regardless of the headway setting
and engine mode, and that result holds for all four car models we tested. Based on the results here, we combine the data from ACC1
and ACC2 in our following comparisons regarding other aspects.

Remark 2. The 𝑠 − 𝑣 relationship remains unchanged in different engine modes; see Table A.2 in the Appendix. In the MA
experiments, two ACC systems (Y and Z) had two different modes of operation, normal and sport/power, which were tested with
other parameters controlled. The change of parameters in different mode is not significant for either ACC system. Based on the
results here, we combine the data from different engine modes in our following comparisons regarding other aspects.

Remark 3. When an ACC system changes the headway setting, 𝜏0 changes too (larger values in larger headway) but 𝛿0 does not
necessarily change; see Table 2. Notably, the comparison here expand from the MA Experiment to the four experiments, with 17
systems in total (some are not included due to insufficient speed coverage). Note that several car models in ZalaZone were tested
in three levels of headway setting, in which case the minimum and maximum are used for the comparison.

Interestingly, in 10 out of the 16 systems, 𝛿0 remains similar as headway increases. In four systems, 𝛿0 decreases as headway
increases. For example, for ACC system F, 𝜏0 = 0.77 s and 𝛿0 = 13.24 m for the minimum headway setting, but in the maximum
headway 𝜏0 increases to 2.02 s and 𝛿0 decreases to 4.51m. In two systems (E and X), 𝛿0 increases as headway increases, which seems
surprising. These results suggest that ACC may adjust both parameters as headway setting changes. Overall, spacing is smaller as
headway decreases. Some ACC systems use a larger 𝛿0 to compensate the spacing drop due to headway decrease but that does not
reverse the decreasing trend of the net spacing.

The three remarks obtained suggest that, headway is a key parameter that affects the equilibrium. When we consider different
ACC systems, the comparison should be done for each headway setting.
7
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Table 2
ACC under different headway settings.
System Small headway Large headway 𝜏0 difference (𝑝-value) 𝛿0 difference (𝑝-value)

𝜏0 (s) 𝛿0 (m) sample 𝜏0 (s) 𝛿0 (m) sample

A 0.89 12.39 68 1.96 14.83 43 1.07 (<0.01*) 2.43 (0.08)
B 0.87 10.92 59 2.10 10.83 47 1.23 (<0.01*) −0.10 (0.98)
C 0.87 14.43 45 2.25 10.36 50 1.41 (<0.01*) −4.07 (0.25)
D 0.78 13.48 46 1.98 14.09 52 1.20 (<0.01*) 0.61 (0.85)
E 1.27 4.97 54 2.02 9.00 52 0.76 (<0.01*) 4.02 (0.02*)
F 0.77 13.24 57 2.02 4.51 55 1.24 (<0.01*) −8.74 (<0.01*)
G 0.61 17.44 54 2.00 5.36 51 1.39 (<0.01*) −12.07 (<0.01*)
H 0.60 11.78 63 1.84 9.85 46 1.24 (<0.01*) −1.93 (0.01*)
W 0.57 14.18 92 0.93 15.33 56 0.36 (<0.01*) 1.15 (0.57)
X 0.47 16.86 78 0.84 16.78 27 0.37 (<0.01*) −0.08 (0.96)
Y 1.10 4.56 30 2.07 5.14 45 0.97 (<0.01*) 0.58 (0.70)
Z 0.87 11.93 28 1.98 18.25 28 1.11 (<0.01*) 6.33 (0.10)
Model 3 0.47 15.54 96 2.21 11.27 119 1.74 (<0.01*) −4.26 (<0.01*)
Model X 0.50 11.42 45 1.18 15.65 99 0.68 (<0.01*) 4.22 (0.01*)
Model S 1.03 9.72 81 2.39 9.63 89 1.36 (<0.01*) −0.09 (0.91)
I3 s 1.33 7.86 100 2.15 7.78 113 0.82 (<0.01*) −0.08 (0.97)

*Indicate significant difference at 95% confidence level.

4.2. Different ACC systems from the same manufacturer

Here we compare the 𝑠 − 𝑣 relationship across different car models from the same manufacturer. We have analyzed the car
models from the anonymous Manufacturers 1 and 2 in the Work experiments, Manufacturer 3 in the MA experiments, and Tesla in
the OpenACC data.

For each car model, we have estimated one 𝑠−𝑣 relationship for each headway setting and our comparison is conducted under the
ame headway setting. We caution that, the true 𝑠−𝑣 relationship may not be a single linear relationship for the entire speed range.
or example, it could be piece-wise linear at different speed ranges or even non-linear. To have fair comparisons, our comparison is
pplied to car models tested in the same experiment that has similar traffic conditions (e.g., same speed range and same geometric
onditions) and the same measurement system (thus same error resolution). Note that some car systems were tested in more than
ne experiments and we find that the comparison results are generally consistent.
The results show that in the four manufacturers examined, two (Manufacturers 1 and 3) have the same 𝑠− 𝑣 relationship for the

ifferent car models; see Fig. 3(a) for the four car models (A-D) of Manufacturers 1 from the Work Experiment, and Fig. 3(c) for
he two car models of Manufacturer 3 (W and X) in the MA experiments.
For the other two manufacturers (Manufacturer 2 and Tesla), each of them has three different car models tested, and the ACC

ystems show significant differences; see Table 3. Specifically, the three car models from Manufacturers 2 are different at minimum
eadway setting but seem similar in maximum headway. The three Tesla models tested in the OpenACC experiment seem to differ
rom each other in general, except for Model S and Model 3 at maximum headway. Notably, one can see the spacing variation under
he same speed could be significant in many cases, such as Fig. 3(d) in which the variance even overshadows the difference of mean
etween the systems.
The result that the 𝑠− 𝑣 relationship varies with car models seems unexpected. We conjecture that the differences are related to

ehicle mechanical features (e.g., power-to-weight ratio and power-train types), hardware generation, and the design and calibration
f the low-level controller. This is being investigated by the research team.
Notably, since the car models in all the experiments were not tested in the full speed ranges, we caution that future research is

eeded to generalize the results in this section to the full speed range.

. Characteristics of ACC 𝒔− 𝒗 relationships and the fundamental diagrams

In this section, we investigate the characteristics of the 𝑠 − 𝑣 relationships and the corresponding fundamental diagrams (FDs)
that connect the flow, density, and speed from the macroscopic perspective.

We consolidate the data across the four experiments to obtain a more comprehensive coverage of the 𝑠−𝑣 relationships whenever
ossible. Specifically, some car models were tested in more than one experiments. In that case, we conduct a statistical test on the
stimated 𝑠−𝑣 relationships from different data sources and combine them only if the estimated results are statistically insignificant.
e find that the estimated 𝑠 − 𝑣 relationships from different experiments are consistent, except for one case — one car model
stimated from AstaZero differed from the estimations from MA experiment and ZalaZone. That is likely because the measurement
ystems have different measurement errors (more discussions on this will follow in Session 6). Nevertheless, for this case, we have
xcluded the data from AstaZero and combine the data from the other two sources.
Using the consolidated data, we first estimate 𝑠 − 𝑣 relationships for each car model (one 𝑠 − 𝑣 for each headway setting).

fter that, we estimate the corresponding flow-density (𝑞 − 𝑘) relationship; i.e., the fundamental diagram. Specifically, a linear
8
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Table 3
Different car models from the same manufacturer.
Manufacturers 2 (Work experiments)

Minimum
headway

F G Maximum
headway

F G

difference (𝑝-value) difference (𝑝-value) difference (𝑝-value) difference (𝑝-value)

𝜏0 𝛿0 𝜏0 𝛿0 𝜏0 𝛿0 𝜏0 𝛿0
E −0.44

(<0.01*)
6.75
(<0.01*)

−0.59
(<0.01*)

10.56
(<0.01*)

E −0.10
(0.14)

−3.01
(0.06)

0.00
(0.98)

−4.55
(<0.01*)

F – −0.15
(<0.01*)

3.81
(<0.01*)

F – 0.10
(0.07)

−1.54
(0.22)

Tesla (OpenACC experiments)

Minimum
headway

Model X Model S Maximum
headway

Model X Model S

difference (𝑝-value) difference (𝑝-value) difference (𝑝-value) difference (𝑝-value)

𝜏0 𝛿0 𝜏0 𝛿0 𝜏0 𝛿0 𝜏0 𝛿0
Model 3 0.04

(0.83)
−4.11
(0.01*)

0.57
(<0.01*)

−5.82
(<0.01*)

Model 3 −1.03
(<0.01*)

4.38
(<0.01*)

0.18
(0.10)

−1.65
(0.10)

Model X – 0.53
(<0.01*)

−1.71
(0.21)

Model X – 1.21
(<0.01*)

−6.02
(<0.01*)

Fig. 3. 𝑠 − 𝑣 relationships of ACC systems from the same manufactures.

− 𝑣 relationship translates to a triangular shaped FD with wave speed 𝑤 = −𝛿0∕𝜏0, jam density 𝑘𝑗 = 1∕𝛿0, and capacity

𝑎𝑝 = 𝑢𝑓∕(𝑢𝑓 𝜏0 + 𝛿0) = −𝑘𝑗𝑤𝑢𝑓∕(𝑢𝑓 − 𝑤). Note that the capacity depends on free-flow speed 𝑢𝑓 . Here we project the capacity at

𝑓 = 105 km∕h (65 mph) as it is near the higher bound of the ACC systems tested. Notably, the capacity obtained is the equilibrium

apacity, which may differ from the actual capacity one may observed from loop detectors on the road. More discussion is provided

n Section 6.
9
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5.1. A typical 𝑠 − 𝑣 and FD

Here we first show a typical example of the estimated 𝑠 − 𝑣 and FD.
Fig. 4 shows the results of ACC system H. One can see that the ACC equilibrium points are well aligned on the linear curves in

both headway settings. The linear relationship holds in a wide speed range, from low to high speed (7m∕s–30m∕s). In the plot (and
other 𝑠 − 𝑣 plots later), we provide the references from HDVs (red dashed line for the mean, and orange dotted lines for the 15th
and 85th percentiles, denoted as 𝑃15 and 𝑃85, representing HDV lower and upper bounds). The HDV references are taken from Chen
et al. (2012) that measured 𝜏0 and 𝛿0 of individual drivers in the NGSIM dataset (FHWA, 2008). Note that, the variation of 𝜏0 and
𝛿0 in HDVs (Chen et al., 2012) stems from the difference of individual HDVs, which is a holistic outcome of the heterogeneity from
drivers and the vehicles used. Nevertheless, their distributions provide some references of the HDVs.

The ACC system is very different from HDVs, especially in minimum headway. Clearly, the H-min 𝑠 − 𝑣 line (This paper uses
H-min to represent ACC system H under minimum headway. The same structure applies to other car models.), deviates significantly
from the HDV mean. It falls outside the HDV bounds in two regions: (i) in mid-high speed levels (larger than 12m∕s), the ACC
spacing is much smaller than HDV lower bound, translating to a much larger flow at a given speed (see Fig. 4(b)). Particularly, the
capacity is 75% higher than the HDV average. (ii) In the very low speed range (close to stop), the ACC spacing is above the HDV
upper bound, suggesting a much larger jam spacing (𝛿0 = 11.78 m) and smaller jam density (𝑘𝑗 = 85 veh/km). Moreover, one can
see from Fig. 4(b) that H-min embeds a very fast propagating wave speed (−70.7 km∕h) that is very different from HDVs. The H-max
𝑠 − 𝑣 line is mostly above the HDV mean reference but is mostly inside the HDV bounds. The capacity is 20% lower than that of
the HDV mean. The projected jam spacing is still larger than HDVs (𝛿0 = 9.85 m), but the wave speed seems comparable to HDVs
(𝑤 = −5.35 m∕s).

Fig. 4. FD of ACC system H.

.2. The ACC pool tested

Our observations above pertaining to ACC system H are very common in the ACC pool. Fig. 5 shows the 𝑠 − 𝑣 plots and
corresponding FDs for the entire ACC pool. The color scatters highlight systems with consolidated data and wider speed coverage.
The plots for all the ACC car models are provided in Figs. B.1 and B.2 and the estimated 𝑠 − 𝑣 relationships are summarized in
Table B.1 in Appendix. In general, a linear estimation yields a very good fit (𝑅2 is mostly above 0.8) for most of the models in
the tested speed ranges, which usually covers medium, or even low, to high speeds. Clearly, the 𝑠 − 𝑣 is usually below the HDV
average under minimum headway, translating to much larger flow and thus the capacity, but it is usually above the HDV average
for maximum headway.

Fig. 6 shows the estimated 𝜏0 and 𝛿0 distribution of the ACC pool examined compared to the reference - HDVs. One can see
that, the distribution of 𝜏0 (𝛿0) for ACC exhibits two clusters, representing the lower and upper bounds of the systems evaluated,
corresponding to the minimum and maximum headway. Notice that the 𝜏0 of the ACC is distributed in a much larger range and
has a much smaller lower bound (0.54 s vs. 0.91 s). In fact, 87% of the car models in minimum headway have 𝜏0 smaller than HDV
𝑃15. Regarding 𝛿0, the ACC pool is distributed in a much wider range and has a much larger upper bound than HDVs (17.44m vs.
10.74m). Over 75% of the car models has 𝛿0 above the HDV 𝑃85. Notably, the larger 𝛿0 exists in both minimum and maximum
headway (i.e., ACC does not exhibit two distinguished clusters, see Fig. 6(b)).

Fig. 7 shows the distribution of capacity, 𝑘𝑗 , and 𝑤 compared to the HDV reference. Clearly, the ACC capacity distribution exhibits
two clusters, where the larger (smaller) value group represent the capacity upper (lower) bounds of the ACC systems resulting from
10

the minimum (maximum) headway. One can see that the ACC systems can reach a very high value. For example, the three highest
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Fig. 5. FD of the evaluated ACC systems (colored scatters are from the consolidated data and the gray ones from the non-consolidated ones).

Fig. 6. 𝜏0 and 𝛿0 distribution of the evaluated ACC systems.

Fig. 7. Capacity, 𝛿0 and 𝑘𝑗 distribution of the evaluated ACC systems.

apacity values are 3593 veh/h (H-min), 3430 veh/h (X-min), and 3322 veh/h (W-min), while the 85 percentile capacity in HDVs is
581 veh/h. On the other hand, ACC will result in very small capacity under the maximum headway. For example, it is 1323 veh/h
or Model S-max, 1380 veh/h for C-max, and 1387 veh/h for X-max, which is about 15% lower than HDV average.
The ACC jam density 𝑘𝑗 varies in a much larger range than HDVs with a much smaller lower bound, reaching 50 veh∕km.

articularly, a large proportion of ACC systems have a 𝑘𝑗 below the lower bound of the HDVs, corresponding to ACC systems
ith large 𝛿0 values in Fig. 6(b).
The ACC wave speed 𝑤 varies largely (−103.8 km∕h to −14.1 km∕h for minimum headway, and −47.4 km∕h to −8.0 km∕h for
aximum headway, here the two headway settings are distinguished to better show the respective clusters) and the value can be
uch larger than the typical values of HDVs (−20 km/h to −10 km/h per (Chen et al., 2012; Laval and Leclercq, 2010; Duret
t al., 2011; Chen et al., 2014)). In fact, the value of 𝑤 is mostly larger than 20 km/h, especially for minimum headway setting.
articularly, the fastest wave, 𝑤 = −103.8 km∕h, is from system G-min, resulting from a small 𝜏0 (0.61 s) and large 𝛿0 (17.44 m).
pparently, a fast propagating wave is a distinct feature of ACC. It indicates that, once a state transition occurs (e.g., a bottleneck is
ctivated), it can potentially propagate upstream in an extreme fast speed and therefore might have severer impacts (e.g., a human
river may overreact). Nevertheless, it should be noted that the wave speed here is projected from equilibrium data points, and it
epresents the average wave speed when traffic transitions from one equilibrium state to another. The detailed transition process
an be complicated as ACC will be in the non-equilibrium state. This is investigated by the authors in a sequential paper.
11
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We caution that, for the ACC pool examined, the tested speed ranges often cover medium (or low) to high speed even after
onsolidation, and the very low speed range was not tested. Therefore, it is unclear whether the estimated 𝑠 − 𝑣 relationships still
hold outside the tested ranges and whether the projected 𝛿0 and 𝑘𝑗 are realistic.

Fortunately, the GA experiment has collected some jam spacing data for ACC System X under minimum headway (measured
when the ACC car was at complete stop). Fig. 8 shows that 𝛿0 for ACC X-min distributes between 7.7m and 11.56m with the mean at
9.86m. Interestingly, this is larger than the 𝛿0 of HDVs; see Fig. 9 for one direct measurement using NGSIM data from Laval (2011),
which yields a 𝛿0 about 7m, corresponding to 𝑘𝑗 =142 veh∕km. Moreover, the measured 𝛿0 is smaller than the projection from the
𝑠 − 𝑣 relationship estimated for low to high speeds (9.86m vs. 15.00m); see Fig. 10. Note that, for the GA experiment data, if the
stopping condition is excluded, it yields a 𝑠 − 𝑣 estimation consistent with the MA and OpenACC experiments, although the tested
speed ranges differ; see Fig. 10(a). However, it differs (𝜏0 larger and 𝛿0 smaller) if the data from stopping condition is included; see
Fig. 10(b).

Fig. 8. Spacing distribution of the stopping points in GA experiments.

Fig. 9. Direct HDV measurement from NGSIM data (Laval, 2011).

Fig. 10. Estimated 𝑠 − 𝑣 relationships of the GA data.
Based on the results above, we conjecture that 𝑠−𝑣 relationship for system X is not a single linear relationship for the whole speed

ange. Instead, it may be piece-wise linear or non-linear but linearity is a good approximation in the tested speed range. Moreover,
he conjecture likely holds for ACC vehicles in general. The GA measurement of 𝛿0 suggests that, while the projected 𝛿0 based on
edium(or low) to high speeds is likely larger than the actual jam spacing, it is probably still true that the actual jam spacing values
f ACC systems are significantly larger than HDVs. Of course, further research on the very low speed condition (0–5m∕s) is desired
o test our hypothesis and complete the 𝑠 − 𝑣 relationship.
12
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5.3. The general 𝑠 − 𝑣 design of ACC

We examine the relationship between 𝜏0 and 𝛿0. Fig. 11 shows the (𝜏0, 𝛿0) of the ACC pool. In the minimum headway, 𝜏0 is
usually quite small (mostly below 1 s) and the 𝛿0 is large, resulting in most points in Quadrant II. Interestingly, 𝛿0 is usually larger
if 𝜏0 is smaller; see the circle markers and the orange dash line (𝑝-value = 0.00). This is expected as a larger 𝛿0 can compensate
the effect of a smaller 𝜏0 to increase spacing and thus improve safety, which is particularly critical under the minimum headway
setting. For the maximum headway, the ACC systems are often characterized with large 𝜏0 and large 𝛿0; see most points in Quadrant
I. Interestingly, some systems have a very large 𝛿0 even though the 𝜏0 is already large (see those in the upper right of quadrant I),
suggesting that the spacing is profoundly larger than HDVs. Under the maximum headway, the correlation between 𝜏0 and 𝛿0 is not
significant. This is probably because safety is not concerning when the 𝜏0 are already large.

Fig. 11. 𝜏0 and 𝛿0 pairs of the evaluated ACC systems.
Notably, from the perspective of ACC design, it appears reasonable to have a larger 𝛿0 for small 𝜏0, as it helps to avoid excessively

mall spacing in high speed. Otherwise, it will be too dangerous. However, with a very large 𝛿0, the ACC spacing in very low speed
ould significantly exceed HDV traffic, which will reduce the storage capacity of roads and may invite surrounding vehicles to cut-in.
herefore, the result here further supports our conjecture above that the 𝑠 − 𝑣 for ACC is not a single linear relationship for the
ntire speed range. Our conjecture is also consistent with Shi and Li (2021), which found that the calibrated ACC controller varies
ith speed. Further research along this line is needed.

. Conclusions and discussions

In this paper, we have studied the equilibrium behaviors of ACC vehicles based on empirical experiments worldwide and
stimated the 𝑠 − 𝑣 relationships and FDs for 17 ACC car models from eight manufacturers. We have proposed a procedure that
irectly quantifies the ACC behaviors in equilibrium condition and then compared the 𝑠−𝑣 relationships of the tested ACC systems.
We find that the 𝑠−𝑣 relationship varies with headway setting but remains unchanged when an ACC vehicle is in different positions
of a platoon or under different engine modes. Across different ACC car models from the same manufacturers, 𝑠 − 𝑣 can remain the
ame or vary.
Furthermore, we have analyzed the features of the 𝑠 − 𝑣 and FDs of the tested ACC pools. We find that the 𝑠 − 𝑣 relationships

of ACC systems fit well with a linear formulation in the tested medium (or low) to high speed range (7-33m∕s). However, the 𝑠− 𝑣
likely differs in the very low speed condition (<5m∕s). Additionally, the ACC 𝑠 − 𝑣 and FDs are very different from HDVs; i.e., at
inimum headway, ACC spacing can be much smaller than HDVs and result in much larger flow. The equilibrium capacities in
xcess of 3500 vehicles per hour are observed. We do note that here the capacity indicates the value in equilibrium status and the
ctual road capacity observed on the road (flow over a significant period of time) may be different, if the controller is not string
table. This is because for a unstable controller, the traffic condition in real-world traffic can easily transition from equilibrium to
on-equilibrium due to the common disturbances and non-equilibrium will dominate in real-world traffic. At maximum headway,
CC spacing is often much larger than HDVs and flow is much smaller. Besides, the direct measurement of 𝛿0 for ACC system X
hows that ACC jam spacing is much smaller than HDVs, which will reduce road storage (jam density is smaller). Moreover, ACC
ave speed is distributed in a very large range, and a significant proportion of ACC systems have extremely large values. The
quilibrium wave speed can be as fast as 100 kilometers per hour. A fast back-propagating wave will leave less reaction time for
he follower to response to the changing traffic status (e.g., from free flow to congestion), which may impose safety hazard. Note
hat the equilibrium wave speed will likely differ from the transient wave speed, which captures the propagation of speed change
rom one vehicle to another. We are currently studying such differences.
Note that in our analysis, we have observed that spacing variance at a given speed may be significant in some cases, translating

o significant flow variation. Fig. 12(a) shows an example of the observed 𝑠 − 𝑣 relationship on Tesla Model S with maximum
eadway and Fig. 12(b) shows the spacing distribution of one speed bin. Measurement error can play a role on that. We find
hat the spacing variation within a speed bin decreases with sample size and converges to a reasonable level (around 1.5m); see
ig. 13. The OpenACC-AstaZero data (red points) has a consistently lower variance than the other data sources. This is likely because
13

staZero has a measurement system with larger accuracy (mean location error was claimed to be 0.02m per Makridis et al. (2021),
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Fig. 12. An example of speed bin recognition and spacing distribution in the bins.

Fig. 13. The relationship of the bin standard deviation with sample size and speed.

compared to the error mean around 1.36m to 1.68m for the MA/Work/GA/OpenACC-ZalaZon experiments which used similar GPS
devices). Note that spacing variation is still observed even we impose stricter criteria on the equilibrium conditions and sample
size from the highly accurate AstaZero data. Two factors can contribute to that. Firstly, in real-world traffic, due to the changing
environment (e.g., aerodynamic, gradient, pavement condition), it is extremely difficult, if possible at all, for a vehicle to stay in the
absolute equilibrium condition for a significant period of time. Thus, the equilibrium intervals measured will almost inevitably have
some variation in the traffic states (stricter criteria will help to reduce the variation to a certain extent but could not fully eliminate
that). Additionally, the ACC systems rely on sensors (mostly radar and/or camera) to provide the distance and speed measurement
of the leader, which have measurement errors. Such errors could result in mis-perception in ACC and thus contribute to the spacing
variation. Besides the measurement errors, it is also possible that ACC design embeds a buffer in the 𝑠−𝑣 so that it will not be overly
sensitive to disturbances. Future research along this line, particularly on the low-level execution of ACC, is desired to investigate
this issue.

Future research is needed to test the ACC systems in the very low speed conditions (0–5m∕s) in order to complete the estimation
of 𝑠 − 𝑣 and FD. It is also desirable to conduct the field test at more speed levels so that one has more than three bins to estimate
the 𝑠 − 𝑣 relationship, which will provide more accurate results. Besides, field tests are desired to investigate the safety impacts of
the extremely large wave speed on vehicles following ACC, especially human drivers.

Another line of future research is to extrapolate the impacts of the general ACC. This study has shown that commercial ACC
systems are very different from each other and from HDVs, which will produce profound impacts on traffic flow. Future research is
needed to investigate the causes of such differences to enable the extrapolation. We conjecture that some vehicle features can play
a significant role in the differences, such as the low-level controller Zhou et al. (2021b), power to weight ratio, and the sensing
ype (e.g., radar vs. camera vs. Lidar). This issue is under investigation of the research team. Besides, the extrapolation also requires
esearch on the interactions between ACC and HDVs.
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ppendix A. Table of comparing the same ACC systems

See Tables A.1 and A.2.

able A.1
CC vehicles in different position of a platoon (based on MA experiment)
System Headway Mode ACC1 ACC2 𝜏0 difference (𝑝-value) 𝛿0 difference (𝑝-value)

𝜏0 (s) 𝛿0 (m) sample 𝜏0 (s) 𝛿0 (m) sample

W min normal 0.62 12.21 50 0.52 16.03 42 −0.10 (0.21) 3.82 (0.06)
W 3 normal 0.92 14.55 31 0.98 15.48 25 0.06 (0.67) 0.94 (0.79)
X min normal 0.46 17.32 41 0.49 16.16 37 0.03 (0.68) −1.16 (0.52)
X 3 normal 0.83 16.80 18 0.95 15.11 9 0.12 (0.31) −1.70 (0.49)
Y min normal 1.09 4.71 13 1.20 4.32 4 0.10 (0.38) −0.39 (0.89)
Y 3 normal 2.15 3.42 15 2.06 6.53 6 −0.09 (0.57) 3.11 (0.39)
Y min sport 1.06 4.70 9 1.14 3.04 4 0.08 (0.31) −1.66 (0.40)
Y 3 sport 2.04 5.39 21 2.10 4.40 3 −0.06 (0.74) −0.99 (0.85)
Z min normal 1.31 1.62 5 0.64 17.71 3 −0.67 (0.26) 16.09 (0.24)
Z max normal 2.34 12.80 4 2.10 14.87 4 −0.24 (0.68) 2.08 (0.87)
Z min power 0.75 14.01 12 1.09 8.53 8 0.33 (0.20) −5.49 (0.30)
Z max power 1.97 18.12 13 1.85 20.81 7 −0.12 (0.75) 2.68 (0.74)

Table A.2
ACC under different engine modes (based on MA experiment)
System Headway Normal Sport/Power 𝜏0 difference (𝑝-value) 𝛿0 difference (𝑝-value)

𝜏0 (s) 𝛿0 (m) sample 𝜏0 (s) 𝛿0 (m) sample

Y min 1.12 4.53 17 1.10 3.83 13 −0.02 (0.77) −0.70 (0.70)
Y 3 2.13 4.26 20 2.05 5.21 24 −0.08 (0.27) 0.95 (0.65)
Z min 1.03 8.25 8 0.84 12.60 20 −0.19 (0.51) 4.35 (0.49)
Z max 2.27 12.79 8 1.93 18.93 20 −0.34 (0.38) 6.14 (0.48)

Appendix B. Estimated 𝒔− 𝒗 relationships of the tested ACC pool

See Fig. B.1, Fig. B.2, and Table B.1.

Fig. B.1. 𝑠 − 𝑣 relationships for Manufacturers 1–3 from the consolidated data.
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Table B.1

Spacing-speed regression results of the evaluated ACC systems.
System Headway 𝜏0 (s) 𝛿0 (m) 𝑅2 Sample size

A Min 0.89 12.39 0.91 68
A Max 1.96 14.83 0.98 43
B Min 0.87 10.92 0.70 59
B Max 2.10 10.83 0.84 47
C Min 0.90 12.45 0.78 73
C Max 2.01 16.17 0.89 78
D Min 0.84 11.77 0.95 84
D Max 1.98 14.09 0.85 52
E Min 1.27 4.97 0.95 54
E Max 2.02 9.00 0.96 52
F Min 0.77 13.24 0.93 57
F Max 2.02 4.51 0.96 55
G Min 0.61 17.44 0.86 54
G Max 2.00 5.36 0.97 51
H Min 0.60 11.78 0.95 63
H Max 1.84 9.85 0.99 46
W Min 0.75 9.79 0.90 137
W Median 0.93 15.33 0.73 56
W Max 1.18 15.65 0.63 99
X Min 0.54 15.00 0.91 269
X Median 0.84 16.78 0.92 27
X Max 2.21 11.27 0.83 119
Y Min 1.10 4.56 0.96 30
Y Median 2.15 7.78 0.98 45
Model S Min 1.03 9.72 0.77 81
Model S Max 2.39 9.63 0.96 89
A6 Min 0.76 11.96 0.85 77
X5 Min 0.87 9.42 0.93 102
I3 s Min 1.33 7.86 0.47 100
I3 s Max 2.15 7.78 0.60 113
GLE450 Max 1.93 8.56 0.73 35
I-Pace Max 1.57 12.67 0.86 52

Fig. B.2. 𝑠 − 𝑣 relationships from the consolidated data (other manufacturers).
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