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Abstract—Programming to achieve high performance for
NVIDIA GPUs using CUDA has been known to be challenging.
A GPU has hundreds or thousands of cores that a program
must exhibit sufficient parallelism to achieve maximum GPU
utilization. A system with GPU accelerators has a heterogeneous
and deep memory system that programmers must effectively and
correctly use to fully take advantage of the GPU’s parallelism
capability. In this paper, we present CUDAMicroBench, a collec-
tion of fourteen microbenchmarks that demonstrate performance
challenges in CUDA programming and techniques to optimize
the CUDA programs to address these challenges. It also includes
examples and techniques for using advanced CUDA features such
as data shuffling between threads, dynamic parallelism, etc that
can help users optimize the CUDA program for performance. The
microbenchmark can be used for evaluating the performance of
GPU architectures, the memory systems of GPU itself and of the
whole system architectures, and for evaluating the effectiveness of
compiler and performance tools for performance analysis. It can
be used to help users understand the complexity of heterogeneous
GPU-accelerator systems through examples and guide users for
performance optimization. It is released as BSD-licensed open-
source from https://github.com/passlab/CUDAMicroBench.git.

Index Terms—GPU, CUDA, Performance Optimization, Par-
allelism, Memory Hierarchy

I. INTRODUCTION

The GPU manycore architecture excels at data-parallel com-
putation for performance and energy efficiency because of the
massive parallel-processing capabilities of GPUs. A highly-
optimized GPU program can achieve 10x to 100x performance
improvement over its CPU versions. A computer system with
GPU accelerators, e.g. those from NVIDIA, incorporates the
GPU devices to augment the performance of conventional
multicore processors. Such a system has a heterogeneous and
deep memory system that programmers can explicitly manage
the data movement between host memory and device memory.
For programming, offloading is the model used by most GPU
programming languages, i.e. computational loops, known as
kernels, and the input data of the kernel need to be offloaded
onto an accelerator in order to perform computation.

The performance advantage of GPU accelerated systems,
and the complexity of its parallel architecture and heteroge-
neous and deep memory system come together as a double-
edged sword for average users since programming to achieve
high performance has been known to be challenging. In this
paper, we summarize three important guidelines for developing
high-performance GPU programs: 1) optimizing kernels to
saturate the massive parallel capability of GPUs, 2) effec-
tively leveraging the deep memory hierarchy inside GPU to
maximize its computing efficiency for kernel execution, and
3) properly arranging data movement between CPU and GPU
to reduce the performance impact of data movement for the
GPU program. Under these guidelines, we collect a set of
microbenchmarks that exhibit the performance challenges in
CUDA programming. These microbenchmarks also include
techniques to optimize a CUDA program to address the
challenges.

Other than the developed microbenchmarks, the contribu-
tions of this paper also include: 1) provide performance opti-
mization techniques for using memories on GPU and between
CPU and GPU, such as coalesced and aligned memory access,
use of read-only memory, impact of access density to the
performance; and 2) provide performance analysis to demon-
strate the impact of those problems to application performance
using the developed microbenchmarks. The microbenchmarks
can be used to evaluate the efficiency of different parallel
programming techniques, evaluate the performance of memory
systems of different NVIDIA GPUs and memory system
architectures, and evaluate software tools for performance
analysis. It can be used to help users understand the complexity
of heterogeneous GPU-accelerator systems and guide users for
performance optimization.

In the rest of the paper, we describe the manycore archi-
tectures and the heterogeneous memory system of the GPU
accelerated system in Section II. Then the benchmarks are
presented in three classes according to the three guidelines in
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Section III, IV and Section V. In Section VI, related work
are discussed. The paper is concluded in Section VII.

II. MOTIVATION AND BENCHMARK SUMMARY

In this section, we describe the GPU manycore architecture,
the memory systems of GPU itself, and of a GPU-accelerator
system to indicate the challenges of performance optimization
of programming GPU.

A. The NVIDIA GPU Manycore Architecture

The massive parallelism capability of GPU is realized
with its manycore architecture. The newest Nvidia’s Ampere
A100 GPU contains 108 streaming multiprocessors(SM), each
containing four Texture Mapping Units that each contains 16
INT32 ALU’s, 16 FP32 ALUs, and 8 FP64 ALUs, and one
tensor core. Thus in total, the number of cores of GPU is
above 5000. GPU manycore architecture implements a thread
execution model known as the single instruction multiple
thread (SIMT). With SIMT, the GPU executes instructions in
lock-step across multiple threads that process different data.
GPU schedules warps of threads, typically 32 threads in each
warp, onto its many cores, and warp is the scheduling unit
of kernel execution. For programming, the NVIDIA CUDA
threading model allows for a much large number of threads,
e.g. millions of SIMT threads and threads are organized in a
two-level (block and grid) hierarchy. In each level, i.e threads
of a block or blocks of the grid, can be structured in 1-D,
2-D or 3-D topology. Fig. 1 shows an example of the CUDA
threading model. Programmers can determine how to divide
computation work and data under this SIMT threading model
to fully utilize GPU cores.

Fig. 1: NVIDIA CUDA threading model and GPU internal
memory

B. Two Memory Systems of a GPU-Accelerated Computer

A GPU-accelerated computer system can be considered to
have two memory systems, the internal memory hierarchy of
the GPU itself, and the discrete memory system that both
CPUs, GPUs and other devices on the system leverage. Fig. 1
shows the internal memory hierarchy of a typical NVIDIA
GPU, which is more complex than CPU memory hierarchy.
Registers,local memory and shared memory are on-ship mem-
ories while local, global, constant, and texture memory all
reside off-chip. There are significant trade-offs depending on
the type of memory used. Off-chip memories can be addressed
by any block or threads, while on-chip memories are limited
in scope to the specific block that they are a part of.

The whole memory system of a GPU-accelerated computer
is a discrete memory system that requires explicit communica-
tion between the GPU and CPU for data movement. Memory
allocation and data movement are initiated from the CPU
explicitly. The primary challenge with this is the difficulty of
efficiently leveraging explicit control of the memory system.

The difficulty involved with programming the discrete mem-
ory system led to the introduction of unified memory in
CUDA 6.0, which sought to simplify memory management
for programmers. The unified memory system allows for a
single allocation call to be made with cudaMallocManaged
for memory segment that is accessible by both CPU and GPU.
While memory operations are transparent to the programmer,
the hardware is still fundamentally discrete and data copy
operations happens via paging mechanisms by the driver. The
automation of these memory operations can be inefficient,
leading to reduced performance as shown in our evaluation.

The manycore architecture and the complexity of GPU
heterogeneous memory architecture and system indicate three
important guidelines for developing high-performance CUDA
programs. First, GPU kernels should be optimized to saturate
as much as possible the massive parallel capability of GPUs.
Second, deep memory hierarchy inside GPU should be ef-
fectively leveraged to maximize the computing efficiency of
GPU for kernel execution. Third, memory management and
data movement between CPU and GPU memory should be
properly arranged to reduce the performance impact of data
movement operations.

To assist programmers for CUDA performance program-
ming according to the three mentioned guidelines, we be-
lieve small and representative examples to demonstrate the
challenges and techniques are an effective approach to help
programmers. We present in this paper 14 specific techniques
and illustrate them with small code examples that collectively
we refer to as CUDAMicroBench. These microbenchmarks are
categorized into three classes according to the three guidelines,
summarized in Table I. All tests are performed on Carina
(Intel® Xeon® Gold 6230N 2.30GHz CPU and NVIDIA Tesla
V100) and Fornax (Intel® Xeon® E5-2699 v3 2.3GHz CPU
and NVIDIA K80) except asynchronous copy of global to
shared memory in IV-D, which used an NVIDIA RTX 3080
GPU.
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TABLE I: Summary of the CUDAMicroBench microbenchmarks, https://github.com/passlab/CUDAMicroBench.git

Benchmark Pattern of Performance Inefficiency Optimization techniques Speedup Programmability
Optimizing Kernels to Saturate the Massive Parallel Capability of GPUs
WarpDivRedux Threads enter different branches when they en-

counter the control flow statement
Change the algorithm: take the warp size as the
step

1.1 (average) 3

DynParallel Workloads that require the use of nested parallelism
such as those using adaptive grids

Use dynamic parallelism to allow the GPU to
generate its own work

3.26 (best) 4

Conkernels Launch multiple kernel instances on one GPU Use concurrent kernels technique 7 (average) 4
TaskGraph Provide a more effective model for submitting work

to the GPU
Pre-define the task graph and run-repeatedly exe-
cution flow

Only for easier
programming

3

Effectively Leveraging the Deep Memory Hierarchy Inside GPU to Maximize The Computing Capability of GPU for Kernel Execution
Shmem The data need to be accessed several times Use shared memory to store the data which needs

to be accessed repeatedly
1.25 (average) 2

CoMem Stride or random access of array across threads
which have uncoalesced memory access

Consecutive memory access across threads 18 (average) 3

MemAlign Memory are allocated at unaligned address Use aligned malloc 1.1 (average) 1
GSOverlap Global-shared memory copy takes much time Use the new function memcpy async in CUDA11

to accelerate the data transfer
1.04 (best) 3

Shuffle The data exchange between threads Use shuffle to enable threads in the same warp
directly share part of their results between registers

1.25 (average) 5

BankRedux Two or more threads access different locations of
the same bank

Change the algorithm to avoid bank conflicts 1.3 (average) 5

Properly Arranging Data Movement Between CPU and GPU to Reduce the Performance Impact of Data Movement for the GPU Program
HDOverlap Host-device memory copy takes much time Use cudaMemcpyAsync function to accelerate the

data transfer
1.036(best) 1

ReadOnlyMem Large amount of read-only data Put read-only data in constant/texture memory to
get a higher speed

4.3 (best) 1

UniMem Low memory access density Put the data in unified memory and only copy the
necessary pages

3 (average) 3

MiniTransfer Wrong data layout causes a large amount of useless
data transfer between CPU and GPU

Change to the correct data layout to avoid useless
data transfer

190 (best) 5

a The “programmability” column is used to indicate the difficulty of programming for a given optimization in our opinion, on a scale from 1 to 5 with 5 being the most difficult.

III. OPTIMIZING KERNELS TO SATURATE THE MASSIVE
PARALLEL CAPABILITY OF GPUS

For the first objective of optimizing GPU kernels to saturate
the parallel capability of GPUs, we include four techniques
for CUDA performance optimization. For each technique, we
include a short description, discussion of its benefits, potential
use cases, and a microbenchmark to demonstrate.

A. Warp Divergence

A warp is the scheduling unit of GPU kernel execution,
made up of a group of threads within a block. Because of the
lock-step SIMT execution model of GPU, when two threads in
a warp execute two separate branches during execution, there
could be significant performance penalty. This divergence of
threads because of the use of branching is known as warp
divergence. Fig. 2 shows two examples. For the first kernel,
different operations are performed according to the parity
of the thread ID. It is intended that the even- and odd-
numbered threads in a warp execute the true and false branches
respectively of the if statement. However, because of the
SIMT lock-step execution model, all warp threads execute both
branches, though only the relevant threads commit the results.
This execution model for branches result in performance loss.

The second kernel shows how to optimize the first one to
remove warp divergence. It ensures that all threads in a warp
execute the same branch. The performance results are shown
in Fig. 3. The execution efficiency of the two kernels, produced
using nvprof, are 85.71% vs 100%, which correspond to the
performance results in the figure.

1 __global__ void WD(float *x,
2 float *y, float *z) {
3 int tid=blockIdx.x*blockDim.x+threadIdx.x;
4 if (tid%2 == 0) {
5 z[tid] = 2 * x[tid] + 3 * y[tid];
6 } else {
7 z[tid] = 3 * x[tid] + 2 * y[tid];
8 }
9 }

10

11 __global__ void noWD(float *x,
12 float *y, float *z) {
13 int tid=blockIdx.x*blockDim.x+threadIdx.x;
14 if ((tid / warpSize) % 2 == 0) {
15 z[tid] = 2 * x[tid] + 3 * y[tid];
16 } else {
17 z[tid] = 3 * x[tid] + 2 * y[tid];
18 }
19 }

Fig. 2: Warp divergence example kernels

B. Dynamic Parallelism

Dynamic parallelism was introduced in CUDA 5.0, sup-
ported by devices with compute capability 3.5 and higher.
The feature allows the GPU to generate its own work by
launching another kernels instead of requiring the kernel jobs
to be submitted by the CPU. It allows for any given thread in
a block to launch its own child block. Workloads that require
the use of nested parallelism such as those using adaptive grids
particularly benefit from the feature. For example, it facilitates
the implementation of adaptive refinement for fine grained
detail to be computed for certain areas that require high
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Fig. 3: Performance of warp divergence tests on NVIDIA Tesla
V100 GPUs

fidelity. Other workloads that benefit are recursive algorithms
and those that need large independent batch processes.

1 __global__ void mandelbrot_block_k() {
2 int comm_dwell = border_dwell();
3 if (Perimeter dwells equal) {
4 dwell_fill_k <<<grid, bs >>>();
5 } else if (not hit subdivision limit
6 and not hit depth limit) {
7 //subdivide recursively
8 mandelbrot_block_k <<<grid, bs >>>();
9 } else {//do fine grain per pixel

10 pixel_calc<<<grid, bs>>>();
11 }
12 }

Fig. 4: Nested kernel using dynamic parallelism

We use the Mandelbrot set example [1] shown in Fig. 4 as
the microbenchmark to demonstrate the feature of dynamic
parallelism. The pseudo code is a portion of the Mariani-
Silver algorithm, which recursively subdivides the calculations
for the Mandelbrot set. The performance of this algorithm
was compared against the escape time algorithm which is
considered the standard solution. The basic operation is the
same for calculating a pixel, so the results are comparable
as Mariani-Silver is able to avoid a portion of computation.
The results show significant improvement of 3.26x times when
using dynamic parallelism over disabling it for rendering a
16000x16000 image as shown in Fig. 5. The speedup is shown
above the bar for enabling dynamic parallelism. It is also
shown that the performance improvement decreases as the size
of the image decreases. This is demonstrated by the results of
a 2000x2000 image, where overhead of dynamic parallelism
outweighs the benefit of using it.

C. Concurrent Kernels

From Fermi architecture, NVIDIA GPUs introduced a fea-
ture called “concurrent kernels”, which enable CPU to launch
multiple kernel instances on one GPU. This feature helps

Fig. 5: Performance of dynamic parallelism on NVIDIA RTX
3080 GPUs

performance improvement for those kernels that are mem-
ory bounds, because such algorithms usually do not exhibit
sufficient parallelism, and allowing executing multiple kernels
concurrently would increase utilization of GPU cores.

To demonstrate this feature, we select the example from
CUDA Samples [2] as our microbenchmarks. In this program,
there are multiple asynchronous kernels that are to be launched
by a loop and each kernel is associated with a CUDA stream.
The concurrent execution of those kernels can be visualized
using the NVIDIA nvvp thread management tool, which is
used to observe threads’ activities visually of CUDA kernels.
Fig. 6 shows the results of this example. When we use 8
CPU threads to launch concurrent kernels, the version that
uses concurrent kernel execution is approximately 7 times
faster than the version that uses serial kernel launching. This
indicates the effect of concurrent kernel execution. It can
be seen that the high degree of thread concurrency has a
significant impact on performance, and increasing the thread
concurrency as much as possible can greatly improve the
execution efficiency of the program.

D. Task Graph

The task graph feature was introduced in the 2018 release of
CUDA 10. We include a code example from CUDA-Samples
[2] to help illustrate the use of this feature. Since this feature
is intended mainly for help improving programmability, we do
not provide performance study.

This feature allows for a more effective and flexible model
for submitting work to the GPU. The task graph can consist
of a series of operations, such as memory copy and kernel
startup, which are connected through dependencies and defined
separately from their execution. It provides a mechanism
to launch multiple GPU operations through a single CPU
operation to reduce overheads. In some specific applications
which has many repeatable tasks, task graph might improve
the application’s efficiency and performance.
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(a)

(b)

Fig. 6: The activities of kernels with and without using
concurrent kernels feature on NVIDIA Tesla V100 GPUs: (a)
using concurrent kernels, and (b) not using concurrent kernels.

IV. EFFECTIVELY LEVERAGING THE DEEP MEMORY
HIERARCHY INSIDE GPU

In this subsection, we describe microbenchmarks for perfor-
mance optimization according to the second guideline, which
is to effectively leverage the deep memory hierarchy inside
GPU. We demonstrate the challenges of using GPU memory
using microbenchmarks and the optimized version of the
microbenchmarks are included that addresses the challenges.

A. Using Shared Memory to Improve the Performance

Shared memory is a high-speed programmable SRAM on
the GPU chip, and all threads in the same block can access
it. The latency of the shared memory is almost the same as
that of the register, and its capacity is several times that of
the register. Shared memory is mostly used as programmable
cache for frequently accessed data items of the GPU kernels.

A known example of using shared memory for GPU per-
formance optimization is matrix multiplication which has a
very high data reuse rate. The example is also available
from CUDA Samples or the CUDA developer manual and
we include it as the microbenchmark. In the implementation,
the algorithm divides the large matrix into 16x16 tiles, copies
each tiles into the shared memory for calculation, and then
performs the accumulation operation. For a matrix with a size
of 2048*2048, compared to the version that only uses global
memory, using shared memory can increase performance by
20% and scales well with matrix size on most NVIDIA GPUs.

B. GPU Coalesced and Uncoalesced Memory Access

On a GPU, data transfer between global memory and on-
chip storage are by chunk for each memory transaction, even
only a small subset of a chunk is requested by a thread.
Memory coalescing is a technique in GPU programming to
use minimum transactions to fulfill the memory requests by a
large number of threads. This is accomplished by combining
references to adjacent memory locations of multiple threads
into minimum number of transactions. Fig. 7 provides a
pictorial view of coalescing and uncoalescing of memory

access by 8 threads accessing 128-byte of data that is the
size of a chunk of a memory transaction. Fig. 7 (a) shows that
8 threads access the consecutive bytes of the 128 bytes, thus
the memory requests by all 8 threads can be fulfilled by one
memory transaction. Fig. 7 (b) shows the situation in which
the 8 threads access the bytes with 128-byte stride. 8 memory
transactions are needed to transfer 8 * 128 bytes to fulfill the
data requests (only 128 bytes) by the threads. The third figure
shows the random access situation that causes uncoalesced
memory access. Eight adjacent threads need to access memory
with unevenly distributed strides. Five memory transactions
are needed to transfer the data needed by the threads.

(a)

(b)

(c)

Fig. 7: GPU coalesced and uncoalesced memory access: a) co-
alesced memory access by 8 threads, b) strided memory access
and uncoalesced, c) random memory access and uncoalesced

When writing CUDA programs, the approach of how the
iteration of a data-parallel loop is distributed to the threads
impacts the memory access pattern of CUDA threads, thus
could result in coalesced or uncoalesced memory access.
There are two approaches that are commonly used for loop
distribution, block and cyclic distributions. We use the AXPY
kernel shown in Fig. 8 to demonstrate this. AXPY calculates
Y[i] += a * X[i] for N number of array elements of X and Y.

As shown in the second kernel, a block distribution splits
the iterations into chunks of contiguous iterations among all
threads, one thread per chunk. It will end up as uncoalesced
memory access by the threads to the array X and Y. The third
kernel shows the cyclic distribution which can fix the uncoa-
lesced memory access. Loop iterations are assigned to threads
in cycles starting from the first iteration for one iteration per
thread. Threads are recycled for the remaining iterations. By
doing this, we allow threads to access consecutive elements
of the two arrays and coalesced access is achieved.

The performance impact of the two distributions is shown
in Fig. 9 which shows that using cyclic distribution is about
18 times faster than using block distribution.
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1 __global__ void axpy_1perThread(REAL* x,
2 REAL* y, int n, REAL a) {
3 int i=blockDim.x*blockIdx.x+threadIdx.x;
4 if (i < n) y[i] += a*x[i];
5 }
6

7 /* block distribution of loop iteration */
8 __global__ void axpy_block(REAL* x,
9 REAL* y, int n, REAL a) {

10 int i=threadIdx.x+blockIdx.x*blockDim.x;
11 int total_threads=gridDim.x*blockDim.x;
12 int block_size=n/total_threads;
13 int start_index=i*block_size;
14 int stop_index=start_index+block_size;
15 for (j=start_index; j<stop_index; j++)
16 if (j < n) y[j] += a*x[j];
17 }
18

19 /* cyclic distribution of loop iteration */
20 __global__ void axpy_cyclic(REAL* x,
21 REAL* y, int n, REAL a) {
22 int i=threadIdx.x+blockIdx.x*blockDim.x;
23 int total_threads=gridDim.x*blockDim.x;
24 for (j=i; j<n; j+=total_threads)
25 if (j < n) y[j] += a*x[j];
26 }

Fig. 8: AXPY kernels that exhibit coalesced and uncoalesced
memory access

Fig. 9: AXPY kernel execution time that shows this perfor-
mance difference between coalesced and uncoalesced memory
access on NVIDIA Tesla V100 GPUs. The kernel configura-
tion for BLOCK and CYCLIC is <<< 1024, 256 >>>.

For the example that has uncoalesced memory access caused
by random memory access of consecutive threads shown in
Fig. 7 (c), we include sparse matrix multiplication in CUD-
AMicroBench. If not using proper condensed format of the
multiplier matrix, e.g. compressed sparse row (CSR) format
or compressed sparse column (CSC) format, uncoalesced
memory access would occur, degrading the performance. The
correct way to optimize this is to use the right combination of
CSR and CSC for the multiplier and final matrices.

C. Memory Alignment for the Memory Access of GPU Kernels

As mentioned before, the GPU memory controller transfers
memory in chunks for each memory transaction, e.g. 128-
byte chunk per transaction. Aligned memory access means
that the first memory address accessed is the exact multiple of
a memory chunk. Aligned and misaligned memory access can
be demonstrated by modifying the AXPY example, shown in
Fig. 10. The results show that the aligned access has a clear
though small performance improvement (about 3%), because
of smaller number of memory transactions are performed in
the aligned memory access situation than in the misaligned
memory access situation, for the same amount of needed data.

1 __global__ void axpy_aligned(REAL* x,
2 REAL* y, int n, REAL a) {
3 int i=blockDim.x*blockIdx.x+threadIdx.x;
4 if (i > 0 &&i < n) y[i] += a*x[i];
5 }
6 __global__ void axpy_misaligned(REAL* x,
7 REAL* y, int n, REAL a) {
8 int i=blockDim.x*blockIdx.x+threadIdx.x+1;
9 if (i < n) y[i] += a*x[i];

10 }

Fig. 10: Kernels of AXPY that have aligned and misaligned
memory accesses. (a) aligned memory access in which a warp
of 32 threads request 256 bytes of data fulfilled by two 128-
byte memory transactions; (b) misaligned memory access. The
256 bytes of data needed by a warp of threads need three 128-
byte memory transactions because of the misalignment.

The reason for the minor performance difference of the
two memory accesses is that the GPU (Tesla V100) has
L1 cache, making the effect of misalignment on throughput
for sequential memory accesses across threads negligible.
However, for some GPUs without L1 cache, the performance
loss caused by misaligned access could be much larger. For
example, for NVIDIA GPU with computing power of 1.0
which only has an L2 cache, any unaligned accesses twisted by
the half-thread will result in 16 separate 32-byte transactions.

D. Overlapping and Pipelining Data Copy Between Global
Memory and Shared Memory Using Memcpy async

As we mentioned at the beginning of this section, shared
memory has often been used as programmable software cache
for keeping frequently-used items in the fast memory. Before
using it, data needs to be copied from slower global memory
to the faster shared memory. To accelerate this copy, recent
CUDA introduces asynchronous memcpy, the memcpy async
function, for further optimize data movement between global
memory and shared memory. This feature is realized based
on two aspects in NVIDIA’s new Ampere Architecture, being
the hardware acceleration of the memcpy async operation that
bypassing register access, and pipelining the memcpy async
operation to overlap computation and memory operations.

The hardware acceleration of the memory operation is
done by bypassing temporary registers when copying from
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global to shared memory. This hardware level optimization
provides a small but meaningful performance improvement.
This performance improvement is demonstrated in AXPY with
an approximately 5 millisecond difference in execution time
on NVIDIA Tesla RTX 3080 GPU, meaning the asynchronous
kernel is 1.04 times faster. This can be expected to increase
as the amount of reads and writes to the shared memory
increases allowing for further scaling. This feature is still new
and as such will likely have further research conducted that
will provide greater insight into the optimal implementation.

E. Data Shuffle Between Threads

Before the Kepler architecture of NVIDIA GPUs, the data
exchange between threads must go through shared memory.
For programs that frequently exchange data between threads,
the shared memory bandwidth will undoubtedly become a
performance bottleneck. Kepler and new generation GPUs in-
troduce a new warp-level intrinsic called the shuffle operation.
This feature allows threads in the same warp to exchange data
directly between registers, bypassing the local memory.

We include a reduction microbenchmark to show the ad-
vantages of using shuffle [3]. Compared with the traditional
version, by using shuffle, threads in the same warp can directly
share part of their results between registers as soon as they
are free. Experimental results show that as the size of the
input array increases, the advantages of using shuffle become
more obvious. Fig. 11 shows the experimental results. When
the problem size reaches 134217728 (227), using shuffle will
increase the execution efficiency by about 25%.

Fig. 11: Performance of reduction using shuffle on NVIDIA
Tesla V100 GPUs

F. Bank Conflicts Due to Strided Index

GPU shared memory is architectured into multiple equal-
sized memory modules (banks). When shared memory is allo-
cated, consecutive data are sequentially mapped to consecutive
32 banks in cyclic distribution. When different threads in a
warp access different locations of the same bank at the same
time, access is serialized. This is known as bank conflict,
which could significantly impact GPU kernel performance.

We use the classic reduction algorithm as the benchmark
to demonstrate the impact of bank conflict on performance.
Fig. 12 shows the two kernel functions. The first one is for
non-continuous reduction and the size of the stride of each

1 __global__ void sum_bc(REAL *x, REAL *r) {
2 __shared__ REAL cache[ThreadsPerBlock];
3 int tid=blockIdx.x*blockDim.x+threadIdx.x;
4 int cacheId = threadIdx.x;
5 cache[cacheId] = x[tid];
6 __syncthreads();
7 for (int i=1; i<blockDim.x; i*=2) {
8 int index = 2*i*cacheId;
9 if (index < blockDim.x)

10 cache[index]+=cache[index + i];
11 __syncthreads();
12 }
13 if (cacheId == 0)
14 r[blockIdx.x] = cache[cacheId];
15 }
16

17 __global__ void sum(REAL *x,REAL *r){
18 __shared__ REAL cache[ThreadsPerBlock];
19 int tid=blockIdx.x*blockDim.x+threadIdx.x;
20 int cacheId = threadIdx.x;
21 cache[cacheId] = x[tid];
22 __syncthreads();
23 for (int i=blockDim.x/2; i>0; i/=2) {
24 if (cacheId < i)
25 cache[cacheId]+=cache[cacheId+i];
26 __syncthreads();
27 }
28 if (cacheId == 0)
29 r[blockIdx.x] = cache[cacheId];
30 }

Fig. 12: Reduction kernels with and without bank conflict

iteration is multiplied by 2, which causes a two-way bank
conflict. The second iteration has a stride of 4, which causes
a four-way bank conflict. When the stride size reaches 32, all
threads access bank0 and the accesses are serialized, causing
lowest memory access efficiency. The second kernel function
is for continuous reduction. This method has a one-to-one
mapping between the thread and the data item, causing no
bank conflict. The performance of the two kernels are shown in
Fig. 13. As the array size increases, the algorithm’s advantages
without bank conflicts become more and more apparent.

Fig. 13: Performance of reduction kernels with and without
bank conflict on NVIDIA Tesla V100 GPUs
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V. PROPERLY ARRANGING DATA MOVEMENT BETWEEN
CPU AND GPU

In this subsection, we describe microbenchmarks for per-
formance optimization according to the third guideline, which
is to properly arrange data movement between CPU and
GPU. We demonstrate the challenges of data moving between
CPU and GPU using microbenchmarks and the optimized
version of the microbenchmarks are included that addresses
the challenges.

A. Overlapping and Pipelining GPU Data Copy and Kernel
Computation Using CUDA Stream and CudaMemcpyAsync

Data movement between CPU and GPU often dominates
the total time of offloading a computation kernel to a GPU.
A well-known solution is to use CUDA stream and cud-
aMemcpyAsync to move data between CPU and GPUs. This
approach enables parallelism and overlapping between data
movement and kernel computation, thus would be able to
decrease the impact of data movement to the overall offloading
performance. However, the benefit of this approach varies from
application to application as the overlapping depends on both
the computation kernels and the quantity of data movement. As
shown in Fig. 14, for the modified AXPY, using asynchronous
copy operations provides a small improvement to performance.
Considering AXPY has 1:1 ratio between data movement and
computation, data movement is the dominating factor for the
performance. Thus even with overlapping, its benefit is mini-
mal. This benchmark is included in the CUDAMicroBench to
demonstrate how to use CUDA stream and cudaMemcpyAsync.
For computation that are likely computation intensive, the
benefits would be more obvious.

Fig. 14: Performance of asynchronous overlapping of CPU
and GPU computation on NVIDIA Tesla V100 GPUs

B. Storing Read-only Data in Read-only Memory

NVIDIA GPUs have reserved part of the DRAM as read-
only memory, known as constant memory and texture memory.
Properly use read-only memory and global memory by storing
read-only data in constant or texture memory and read-write

data in global memory improve the usage of the bandwidth of
DRAM. The microbenchmark we developed to evaluate the
use of the two kinds of read-only memory is matrix addition,
which is simple but also allows for evaluating the effect of
2-dimensional texture memory.

The results on the NVIDIA Tesla K80 are shown in Fig. 15.
When using texture memory instead of global memory on two
matrices of size 20480*20480 we saw a significant perfor-
mance gap with up 4x the speed. There was not a significant
performance difference when using the NVIDIA Tesla V100
instead. This is mainly because of the architecture change in
the texture memory unit. Kepler (Tesla K80) has a separate
texture cache unit, while Volta (Tesla V100) has the texture
cache unit shared with L1 [4].

Fig. 15: 1D and 2D texture memory performance on NVIDIA
K80 GPUs

C. The Impact of Memory Access Density to Performance

Memory access density refers to the ratio of sizes of the data
used for calculation and of the data transferred between CPU
and GPUs. Ideally, we would like all data transferred are useful
for computation, meaning high memory access density. when
the access density is low, moving useless data will impact the
performance. One of the optimized solution is to use unified
memory such that data are copied from CPU memory to GPU
memory when they are needed and accessed. GPU unified
memory transfers only the necessary pages which contain the
necessary data between CPU and GPU during execution.

Our benchmark to evaluate the density impact is to use stride
to control density for AXPY, the larger of the stride, the lower
the access density. The performance result shown in Fig. 16
confirms that when the density is low (stride is high), using
unified memory significantly improves the performance.

D. Reducing Unnecessary Data Transfer

A simple and classic example of unnecessary data transfer
is sparse matrix processing. For a known sparse matrix,
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Fig. 16: Performance to show the impact of memory access
density on NVIDIA Tesla V100 GPUs

compressed storage format can be used to reduce the amount
of data to be transferred and the amount of computation.

We use the example of sparse matrix-vector multiplication
(SpMV) to illustrate this problem. The input matrix is sparse
and it can be stored in CSR format. When using the traditional
row-first storage format and save all elements of the sparse
matrix, we need to transfer the entire n * n matrix to the
GPU. When using CSR mode to store the matrix, we only
need to copy three one-dimensional vectors from the CPU.

The performance of the experiments is shown in Fig. 17. We

Fig. 17: Performance of SpMV in standard dense-matrix
format and CSR format on NVIDIA Tesla V100 GPUs

use a sparse matrix with a size of 10240 * 10240 as the input
matrix and change the number of non-zero elements to test
two kernels. As the number of non-zero elements decreases,
the matrix becomes more sparse, and the advantages of using
the CSR format become more obvious.

‘

VI. RELATED WORK

A. Benchmark Suites for Evaluating GPUs

Rodinia is a benchmark suite proposed by Shuai Che et
al. for heterogeneous computing [5]. CUDA and OpenMP
are used in Rodinia to explore multi-core CPUs and GPUs.
Rodinia is structured to span a range of parallelism and data

sharing characteristics and can represent different types of
behavior according to the Berkeley dwarves. Its significance
is to provide the benchmarks for testing the performance of
multi-core CPUs and GPUs and get some important architec-
tural insights through the experimental results. The Standard
Performance Evaluation Corporation(SPEC), is a company
specializing in benchmarks. It includes a SPEC ACCELwhich
has a set of compute-intensive parallel applications running
under the OpenCL 1.1, OpenACC 1.0, and OpenMP 4.5
APIs. This suite comprehensively evaluates CPU and GPU
performance, memory performance, and even compilers’ per-
formance. Using CUDA, M Abdullah Shahneous Bari et al.
have evaluated a suite of benchmarks including Ray-tracing,
Matrix-Matrix Multiplication, Heat Transfer, sparse matrix-
vector multiplication in different generations of NVIDIA
GPUs, including Kepler, Maxwell, Pascal, and Volta [4]. The
primary evaluation is for different GPUs, the performance
difference of data placed in different memory including shared
memory, constant memory, texture memory, etc.

Unlike the benchmarks mentioned above, the CUDAMi-
croBench uses much simpler kernels to demonstrate the per-
formance challenges and optimization techniques when using
GPUs and CUDA. Thus it fits better to use for performance
optimization than those comprehensive and large-application
benchmarks.

B. Related Work that Uses Specific Techniques and Features

1) Related work for using CUDA kernel optimization tech-
niques: There are several works that provide insight into
kernel optimization techniques. Meng et al. propose compiler
side optimizations to dynamically handle warp divergence [6].
This is in contrast to our approach of optimization through
code improvements instead of compiler. The work proposed
by J DiMarco et al [7] optimize K-means clustering and
hierarchical clustering using dynamic parallelism. S Shekofteh
et al. studied how to implement concurrent kernel in a more
efficient manor including a framework for scheduling [8].
The final work of note is L Toldeo et al. which study the
performance impact of task graphs in scheduling, focusing
on leveraging concurrent kernel and dynamic parallelism as
the kernels to be scheduled with a task graph [9]. The
authors claim a 25x performance uplift when using task graphs
which illustrates how combining multiple features can lead to
significant performance improvement.

2) Related work for using GPU memory: Effective use of
different kinds of memory in GPU is a well-studied topic.
Zhiyi Yang et al. used shared memory to improve the data
reading speed of the DCT encode and decode algorithm in
image processing [10]. Paulius Micikevicius et al. optimizes
the stencil with shared memory to significantly increase the
speed of 3D finite difference computation [11]. The caching
algorithm for CUDA shared memory for 2D Smoothed particle
hydrodynamics (SPH) solver implementation proposed by
Daniel Winkler et al. can significantly improve the efficiency
of the original algorithm [12]. Lucas C. G. G. Persoon et
al. use texture memory to significantly reduce the calculation
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time of γ evaluations without reducing the accuracy [13].
This is a successful application of texture memory in quantify
differences in dose distributions. D.P. Playne applied texture
memory to three-dimensional Cahn-Hilliard simulations [14].
The unique design of texture memory poses a great advan-
tage in the processing of three-dimensional data. Y Kim et
al. proposed CuMAPz to compare the memory performance
of CUDA programs [15]. For some effects including data
reuse, global memory access coalescing, shared memory bank
conflict in shared memory, they explained how CuMAPz
optimizes memory strategy.

3) Related work for optimizing CPU-GPU memory copy
and overlapping : Using unified memory can optimize CPU-
GPU memory copy and overlapping by reducing unnecessary
data transmission. R Landaverde et al. developed multiple
microbenchmarks for the GPU architecture and tested the
performance of Unified Memory Access(UMA) [16]. W Li
[17] used the Diffusion3D benchmark in the CUDA SDK
samples, Parboil benchmark suite and matrix multiplication
to evaluate unified memory technology [18].

CudaMemcpyAsync enables non-blocking data movement
between CPU and GPUs. Paulius Micikevicius et al. used
cudaMemcpyAsync in their work to accelerate 3D Finite Dif-
ference Computation [11]. For smaller data sets, communica-
tion overhead is close to or even greater than the computation
time. Using cudaMemcpyAsync can significantly improve the
efficiency of program execution. Mohammed Sourouri et al.
developed a program for stencil computations based on CPU
and GPU [19]. They used cudaMemcpyAsync to perform the
final CPU-GPU data exchange to achieve a good overlap of
various computing activities.

VII. CONCLUSION

In this paper, we present our development of a microbench-
mark suite for assisting users to optimize CUDA programs for
NVIDIA GPUs. Each benchmark has kernels for demonstrat-
ing performance problems and reference solutions and opti-
mization techniques to address the problem. The microbench-
mark can be used to evaluate the performance of CUDA code
with different GPU architectures, for validating and comparing
software tools for their performance analysis capability, help-
ing users understand the complexity of heterogeneous GPU
systems and guiding users to optimize performance.

For future work, we will update and upgrade the bench-
mark to evaluate new features available in the latest CUDA
programming model, e.g. using memory advises to optimize
the performance of unified memory. More benchmarks and
programming optimization techniques will be added as we
improve the study. We will use these microbenchmarks with
performance tools and compiler analysis for the purpose of
evaluating tools’ capability of detecting memory problems. We
also plan to develop similar set of benchmarks using OpenCL
to evaluate GPUs from other vendors.
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