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ConvNets for counting: Object detection of transient phenomena
in steelpan drums®

Scott H. Hawley'® and Andrew C. Morrison>®
'Department of Chemistry & Physics, Belmont University, Nashville, Tennessee 37212, USA

’Natural Science Department, Joliet Junior College, Joliet, Illinois 60431, USA

ABSTRACT:

We train an object detector built from convolutional neural networks to count interference fringes in elliptical
antinode regions in frames of high-speed video recordings of transient oscillations in Caribbean steelpan drums, illu-
minated by electronic speckle pattern interferometry (ESPI). The annotations provided by our model aim to contrib-
ute to the understanding of time-dependent behavior in such drums by tracking the development of sympathetic
vibration modes. The system is trained on a dataset of crowdsourced human-annotated images obtained from the
Zooniverse Steelpan Vibrations Project. Due to the small number of human-annotated images and the ambiguity of
the annotation task, we also evaluate the model on a large corpus of synthetic images whereby the properties have
been matched to the real images by style transfer using a Generative Adversarial Network. Applying the model to
thousands of unlabeled video frames, we measure oscillations consistent with audio recordings of these drum strikes.
One unanticipated result is that sympathetic oscillations of higher-octave notes significantly precede the rise in sound
intensity of the corresponding second harmonic tones; the mechanism responsible for this remains unidentified. This
paper primarily concerns the development of the predictive model; further exploration of the steelpan images and

deeper physical insights await its further application. © 2021 Acoustical Society of America.
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I. INTRODUCTION

Electronic Speckle Pattern Interferometry (ESPI) has
proven to be an effective technique for musical acoustics
research. ESPI provides a means for the measurement and
visualization of vibrating plates and membranes making up
musical instruments such as violins, guitars, drums, and
others."? ESPI offers the capability of making amplitude
measurements for small vibrations; time-averaged ESPI pro-
duces images with light and dark fringes, which are lines of
constant surface deformation proportional to the wavelength
of the laser light. These images are similar to Chladni pat-
terns in that they reveal the mode shapes of vibrating surfa-
ces (although typically, Chladni patterns are used to reveal
standing wave patterns, whereas the images in the present
paper are of transient phenomena). While lacking the full
spatial resolution of traditional film-based laser holography
images,® the relatively low cost and ease of setup make
ESPI a popular choice for researchers and educators.*

High-speed video of ESPI images has been used in the
case of Caribbean steelpan drums.” The steelpan drum is a
membranophone that originated in Trinidad and Tobago.
Instrument-makers repurposed steel oil drums,® stretching
the steel into a concave surface and dividing it into a set of

“This paper is part of a special issue on Machine Learning in Acoustics.
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flattened, tuned subdomains often referred to simply as
“notes.” It is played using straight sticks tipped with rubber.
When a particular note is struck, waves emanate from the
point of impact. At the boundary for the note, some of the
wave energy is reflected and sets up standing waves,” while
the remainder propagates throughout the full steelpan
domain and triggers sympathetic vibrations among the other
notes. An accurate characterization of the sympathetic
vibration time evolution has yet to be realized.** A funda-
mental question is how much of the sound of the drum is
due to nontrivial time-dependent behavior of the drum notes
(as opposed to steady-state resonant modes).

To better understand the full dynamics at work in the
steelpan, high-speed ESPI images merit closer, quantitative
measurements, and yet the enormous quantity of frames
recorded poses a burden on researchers to properly annotate
and catalog what is seen in the images. Thus, the “Steelpan
Vibrations Project” (SVP)'® was formed in partnership
with the Zooniverse.org'' platform for crowdsourced data
analysis. Zooniverse arose in the context of large-scale sky
surveys of galaxies, relying on human volunteers from
around the world to use a World Wide Web interface to
annotate the images and classify the galaxies seen in the
images.'? The specific nature of the annotation used in the
SVP will be described in Sec. IT A. As the SVP progressed,
it became apparent that an insufficient number of volunteers
were contributing to the project, such that progress in anno-
tating the large dataset of images was slow. In addition,

© 2021 Acoustical Society of America
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because of the variation in human annotators’ work, having
multiple volunteers’ annotations of the same image was
deemed necessary,” further slowing the progress of using
these annotations to understand the dynamics of the steel-
pan. Thus, the use of automated annotation methods merited
exploration.

While traditional methods of ellipse detection, such as
the Elliptical Hough Transform'* can be effective for
smooth, well-defined ellipse features, the noisy and highly
variable nature of the ellipse regions in SVP images, com-
bined with the additional task of counting the rings per anti-
node, make the Elliptical Hough Transform a poor fit for
this task. There are adaptions to account for incomplete
shapes and noise;ls’16 however, the presence of labels via
the SVP made us interested in a machine-learning approach.
Thus, we sought to adapt methods of neural network—object
detection models to our unique use case.

The success of machine-learning systems at extending the
image-annotation efforts of humans has been demonstrated in
a variety of domains—notably, image-classification chal-
lenges involving the recognition of handwritten numerical
digits'” and images of various animals and vehicles.'®'?
The task of localizing and classifying portions of images
is known as “object detection;”*° typical uses include
surveillance systems and satellite imagery analysis®' as
well as astronomy applications®> such as galaxy
classification.”?

Multiple algorithms exist for object detection, and
among the most popular and successful in recent years>*
are those that rely on convolutional neural networks (CNN)
that reduce each image into a (large) set of learned features.
These features are then fed into a fully-connected layer to
predict locations of objects and their classifications. The
scheme used for SPNet is inspired by that of YOLOv2,?” but
uses one of a variety of “stock” CNN base models, along
with a few important modifications specific to the domain of
ESPI imagery of steelpan drums, and the annotation task of
the SVP, as follows: Most object detectors operate on color
images of everyday objects, animals, and people found in
datasets such as ImageNet,”® whereas the SVP task required
the resolution of constantly changing patterns in grainy,
grayscale images. Most object detectors provide classifica-
tions of their objects, whereas the SVP task required regres-
sion to “count” interference fringes. While CNNs are known
to perform well at detecting and classifying textures®*~® or
for counting numbers of objects or people,’’ their use to
“count” rings (or, phrased more carefully, to discover corre-
lations between image patterns and ring counts) which may
have similar “texture” but different spatial extents, was not
an application that we observed to have received widespread
attention. Most object detectors make location predictions
for rectangular regions of images, whereas the SVP required
tracking antinodes within elliptical regions. When we began
work in 2017, elliptical object detectors were not in wide-
spread use; however, while preparing this paper, a classifier
for wood knots was published®> which uses a different
scheme from what we present here.
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The paper is organized as follows: Sec. II presents
details of the SPNet algorithm and training. Section III
presents some performance metrics, Section IV presents pre-
liminary physics results, and Sec V provides a discussion of
these results. A separate paper discussing these and further
physics results is in preparation.

For the purpose of reproducibility, the SPNet computer
code is available at https://github.com/drscotthawley/spnet,
and two of the datasets used have been released on
Zenodo.”

Il. SPNET DESIGN
A. The Steelpan Vibrations Project (SVP)

Volunteers recruited for the SVP are presented with
randomly selected frames from high-speed videos, such as
the grayscale image shown in Fig. 1(a), and are tasked with
using a web interface to place elliptical boundaries around
the antinode regions (as shown in green), along with count-
ing the number of interference fringes or “rings” for each
antinode. Multiple videos for different steelpan-strikes are
available, which show different regions of the (same) steel-
pan being excited.

The frames that are included in the SVP are taken from
an ESPI optical arrangement and were captured by a high-
speed camera and processed by image subtraction of a refer-
ence frame from individual video frames after the drum has
been struck. The drum was struck on the back side of the
note such that the front side of the note would be unob-
structed to the camera’s view. The drum was struck with a
metal ball driver held by hand at amplitudes well below the
typical playing conditions. The vibration amplitudes must
be small to be able to be seen clearly in the ESPI frames.

For the SVP classification task, organizers required that
at least 15 people supply annotations for a given video
frame (image) before it could be analysed for clustering'?
and then for each antinode in a frame, at least five annota-
tions would be needed. For example, for an image with three

FIG. 1. (Color online) Illustration of Steelpan Vibrations Project (Ref. 10)
(SVP) task: Ellipses “drawn” (in green) by human annotators around antin-
odes in an ESPI steelpan video frame via the Zooniverse crowd-sourcing
data annotation interface. Not shown: Annotations also include users’
counts of the number of interference fringes or rings for each antinode
region.
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antinodes, ideally there would be 45 annotations, which
were grouped via cluster in X and Y directions. If a volun-
teer’s suggestion was too far from the average (e.g., their
mouse slipped) then it was not considered. Then, averages
were performed over the ellipse parameters and number of
fringes; these averages were written to a file, which com-
prised the “raw” or “ground truth” data for training the
SPNet model. As indicated in Fig. 2, from frame-to-frame,
some antinode regions will appear or disappear. Beyond var-
iability among volunteers, it can be very much a “human
judgement call” as to whether a given ring-shape should be
marked as an antinode or not; volunteers were exposed to
one frame at a time rather than viewing video. Even with
the benefit of viewing multiple frames, to the authors of this
paper (who may be considered to provide an “above-
average” level of consistency as annotators), it is not always
clear—especially immediately after a strike—which shapes to
mark as antinodes. Furthermore, often the struck note would
exhibit a “twin aninode” structure resulting from its excited
2nd harmonic, in which case annotators may have drawn an
ellipse around the whole note or drawn two ellipses around
the two (alternating) sections of the note. This is perhaps at
variance with the experience of many machine-learning
enthusiasts who are accustomed to working with very clean
datasets and/or well-defined tasks. To better clarify the diffi-
culty of performing the task with consistency, we invite
readers to visit the SVP website'® and try annotating several
images themselves. Continuing our example from above, if
11 of the 15 people missed one of the three antinodes, then
it would be rejected and not included in the dataset at all for
that frame.

T T | T T |
L — Raw Data (Avg. of 5+ humans) _|

— Running Average (10 frames)
»~— Running Std. Dev. (10 frames)

[=))

W
I

~

w

Number of Antinodes in Frame
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0 500
Frame # (all frames concatenated)

1000 1500 2000

FIG. 2. (Color online) Graphical representation of one aspect of the vari-
ability in the aggregated human annotations comprising the SVP dataset.
While physically, antinodes typically persist over 50 to hundreds of frames,
the fine structure of the raw data in this graph shows that the presence of
some antinodes may or may not have been annotated consistently frame-by-
frame (even in the aggregated data). This is the dataset used to train and
score the SPNet model. This does not display (the further) variability in
ring counts, only whether an antinode is marked.
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Regarding the variability in volunteers’ ring counts:
When we compute the standard deviations of volunteers’
ring counts of each antinode and average over all antinodes,
we find a value of 1.7. This is considerably wider than the
*0.5 used for scoring the SPNet model’s accuracy, below.
For a standard deviation of 1.7, the area under a normal
probability distribution within *=0.5 of the mean is approxi-
mately 0.23, which implies a typical volunteer’s ring-count
accuracy metric for comparison with SPNet would be 23%.

The task of SPNet is to match (average) human perfor-
mance from the SVP for the frames available, as well as to
“fill in” the missing annotations for frames in-between those
already annotated by volunteers. The specificity of this goal
will affect the design of the training, discussed in Sec.
II D—the design goal of “filling in” missing frames means
that the trained SPNet model is not intended to serve as a
generic “deployable” inference model for general ESPI
images that differ qualitatively from those in the SVP data-
set. Questions regarding the ability of the SPNet model to
generalize to other ESPI images, such as those of guitars are
addressed in Sec. V.

B. Model architecture

The overall strategy of SPNet is inspired by YOLOv2,*’
but the model differs in that we use one of several pre-defined
“stock” multi-layered CNN architectures for the main convo-
lutional network, such as MobileNet,35 InceptionResnetVZ,36
or Xception.** The ability to easily swap in various predefined
CNN base models is made possible via the Keras neural
network framework.®” These models can be initialized using
random weights or weights pre-trained on Imagenet.*® Our
experience indicates that the Xception®* provides a good base
model yielding high accuracy, stable training, and reasonable
execution time. (MobileNet, although faster, was not as accu-
rate, whereas InceptionResNetV2 proved both slower and
more difficult to train consistently.) These base models typi-
cally expect square-shaped image inputs with three color
channels, and large input images can result in networks with
so many tunable parameters (weights) that their memory
requirements exceed the capacities of single computer work-
stations. In order to supply input images compatible with
available pre-trained base model architectures, while keeping
memory requirements manageable, we first resize our 512
x 384 grayscale input images to a square size of 331 x 331.
Even this proves to be unnecessarily and prohibitively
memory-intensive, so we shrink this by a factor of two using
“average pooling,” and then “tile” (i.e., repeat or broadcast)
the grayscale channel to form three identical ‘“color”
channels—this is the lower path shown in Fig. 3. Doing this
alone, however, could result in some loss in fine detail, so we
combine the lower path with the result of the “upper path,”
consisting of multiple 3 x 3 convolutions yielding three filter
channels, in concert with a pooling operation for size reduc-
tion. Adding these two paths forms a “residual block™'® for
which the lower (pool-tile) path is a skip connection. The skip
connection allows the model to train faster than without it by

Scott H. Hawley and Andrew C. Morrison
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FIG. 3. (Color online) Diagram of the SPNet architecture. The grayscale input image is resized via average pooling and two additional (“color”) channels
are added via 3 x 3 convolutions before feeding into a “stock” base model chosen from available Keras models (as described in the text, we prefer Xception
(Ref. 34) which is then fully connected to a flattened layer which holds the values of a 6 x 6 x 2 grid of predictors for the 8 variables in Table I.
(6 X 6 x 2 x 8=576) values in the model output.) The operations to the left of the base model can be regarded as a “residual block™ designed to shrink the
image to lower memory costs while still retaining some finer details of the larger input image. Also, shown as an array of red dots on the input image are the
centroids of regions covered by the predictors, which predict antinode centroid coordinates in terms of offsets from these locations. Not shown: Leaky
ReLU activations and batch normalization between layers. (Note: the images shown for intermediate layers are “artwork,” not actual layer activations.)

smoothing the hypersurface of the loss function,®® and the
upper (conv-pool-conv-conv) path allows the model to better
resolve fine features from the larger (331 x 331) image before
reducing it in size to feed into the base model. The pre-
processing layers (before the base model) include Leaky
ReLU activations and batch normalization. We also add a
small amount (0.1) of dropout™” before the base model to help
avoid overfitting.

The output of the base model is fully connected to a
“flattened” layer whose elements are taken to represent a
“grid” of outputs we refer to as “predictors” which predict
attributes of relevant antinodes for each subdomain of the
image covered by the predictor. Each predictor predicts
8 values shown in Table I: (p,x,y,a,b,s,c,r), where these
values are defined relative to the subdomain associated with
each predictor, i.e., within each “grid cell,” according to
Table I. The “existence” variable p € [0..1] measures the
distinction between the background and an object. The val-
ues of x, y, a and b are normalized relative to the size of the
image, and x and y are offsets from the center of each
respective grid point. Instead of the ellipse rotation angle 0,
we use the two variables ¢ = cos (20) and s = sin (20)
which have the dual advantages of avoiding any coordinate
discontinuity at 0 =0 as well as ensuring uniqueness given
the 180° rotational symmetry of the ellipses.*' These varia-
bles are later used in training by optimizing the loss func-
tion, which appears in Sec. IID 1 as Eq. (1).

C. Datasets

Table II summarizes the datasets used in this study.
Early in this project, there were insufficient numbers of
(aggregated) volunteer-annotated images, so in order to
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develop and test the model, we procedurally generated a
large (50000 image) corpus of random “fake” images that
combine these salient features: groups of elliptical rings of
varying sizes, orientations, eccentricities, on a background
of wavy patterns, with noise. (We prefer the word “fake”
over the more formal “synthetic” to avoid any confusion—
these images are akin to “artwork” and have no physical
basis). Shown in the upper pane of Fig. 4 is an example of
the fake data comprising the FakeLarge dataset, along with
superimposed “exact” annotations (upper values, light yel-
low) and SPNet predictions (lower values, dark purple.) The
fake images in FakeLarge are quite different from the Real
data in that the former have sharp edges and lack the varia-
tions in brightness, contrast, blurriness, and lost pixels
observed in the latter.

Additional datasets were created after it was observed
that the model’s performance when training on the FakeLarge
dataset (e.g., Figure 5) was much better than when the Real
dataset was used. Questions about the cause of this discrep-
ancy in performance between datasets included:

1. Was it because there was more data in FakeLarge than
Real?

TABLE I. Definitions of predicted variables.

p: the probability of an antinode’s existence within the grid cell,
p € [0..1]

X,y coordinates of the offset of the antinode’s centroid relative to
the grid cell’s center on the image

a,b: the ellipse’s semimajor and semiminor axes (a >= b)

¢, st ¢ = cos (20) and s = sin (20), where 0 is the ellipse orienta-
tion angle

T the number of rings (i.e., interference fringes)

Scott H. Hawley and Andrew C. Morrison 2437
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TABLE II. List of datasets, each divided into Train/Validation/Test subsets
as 80%/10%/10% splits. Due to RAM limits, all Train subsets contain
40000 images, where smaller initial sets have training subsets (~960
images) augmented by a factor of 41 to produce 40 000 images (see “Data
augmentation”). “Fake” denotes synthetic images, used as a consistent
baseline given the inconsistency of the human-annotated “real” images.
Bold for the rows indicates that these are the most similar for judging the
effects of variability in the human labels in Real (whereas those in
CGSmall are “exact”). Datasets FakeLarge and CGLarge are available
from Zenodo;*® whereas release of the Real Read dataset is delayed pend-
ing a future paper.

Label Description
FakeLarge Fake, 50 000 images

Real Real data, ~1200 images
FakeSmall 1200-image subset of FakeLarge
CGLarge CycleGAN-processed FakeLarge
CGSmall 1200-image subset of CGLarge

2. Was it because antinode boundaries and rings were much
clearer in FakeLarge images than in Real?

3. Was it because the annotations in FakeLarge were exact,
whereas the annotations in Real were highly variable,
i.e., similar-looking images in Real often had very differ-
ent annotations (thus “confusing” the ML system as it
trained), and/or causing it to rate low scores on evalua-
tions metrics like “Accuracy”?

To explore the first question, we created the FakeSmall
dataset and found that dataset size was not a major factor.
To answer question 2, we matched the visual properties of
the real data (i.e., the statistics of the pixels in the images)
while still retaining “exact” annotations against which to
evaluate the model, by training a CycleGAN** model to do
neural style transfer, applying the style of real images to
those in FakeLarge. These results were termed CGLarge,
one example of which is shown in the lower pane of Fig. 4.
We also created a corresponding smaller set termed
CGSmall. The implications of this being that the difference
in performance between CGSmall and Real would provide a
measure of the degradation in model performance due to the

inconsistency in the volunteers’ aggregated annotations in
Real. As you will see below in Fig. 5 and Table III, the dif-
ference is significant.

1. Data preparation

We obtained a set of aggregated data from multiple vol-
unteers’ annotation attempts;'® although the users’ ring
counts were entered as integers, the aggregation process pro-
duces decimal ring counts. The main data preparation work
for SPNet lies in taking the aggregated SVP data and setting
up the correct vector of target values Y for all grid cells, for
all images, in a way that would be unambiguous and thereby
“easiest” for the system to learn.

First, we initialize all predictors to indicate no exis-
tence, i.e., p =0, and for all other variables to be set in the
middle of their respective (normalized) ranges. Then, for
each set of annotations (for each image), also called
“metadata,” we sort the antinodes by their centroid loca-
tions, first vertically and then horizontally, then compute to
which grid cell each antinode “belongs”. For the first of the
two predictors in that cell, we set e = I, compute x and y as
the difference between the antinode’s centroid coordinates
and the center of the grid cell, divided by the width of the
grid cell to keep the values normalized on —0.5...0.5. It is
possible that the Zooniverse interface allowed for a < b and/
or for a given rotation angle 6 that may not be bounded
within a 180° range; so, for definiteness, we swap a and b
for any data in order to enforce @ > b, subtracting 90° in the
process. After this, we compute ¢ = cos 20 and s = sin 20 to
enforce the twofold rotational symmetry of the ellipses as
well as avoid any ambiguities with positive or negative
angles, or coordinate singularities at 0 =0. This process is
repeated, with the second predictor in a cell being used if
there has already been an antinode found in a given grid
cell. (For more intricate patterns of antinodes, more predic-
tors per cell, and or a more finely grained grid of predictors
could be used. The choice of 6 x 6 x 2 was found to be ade-
quate for the SVP data.) Having set up all the target or

(b)

FIG. 4. (Color online) Sample fake images, showing ground-truth bounding ellipses and ring counts (upper values, light yellow) and those predicted by the
network (lower values, dark purple). Top: original style of fake image, from FakeLarge dataset. Bottom: same fake image with “real” style transferred via

CycleGAN (Ref. 42), from CGLarge dataset.
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FIG. 5. (Color online) Training progress. Top: various components of the loss function for dataset FakeLarge. (A similar graph for Real would show
Validation loss values leveling off after approximately 20 epochs, which is where the Training loss crosses the Validation loss.) Bottom: Classification-like
accuracy scores for ring counts for validation subsets of all datasets. Despite FakeSmall, CGSmall, and Real all having similar numbers of training images
(ca. 1200, when are then augmented as per Sec. 11 C 2), FakeLarge and CGSmall have much higher accuracy scores than Real. The fact that the accuracy for
Real does not improve beyond Epoch 20 indicates the variability of the human-supplied data annotations.

“true” output data Y for the grid of predictors to be trained
against, it is possible to begin computing a loss function.
First, however, it is necessary to augment the input data to
improve the generalization performance of the model.

2. Data augmentation

Augmenting the Training set is a common regularization
technique used during the training of machine-learning systems
to increase the variance of a dataset and thus make a trained
model more robust, i.e., to improve its generalization perfor-
mance when operating on new images. It is crucial in relatively
small datasets, such as the ~1200 images obtained from the
SVP. We perform augmentations at two different stages.

The first stage consists of preprocessing augmentations
that (randomly) change both the images and annotations
together—rotations (*£10°), translations (=40 pixels), and
reflections—as well as some image processing, such as noise
or blurring.

The second set of augmentations is performed “on the
fly” at the start of each training epoch, on all input images
from the first stage, and consists of random changes to the
images only without altering the annotations,** such as blur-
ring, adding noise, and “cutout™* (i.e., excising multiple
rectangular subdomains), or changes to brightness or con-
trast. The on-the-fly augmentations applied once per epoch
for 100 epochs to ~=40 000 training images from each data-
set (after the first set of augmentations) mean that during
training, the model is trained on approximately 4 x 10° dif-
ferent images for each dataset.

D. Training procedure
1. Loss function

Training is structured as a supervised regression prob-
lem using mean squared error (MSE) loss for all variables,
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subject to a few caveats as follows. For compactness, we
use the symbol Ai to denote the squared error for a variable
u€{p,x,y,ab,cs,r}, so e.g., Aﬁ = (x —x)z, with pre-
dicted values denoted by “hats.” In this notation, we define
the loss function L; for each grid-based predictor j, weighted
by the ground truth existence p (=0 or 1) of an antinode in
each region, with constant scaling factors 4, (tuned by expe-
rience so that the terms in the sum are all comparable in
magnitude) to be given by:

Li=— i, +p [zcemer(Ai +A2) 4 e (A2 + A2)

+angte (@ — D) (A2 +A2) + 7, A2 . (1)

The total loss L = (1/N) Zjvzl L; is then the mean over all
predictors j, with N = 6 X 6 x 2 = 72 being the total num-
ber of predictors in the output grid. The term in brackets in
Eq. (1) is scaled by the ground truth object existence proba-
bility p (= 0 or 1), because without existence, all other
quantities have no ground truth values. The use of the
squared difference (a — b)* to scale the contribution due to
the angle reflects the intention that, the more circular an
ellipse is, the less its angular orientation should matter.

[Replacing the first term in the loss Eq. (1) with a cross-
entropy term, i.e., —4,[plog (p) + (1 — p)log (1 — p)], was
found to confer no appreciable improvement to the results.]

We also add an L2 regularization or “weight decay’*>*°
with strength 1E-4 to all layers in the Keras model;*’ we
find this regularization to be important for avoiding
overfitting.

2. Model Initialization

Although it is possible to initialize the base model sup-
plied by Keras using weights pre-trained on ImageNet, the
different nature of our images (grainy grayscale ESPI rather
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than color images of common objects, animals, vehicles,
etc.) and our intended output type (regression rather classifi-
cation) made these pre-trained weights of little utility, and
no better than random initialization. Thus, we train all
model layers from random initial weights.

lll. MODEL PERFORMANCE AND EVALUATION

The purpose of the SPNet model is to help with SVP
annotations with the goal of obtaining physical insight into
the motion of drums, not to lay claim to ‘“state-of-the-art”
status in object detection nor win a Kaggle competition, nor
to provide a general utility for generic interference measure-
ments, nor to offer real-time computational efficiency.
Nevertheless, it is important for a method such as ours to
yield reliable results in a timely manner, and for this reason,
we provide measurements of training progress and accuracy
scores. Sample graphs for training progress in terms of loss
(component) values and accuracies are shown in Fig. 5. We
typically trained for 100 epochs using an Adam optimizer
and “1-cycle” learning rate schedule*®* with cosine anneal-
ing,”° using a maximum learning rate of 4¢ — 5. These runs
would take 8 h on a machine fitted with an RTX 2080Ti
GPU (Santa Clara, CA).

Object detection models are usually evaluated in terms
of classification and localization. Given that our task is one
of regression rather than classification, many object detec-
tion metrics do not apply directly. However, we emulate the
task of an individual human in the SVP (who provided inte-
ger values for ring counts up to 11—in which each integer
could be regarded as a class), by considering whether the
model’s prediction is within *0.5 of the ground truth
value.”' Using this, we produce a “ring count accuracy”
metric, as follows: We take the number of matching ring
counts between ground truth and predictions and divide it
by the total number of ground truth objects (antinodes) in
the Validation dataset. For example, 168 matching ring
counts out of 482 ground truth objects would yield an accu-
racy score of 35%. For comparison, we noted in Sec. Il A
that the standard deviation of individual human volunteers
contributing to the aggregated ground truth data imply that a
typical volunteer subjected to a similar metric would score a
ring count accuracy of 23%.

For an additional metric that applies only to antinode
object detection and not ring counts, we compare the aggre-
gated responses by human users in the SVP to the model
predictions, according to the following metrics: precision
(i.e., number of true object detections divided by the total
number of objects predicted by the model), recall (i.e., true
object detections divided by the total number of objects in
the aggregated human data), and intersection-over-union
score (IoU), i.e., the fraction of area overlap between pre-
dicted ellipses and their ground truth counterparts. These
can be combined into a single metric known, as the mean
average precision (mAP),’? which has been averaged over a
set of multiple detection thresholds (i.e., this mAP is compa-
rable to the “COCO mAP™* with the single category of
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foreground-versus-background detection). These scores are
listed in Table III. As a baseline comparison, the Real data-
set was converted to rectangular bounding boxes and proc-
essed using the object-detection package IceVision,*
yielding similar mAP scores of 0.62 and 0.63 using
IceVision’s Resnet50 and YoloV5 models, respectively.>
We attribute the low accuracy on the Real dataset to the
inconsistency of human annotations, rather than the size of
the training corpus, because scores for CGSmall (which has
a similar number of images with similar features but consis-
tent annotations) are significantly higher. The difference
between results for the two datasets becomes even more
striking when one considers that the Real data has less vari-
ability in images compared to CGSmall, because for the for-
mer, the antinodes in a given video clip stay in only a finite
number of places, and the nature of “filling in” missing
annotations between frames implies that images randomly
allocated among the Training and Validation sets will con-
tain many near-duplicates—in other words, for the Real data,
one might expect artificially high scores due to “cheating.”
In contrast, in CGSmall, the antinodes are distributed
randomly everywhere, thus making it more difficult for the
model to memorize their existence, locations, and sizes.
Furthermore, increasing the Training set when scoring
against the Validation set for the Real dataset, for example,
by combining the Training portions of CGLarge and Real,
confers no noticeable change in the evaluation scores,
because again, the evaluation data for Real is highly vari-
able. Even after “data cleaning” by the authors’ manually
editing the annotations for all 1200 images in Real, there
was no uniform consistency, as the annotation involves
many “judgment calls” of whether an antinode is present,
and if so, how many rings should be counted. Future annota-
tion efforts may benefit from using more than one frame at a
time, such as viewing the stack of frames as a 3D volume
and annotating via the kinds of software used in medical
imaging and segmentation. Greater refinement of the model
architecture and hyperparameter tuning would likely pro-
duce increases in the already-high evaluation scores on the
synthetic datasets (FakeLarge through CGSmall); however,
the limiting factor of the variability in the Real dataset’s
annotations implies that continued revision of the model
would have little effect on the metrics for the Real data,

TABLE III. Scores for accuracy and mean average precision (mAP) for
models trained for 100 epochs from the same random initial weights.
“Accuracy” is defined as number of matching ring counts (within *=0.5)
divided by total ground truth objects, whereas mAP indicates antinode
detection rate>® over a range of detection thresholds and is independent of
ring count.

Dataset Accuracy mAP
FakeLarge 0.95 0.97
Real 0.35 0.67
FakeSmall 0.94 0.95
CGLarge 0.89 0.89
CGSmall 0.77 0.78
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from which we wish to extract measurements of physical
phenomena. We anticipate that through additional cleaning
of the dataset (i.e., improving the consistency of the annota-
tions), that the accuracy score will rise accordingly.

Given the difficulty in scoring the model’s accuracy on
real data, a concern arises about whether attempts to extract
physics from the model’s annotations are sufficiently war-
ranted. While this concern merits further study, two addi-
tional consistency checks give us reasons for optimism.
First, curve fits of the model’s time-series predictions of
ring counts for octave notes yield close agreement with the
known frequencies of those notes, such as a fit of 660 Hz
obtained for the ring counts of the octave note when E4
(= 330Hz) is struck, and a fit of 596 Hz for the octave note
when Dy (=294 Hz) is struck as shown in Fig. 6. The curve
fit used was an absolute-value of cosine, which is chosen as
the ring count, cannot be a negative value. The curve fit suc-
cessfully matched the frequencies of the octave note for five
of the seven recorded strikes for which the SPNet model
was used to generate predictions of ring counts. The two
cases where the model was unable to make predictions lead-
ing to a reliable curve fit are due to the amplitude of the
drum strike being not sufficiently large enough to generate
motion in the octave note that could be detected by the ESPI
system. A graph showing a detail of one such sinusoidal fit
is shown in Fig. 6.

Second, our inspection of the predictions of the model
when applied to un-annotated video frames (such as in the
sample movie at https://youtu.be/-rtJLwcbQ7Kk) confirms
that SPNet’s predictions of both antinode boundaries and
ring counts are consistent with our own estimations. Given
these reasons for cautious optimism, Sec. IV, we begin to
explore what physics may be ascertained when one is will-
ing to take the many thousands of new frame-annotations

Fit to SPNet: e SPNet x SVP —Fit to SPNet
y = A¥*|cos(Bt+C)|[+D .
A: 6.733 +/-0.1538 .

B:3747+-1.653 s =
C:-0.4127+/-0.1230 = 2 2
D: 0.8246 +/-0.1134

RMSE: 0.7119 ' g
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FIG. 6. (Color online) A segment of the SPNet amplitude predictions
(circles) for the region of the steelpan corresponding to the Ds note is fit
with an | cos wr| function. The fitting parameter B is equivalent to . In this
case f = 5% = 596 Hz, which is close to the frequency of the Ds note. (Note
that this is a constant-amplitude fit in order to find the frequency.) Human
annotations (SVP, x’s) are included for comparison.
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provided by the model at face value, with the caveat that
these are preliminary results.

IV. PRELIMINARY PHYSICS RESULTS

Figure 7 shows drum oscillation amplitude as a function
of time, comparing ring counts obtained from SPNet with
audio recordings using a microphone placed Im from the
center of the drum. Each recording of a drum strike was
made using an ACO Pacific (Belmont, CA) model 7012, %
condenser microphone controlled by a custom LabView
(Austin, TX) program triggered to coincide with the high-
speed ESPI recording. Audio recordings were made at a
sample rate of 44 100 Hz, and analysis of the recordings was
done with the SNDAN package.56 The large fundamental
note, such as that shown in the left of the field of view (as
shown in Fig. 1) is struck, and the SPNet analysis tracks the
rings in a note to the right, corresponding to the second har-
monic. (This was confirmed by measuring the frequency of
the oscillations in the ring counts.)

Figure 8 explores the relationship between the number
of rings and the size (area) of the antinodes. For large ring
counts, which indicate large deformation (or velocity) of the
surface, one would expect the area of the antinode to be the
same as that of the note itself. Small areas and small ring
counts could result from small notes or could result from
large note areas in which the note is barely moving. In the
latter case, one would only see the shape of the largest por-
tion of the note that “peeks up” above the threshold set by
the laser interference. It is not obvious, then, what the rela-
tionship between area and ring count should be, and thus,
we provide Fig. 8 as a set of raw observations. The differing
coloration of the dots is primarily to allow for articulate
viewing (i.e., so the reader is not presented with a large
wash of undifferentiated uniform color) and also to provide
the opportunity to observe any time dependence in the distri-
bution of the values. We do not claim to detect a noticeable
time-dependent trend in the case of this figure; however, in
Fig. 9, there does appear to be some noticeable time-
dependence.

In Fig. 9, we investigate the relationship between
(squared) eccentricity and ring count. As with area versus
ring count, it is not obvious what the relationship between
eccentricity and ring count should be: If eccentricity was
determined purely by the shape of each note, then we would
expect a “quantized” set of eccentricities (one for each note-
shape), but instead, we see a wide range of antinode eccen-
tricities present. (The horizontal banding near the bottom is
a non-physical artifact of pixel-integer math.) In the case of
this figure, we observe that the darker dots representing
early times tend to cluster in the upper right area of high
eccentricity and low ring count, whereas the domain of low
eccentricity and high ring count tends to be occupied only at
later times. We will discuss this further in Sec. V.

A sample movie of SPNet-annotated video frames is
available in the Supplementary Materials, as well as at
https://youtu.be/-rJLwcbQ7Kk.
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FIG. 7. (Color online) Time series for four (manual) drum strikes on fundamental notes D4, D4 again, E4 and A,4. The solid (blue) line shows the rapid oscil-
lation in ring counts from SPNet’s annotations of the corresponding octave note, for which absolute-value cosine curve fits show frequencies at or very close
to the expected 2nd harmonic frequencies (i.e., Ds, Es and As, respectively). Dot-dashed (black) and dashed (red) lines show the amplitude obtained from
audio recordings of the events, for the Ist and 2nd harmonics, respectively. The richness of the drum’s behavior is evident from the variability between
strikes. All graphs show a rapid damping of the 2nd harmonic immediately after the initial strike, yet the later rise in the 2nd harmonic sound intensity signif-
icantly lags (or is even uncorrelated with) the motion of the corresponding octave note observed in video analysis by SPNet. Even in the left-most graph
where the two appear to correspond, the lag is significantly longer than would be suggested by physical delay mechanisms such as wave travel time. We dis-

cuss these further in Sec. V. (The SPNet annotations end before the audio recordings because high-speed video was only recorded for ~150 ms.)

V. DISCUSSION
A. Physical Interpretation

In Fig. 7 we observe the differing behavior of the sec-
ond harmonics when measured via audio versus SPNet (via
the latter’s ring-count annotations of the octave note). We
find this difference surprising, as we would expect these two
signals to exhibit close similarity.

In Fig. 7(a), the audio signals for the first and second
harmonics initially decay at approximately the same rate
(i.e., they have the same “reverberation time”), suggesting
that this initial transient in the second harmonic sound
results from the first harmonic note ringing down as a
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FIG. 8. (Color online) Area versus number of rings for antinodes detected
in four separate videos of drum strikes. The largest ring-counts are associ-
ated with large areas, however as expected, the reverse is not the case, for
physical reasons described in the text. We color the points by the frame
number in each video, as a way to investigate how the distribution of area
versus ring count might change over time (although we make no claims for
this figure).
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superposition of first and second harmonics, and only later
does the octave note in the drum begin to oscillate signifi-
cantly—on differing time scales of roughly 50 ms after the
strike for in the video (SPNet output) and 150 ms for the
audio. The strike shown in Fig. 7(b) exhibits qualitatively
different behavior from the previous graph. The second har-
monic in the audio initially decays much faster than the fun-
damental, and rises again 90 ms later, whereas the octave
note as measured by SPNet begins oscillating immediately
and maintains its amplitude.

The drum strikes were performed by hand, not always
with the same velocity or even exactly in the same location
within each fundamental note, so that differences between
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FIG. 9. (Color online) Eccentricity squared versus ring count. We observe
that dark-colored dots representing antinodes at early times tend to cluster
towards the upper left area of higher eccentricity and low ring count,
whereas lower eccentricities with larger ring counts are seen mostly at later
times (lighter colors). For nearly circular antinodes, the model is not pre-
vented from predicting b > a sometimes (by as much as 7 pixels), despite
being trained on data for which a > b is always satisfied; hence the negative
values of 1 — b?/d>.
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Figs. 7(a) and 7(b) need not merit consternation in their own
right. One may add to this the fact that these two different
drum notes were hand-hammered by the steelpan tuner and
thus, there is no guarantee of consistency from one note to
the next.

Allowing for such variations, however, the difference
(for each strike) in the second harmonic between audio and
video (SPNet annotation) measurements is nevertheless
noteworthy. At present, we are unable to account for this
discrepancy. Looking at the graphs of the signals (physics
aside), one might propose some kind of “delay” of at least
50 ms between the two signals, at which point it is worth
ruling out two mechanisms that would not produce such a
long-term effect. First, the travel time of sound in air from
the drum to the microphone is no more than 3 ms since the
latter is only 1 m away. Second, the wave speed in the drum
is roughly 3000 m/s (this is not a precise number because
steelpans, like the one used in this study, are hand-
hammered by artisans and thus contain variations in thick-
ness), whereas the distance between the fundamental and
octave notes is at most a few centimeters, yielding a wave
travel time in the drum on the order of 10 u s. Given that
the dynamical time scales for wave travel are so short, it
seems unlikely that the difference in signals can be
accounted for in terms of a delay due to wave propagation.
Thus, an understanding of the physics producing the
observed difference in the measurements for the second har-
monic awaits further study.

Turning our attention to the distribution of eccentricity
versus ring count as shown in Fig. 9, we observe an apparent
trend of clustering of early-time antinodes towards the upper
left, with the lower right consisting of mostly later-time
antinodes. This raises several questions, as the interpretation
of this observation is not straightforward. While this trend is
truly present in the data (and not some artifact of the order
in which points are plotted), we prefer caution about draw-
ing physical inferences from this. The idea that large, circu-
lar antinodes are the ones likely to persist the longest seems
well-motivated, but the evolution of a single antinode is not
trackable in this figure: We saw in the second harmonic
graphs of Fig. 7, ring counts not only decrease with time via
damping but can increase over time. (Also, since the frames
show oscillating antinodes, each dot in the graph oscillates
left-and-right “rapidly” in this figure, regardless of any
longer-term trends). Apart from the “path” through this
graph-space that an individual antinode might take over
time, it is unclear whether “missing” data points have any
physical significance. For example, in this data there is an
absence at early times of low-eccentricity antinodes with
high ring counts, and yet we know that the note at which the
drum is struck oscillates with an essentially circular shape,
with high ring count. Is it then the case that the “missing”
circular, high-ring-count antinodes do not occur, or is it
merely that these are not detected (i.e., false negatives) by
the model? The latter scenario seems likely, given that
many volunteers in the SVP failed to annotate the large ini-
tial strike area. One might similarly conjecture whether the
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“hole” seen around the coordinates (9, 0.4) is physically
interesting, or is a mere artifact of the available notes on the
drum (i.e., the finite number of notes, and/or the choice of
the experimenters on which notes they recorded), or an arti-
fact of the object detector. These questions bear further
investigation.

B. Machine Learning Considerations

Rather than producing a generic object detector package
for measuring interference fringes in all forms of musical
instruments illuminated by ESPI, we have trained a model
to assist in filling in missing annotations (“in-between
frames”) for a small set of videos focused on a particular
region of a particular steelpan drum. While the methods
used in this paper could be replicated in other domains if
sufficient training data (i.e., annotated video frames) were
available, the question of how well our model, trained on
such images as we have, could predict interference fringes
in more general situations, remains open. One would hope
that transfer learning®’ could be applied using our model as
a starting point for similar ESPI images, lowering the
requirement for new training data. Earlier we stated that
using transfer learning using ImageNet weights proved no
better than starting from scratch, but the similarity between
ESPI images (versus their difference from typical ImageNet
images) could prove beneficial.

Not all instruments exhibit elliptical-shaped antinode
regions; however, we conjecture that the shape is not a pri-
mary limiting factor if one wishes to count fringes apart
from requiring precise bounds on the antinode regions.
Some early work we performed using image-segmentation
model Mask-RCNN**~? indicated it could find peanut-
shaped and triangle-shaped antinode regions, even when
trained on ellipses; however, the code structured on a deep
level as a classifier and we elected not to try to modify it for
regression.

The variability in the human annotations of the real
data prevented us from objectively scoring highly when
evaluating the model (because even the testing set exhibited
the same inconsistencies), and although using the fake data
(particularly CGSmall) allowed us to gauge how well the
model might perform on consistently annotated ESPI
images, these fake data were not physically motivated. An
alternate path to obtaining physically realistic training data
would be to perform physical simulations of the steelpan®
via methods such as Finite Element modeling®"*®® and then
apply “styling” techniques, such as CycleGAN, to make the
fake images look like the real ones.

VI. CONCLUSIONS

Using an object detector comprised of convolutional
neural networks, it is possible to locate and track antinode
regions on oscillating steelpan drums, and to solve the
regression task of estimating the number of interference
rings in each antinode. While variations in the human anno-
tations prevented high scores on accuracy metrics, our
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“SPNet” model’s performance was sufficient to extract
oscillation information at the correct frequencies in highly
time-dependent, transient regimes. Data from our analysis
indicate a significant discrepancy between audio recordings
of second harmonic oscillations (sympathetic to a drum
struck on a fundamental note) and optical measurements
(i.e., video frame analysis by SPNet). Explaining this dis-
crepancy in terms of likely physical processes remains
beyond the scope of our current effort. Subsequent analysis
published in future papers may reveal additional insights.
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