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Abstract: This paper presents advancements in tracking features in high-speed videos of Caribbean steelpans illuminated by

electronic speckle pattern interferometry, made possible by incorporating robust computer vision libraries for object detection

and image segmentation, and cleaning of the training dataset. Besides increasing the accuracy of fringe counts by 10% or

more compared to previous work, this paper introduces a segmentation-regression map for the entire drum surface yielding

interference fringe counts comparable to those obtained via object detection. Once trained, this model can count fringes for

musical instruments not part of the training set, including those with non-elliptical antinode shapes. VC 2022 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/
by/4.0/).
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1. Introduction

In the field of musical acoustics, electronic speckle pattern interferometry (ESPI) is a valuable tool. Vibrating plates and

membranes in musical instruments such as violins, guitars, drums, and other instruments are often measured and visual-

ized using ESPI.1,2 Using time-averaged ESPI, small-amplitude measurements are possible. Light and dark fringes, which

are lines of constant surface deformation proportional to the wavelength of the laser light, appear in ESPI images. These

images illustrate the operating deflection shapes3 of vibrating surfaces and are comparable to Chladni patterns. However,

Chladni patterns are typically associated with standing wave patterns. Images of rapid transient phenomena require greater

sophistication, and their interpretation presents a challenging musical acoustics problem.

Recent work by Hawley and Morrison4 (hereafter “HM2021”) showed the use of a deep neural network based

object detector5 to track transient phenomena in Caribbean steelpans illuminated by ESPI and filmed at 15 037 frames per

second.6 Individual video frames were annotated by crowdsourced human volunteers as part of the “Steelpan Vibrations

Project” (SVP)7 in partnership with the Zooniverse.org.8 Volunteers annotated images by using a web-based graphical user

interface to draw ellipses around antinode regions and to enter an integer corresponding to the number of observed inter-

ference fringes or “rings,” with 11 serving as a maximum value to indicate any ring counts greater than 10. Aggregated

annotations from multiple volunteers were used as a dataset to train and evaluate the object detector code “SPNet,” which

was then used to predict annotations for the remainder of the videos, yielding preliminary physics results. SPNet used a

custom-written neural network object detection scheme based on YOLO9000,9 predicting elliptical antinode regions and a

regression-based count of the interference rings appearing in each antinode. When applied to synthetic or “fake” data

made by generating images with rings on noisy backgrounds, SPNet scored fairly high on “regression accuracy” scores,

e.g., 77% to 95%. When applied to the “real data” (i.e., real ESPI steelpan images paired with aggregated human annota-

tions) the scores were significantly lower, not exceeding 35%. This poor performance on real data were attributed to hav-

ing noisy or “unclean” annotations, and the “preliminary physics” conclusions were reported without full confidence.

Further hindering the SPNet project were software engineering limitations such as the use of old libraries making it diffi-

cult to maintain, and it was unable to perform transfer learning,10 requiring time-consuming training from scratch.

This paper is intended to follow the publication of HM2021 in rapid succession, because while the latter was in

press, we were able to improve upon that work in several ways by taking advantage of newer models and software

environments, as well as best practices for data-cleaning that involved rapid iteration between model training and human

(re-)annotations. The six key results and features of this new paper are as follows. (1) Better scores for both ring-count

accuracy and COCO mAP11 object detection scores than prior work.12 These were obtained by separating the task of
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detecting antinodes from the counting of rings in cropped sub-images. Bounding boxes (rather than ellipses) were detected

around antinodes. These boxes were then used to crop the images. Then the ring counts were obtained for the cropped

(sub-)images. (2) The introduction of a “segmentation regression” mapping method for ring counting which produces

results in close agreement with the values from the crop-and-count method. (3) Generalization: The ability for the

segmentation-regression mapping model trained on steelpan images to predict ring counts for other musical instruments in

inference only (i.e., without training on any images of such other instruments), including instruments with non-elliptical

antinode regions. (4) The release of a new dataset for “real data” of annotations of ESPI images of steelpans. (5) This proj-

ect’s methodology for rapid data cleaning by establishing a feedback loop between model predictions and the graphical

data-editor software, prioritizing “top loss” examples so that human data-cleaners’ efforts could be directed efficiently. (6)

The demonstration of advantages in metric scores, algorithmic features, and code maintainability afforded by leveraging

up-to-date, well-maintained machine learning (ML) development libraries such as fast.ai13 and IceVision14 over the

custom-written, 2017-era object detection code SPNet. This allowed for the quick integration of capabilities such as trans-

fer learning, newer optimizers,15 and run logging.16 It is hard to overstate the utility of the nbdev17 development system

for “literate programming,” allowing code, documentation, and examples all to be written as one as Jupyter notebooks18

and posted for immediate use by collaborators via Google Colaboratory.19 The code, documentation, and other supplemen-

tal materials such as movies are available at the project website (see Ref. 19).

The task of object detection in this study is typically associated with video surveillance technology used to track

human beings in CCTV images or roadway features in the view a self-driving car, with the caveat that our systems operate

in a post-processing manner and thus need not operate in real time.

2. Data cleaning workflow

The preceding work4 offered evidence suggesting that inconsistent annotations in the dataset were primarily responsible

for poor performance on the metric of “ring count accuracy,” a classification-like score that regarded ring counts within

60.5 rings of each other as a match. We sought to achieve better metric scores via more intensive data-cleaning, as well

as to explore whether that metric of 60.5 was perhaps too stringent to meaningfully measure the model’s performance

and “believability” as a tool for discovering the physical dynamics of steelpan transients. Rather than starting from the ear-

lier “SPNet” dataset,4 we chose to start fresh from the aggregated annotations of 15 or more volunteers on Zooniverse.8

These annotations were found to be at least as noisy as the SPNet dataset and needed data cleaning. For this paper, we

refer to the volunteers’ annotations as the “pre-cleaned” dataset and show its differences from both our final “real” dataset

and the SPNet Real dataset.

To maximize the efficiency of the data-cleaning effort, we augmented a graphical ellipse-editor tool developed

for HM20214 so that it would show predictions of the neural network models in addition to the (human-supplied) annota-

tions. Figure 1 shows a screenshot of the interactive graphical tool used to clean the dataset. Additionally, the images were

displayed to users in the order of decreasing value of the loss functions for these models (i.e., we showed “top losses” first)

so that the most “noisy” and problematic annotations (i.e., those most inconsistent with the annotations of similar images,

such as antinode regions not being marked) could be dealt with first. Periodically the models were retrained on the pro-

gressively cleaned data and the model predictions shown in the editor were updated.

Fig. 1. (a) Screenshot of our enhanced “ellipse editor” tool, which builds on code released in prior work (Ref. 4). Besides the prior ability to

graphically edit annotations of boundaries and ring counts elliptical antinode regions, this newer version of the software displays predictions

from the neural network models’ predictions of bounding boxes, ring counts, and segmentation maps. (b) Bounding box detection of antinode

regions via IceVision (Ref. 14) using their tuned RetinaNet (Ref. 20) model. We also tried detecting individual rings as objects but there were

too many false negatives, whereas the model was almost always able to detect entire antinodes, including those that human annotators missed.

The cropped regions became inputs to the ring-counting code, which is a convolutional neural network that outputs a single logistic regres-

sion value where the range has been scaled slightly beyond the maximum number of rings (i.e., we stay within the linear regime of the logistic

function). Note that the antinodes are basically circular, becoming more so when cropped and re-shaped as square images, which then allows

for arbitrary rotations in addition to other standard image data augmentation methods.
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3. Models and training

For this work. we dispensed with the end-to-end object-detection-and-ring-count code SPNet and instead opted for a two-

stage system consisting of two models: The first was an object detector that only placed bounding boxes around antinode

regions. This was done using the pre-trained default model of the object detection system IceVision,14 trained on our

images via Transfer Learning. These bounding boxes would then be used to crop the antinode images, and these cropped

images (or “crops”) would then be fed into a different model written with fastai
13 that use a ResNet21 convolutional

neural network and output a single regression value. Transfer learning and data augmentation were handled essentially

automatically by fastai. It is noteworthy that the antinode regions are close enough to circular in shape that we could

augment the dataset by arbitrary rotations.

We developed a new model akin to a segmentation map, however these maps would output a regression value

for the entire image, so we termed them “segmentation-regression” maps (although some might regard this as a misnomer,

as no actual segmentation is performed). These maps are akin to depth maps and provide some measure of the deforma-

tion of the steelpan surface, however they should not be regarded as representing the surface deformation because the

segmentation-regression value across an antinode is nearly constant (i.e., it is shaped like a “plateau”) with rounded edges

[cf. Fig. 4(a)], whereas the physical deformation would be continuously rounded, e.g., ellipsoidal. These segmentation-

Table 1. Metric scores for different datasets. mAP (mean Average Precision) measures the coincidence of predicted and target bounding boxes

(Ref. 11). MAE denotes mean absolute error between the target and predicted ring counts in cropped images. The “6X” columns show accu-

racy scores (on [0,1]) for predicted ring counts within a threshold of X rings of their respective target values. Previous results for HM2021

(Ref. 4) were a mAP of 0.64 and accuracy of 0.48 for 60.5 rings. Yet 60.5 is a tight threshold that may have been unnecessarily stringent;

thus in this new work, we include accuracy values for a series of wider thresholds. Note that when X <MAE, accuracy counts tend to be high.

Uncertainties of values shown are 61 or less in the last digit, except the pre-cleaned dataset for which they are 62 in the last digit. Low scores

are better for MAE whereas high scores are better for other columns. “New Real” is shown in bold because it comprises the actual physical

predictions of the new system.

Accuracy scores for predicted within6X of target

Dataset mAP MAE 60.5 60.7 61 61.5 62

SPNet Real 0.68 0.85 0.43 0.55 0.70 0.83 0.91

Pre-cleaned 0.66 0.96 0.41 0.52 0.66 0.79 0.87

SPNet CycleGAN 0.73 0.18 0.93 0.96 1.0 1.0 1.0

New Fake 0.865 0.21 0.93 0.97 0.99 1.0 1.0

New Real 0.68 0.71 0.53 0.66 0.79 0.89 0.94

Fig. 2. Ring counts obtained from cropped images. Top row: Predicted and target values, arranged in order of worst agreement to best, for the

different datasets. The prevalence of values at the max (11) and min ( �1) are reflections of the data-annotation policy of the SVP (Ref. 7).

Note how the CycleGAN dataset from Ref. 4, despite its visual similarity to the real images, only contained integer ring values. Bottom row:

Plots of predicted rings vs target rings as a kind of “transfer function” (where a 1:1 linear relationship is “good”), showing that our data-

cleaning effort (“New Real,” left column) resulted in closer agreement and less compression of the dynamic range that other datasets. The dif-

ference between “New Real” and “Pre-cleaned” indicates the improvement obtained by the data-cleaning effort.
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regression maps were found to provide a useful alternative model that agreed with the ring counts obtained from cropped

images, yet offered some additional flexibility.

4. Results

We show example images of predicted bounding boxes and sample cropped rings in Fig. 1(b). The COCO mAP11 object

detection scores for the bounding boxes and the “regression accuracy” scores for various ring count tolerances are pro-

vided in Table 1. These scores are obtained using the “test” subsets which comprise 20% of each of the corresponding five

datasets of cropped antinode images, from which the test subsets were withheld during training. Figure 2 illustrates

the accuracy of the ring counts for the test subsets of models trained on the full datasets, grouped as columns. The first three

columns involve largely the same input images yet have different annotations, demonstrating the effects of the data-cleaning

effort of this present paper. The other two columns are synthetic or “fake” data, one for the CycleGAN-processed data of the

SPNet Dataset (which only had integer ring counts), the other for a new set of fake data for which ring counts could take on

integer values. (Space limitations do not allow us to show these new images but they are available in Ref. 19.)

Similar to Table 1, Table 2 shows metric scores obtained using the segmentation-regression map method.

Because the segmentation U-Net22 model provided by fastai13 required integer-valued pixels instead of floats, we quantized

the ring counts at the minimum-trainable resolution of 0.7 rings. (Below that resolution, the model would not train.)

Figure 3 demonstrates the efficacy of our methods, and their improvements on prior predictions. Noteworthy is our con-

firmation of “preliminary physics” results in HM2021,4 namely, that there is a delay in the rise of the vibration amplitude

of the octave note’s fundamental resonance which is large compared to the time for vibrations to move through the steel-

pan. Additionally, Fig. 3 shows the octave note’s amplitude measurements given by our improved method can be more

closely fit to a function corresponding to the frequency of oscillation of the octave note. The inclusion of Fig. 3(b) is

intended to show further confirmation of the measurements in HM2021, which included three other steelpan strikes. One

interpretation of Fig. 3(b) is that the majority of the audio production of the second harmonic tone is due to the excitation

of the struck note. For the other strikes in HM2021 the interpretations may not be as straightforward, and await further

Table 2. Akin to Table 1 but for segmentation-regression maps, for mask quantization using a bin size of 0.7, which was the minimum resolu-

tion at which the model was able to train effectively. Uncertainties are the same as in Table 1. For CycleGAN data, training stagnated immedi-

ately; the reason for this is still under investigation. The scores in this table are not as favorable as those in Table 1. We speculate that this is

because these numbers are the result of integrating over the entire image, whereas values sampled from the middle of antinode regions display

close agreement with the method of counting rings in cropped images, as demonstrated in Fig. 3(c).

Accuracy scores for predicted within6X of target

Dataset MAE 60.5 60.7 61 61.5 62

SPNet Real 0.61 0.19 0.26 0.36 0.50 0.62

Pre-cleaned 0.74 0.15 0.21 0.29 0.41 0.52

SPNet CycleGAN 0.20 0.00 0.00 0.00 1.00 1.00

New Fake 0.19 0.52 0.66 0.80 0.90 0.94

New Real 0.75 0.19 0.25 0.37 0.49 0.62

Fig. 3. (a) Our new version of Fig. 6 from HM2021 (Ref. 4), in which the fit is given by y ¼ Ajcos ðBt þ CÞj þ D, with

A ¼ 7:116 0:080; B ¼ 37486 0:68; C ¼ �0:44706 0:05, and D ¼ 1:176 0:057. These constitute lower uncertainties than the prior work,

furthermore the RMSE value of 0.48 and correlation coefficient of 0.97 indicate a closer fit than in the prior work. (b) Our replication of a key

“preliminary physics” result in a panel from Fig. 7 of HM2021 (Ref. 4), showing a delay in rise time of the amplitude of the lowest resonance

of the octave note as observed in ESPI video as compared to the amplitudes of the first and second harmonics from the audio recording (dot-

dashed/black and dashed/red lines). (c) Close agreement between the ring counts (as a function of time) from the bounding-box-and-crop

method and the segmentation-regression method, when the latter is measured from the center of an antinode region.

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 2 (2), 023201 (2022) 2, 023201-4



analysis. Figure 4 shows examples of the segmentation-regression mapping. Notably Fig. 4(b) shows that the model is able

to predict ring counts for images far outside the training distribution, namely, instruments not included in the training

dataset having non-elliptical antinode shapes: a different type of drum and a 17th century lyra. The generalization perfor-

mance of the model is still under investigation. Due to space limitations, further examples, including images for which the

model fails to make a prediction, can be found in Ref. 19.

5. Conclusions

The methods used in this paper confirm prior work and improve upon it in the form of tighter error bars, higher accuracy

and object detection scores, and generalization to other musical instruments. In particular, the segmentation-regression

mapping method yields measurements comparable to counting rings in cropped images. We now have segmentation-

regression values for all pixels of all video frames and have enabled a feature in the ellipse editor such that a user can

right-click on any pixel and immediately obtain a time-series graph of ring-count values as a function of time at that loca-

tion. We expect this will be a valuable tool for exploring the physics of the drum surface oscillations. We note, however,

that ESPI images are limited by an interpretive difficulty when trying to discern higher harmonic excitation of notes, and

indeed the Steelpan Vibrations Project7 annotation process had no provision for labeling higher harmonics. Laser Doppler

vibrometry would be more suitable for discerning, for example, the relative contributions of the struck note and octave

note oscillations to the audio recorded in Fig. 3(b).

Though this project was computation-intensive, the total power consumption was �15 kWh, indicating a mini-

mal environmental impact. The training was performed on two personal workstations with a total of 4 NVIDIA GPUs

(RTX 3080, 2080Ti, and two Titan X’s), though all computations are reproducible on Google Colab via our provided

code-and-documentation Jupyter notebooks hosted with other supplemental materials in Ref. 19.
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