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ABSTRACT
Data races are notorious concurrency bugs which can cause se-
vere problems, including random crashes and corrupted execution
results. However, existing data race detection tools are still chal-
lenging for users to use. It takes a significant amount of effort for
users to install, configure and properly use a tool. A single tool
often cannot find all the bugs in a program. Requiring users to use
multiple tools is often impracticable and not productive because of
the differences in tool interfaces and report formats.

In this paper, we present a cloud-based, service-oriented design
and implementation of a race detection service (RDS)1to detect
data races in parallel programs. RDS integrates multiple data race
detection tools into a single cloud-based service via a REST API.
It defines a standard JSON format to represent data race detection
results, facilitating producing user-friendly reports, aggregating
output of multiple tools, as well as being easily processed by other
tools. RDS also defines a set of policies for aggregating outputs
from multiple tools. RDS significantly simplifies the workflow of
using data race detection tools and improves the report quality and
productivity of performing race detection for parallel programs. Our
evaluation shows that RDS can deliver more accurate results with
much less effort from users, when compared with the traditional
way of using any individual tools. Using four selected tools and
DataRaceBench, RDS improves the Adjusted F-1 scores by 8.8%
and 12.6% over the best and the average scores, respectively. For
the NAS Parallel Benchmark, RDS improves 35% of the adjusted
accuracy compared to the average of the tools.

Our work studies a new approach of composing software tools
for parallel computing via a service-oriented architecture. The same
approach and framework can be used to create metaservice for
compilers, performance tools, auto-tuning tools, and so on.

CCS CONCEPTS
•Networks→Cloud computing; • Software and its engineer-
ing → Software notations and tools.
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1Source code https://github.com/RaceDetectionService/RaceDetectionService_Server

1 INTRODUCTION
In parallel programming, a data race happens when two or more
threads access the same memory location that is not protected by
synchronization mechanisms such as memory atomic, compare-
and-swap and lock, and at least one of the accesses is a write access.
Data race bugs are notoriously hard to find due to non-deterministic
behaviors of parallel executions. They may cause severe damage
to a parallel application such as crash of program execution, and
corrupted results even if the program appears to complete normally.

To find and remove data race bugs in parallel programs, users of-
ten resort to data race detection tools. Some of these tools use static
program analysis techniques [13, 28]. However, the effectiveness of
static analysis tools is limited due to unknown program semantics
at compile-time, especially for code using pointers. It is also difficult
for the tools to enumerate all possible execution scenarios by static
analysis. Thus the rate of reporting false positives and false nega-
tives could be very high [16]. Many other tools [8, 9, 12, 18] rely
on dynamic race detection techniques by collecting memory access
information of multiple threads at runtime and then analyzing the
memory access to detect the data race. Because these tools analyze
actual memory accesses of program execution, they can reduce
false positives and achieve high accuracy of detecting races. There
are also hybrid tools [18, 27, 34] that try to combine the best traits
of both static and dynamic analysis techniques.

In reality, data race detection tools vary significantly in terms
of the prerequisite software (e.g. compilers and runtime systems),
accuracy of detection, supported parallel programming interface,
robustness, user interface and the format of reports. A dedicated
benchmark suite, DataRaceBench [21], has been developed to com-
pare data race detection tools that support analyzing OpenMP
program execution. A report [25] using the DataRaceBench to eval-
uate four selected tools has been produced to list the strengths
and limitations of each tool. For example, ThreadSanitizer [18] and
Archer [9] have more efficient time and memory usage. Intel In-
spector [8], which is a commercial tool, generates more friendly
reports than those by other tools and it also provides a GUI inter-
face. Research tools (Archer and ROMP [12]) reduce some false
positives, but they usually have more compile and runtime errors.
The finding is that no single tool can deliver the best result for
a wide range of data race scenarios across a large collection of
multi-threaded programs. Ideally, users would like to have com-
bined results from multiple tools, leveraging the strengths of each
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tool. Yet most of those tools require specific compiler tool chains,
and it takes a significant amount of effort to install, configure and
properly use a single tool. Different tools also have different user
interfaces and use different formats to present their results. There
is a lack of efforts for defining common APIs for the interface and
report format, and about how to efficiently and correctly merge
conflicting data race detection results.

In summary, users may encounter three challenges when utiliz-
ing data race detection tools. First, it is time-consuming for users
to set up software environments for running individual data race
tools. Second, it remains unclear how to maximize the accuracy
when combining multiple race detection tools generating different
or even conflicting results. Lastly, due to the growing complexity of
tools, it is urgent to develop a convenient architecture for users to
access and utilize each individual tool. For instance, users can use
a simple and unified command line to invoke all tools. Meanwhile,
they can access the tool server on most electronic devices remotely.

In this paper, we present RaceDetectionService (or RDS), a cloud-
based metaservice aimed at providing convenient and high quality
data race detection results for parallel programs. Our work has the
following contributions:

• RDS integrates four dynamic race detection tools and pro-
vides a convenient cloud-based service for users to detect
data races of parallel programs. Users only need to upload
their code using the provided REST API. The cloud service
automatically invokes each tool, aggregates their outputs,
and generates a combined report for users.

• RDS provides a generic, two-level composable service frame-
work that can be used for combining multiple tools. A low-
level microservice layer encapsulates the functionalities of
individual tool, and a high-level metaservice layer aggregates
results from the microservice layer. Using the container tech-
nology, the framework is extensible to includemore tools and
to addmore layers if necessary. The approach and framework
can be used to create cloud metaservice for a wide range
of commodity and commercial tools for parallel computing
such as compilers, performance analysis tools, auto-tuning
tools, etc.

• A unified set of language-neutral REST API functions and
input/output data formats in JSON have been developed for
the communication between different layers of RDS. Those
APIs and data formats facilitate composing and comparing
tools of similar functionalities, without the need to customize
tool chains and scripts for each individual tools.

• We propose and compare a set of policies that the metaser-
vice uses to merge potentially conflicting results from multi-
ple data race detection tools. The policies include standard set
operations, voting policies and OpenMP-specific weighted
policies.

We evaluate the quality and overhead of RaceDetectionService
by comparing it with selected individual tools using two benchmark
suites. Overall, RDS delivers more accurate results with much less
effort from users, when compared with the traditional way of using
any individual tools. Using four selected tools and DataRaceBench,
RDS improves the best and average Adjusted F-1 scores by 8.8% and
12.6%, respectively. For Nas Parallel Benchmark, RDS matches the

best accuracy of the four tools. It improves by 35% of the average
adjusted accuracy compared to the tools. Using RDS introduces
time overhead ranging from 0.5% to 7.05% compared with using in-
dividual tools, caused mostly by the post-processing of tool-specific
output at the microservice layer. The space overhead of RDS is
1.84% and acceptable.

The remainder of the paper is organized as follows: In Section 2,
we present some background information that motivates our work.
Section 3 includes details of our design, approach, the implemen-
tation of the framework and RDS. In Section 4, evaluation of the
RaceDetectionService using benchmarks with regards to individual
tools is presented. Finally, we discuss related work in Section 5 and
conclude our work in Section 6.

2 LIMITATION AND CHALLENGES OF USING
INDIVIDUAL TOOLS

Data races are notorious in parallel computing since they may
either crash an entire program or silently corrupt data and lead to
unnoticed wrong results. Due to the non-deterministic nature of
multithreaded program execution, it is also challenging to detect
or debug data race bugs. Numerous tools have been developed to
detect data race bugs. They largely fall into two categories: static
analysis tools and dynamic analysis tools.

Our work focuses on leveraging existing dynamic data race
detection tools to build a race detection service. A dynamic tool
works as follows. It first instruments and executes a target program
to collect execution traces that include load store information about
memory locations accessed by threads. After the execution, traces
are analyzed for finding memory accesses that are to the same
memory location but from different threads. Techniques such as
lockset analysis [30] and identifying happens-before relations [20]
are commonly used. The accuracy of dynamic tools depend on
many factors such as input data sets, the compilers, the number
of threads, the runtime thread schedulers, and so on. These tools
may generate false negatives if the instrumented executions do not
activate the right execution conditions that lead to data races.

There are four tools that are relatively popular, Intel Inspec-
tor [8], Archer [9], ThreadSanitizer [18], and ROMP [12]. However,
the current practice of using these tools has not been productive
due to the differences and limitations of these tools. It requires sig-
nificant manual efforts and expert knowledge for users to analyze
a given parallel application. This practice has the following major
limitations:

First of all, properly installing and configuring a tool is not easy.
Most existing detection tools depend on specific compilers and
runtime libraries to work properly. These dependencies can be
specific in software version numbers and internal flag settings. For
example, Archer depends on the LLVM compiler and an OpenMP
runtime with OMPT support [29]. However, the OMPT support
may not be turned on by the default installation of the OpenMP
runtime. It is inefficient for users to build and install new compilers
and runtime libraries for a single data race detection tool.

Second, tools have very different user interfaces and command
line options, in either GUI or command line interface or both. For
instance, Intel Inspector provides command options to control its
analysis scope, memory granularity, stack frame depth, analysis



resource levels, and so on. The default setting of these options often
leads to suboptimal results according to the previous studies [21].
It becomes a burden for users to understand different options and
the consequences of turning on or off certain options.

Third, each tool has its own limitations of detecting races of
different types and behaviors as reported by previous studies [12,
21, 24, 25]. Recent research tools (e.g. Archer and ROMP) can re-
duce some false positives, but they usually have more compile and
runtime errors. Commercial tools such as Intel Inspector are often
robust with more user-friendly output, however it may not have
cutting-edge techniques leading to the best accuracy. In terms of
supporting OpenMP programs, these tools vary significantly in
terms of the version and constructs of OpenMP. ThreadSanitizer
and Archer have lower overhead in time and memory consumption
than Intel Inspector[24]. Intel Inspector has user-friendly reports
and consolidates multiple data race warnings caused by a same
source location[21]. The finding is that no single tool can deliver
the best result for a wide range of data race scenarios across a large
collection of parallel programs.

Observing the limitations of the individual tools, we are moti-
vated to create a cloud-based framework that combines the strength
of multiple tools.

3 DESIGN AND IMPLEMENTATION OF
RACEDETECTIONSERVICE

We thus created the RaceDetectionService that employs a service-
oriented architecture for its design for the integration of individual
tools. The framework follows best practices for cloud service de-
velopment including service containerization, standard cloud APIs
and data exchange formats, and cloud deployment, making the
framework easy-to-use, composable, extensible and robust. The
resulting framework can be used to create other service-based tools
such as compiler and performance tools.

3.1 Service-Oriented Architecture Design
Service-Oriented Architecture (SOA) is a well-established software
design pattern for creating services in distributed computing envi-
ronments. Services communicate via standard protocols, such as
HTTP. This design has many advantages including providing open
service interfaces, facilitating service composition, ease for remote
accesses, abstracting the complexity of individual components, tol-
erating individual component’s failures, and so on. SOA software
often leverages cloud, serverless computing, and containers for
deployment.

The overall architecture for RDS has a two-layer design that
consists of ametaservice layer and amicroservice layer. Figure 1 and
2 show the two-layer design, respectively. Both layers use a uniform
set of APIs and data exchange formats to communicate requests and
results between clients and services. RDS’web interface accepts user
inputs related to source code, tool selection, aggregation policies
and so on. Additionally through the defined service API, users can
also send command line requests to the server and obtain data race
detection results, without worrying about how to install individual
tools or how to properly combine their results. The system uses
multiple loosely coupled docker containers and can be deployed
on a cloud server, a private server, a local machine or a personal

Figure 1: Design of RaceDetectionService

Figure 2: Design of a microservice

laptop. Each container is used to implement one service, either the
metaservice combining results or a microservice encapsulating an
individual tool.

3.2 Functionality of Metaservice and
Microservice

The metaservice layer, shown in Figure 1 is the service frontend
from which users submit race detection requests. The metaservice
processes a user’s request, generates new service requests with a
set of commands for each microservice tool, then sends the service
requests to the corresponding microservices. The microservices
that encapsulate individual race detection tools process the requests
from the metaservice, and respond to the metaservice with the ser-
vice results. The results are then aggregated using defined policies
and presented to users.

The microservice layer is very similar to the metaservice layer
except it processes detection requests to a single tool. The APIs
and exchange data format are the same as the metaservice layer,
thus it allows the user to initiate a race detection request directly to
a microservice without going through the metaservice layer. The
motivation of this design is to allow flexible deployment so users can
use the same API to request metaservice or a specific microservice.



Internally, detection service requests are processed to generate
command lines that are specific for the tool the microservice serves.
The microservice layer is also responsible for parsing the output
generated by a tool and for producing the result in the standard
data exchange format. Note that a result aggregator is also needed
at the microservice layer, in order to validate and combine results
from multiple runs of each tool. By using this loosely coupled
service-oriented architecture for the RDS framework, an individual
microservice can register itself to the metaservice and contribute
to the final output for users. With the benefits of low coupling and
high cohesion, an individual microservice can be easily attached or
removed from the metaservice layer.

3.3 APIs for Metaservice and Microservice
Table 1 shows the REST API for RaceDetectionService. The API sup-
ports three key services: race detection services, user requests, and
reports. The API for /reports are very similar to those for /requests
and are omitted in the table.

The designed API uniformly encapsulates the functionalities of
both metaservice and microservice layers that are exposed to the
service clients, who might be human or another software compo-
nent. The uniform design of API simplifies the system and future
integration. Human users usually use the API to send requests to the
metaservice. They can also opt to directly interact with the individ-
ual microservices for debugging or other purposes. The metaservice
layer uses the same APIs to invoke microservices in order to obtain
results.

Both the metaservice and individual microservice are identified
by unique service IDs. For example, the metaservice’s ID is “meta"
and the microservice for a tool has an ID named “micro-ToolName".
Users can use the GET method to query available services and
obtain their service IDs. A POST method to a specified service ID
is to send a race detection service request. Users need to provide a
file and options when sending the service request. We support both
synchronous and asynchronous use of the services, indicated by the
SyncFlag option. For synchronous use of a service, users wait for
the service to complete the actual race detection work and return a
report. In contrast, for asynchronous use, users obtain a request ID
first while the service does the actual work in the background. The
users query status and obtain a report with the request ID later.

Extra options for users to customize desired race detection re-
quests are provided, and listed below:

• Repeat=int-value is used to indicate how many times each
individual tool should run. If not specified, the default value
is 3. This option is intended for microservices, and can be
directly passed to microservices or indirectly through the
metaservice.

• AggregatePolicy=policy-name is used to instruct the aggrega-
tor which policy should be used for combining results from
multiple microservices or from multiple runs of a microser-
vice tool.

• SelectMicroservices=s1,s2,... is useful to customize the internal
microservices being used for the metaservice. By default, all
available microservices are used.

• ToolOption="toolName:optionString" is used to pass tool-specific
options to microservice tools. ToolName can be one of the

actual tools we integrate into our system, such as IntelIn-
spector, ThreadSanitizer, Archer, and ROMP.

• BuildOption="optionString" tells RDS how to build an up-
loaded file package (zip or tar.gz format). The option string
contains the type of the build system (automake or cmake),
build target (binary executable), and other build and execu-
tion options.

RDS accepts single source files or multiple source files packaged
into a zip or tar.gz file. The supported build systems include make-
file and cmake. Users should use standard compiler, link and flag
names in makefile (such as CC, CLINK, CFLAG, etc.) so RDS can au-
tomatically replace them with tool-specific values. Additional build
options can be provided to specify the target of build, command
options, and so on.

As an example, the following request asks the metaservice to
detect data races for an input file package: curl -X POST -F "file=

@NPB.tar.gz" "/RDS/meta?SyncFlag=false&AggregatePolicy=Union

&BuildOption=makefile%3ALU%20CLASS%3DS" . This request specifies
that the input file package should be built using a makefile with
a make target LU and a build option of a small class. The union
policy is used to aggregate results.

3.4 JSON-based Data Exchange Format
JSON is a commonly used data format for cloud service and REST
API. Figure 3 shows an example report of data race detection, in a
two-column JSON format. The defined JSON data format is used
to represent data race detection results for a given program and is
used for both metaservice and microservices. The format has the
following key components:

• The file starts with a key-value pair to encode the program
executable information.

• Data races found in this program are stored as an array object,
which in turn is the value of the key named data_races. The
array object can be empty if there are no data races found.

• Each array element encodes a pair of memory accesses, fol-
lowed by the information about individual microservice’s
results for this pair.

• Each memory access contains its access type (read or write),
source code location in the form of file_name:line_number:colu
mn_number), and a variable name (symbol).

• The policy used by the result aggregator is also provided as
a key-value pair.

• The original raw tool output is also available at downloadable
URLs in JSON as well.

3.5 Result Aggregators
The result aggregators are designed to combine results from mul-
tiple microservices (used in Figure 1), or multiple runs by a mi-
croservice tool for the same detection request (used in Figure 2).
The reason for allowing a microservice tool to execute multiple
times for the same detection request is because often a dynamic
analysis tool needs to inspect each input program multiple times (3
to 5), each with the same or different number of threads to detect
data races. Therefore, the results from multiple runs also need to
be aggregated. Both aggregators produce the results in the defined



HTTP Method URL Parameters Description
GET /RDS N/A List available race detection services’ IDs, such as meta, micro-archer,

micro-romp, etc.
POST /RDS/service-id SyncFlag, file,

options
Send a file to a race detection service specified by its id, with extra
options. The service will finish all the work and return a report if the
synchronous flag is set to true. Otherwise, the service will
immediately return a request ID and a key to authenticate possible
HTTP DELETE requests. The actual race detection work will be
executed in the background.

GET /requests N/A List all requests submitted to all services
GET /requests/request-id N/A Check the status of a specific request, return a status of nonexist,

finished, pending, running.
DELETE /requests/request-id key Cancel an ongoing request, return a status of nonexist, success or

failure.
Table 1: RaceDetectionService’s API, accessible by curl, Java, Python and other library or tools handling HTTP requests.

1 {
2 "program": "a.out",
3 "data_races": [
4 {
5 "read": {
6 "location": ["file1.c",64,12],
7 "symbol": "A[i]"
8 },
9 "write": {
10 "location": ["file1.c",64,11],
11 "symbol": "A[i]"
12 },
13 "microservices": [
14 {"Archer": true},
15 {"ROMP" : true},
16 {"ThreadSanitizer": true},
17 {"Inspector": false}
18 ]
19 },
20 {
21 "read": {
22 "location": ["file2.c",132,7],
23 "symbol": "b"
24 },
25 "write": {
26 "location": ["file2.c",246,31],
27 "symbol": "b"
28 },
29 "microservices": [
30 {"Archer": true},
31 {"ROMP" : false},
32 {"ThreadSanitizer": true},
33 {"Inspector": true}
34 ],
35 }
36 ],
37 "raw_output": [
38 {"Archer": "shorturl.at/uzJR7"},
39 {"ROMP" : "shorturl.at/enwH4"},
40 {"ThreadSanitizer": "shorturl.at/otO67"},
41 {"Inspector": "shorturl.at/dH389"}
42 ],
43 "aggregate_policy": "Union"
44 }

Figure 3: An example JSON report for discovered data races

JSON format mentioned in the previous section. An aggregation
policy is used to combine the results.

Policy Description
Union Union of the results for the same data race

instance from multiple input reports, which
means there is a data race if at least one of
the reports says so.

Intersection Intersection of all results, which means there
is a data race only if all reports say so.

Random Randomly pick a result from an input report
Majority Vote Simple majority vote. This policy has two

variants: 1) the result is positive if there is
a tie, or 2) the result is negative if there is a
tie.

Weighted Vote Different tools have different weights based
on F1-score measured by DataRaceBench.
This policy also has two variants: tie to posi-
tive or tie to negative.

Directive-
Specific
Weighted
Vote

Tools perform differently for different
types of OpenMP directives. We divide
DataRaceBench into different types of direc-
tives and calculate each type’s F1-scores for
each tool.

Table 2: Aggregation policies by the metaservice aggregator

Table 2 shows a list of aggregation policies used by the metaser-
vice’s aggregator to combine results frommultiple microservices, in-
cluding set-union, set-intersection, majority-voting, random-selection,
weighted-selection, and OpenMP-construct specific voting. The
goal is to use a policy which can deliver the best report. If every
microservice provider is equally trustable for their results, the naive
majority vote should work well. However, the majority vote will
not pick the right result if the majority of the selected tools generate
wrong results. Another policy is to assign different trustworthy
weights to different tools, then we can use weight-adjusted ma-
jority vote. Some tools may perform better than the others for
a given type OpenMP constructs. There is a policy to give more
weight to a tool’s results if an input code has a certain OpenMP
constructs. If in the future a much larger data set is available, some



learning or heuristics-based techniques might be applied for the
final evaluation.

Within a microservice, if a tool can detect a data race at least
once, we consider that it has successfully detected the data race.
Therefore, we use the union policy for the result aggregator within
a microservice.

3.6 Security and Scalability
To ensure the security of our server, we use the rootless docker-in-
docker (DIND) technique [5] to run the tools. Rootless DIND is the
latest feature of docker since version 19.03. Without exposing root
privilege, the docker container is more secure [11]. The code from
users is compiled and run by a non-root account in the sandbox.
Therefore, harmful activities are limited within the sandbox.

When RDS is deployed on commercial platform providers such
as AWS, it takes advantage of the auto scaling feature of the cloud
platform [2]. For example, AWS can monitor and maintain the
utilization rate of CPU and memory. If AWS notices that RDS has
been using 100% of CPU for a period of time, it will increase the
allocated CPU resources of the RDS server automatically to lower
the rate to a predefined value, such as 75%. Also, we make the
entire open-source framework public2 so it can be deployed by
users, which avoids a single centralized deployment with huge
operation costs.

4 EVALUATION
We used two benchmark suites, DataRaceBench[21] and NAS Par-
allel Benchmark (NPB) [14], to evaluate RDS. DataRaceBench is
a C/C++ benchmark suite designed to systematically and quanti-
tatively evaluate the effectiveness of data race detection tools for
OpenMP programs. NPB is a popular scientific computing bench-
mark suite to evaluate the performance of parallel supercomputers[14].
The results of RDS are compared to the results generated by using
four selected individual tools. We also evaluate the overhead of
RDS in terms of both execution time and storage usage.

4.1 Metrics for Evaluation
To evaluate the quality of data race tools, we use five standard
metrics: Recall, Specificity, Precision, Accuracy, and F1 score. These
metrics are calculated based on four possible results of a tool: True
Positive (TP) , False Positive (FP), True Negative (TN), and False
Negative (FN) as shown in Table 3.

We also introduce a metric called Test Support Ratio (TSR) to
measure the percentage of input programs a tool supports. TSR is
used to assess the robustness of a tool. A tool is said to support a test
program if the compiler used with the tool can correctly compile
the code, and the generated executable can be analyzed by the tool
without errors. Otherwise, the tool has one count of unsupported
tests. We further provide four categories if a tool does not support
a test: compile time unsupported language feature (CUN), compile
time segmentation fault (CSF), runtime timeout (RTO), and runtime
segmentation fault (RSF). Based on the TSR, we also define a metric
called Adjusted F1 score, which equals to an F1 score multiplied by
TSR.

2https://github.com/RaceDetectionService/RaceDetectionService_Server

4.2 Selected Data Race Detection Tools
We implemented RDS microservices on the top of four available
data race tools: Intel Inspector [8], Archer [9], ThreadSanitizer [18]
and ROMP [12].

The versions of the tools and compilers used are listed in table 4.
Whenever possible, we use the most aggressive settings of a tool
in order to generate best possible results, with a potential cost of
high overhead. For ThreadSanitizer, we used the clang (v10.0) with
compilation flags ’-fopenmp -fsanitize=thread -fPIE -pie -g’. As
reported by Lin et al. [25], ThreadSanitizer can effectively support
OpenMP codes when using the LLVM OpenMP runtime configured
with the LIBOMP_TSAN_SUPPORT turned on. For Intel inspector, we
used the 2010 versionwith the flag ’-collect ti3 -knob scope=extreme
-knob stack-depth=16 -knob use-maximum-resources=true’. Archer
requires Clang/LLVM 6.0 to compile a program for detection. For
ROMP, we used GCC (v9.6.0) to compile the file with flag ’-g -
fopenmp -lomp’.

4.3 DataRaceBench v.1.3.0
DataRaceBench is a benchmark suite designed to systematically
and quantitatively evaluate the effectiveness of data race detection
tools. It includes a set of microbenchmarks with or without data
races. We used DataRacebench v.1.3.0 [22, 33] for our evaluation. It
includes 172 C and 166 Fortran microbenchmarks. The evaluation
experiment has the following configurations: the OpenMP thread
count is set to be 2, 4, and 8. The size of the array was set to
32. While more threads and larger arrays can be used, it is our
intention to use only necessary threads and input data for the tools
to effectively discover data races, in order to save cloud resources.
We have found using more than 8 threads or larger arrays does not
generate noticeable better results. DRB006 is an exception because
it is specially designed to trigger data races only when 32 threads
are used. Each program of the benchmark suite runs 5 times. If a
data race was reported in one of the 5 iterations, we consider the
result as positive for the given tool. We run experiments on a single
node service with a single Intel(R) Xeon(R) CPU with 16 cores (32
threads) on it.

For RDS, we used different aggregation policies (shown in Ta-
ble 2) to generate the final results. Since there is an even number
(four) of microservice tools, there could be an equal vote situation
for Majority vote policy. In this case, RDS uses two different tie
breakers. For the weighted and directive specific weighted vote
policies, RDS use floating-point weights, which are much less likely
to have the equal values so we do not need to handle ties in our
experiments.

The directive-specific weighted policy uses the F1 score of each
tool for different types of OpenMP directives. We collected such F1
scores in Table 5 based on DataRaceBench’s results generated by
using individual tools. It is interesting to observe that most tools
work relatively well with classic parallel directives, but less so for
newer SIMD or target directives. Three of the tools have limited
support for the threadprivate directive. Some OpenMP directives
only have a few test programs so calculating their F1 score is in-
feasible. In that case, we use the tool’s accuracy as an alternative.
For the atomic directive, there is only one test file. Tsan generates
false positive for that file and we can not calculate the F1 score for

https://github.com/RaceDetectionService/RaceDetectionService_Server


Tool Result Ground Truth Recall Specificity Precision Accuracy F1 ScoreTrue False
True TP FP TP / ( TP + FN) TN / ( TN + FP) TP / ( TP + FP) (TP+TN) / (TP + FP + TN+ FN) 2 * (P * R) / (P + R)False FN TN

Table 3: Definition of metrics (Recall, Specificity, Precision, Accuracy and F1 Score)

Tool version Compiler
Inter Inspector 2020(build 603904) Intel Compiler 19.1.0.166
ThreadSanitizer 10.0 Clang/LLVM 10.0

Archer release_60 Clang/LLVM 6.0
ROMP version 2 GCC 9.6.2

Table 4: Data Race Detection Tools: version and compiler

it. Thus its accuracy value 0 is used to represent the tool’s weight
for this directive.

Directives Archer ThreadSanitizer Intel Inspector ROMP
Parallel 1.00 0.93 0.92 1.00

Parallel for 0.92 0.77 0.72 0.98
Parallel section 1.00 0.67 0.67 0.67

task 0.88 0.36 0.78 0.78
task loop 0.67 0.67 1.00 1.00
simd 0.50 0.50 0.50 0.50

threadprivate 1.00 0.57 0.67 0.60
master 1.00 1.00 1.00 1.00
target 0.50 0.80 0.33 0.80
flush 1.00 1.00 1.00 1.00
single 1.00 1.00 1.00 1.00
atomic 1.00 0.00 1.00 1.00
Table 5: Directive-specific F1-score of the Tools

We have observed that the latest tools have been significantly im-
proved compared to previous studies which reported many compile-
time or runtime errors in those tools [23, 25]. ThreadSanitizer
hanged when 8 threads were used for some test cases (such as
DRB043 and DRB044). But it is considered as supporting all tests
since we applied union policy for multiple runs.

The overall evaluation results are shown in Table 6. We use bold
font to highlight the numbers that represent the highest quality
for each metric in two sets: 1) individual tools and 2) RDS variants
using different aggregation policies. Note that for FP and FN, the
lower are the better, and for other metrics, the higher values are
better.

Out of all the individual tools, Intel Inspector has the best per-
formance based on the adjusted F-1 score. If we consider supported
tests only, ThreadSanitizer has the best results for specificity, ac-
curacy, precision, FP and TN. Archer has the best performance for
FP, specificity and precision. Romp has the best results for recall,
TSR, TP and FP. Romp has lowest specificity and precision values
(0.671 and 0.719, respectively) since it reports a large number of FN
and FP results (26 and 52, respectively). After some investigation,

we found that Romp is built based on dyninst which is a binary
instrumentation tool. It has the highest TSR, but it reports a lot of
FP and FN test results. Another reason is DRB v1.3.0 adds more test
cases using new OpenMP 5.0 features and GPU target offloading.
Romp doesn’t support those new features.

For RDS that is configured to use different policies, the union
policy generates the highest recall value. However, this policy has
the lowest accuracy since some underneath microservices (e.g. Intel
Inspector and ThreadSanitizer) providemany FP results, which taint
the final results. The intersection policy delivers the perfect score
(1.0) for both specificity and precision. It indicates that for data
race detection, the most conservative aggregation policy pays off in
terms of reducing FP reports (all the way down to 0) and increasing
TN (the highest value of 57). Another interesting observation is
that the naive majority vote policy may not always beat the best
performing individual tool in terms of accuracy and adjusted F1
score, due to the fact that the minority holds the truth sometimes.
When there is an even number of microservices and a tie situation
from individual tools, how to break the tie also has a significant
impact on the final results as shown in the table 6. RDS using the
directive-specific weighted vote policy achieves the best overall F1
score of 0.86. Compared to the best individual tool (Intel Inspector
with 0.791), it is a relative improvement of 8.8%. And the directive-
specific weighted vote policy is the best policy for RDS. Thus, it
is used as the default policy for RDS. On average, RDS improves
12.6% Adjusted F-1 score, compared to the average Adjusted F-1
score (0.764) for the four individual tools.

It is also noticeable that RDS has the highest TSR number (97.9%)
since it works as long as at least one tool supports a given test input
file. Romp, which has the highest TSR among four tools, supports
93.8% tests in DataRaceBench.

4.4 Overhead
For RDS’s metaservice, we measured the time from the curl com-
mand REST request to the end of the response. The total time in-
cludes the communication time between metaservice and microser-
vices, the file transfer time between metaservice and microservices,
the execution time of microservices, and the time for aggregating
reports from multiple microservices. RDS takes about 13.07 hours
to fully analyze DataRaceBench. The execution time of its result
aggregator is 0.19 seconds, which is only 0.0038% of the total run-
time of metaservice. Therefore the time overhead of metaservice’s
result aggregator can be ignored.

For RDS’s microservices, the execution time is spent on running
tools, using the result parser to analyze the results and generate
detection reports in the JSON format we define, and finally aggre-
gating reports from multiple runs. We measured the total execution
time of both microservices and native tools using DataRaceBench.



Tool Aggregate Policy TP FP TN FN Recall Specificity Precision Accuracy TSR Adjusted F1
Intel Inspector

Union

126 10 144 36 0.778 0.935 0.926 0.854 0.935 0.791
ThreadSanitizer 117 1 151 29 0.801 0.993 0.991 0.899 0.882 0.781

Archer 116 1 143 29 0.800 0.993 0.991 0.896 0.855 0.757
ROMP 133 52 106 26 0.836 0.671 0.719 0.754 0.938 0.725

RDS

Union 144 71 97 19 0.883 0.577 0.700 0.728 0.979 0.746
Intersection 115 3 165 48 0.706 0.982 0.975 0.846 0.979 0.802
Random 133 20 148 30 0.816 0.881 0.869 0.849 0.979 0.824

Majority (Positive tie breaker) 132 9 159 31 0.810 0.946 0.879 0.868 0.979 0.850
Majority (Negative tie breaker) 126 3 165 37 0.773 0.982 0.977 0.875 0.979 0.845

Weighted Vote 132 8 160 31 0.810 0.952 0.943 0.882 0.979 0.853
Directive-Specific Weighted Vote 130 3 165 33 0.798 0.982 0.977 0.891 0.979 0.860

Table 6: Quality of Individual Data Race Detection Tools and RaceDetectionService. DataRaceBench is used for generating the
results. For 172 C tests, 83 of them have data races and 89 tests do not have data races. For 166 Fortran test cases, exactly half
of them have data races and the other half are data race-free.

Thus, the time overhead of microservices can be calculated as
𝑚𝑖𝑐𝑟𝑜𝑆𝑒𝑟𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒 − 𝑛𝑎𝑡𝑖𝑣𝑒_𝑡𝑖𝑚𝑒 .

As Table 7 shows, the overhead for microservices varies from
one tool to another. The microservices wrapping Intel Inspector
and ThreadSanitizer have less than 1 percent overhead, while the
microservices for Archer and ROMP incur 4.54% and 7.05% over-
head, respectively. Intel Inspector has high overhead because we
configured it to use maximal resources to generate best results. Sim-
ilar to a previous study [24], we also find that ThreadSanitizer has
high overhead. The reason is that ThreadSanitizer isn’t aware of
OpenMP synchronization points. RDS’s metaservice overall waiting
time depends on the slowest performing microservice. We conclude
that the overhead of using RDS is about 7%, mostly caused by the
microservice layer.

Tools Microservice Native Use Overhead Extra Storage
Intel Inspector 15205 s 15129 s (99.5%) 76 s (0.50%) 90MB
ThreadSanitizer 13086 s 13015 s (99.45%) 71 s (0.55%) 90MB

Archer 1533 s 1467 s (95.46%) 66 s (4.54%) 90MB
ROMP 1034 s 966 s (92.95%) 68 s (7.05%) 90MB

Table 7: Time and Storage Overhead Comparison. The over-
head indicates the time cost of parsing and transmitting re-
sult.

Table 7 also lists the extra RDS storage usage caused by using
docker for each microservice. The storage usage of each microser-
vice comes from the docker image and docker container. The image
for Intel Inspector takes a lot of storage because the installation of
the whole Intel package takes about 17GB. However, the storage
overhead for the docker images, container and system files is 90
MB. The metaservice container uses 238MB disk space. Combined
with the microservice layer’s storage costs mentioned above, the
final total storage overhead for RDS is about 598MB, which is 1.84%
of the total docker image size of 32.58 GB.

4.5 NAS Parallel Benchmarks V3.0
We use NAS Parallel Benchmarks(NPB) V3.0 OpenMP C version[1]
to evaluate RDS’s capability of analyzing multiple-file packages.
For multiple-file packages, RDS expects users to prepare a makefile

with proper file dependencies and compiler flags. We have modified
NPB’s makefile (shown in Figure4) to be compatible with RDS. The
S class of NPB programs is used for our experiment.

CC=clang #Define C compiler
CLINK=clang #Define Links C program
C_LIB=-L/usr/local/lib #Define link library
C_INC=-I../common -I/usr/local/lib #Define include
CFLAGS =-fopenmp -fsanitize=thread #Define compiler flags
CLINKFLAGS=-fopenmp -fsanitize=thread -O0 -lm -Wl,-rpath,/

usr/local/lib #Define link time flags
UCC=clang #Define C compiler used to compile C utilities
BINDIR=../test #Define destination of executable binary file

Figure 4: Example configurations in a makefile

We use a Clang-plugin named OMPExtractor [26] to extract loop
information in NPB programs and assign unique IDs to them. NPB
has 730 loops in total. As a well-studied benchmark suite with built-
in correctness verification, NPB programs do not contain data races.
If a tool reports a data race for a given loop, it is considered as a
false positive. Otherwise, the result is counted as a true negative.
If a tool reports a data race’s line information, we map the line
number to the loop ID and consider it has a data race. Otherwise,
we consider it a report of a data race. If a tool fails to report the data
race location information, we consider the tool does not support the
test. If a tool fails to process a program, we record one of the error
codes such as compile-time segmentation fault (CSF), unsupported
feature by a compiler (CUN), runtime segmentation fault (RSF) or
runtime timeout (RTO).

Table 8 shows the results of using RDS to detect data races in
eight NPB programs, ranging from BT to SP. Please note that F-1
score cannot be calculated since NPB has zero true positives and
we cannot divide a number by zero. Therefore, we use Adjusted
Accuracy instead.

The results show that ThreadSanitizer and ROMP had some
compile or runtime errors, and they didn’t report the exact data
race location in the CG and LU program. Thus, their tools support
rates are lower than those of Archer and Inter Inspector. Intel
Inspector generated quite some false positives. Archer generated



Tool Aggregate Policy TP FP TN FN Accuracy TSR Adj. Accuracy
Intel Inspector

Union
0 100 630 0 0.863 100% 0.863

Thread Sanitizer 0 0 649 0 1.000 88.9% 0.889
Archer 0 1 630 0 0.998 100% 0.998
ROMP 0 0 151 0 1.000 20.6% 0.210

RDS

Union 0 100 630 0 0.863 100% 0.863
Intersection 0 1 729 0 0.998 100% 0.998
Random 0 22 708 0 0.970 100% 0.970

Majority (Positive tie breaker) 0 1 729 0 0.998 100% 0.998
Majority (Negative tie breaker) 0 11 719 0 0.985 100% 0.985

Weighted Vote 0 1 729 0 0.998 100% 0.998
Table 8: Results of individual tools and RDS processing 730 loops in NPB’s eight programs. All loops are free from data races.

the best results: 100% Test Support Ratio (TSR) and 99.8% adjusted
accuracy (TSR*Accuracy) on NPB.

We investigated two benchmarks (MG and LU) further. For MG,
Intel Inspector reports that function psinv and resid have data races.
However, our investigation confirms that there are no data races
in those functions. For LU, two tools (Intel Inspector and Archer)
can analyze it without crashes or timeouts. Both tools report that
a function named blts has data races. Our investigation finds that
blts has two parallel loops using nowait, combined with a flush
directive to synchronize memory operations. None of the two tools
can recognize this complicated code pattern.

For RDS, the intersection policy, Majority vote and Directive
Specific Weighted vote generate the best result (99.8% adjusted
accuracy). All variants of RDS achieve 100% TSR. Since Archer
generates high-quality results (almost perfect), RDS can not improve
the results further compared to the best tool. We compared the
average adjusted accuracy with four individual tools. On average,
RDS improves 35% accuracy compared to the 0.739 average Adjusted
Accuracy for four individual tools).

5 RELATEDWORK
We categorize relevant work into two subareas in this section. How-
ever, we found no related services that support race detection of
parallel programs.

5.1 Cloud Services and Aggregating Tools for
Software Testing and Security

Software testing and security communities have adopted the idea
of aggregating multiple tools for program analysis, testing and con-
formance testing. Code Dx application vulnerability management
system [3] is a hybrid analysis and vulnerability scanner which
combines and correlates the results generated by a wide variety of
static and dynamic testing tools. It aggregates results from tools
that support Static Application Security Testing (SAST), Dynamic
Application Security Testing (DAST), and Interactive Application
Security Testing (IAST) standards.

The Software Assurance Marketplace (SWAMP) [6, 19] provides
both software and service to perform static code analysis on soft-
ware source code. SWAMP provides the MIR-SWAMP [32] cloud
computing platform to allow users to perform free code analysis
online, and the standalone software application (SWAMP-in-a-Box)

which can be deployed as a local instance of SWAMP. SWAMP pro-
vides APIs for direct access from (IDEs) such as Eclipse, source code
management systems such as git and Subversion, and continuous
integration systems such as Jenkins.

The Source Code Analysis Laboratory (SCALe) [31] is a static
analysis aggregator and correlator which enables a source code
analyst to combine static analysis results from multiple tools into
one interface, and also provides mappings for diagnostics from the
tools to the SEI CERT Secure Coding standards for assessing the
conformance with the CERT standards. SCALe can be deployed on
a web server for a web application and also is containerized as a
standalone application.

5.2 Cloud Service for Programming Tools and
Parallel Computing, and Containerized
Software Platforms

Jupyter notebook framework [17] [15] supports creation of doc-
uments that have advanced computation and data processing ca-
pability for a domain. These documents can be considered as a
web-based application for users since it allows programming, data
processing, computation and visualization in a notebook cell as
part of a document. For example, a Jupyter notebook can be set up
as the front-end of parallel computing resources for users to write
parallel programs in MPI [4].

Because of the complicated software environment for HPC, the
DoE Extreme-scale Scientific Software Stack (E4S) [7] project uses
Spack as the meta-build tool for a large collection of software and
tools for HPC and provides containers of pre-built binaries for
Docker, Singularity, Shifter, CharlieCloud, and so on. Our approach
of creating microservices goes beyond the containerized software
package by extending that to create virtualized services when the
package is being deployed via docker-in-docker framework.

6 CONCLUSION
In this paper, we present RaceDetectionService, a novel approach
to detect data race bugs in OpenMP programs. RDS uses a service-
oriented design to provide a cloud-based race detection metaservice
for users. Internally, it uses different policies to compose multiple
microservices built on top of several individual data race detection
tools using containers and REST API. We find that the Directive-
Specific Weighted Vote is the best policy. The resulting framework



can leverage strengths of multiple tools while avoiding their individ-
ual limitations, subsequently generating better data race detection
results. It also significantly improves the productivity of users. The
framework is extensible to use a wide range of aggregate policies
to merge conflicting results from multiple sources.

To the best of our knowledge, this work is the first effort in
the HPC community to create cloud-based metaservice tools that
consolidate other tools. It includes a service-oriented metaservice
architecture design and implementation, the definition of common
APIs and data exchange formats in the domain of data race detection,
and several policies to compose potentially conflicting results from
multiple tools. The same approach and framework can be used to
create metaservice for compilers, performance tools, auto-tuning
tools, etc. For policies to consolidate results from multiple tools,
we demonstrate that policies incorporated with fine-granularity
domain information such as OpenMP directive types deliver more
accurate results than standard policies in our experiments. The
results clearly prove that combining tools will indeed lead to much
better results when the right aggregate policies are used.

In the future, we would like to compose supportive program
analyses from different compilers and tools to have a more pow-
erful data race detection tool. We also plan to support package
management systems such as SPACK [10], in order to process more
complex scientific applications that depend on third-party libraries.
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