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ABSTRACT:
We train an object detector built from convolutional neural networks to count interference fringes in elliptical

antinode regions in frames of high-speed video recordings of transient oscillations in Caribbean steelpan drums, illu-

minated by electronic speckle pattern interferometry (ESPI). The annotations provided by our model aim to contrib-

ute to the understanding of time-dependent behavior in such drums by tracking the development of sympathetic

vibration modes. The system is trained on a dataset of crowdsourced human-annotated images obtained from the

Zooniverse Steelpan Vibrations Project. Due to the small number of human-annotated images and the ambiguity of

the annotation task, we also evaluate the model on a large corpus of synthetic images whereby the properties have

been matched to the real images by style transfer using a Generative Adversarial Network. Applying the model to

thousands of unlabeled video frames, we measure oscillations consistent with audio recordings of these drum strikes.

One unanticipated result is that sympathetic oscillations of higher-octave notes significantly precede the rise in sound

intensity of the corresponding second harmonic tones; the mechanism responsible for this remains unidentified. This

paper primarily concerns the development of the predictive model; further exploration of the steelpan images and

deeper physical insights await its further application. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Electronic Speckle Pattern Interferometry (ESPI) has

proven to be an effective technique for musical acoustics

research. ESPI provides a means for the measurement and

visualization of vibrating plates and membranes making up

musical instruments such as violins, guitars, drums, and

others.1,2 ESPI offers the capability of making amplitude

measurements for small vibrations; time-averaged ESPI pro-

duces images with light and dark fringes, which are lines of

constant surface deformation proportional to the wavelength

of the laser light. These images are similar to Chladni pat-

terns in that they reveal the mode shapes of vibrating surfa-

ces (although typically, Chladni patterns are used to reveal

standing wave patterns, whereas the images in the present

paper are of transient phenomena). While lacking the full

spatial resolution of traditional film-based laser holography

images,3 the relatively low cost and ease of setup make

ESPI a popular choice for researchers and educators.4

High-speed video of ESPI images has been used in the

case of Caribbean steelpan drums.5 The steelpan drum is a

membranophone that originated in Trinidad and Tobago.

Instrument-makers repurposed steel oil drums,6 stretching

the steel into a concave surface and dividing it into a set of

flattened, tuned subdomains often referred to simply as

“notes.” It is played using straight sticks tipped with rubber.

When a particular note is struck, waves emanate from the

point of impact. At the boundary for the note, some of the

wave energy is reflected and sets up standing waves,7 while

the remainder propagates throughout the full steelpan

domain and triggers sympathetic vibrations among the other

notes. An accurate characterization of the sympathetic

vibration time evolution has yet to be realized.8,9 A funda-

mental question is how much of the sound of the drum is

due to nontrivial time-dependent behavior of the drum notes

(as opposed to steady-state resonant modes).

To better understand the full dynamics at work in the

steelpan, high-speed ESPI images merit closer, quantitative

measurements, and yet the enormous quantity of frames

recorded poses a burden on researchers to properly annotate

and catalog what is seen in the images. Thus, the “Steelpan

Vibrations Project” (SVP)10 was formed in partnership

with the Zooniverse.org11 platform for crowdsourced data

analysis. Zooniverse arose in the context of large-scale sky

surveys of galaxies, relying on human volunteers from

around the world to use a World Wide Web interface to

annotate the images and classify the galaxies seen in the

images.12 The specific nature of the annotation used in the

SVP will be described in Sec. II A. As the SVP progressed,

it became apparent that an insufficient number of volunteers

were contributing to the project, such that progress in anno-

tating the large dataset of images was slow. In addition,

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: scott.hawley@belmont.edu, ORCID: 0000-0002-5743-

6441.
c)ORCID: 0000-0003-2676-4087.
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because of the variation in human annotators’ work, having

multiple volunteers’ annotations of the same image was

deemed necessary,13 further slowing the progress of using

these annotations to understand the dynamics of the steel-

pan. Thus, the use of automated annotation methods merited

exploration.

While traditional methods of ellipse detection, such as

the Elliptical Hough Transform14 can be effective for

smooth, well-defined ellipse features, the noisy and highly

variable nature of the ellipse regions in SVP images, com-

bined with the additional task of counting the rings per anti-

node, make the Elliptical Hough Transform a poor fit for

this task. There are adaptions to account for incomplete

shapes and noise;15,16 however, the presence of labels via

the SVP made us interested in a machine-learning approach.

Thus, we sought to adapt methods of neural network–object

detection models to our unique use case.

The success of machine-learning systems at extending the

image-annotation efforts of humans has been demonstrated in

a variety of domains—notably, image-classification chal-

lenges involving the recognition of handwritten numerical

digits17 and images of various animals and vehicles.18,19

The task of localizing and classifying portions of images

is known as “object detection;”20 typical uses include

surveillance systems and satellite imagery analysis21 as

well as astronomy applications22 such as galaxy

classification.23

Multiple algorithms exist for object detection, and

among the most popular and successful in recent years24–26

are those that rely on convolutional neural networks (CNN)

that reduce each image into a (large) set of learned features.

These features are then fed into a fully-connected layer to

predict locations of objects and their classifications. The

scheme used for SPNet is inspired by that of YOLOv2,27 but

uses one of a variety of “stock” CNN base models, along

with a few important modifications specific to the domain of

ESPI imagery of steelpan drums, and the annotation task of

the SVP, as follows: Most object detectors operate on color

images of everyday objects, animals, and people found in

datasets such as ImageNet,28 whereas the SVP task required

the resolution of constantly changing patterns in grainy,

grayscale images. Most object detectors provide classifica-

tions of their objects, whereas the SVP task required regres-

sion to “count” interference fringes. While CNNs are known

to perform well at detecting and classifying textures29,30 or

for counting numbers of objects or people,31 their use to

“count” rings (or, phrased more carefully, to discover corre-

lations between image patterns and ring counts) which may

have similar “texture” but different spatial extents, was not

an application that we observed to have received widespread

attention. Most object detectors make location predictions

for rectangular regions of images, whereas the SVP required

tracking antinodes within elliptical regions. When we began

work in 2017, elliptical object detectors were not in wide-

spread use; however, while preparing this paper, a classifier

for wood knots was published32 which uses a different

scheme from what we present here.

The paper is organized as follows: Sec. II presents

details of the SPNet algorithm and training. Section III

presents some performance metrics, Section IV presents pre-

liminary physics results, and Sec V provides a discussion of

these results. A separate paper discussing these and further

physics results is in preparation.

For the purpose of reproducibility, the SPNet computer

code is available at https://github.com/drscotthawley/spnet,

and two of the datasets used have been released on

Zenodo.33

II. SPNET DESIGN

A. The Steelpan Vibrations Project (SVP)

Volunteers recruited for the SVP are presented with

randomly selected frames from high-speed videos, such as

the grayscale image shown in Fig. 1(a), and are tasked with

using a web interface to place elliptical boundaries around

the antinode regions (as shown in green), along with count-

ing the number of interference fringes or “rings” for each

antinode. Multiple videos for different steelpan-strikes are

available, which show different regions of the (same) steel-

pan being excited.

The frames that are included in the SVP are taken from

an ESPI optical arrangement and were captured by a high-

speed camera and processed by image subtraction of a refer-

ence frame from individual video frames after the drum has

been struck. The drum was struck on the back side of the

note such that the front side of the note would be unob-

structed to the camera’s view. The drum was struck with a

metal ball driver held by hand at amplitudes well below the

typical playing conditions. The vibration amplitudes must

be small to be able to be seen clearly in the ESPI frames.

For the SVP classification task, organizers required that

at least 15 people supply annotations for a given video

frame (image) before it could be analysed for clustering13

and then for each antinode in a frame, at least five annota-

tions would be needed. For example, for an image with three

FIG. 1. (Color online) Illustration of Steelpan Vibrations Project (Ref. 10)

(SVP) task: Ellipses “drawn” (in green) by human annotators around antin-

odes in an ESPI steelpan video frame via the Zooniverse crowd-sourcing

data annotation interface. Not shown: Annotations also include users’

counts of the number of interference fringes or rings for each antinode

region.
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antinodes, ideally there would be 45 annotations, which

were grouped via cluster in X and Y directions. If a volun-

teer’s suggestion was too far from the average (e.g., their

mouse slipped) then it was not considered. Then, averages

were performed over the ellipse parameters and number of

fringes; these averages were written to a file, which com-

prised the “raw” or “ground truth” data for training the

SPNet model. As indicated in Fig. 2, from frame-to-frame,

some antinode regions will appear or disappear. Beyond var-

iability among volunteers, it can be very much a “human

judgement call” as to whether a given ring-shape should be

marked as an antinode or not; volunteers were exposed to

one frame at a time rather than viewing video. Even with

the benefit of viewing multiple frames, to the authors of this

paper (who may be considered to provide an “above-

average” level of consistency as annotators), it is not always

clear–especially immediately after a strike–which shapes to

mark as antinodes. Furthermore, often the struck note would

exhibit a “twin aninode” structure resulting from its excited

2nd harmonic, in which case annotators may have drawn an

ellipse around the whole note or drawn two ellipses around

the two (alternating) sections of the note. This is perhaps at

variance with the experience of many machine-learning

enthusiasts who are accustomed to working with very clean

datasets and/or well-defined tasks. To better clarify the diffi-

culty of performing the task with consistency, we invite

readers to visit the SVP website10 and try annotating several

images themselves. Continuing our example from above, if

11 of the 15 people missed one of the three antinodes, then

it would be rejected and not included in the dataset at all for

that frame.

Regarding the variability in volunteers’ ring counts:

When we compute the standard deviations of volunteers’

ring counts of each antinode and average over all antinodes,

we find a value of 1.7. This is considerably wider than the

60.5 used for scoring the SPNet model’s accuracy, below.

For a standard deviation of 1.7, the area under a normal

probability distribution within 60.5 of the mean is approxi-

mately 0.23, which implies a typical volunteer’s ring-count

accuracy metric for comparison with SPNet would be 23%.

The task of SPNet is to match (average) human perfor-

mance from the SVP for the frames available, as well as to

“fill in” the missing annotations for frames in-between those

already annotated by volunteers. The specificity of this goal

will affect the design of the training, discussed in Sec.

II D—the design goal of “filling in” missing frames means

that the trained SPNet model is not intended to serve as a

generic “deployable” inference model for general ESPI

images that differ qualitatively from those in the SVP data-

set. Questions regarding the ability of the SPNet model to

generalize to other ESPI images, such as those of guitars are

addressed in Sec. V.

B. Model architecture

The overall strategy of SPNet is inspired by YOLOv2,27

but the model differs in that we use one of several pre-defined

“stock” multi-layered CNN architectures for the main convo-

lutional network, such as MobileNet,35 InceptionResnetV2,36

or Xception.34 The ability to easily swap in various predefined

CNN base models is made possible via the Keras neural

network framework.37 These models can be initialized using

random weights or weights pre-trained on Imagenet.38 Our

experience indicates that the Xception34 provides a good base

model yielding high accuracy, stable training, and reasonable

execution time. (MobileNet, although faster, was not as accu-

rate, whereas InceptionResNetV2 proved both slower and

more difficult to train consistently.) These base models typi-

cally expect square-shaped image inputs with three color

channels, and large input images can result in networks with

so many tunable parameters (weights) that their memory

requirements exceed the capacities of single computer work-

stations. In order to supply input images compatible with

available pre-trained base model architectures, while keeping

memory requirements manageable, we first resize our 512

� 384 grayscale input images to a square size of 331� 331.

Even this proves to be unnecessarily and prohibitively

memory-intensive, so we shrink this by a factor of two using

“average pooling,” and then “tile” (i.e., repeat or broadcast)

the grayscale channel to form three identical “color”

channels—this is the lower path shown in Fig. 3. Doing this

alone, however, could result in some loss in fine detail, so we

combine the lower path with the result of the “upper path,”

consisting of multiple 3� 3 convolutions yielding three filter

channels, in concert with a pooling operation for size reduc-

tion. Adding these two paths forms a “residual block”19 for

which the lower (pool-tile) path is a skip connection. The skip

connection allows the model to train faster than without it by

FIG. 2. (Color online) Graphical representation of one aspect of the vari-

ability in the aggregated human annotations comprising the SVP dataset.

While physically, antinodes typically persist over 50 to hundreds of frames,

the fine structure of the raw data in this graph shows that the presence of

some antinodes may or may not have been annotated consistently frame-by-

frame (even in the aggregated data). This is the dataset used to train and

score the SPNet model. This does not display (the further) variability in

ring counts, only whether an antinode is marked.
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smoothing the hypersurface of the loss function,39 and the

upper (conv-pool-conv-conv) path allows the model to better

resolve fine features from the larger (331� 331) image before

reducing it in size to feed into the base model. The pre-

processing layers (before the base model) include Leaky

ReLU activations and batch normalization. We also add a

small amount (0.1) of dropout40 before the base model to help

avoid overfitting.

The output of the base model is fully connected to a

“flattened” layer whose elements are taken to represent a

“grid” of outputs we refer to as “predictors” which predict

attributes of relevant antinodes for each subdomain of the

image covered by the predictor. Each predictor predicts

8 values shown in Table I: ðp; x; y; a; b; s; c; rÞ, where these

values are defined relative to the subdomain associated with

each predictor, i.e., within each “grid cell,” according to

Table I. The “existence” variable p 2 ½0::1� measures the

distinction between the background and an object. The val-

ues of x, y, a and b are normalized relative to the size of the

image, and x and y are offsets from the center of each

respective grid point. Instead of the ellipse rotation angle h,

we use the two variables c � cos ð2hÞ and s � sin ð2hÞ
which have the dual advantages of avoiding any coordinate

discontinuity at h¼ 0 as well as ensuring uniqueness given

the 180� rotational symmetry of the ellipses.41 These varia-

bles are later used in training by optimizing the loss func-

tion, which appears in Sec. II D 1 as Eq. (1).

C. Datasets

Table II summarizes the datasets used in this study.

Early in this project, there were insufficient numbers of

(aggregated) volunteer-annotated images, so in order to

develop and test the model, we procedurally generated a

large (50 000 image) corpus of random “fake” images that

combine these salient features: groups of elliptical rings of

varying sizes, orientations, eccentricities, on a background

of wavy patterns, with noise. (We prefer the word “fake”

over the more formal “synthetic” to avoid any confusion–

these images are akin to “artwork” and have no physical

basis). Shown in the upper pane of Fig. 4 is an example of

the fake data comprising the FakeLarge dataset, along with

superimposed “exact” annotations (upper values, light yel-

low) and SPNet predictions (lower values, dark purple.) The

fake images in FakeLarge are quite different from the Real

data in that the former have sharp edges and lack the varia-

tions in brightness, contrast, blurriness, and lost pixels

observed in the latter.

Additional datasets were created after it was observed

that the model’s performance when training on the FakeLarge

dataset (e.g., Figure 5) was much better than when the Real

dataset was used. Questions about the cause of this discrep-

ancy in performance between datasets included:

1. Was it because there was more data in FakeLarge than

Real?

FIG. 3. (Color online) Diagram of the SPNet architecture. The grayscale input image is resized via average pooling and two additional (“color”) channels

are added via 3� 3 convolutions before feeding into a “stock” base model chosen from available Keras models (as described in the text, we prefer Xception

(Ref. 34) which is then fully connected to a flattened layer which holds the values of a 6� 6� 2 grid of predictors for the 8 variables in Table I.

(6� 6� 2� 8¼ 576) values in the model output.) The operations to the left of the base model can be regarded as a “residual block” designed to shrink the

image to lower memory costs while still retaining some finer details of the larger input image. Also, shown as an array of red dots on the input image are the

centroids of regions covered by the predictors, which predict antinode centroid coordinates in terms of offsets from these locations. Not shown: Leaky

ReLU activations and batch normalization between layers. (Note: the images shown for intermediate layers are “artwork,” not actual layer activations.)

TABLE I. Definitions of predicted variables.

p: the probability of an antinode’s existence within the grid cell,

p 2 ½0::1�
x, y: coordinates of the offset of the antinode’s centroid relative to

the grid cell’s center on the image

a, b: the ellipse’s semimajor and semiminor axes ða >¼ bÞ
c, s: c � cos ð2hÞ and s � sin ð2hÞ, where h is the ellipse orienta-

tion angle

r: the number of rings (i.e., interference fringes)
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2. Was it because antinode boundaries and rings were much

clearer in FakeLarge images than in Real?

3. Was it because the annotations in FakeLarge were exact,

whereas the annotations in Real were highly variable,

i.e., similar-looking images in Real often had very differ-

ent annotations (thus “confusing” the ML system as it

trained), and/or causing it to rate low scores on evalua-

tions metrics like “Accuracy”?

To explore the first question, we created the FakeSmall

dataset and found that dataset size was not a major factor.

To answer question 2, we matched the visual properties of

the real data (i.e., the statistics of the pixels in the images)

while still retaining “exact” annotations against which to

evaluate the model, by training a CycleGAN42 model to do

neural style transfer, applying the style of real images to

those in FakeLarge. These results were termed CGLarge,

one example of which is shown in the lower pane of Fig. 4.

We also created a corresponding smaller set termed

CGSmall. The implications of this being that the difference

in performance between CGSmall and Real would provide a

measure of the degradation in model performance due to the

inconsistency in the volunteers’ aggregated annotations in

Real. As you will see below in Fig. 5 and Table III, the dif-

ference is significant.

1. Data preparation

We obtained a set of aggregated data from multiple vol-

unteers’ annotation attempts;13 although the users’ ring

counts were entered as integers, the aggregation process pro-

duces decimal ring counts. The main data preparation work

for SPNet lies in taking the aggregated SVP data and setting

up the correct vector of target values Y for all grid cells, for

all images, in a way that would be unambiguous and thereby

“easiest” for the system to learn.

First, we initialize all predictors to indicate no exis-

tence, i.e., p¼ 0, and for all other variables to be set in the

middle of their respective (normalized) ranges. Then, for

each set of annotations (for each image), also called

“metadata,” we sort the antinodes by their centroid loca-

tions, first vertically and then horizontally, then compute to

which grid cell each antinode “belongs”. For the first of the

two predictors in that cell, we set e¼ 1, compute x and y as

the difference between the antinode’s centroid coordinates

and the center of the grid cell, divided by the width of the

grid cell to keep the values normalized on –0.5…0.5. It is

possible that the Zooniverse interface allowed for a< b and/

or for a given rotation angle h that may not be bounded

within a 180� range; so, for definiteness, we swap a and b
for any data in order to enforce a > b, subtracting 90� in the

process. After this, we compute c ¼ cos 2h and s ¼ sin 2h to

enforce the twofold rotational symmetry of the ellipses as

well as avoid any ambiguities with positive or negative

angles, or coordinate singularities at h¼ 0. This process is

repeated, with the second predictor in a cell being used if

there has already been an antinode found in a given grid

cell. (For more intricate patterns of antinodes, more predic-

tors per cell, and or a more finely grained grid of predictors

could be used. The choice of 6� 6� 2 was found to be ade-

quate for the SVP data.) Having set up all the target or

TABLE II. List of datasets, each divided into Train/Validation/Test subsets

as 80%/10%/10% splits. Due to RAM limits, all Train subsets contain

40 000 images, where smaller initial sets have training subsets (�960

images) augmented by a factor of 41 to produce 40 000 images (see “Data

augmentation”). “Fake” denotes synthetic images, used as a consistent

baseline given the inconsistency of the human-annotated “real” images.

Bold for the rows indicates that these are the most similar for judging the

effects of variability in the human labels in Real (whereas those in

CGSmall are “exact”). Datasets FakeLarge and CGLarge are available

from Zenodo;33 whereas release of the Real Read dataset is delayed pend-

ing a future paper.

Label Description

FakeLarge Fake, 50 000 images

Real Real data, �1200 images

FakeSmall 1200-image subset of FakeLarge

CGLarge CycleGAN-processed FakeLarge

CGSmall 1200-image subset of CGLarge

FIG. 4. (Color online) Sample fake images, showing ground-truth bounding ellipses and ring counts (upper values, light yellow) and those predicted by the

network (lower values, dark purple). Top: original style of fake image, from FakeLarge dataset. Bottom: same fake image with “real” style transferred via

CycleGAN (Ref. 42), from CGLarge dataset.
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“true” output data Y for the grid of predictors to be trained

against, it is possible to begin computing a loss function.

First, however, it is necessary to augment the input data to

improve the generalization performance of the model.

2. Data augmentation

Augmenting the Training set is a common regularization

technique used during the training of machine-learning systems

to increase the variance of a dataset and thus make a trained

model more robust, i.e., to improve its generalization perfor-

mance when operating on new images. It is crucial in relatively

small datasets, such as the ’1200 images obtained from the

SVP. We perform augmentations at two different stages.

The first stage consists of preprocessing augmentations

that (randomly) change both the images and annotations

together–rotations (610�), translations (640 pixels), and

reflections–as well as some image processing, such as noise

or blurring.

The second set of augmentations is performed “on the

fly” at the start of each training epoch, on all input images

from the first stage, and consists of random changes to the

images only without altering the annotations,43 such as blur-

ring, adding noise, and “cutout”44 (i.e., excising multiple

rectangular subdomains), or changes to brightness or con-

trast. The on-the-fly augmentations applied once per epoch

for 100 epochs to �40 000 training images from each data-

set (after the first set of augmentations) mean that during

training, the model is trained on approximately 4� 106 dif-

ferent images for each dataset.

D. Training procedure

1. Loss function

Training is structured as a supervised regression prob-

lem using mean squared error (MSE) loss for all variables,

subject to a few caveats as follows. For compactness, we

use the symbol D2
u to denote the squared error for a variable

u 2 fp; x; y; a; b; c; s; rg, so e.g., D2
x � ðx̂ � xÞ2, with pre-

dicted values denoted by “hats.” In this notation, we define

the loss function Lj for each grid-based predictor j, weighted

by the ground truth existence p (¼0 or 1) of an antinode in

each region, with constant scaling factors ku (tuned by expe-

rience so that the terms in the sum are all comparable in

magnitude) to be given by:

Lj¼ �kpD
2
pþp kcenterðD2

xþD2
yÞþksizeðD2

aþD2
bÞ

h

þkangleða�bÞ2ðD2
cþD2

s ÞþkrD
2
r

i
: (1)

The total loss L ¼ ð1=NÞ
PN

j¼1 Lj is then the mean over all

predictors j, with N ¼ 6� 6� 2 ¼ 72 being the total num-

ber of predictors in the output grid. The term in brackets in

Eq. (1) is scaled by the ground truth object existence proba-

bility p (¼ 0 or 1), because without existence, all other

quantities have no ground truth values. The use of the

squared difference ða� bÞ2 to scale the contribution due to

the angle reflects the intention that, the more circular an

ellipse is, the less its angular orientation should matter.

[Replacing the first term in the loss Eq. (1) with a cross-

entropy term, i.e., �kp½p log ðp̂Þ þ ð1� pÞ log ð1� p̂Þ�; was

found to confer no appreciable improvement to the results.]

We also add an L2 regularization or “weight decay”45,46

with strength 1E-4 to all layers in the Keras model;47 we

find this regularization to be important for avoiding

overfitting.

2. Model Initialization

Although it is possible to initialize the base model sup-

plied by Keras using weights pre-trained on ImageNet, the

different nature of our images (grainy grayscale ESPI rather

FIG. 5. (Color online) Training progress. Top: various components of the loss function for dataset FakeLarge. (A similar graph for Real would show

Validation loss values leveling off after approximately 20 epochs, which is where the Training loss crosses the Validation loss.) Bottom: Classification-like

accuracy scores for ring counts for validation subsets of all datasets. Despite FakeSmall, CGSmall, and Real all having similar numbers of training images

(ca. 1200, when are then augmented as per Sec. II C 2), FakeLarge and CGSmall have much higher accuracy scores than Real. The fact that the accuracy for

Real does not improve beyond Epoch 20 indicates the variability of the human-supplied data annotations.

J. Acoust. Soc. Am. 150 (4), October 2021 Scott H. Hawley and Andrew C. Morrison 2439

https://doi.org/10.1121/10.0006110

https://doi.org/10.1121/10.0006110


than color images of common objects, animals, vehicles,

etc.) and our intended output type (regression rather classifi-

cation) made these pre-trained weights of little utility, and

no better than random initialization. Thus, we train all

model layers from random initial weights.

III. MODEL PERFORMANCE AND EVALUATION

The purpose of the SPNet model is to help with SVP

annotations with the goal of obtaining physical insight into

the motion of drums, not to lay claim to “state-of-the-art”

status in object detection nor win a Kaggle competition, nor

to provide a general utility for generic interference measure-

ments, nor to offer real-time computational efficiency.

Nevertheless, it is important for a method such as ours to

yield reliable results in a timely manner, and for this reason,

we provide measurements of training progress and accuracy

scores. Sample graphs for training progress in terms of loss

(component) values and accuracies are shown in Fig. 5. We

typically trained for 100 epochs using an Adam optimizer

and “1-cycle” learning rate schedule48,49 with cosine anneal-

ing,50 using a maximum learning rate of 4e� 5. These runs

would take 8 h on a machine fitted with an RTX 2080Ti

GPU (Santa Clara, CA).

Object detection models are usually evaluated in terms

of classification and localization. Given that our task is one

of regression rather than classification, many object detec-

tion metrics do not apply directly. However, we emulate the

task of an individual human in the SVP (who provided inte-

ger values for ring counts up to 11—in which each integer

could be regarded as a class), by considering whether the

model’s prediction is within 60.5 of the ground truth

value.51 Using this, we produce a “ring count accuracy”

metric, as follows: We take the number of matching ring

counts between ground truth and predictions and divide it

by the total number of ground truth objects (antinodes) in

the Validation dataset. For example, 168 matching ring

counts out of 482 ground truth objects would yield an accu-

racy score of 35%. For comparison, we noted in Sec. II A

that the standard deviation of individual human volunteers

contributing to the aggregated ground truth data imply that a

typical volunteer subjected to a similar metric would score a

ring count accuracy of 23%.

For an additional metric that applies only to antinode

object detection and not ring counts, we compare the aggre-

gated responses by human users in the SVP to the model

predictions, according to the following metrics: precision

(i.e., number of true object detections divided by the total

number of objects predicted by the model), recall (i.e., true

object detections divided by the total number of objects in

the aggregated human data), and intersection-over-union

score (IoU), i.e., the fraction of area overlap between pre-

dicted ellipses and their ground truth counterparts. These

can be combined into a single metric known, as the mean

average precision (mAP),52 which has been averaged over a

set of multiple detection thresholds (i.e., this mAP is compa-

rable to the “COCO mAP”53 with the single category of

foreground-versus-background detection). These scores are

listed in Table III. As a baseline comparison, the Real data-

set was converted to rectangular bounding boxes and proc-

essed using the object-detection package IceVision,54

yielding similar mAP scores of 0.62 and 0.63 using

IceVision’s Resnet50 and YoloV5 models, respectively.55

We attribute the low accuracy on the Real dataset to the

inconsistency of human annotations, rather than the size of

the training corpus, because scores for CGSmall (which has

a similar number of images with similar features but consis-

tent annotations) are significantly higher. The difference

between results for the two datasets becomes even more

striking when one considers that the Real data has less vari-

ability in images compared to CGSmall, because for the for-

mer, the antinodes in a given video clip stay in only a finite

number of places, and the nature of “filling in” missing

annotations between frames implies that images randomly

allocated among the Training and Validation sets will con-

tain many near-duplicates–in other words, for the Real data,

one might expect artificially high scores due to “cheating.”

In contrast, in CGSmall, the antinodes are distributed

randomly everywhere, thus making it more difficult for the

model to memorize their existence, locations, and sizes.

Furthermore, increasing the Training set when scoring

against the Validation set for the Real dataset, for example,

by combining the Training portions of CGLarge and Real,

confers no noticeable change in the evaluation scores,

because again, the evaluation data for Real is highly vari-

able. Even after “data cleaning” by the authors’ manually

editing the annotations for all 1200 images in Real, there

was no uniform consistency, as the annotation involves

many “judgment calls” of whether an antinode is present,

and if so, how many rings should be counted. Future annota-

tion efforts may benefit from using more than one frame at a

time, such as viewing the stack of frames as a 3D volume

and annotating via the kinds of software used in medical

imaging and segmentation. Greater refinement of the model

architecture and hyperparameter tuning would likely pro-

duce increases in the already-high evaluation scores on the

synthetic datasets (FakeLarge through CGSmall); however,

the limiting factor of the variability in the Real dataset’s

annotations implies that continued revision of the model

would have little effect on the metrics for the Real data,

TABLE III. Scores for accuracy and mean average precision (mAP) for

models trained for 100 epochs from the same random initial weights.

“Accuracy” is defined as number of matching ring counts (within 60.5)

divided by total ground truth objects, whereas mAP indicates antinode

detection rate52 over a range of detection thresholds and is independent of

ring count.

Dataset Accuracy mAP

FakeLarge 0.95 0.97

Real 0.35 0.67

FakeSmall 0.94 0.95

CGLarge 0.89 0.89

CGSmall 0.77 0.78
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from which we wish to extract measurements of physical

phenomena. We anticipate that through additional cleaning

of the dataset (i.e., improving the consistency of the annota-

tions), that the accuracy score will rise accordingly.

Given the difficulty in scoring the model’s accuracy on

real data, a concern arises about whether attempts to extract

physics from the model’s annotations are sufficiently war-

ranted. While this concern merits further study, two addi-

tional consistency checks give us reasons for optimism.

First, curve fits of the model’s time-series predictions of

ring counts for octave notes yield close agreement with the

known frequencies of those notes, such as a fit of 660 Hz

obtained for the ring counts of the octave note when E4

(¼ 330 Hz) is struck, and a fit of 596 Hz for the octave note

when D4 (¼ 294 Hz) is struck as shown in Fig. 6. The curve

fit used was an absolute-value of cosine, which is chosen as

the ring count, cannot be a negative value. The curve fit suc-

cessfully matched the frequencies of the octave note for five

of the seven recorded strikes for which the SPNet model

was used to generate predictions of ring counts. The two

cases where the model was unable to make predictions lead-

ing to a reliable curve fit are due to the amplitude of the

drum strike being not sufficiently large enough to generate

motion in the octave note that could be detected by the ESPI

system. A graph showing a detail of one such sinusoidal fit

is shown in Fig. 6.

Second, our inspection of the predictions of the model

when applied to un-annotated video frames (such as in the

sample movie at https://youtu.be/-rJLwcbQ7Kk) confirms

that SPNet’s predictions of both antinode boundaries and

ring counts are consistent with our own estimations. Given

these reasons for cautious optimism, Sec. IV, we begin to

explore what physics may be ascertained when one is will-

ing to take the many thousands of new frame-annotations

provided by the model at face value, with the caveat that

these are preliminary results.

IV. PRELIMINARY PHYSICS RESULTS

Figure 7 shows drum oscillation amplitude as a function

of time, comparing ring counts obtained from SPNet with

audio recordings using a microphone placed 1m from the

center of the drum. Each recording of a drum strike was

made using an ACO Pacific (Belmont, CA) model 7012, 1
2

condenser microphone controlled by a custom LabView

(Austin, TX) program triggered to coincide with the high-

speed ESPI recording. Audio recordings were made at a

sample rate of 44 100 Hz, and analysis of the recordings was

done with the SNDAN package.56 The large fundamental

note, such as that shown in the left of the field of view (as

shown in Fig. 1) is struck, and the SPNet analysis tracks the

rings in a note to the right, corresponding to the second har-

monic. (This was confirmed by measuring the frequency of

the oscillations in the ring counts.)

Figure 8 explores the relationship between the number

of rings and the size (area) of the antinodes. For large ring

counts, which indicate large deformation (or velocity) of the

surface, one would expect the area of the antinode to be the

same as that of the note itself. Small areas and small ring

counts could result from small notes or could result from

large note areas in which the note is barely moving. In the

latter case, one would only see the shape of the largest por-

tion of the note that “peeks up” above the threshold set by

the laser interference. It is not obvious, then, what the rela-

tionship between area and ring count should be, and thus,

we provide Fig. 8 as a set of raw observations. The differing

coloration of the dots is primarily to allow for articulate

viewing (i.e., so the reader is not presented with a large

wash of undifferentiated uniform color) and also to provide

the opportunity to observe any time dependence in the distri-

bution of the values. We do not claim to detect a noticeable

time-dependent trend in the case of this figure; however, in

Fig. 9, there does appear to be some noticeable time-

dependence.

In Fig. 9, we investigate the relationship between

(squared) eccentricity and ring count. As with area versus

ring count, it is not obvious what the relationship between

eccentricity and ring count should be: If eccentricity was

determined purely by the shape of each note, then we would

expect a “quantized” set of eccentricities (one for each note-

shape), but instead, we see a wide range of antinode eccen-

tricities present. (The horizontal banding near the bottom is

a non-physical artifact of pixel-integer math.) In the case of

this figure, we observe that the darker dots representing

early times tend to cluster in the upper right area of high

eccentricity and low ring count, whereas the domain of low

eccentricity and high ring count tends to be occupied only at

later times. We will discuss this further in Sec. V.

A sample movie of SPNet-annotated video frames is

available in the Supplementary Materials, as well as at

https://youtu.be/-rJLwcbQ7Kk.

FIG. 6. (Color online) A segment of the SPNet amplitude predictions

(circles) for the region of the steelpan corresponding to the D5 note is fit

with an j cos xtj function. The fitting parameter B is equivalent to x. In this

case f ¼ x
2p ¼ 596 Hz, which is close to the frequency of the D5 note. (Note

that this is a constant-amplitude fit in order to find the frequency.) Human

annotations (SVP, x’s) are included for comparison.
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V. DISCUSSION

A. Physical Interpretation

In Fig. 7 we observe the differing behavior of the sec-

ond harmonics when measured via audio versus SPNet (via

the latter’s ring-count annotations of the octave note). We

find this difference surprising, as we would expect these two

signals to exhibit close similarity.

In Fig. 7(a), the audio signals for the first and second

harmonics initially decay at approximately the same rate

(i.e., they have the same “reverberation time”), suggesting

that this initial transient in the second harmonic sound

results from the first harmonic note ringing down as a

superposition of first and second harmonics, and only later

does the octave note in the drum begin to oscillate signifi-

cantly–on differing time scales of roughly 50 ms after the

strike for in the video (SPNet output) and 150 ms for the

audio. The strike shown in Fig. 7(b) exhibits qualitatively

different behavior from the previous graph. The second har-

monic in the audio initially decays much faster than the fun-

damental, and rises again 90 ms later, whereas the octave

note as measured by SPNet begins oscillating immediately

and maintains its amplitude.

The drum strikes were performed by hand, not always

with the same velocity or even exactly in the same location

within each fundamental note, so that differences between

FIG. 7. (Color online) Time series for four (manual) drum strikes on fundamental notes D4, D4 again, E4 and A4. The solid (blue) line shows the rapid oscil-

lation in ring counts from SPNet’s annotations of the corresponding octave note, for which absolute-value cosine curve fits show frequencies at or very close

to the expected 2nd harmonic frequencies (i.e., D5, E5 and A5, respectively). Dot-dashed (black) and dashed (red) lines show the amplitude obtained from

audio recordings of the events, for the 1st and 2nd harmonics, respectively. The richness of the drum’s behavior is evident from the variability between

strikes. All graphs show a rapid damping of the 2nd harmonic immediately after the initial strike, yet the later rise in the 2nd harmonic sound intensity signif-

icantly lags (or is even uncorrelated with) the motion of the corresponding octave note observed in video analysis by SPNet. Even in the left-most graph

where the two appear to correspond, the lag is significantly longer than would be suggested by physical delay mechanisms such as wave travel time. We dis-

cuss these further in Sec. V. (The SPNet annotations end before the audio recordings because high-speed video was only recorded for �150 ms.)

FIG. 8. (Color online) Area versus number of rings for antinodes detected

in four separate videos of drum strikes. The largest ring-counts are associ-

ated with large areas, however as expected, the reverse is not the case, for

physical reasons described in the text. We color the points by the frame

number in each video, as a way to investigate how the distribution of area

versus ring count might change over time (although we make no claims for

this figure).

FIG. 9. (Color online) Eccentricity squared versus ring count. We observe

that dark-colored dots representing antinodes at early times tend to cluster

towards the upper left area of higher eccentricity and low ring count,

whereas lower eccentricities with larger ring counts are seen mostly at later

times (lighter colors). For nearly circular antinodes, the model is not pre-

vented from predicting b > a sometimes (by as much as 7 pixels), despite

being trained on data for which a > b is always satisfied; hence the negative

values of 1� b2=a2.
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Figs. 7(a) and 7(b) need not merit consternation in their own

right. One may add to this the fact that these two different

drum notes were hand-hammered by the steelpan tuner and

thus, there is no guarantee of consistency from one note to

the next.

Allowing for such variations, however, the difference

(for each strike) in the second harmonic between audio and

video (SPNet annotation) measurements is nevertheless

noteworthy. At present, we are unable to account for this

discrepancy. Looking at the graphs of the signals (physics

aside), one might propose some kind of “delay” of at least

50 ms between the two signals, at which point it is worth

ruling out two mechanisms that would not produce such a

long-term effect. First, the travel time of sound in air from

the drum to the microphone is no more than 3 ms since the

latter is only 1 m away. Second, the wave speed in the drum

is roughly 3000 m/s (this is not a precise number because

steelpans, like the one used in this study, are hand-

hammered by artisans and thus contain variations in thick-

ness), whereas the distance between the fundamental and

octave notes is at most a few centimeters, yielding a wave

travel time in the drum on the order of 10 l s. Given that

the dynamical time scales for wave travel are so short, it

seems unlikely that the difference in signals can be

accounted for in terms of a delay due to wave propagation.

Thus, an understanding of the physics producing the

observed difference in the measurements for the second har-

monic awaits further study.

Turning our attention to the distribution of eccentricity

versus ring count as shown in Fig. 9, we observe an apparent

trend of clustering of early-time antinodes towards the upper

left, with the lower right consisting of mostly later-time

antinodes. This raises several questions, as the interpretation

of this observation is not straightforward. While this trend is

truly present in the data (and not some artifact of the order

in which points are plotted), we prefer caution about draw-

ing physical inferences from this. The idea that large, circu-

lar antinodes are the ones likely to persist the longest seems

well-motivated, but the evolution of a single antinode is not

trackable in this figure: We saw in the second harmonic

graphs of Fig. 7, ring counts not only decrease with time via

damping but can increase over time. (Also, since the frames

show oscillating antinodes, each dot in the graph oscillates

left-and-right “rapidly” in this figure, regardless of any

longer-term trends). Apart from the “path” through this

graph-space that an individual antinode might take over

time, it is unclear whether “missing” data points have any

physical significance. For example, in this data there is an

absence at early times of low-eccentricity antinodes with

high ring counts, and yet we know that the note at which the

drum is struck oscillates with an essentially circular shape,

with high ring count. Is it then the case that the “missing”

circular, high-ring-count antinodes do not occur, or is it

merely that these are not detected (i.e., false negatives) by

the model? The latter scenario seems likely, given that

many volunteers in the SVP failed to annotate the large ini-

tial strike area. One might similarly conjecture whether the

“hole” seen around the coordinates (9, 0.4) is physically

interesting, or is a mere artifact of the available notes on the

drum (i.e., the finite number of notes, and/or the choice of

the experimenters on which notes they recorded), or an arti-

fact of the object detector. These questions bear further

investigation.

B. Machine Learning Considerations

Rather than producing a generic object detector package

for measuring interference fringes in all forms of musical

instruments illuminated by ESPI, we have trained a model

to assist in filling in missing annotations (“in-between

frames”) for a small set of videos focused on a particular

region of a particular steelpan drum. While the methods

used in this paper could be replicated in other domains if

sufficient training data (i.e., annotated video frames) were

available, the question of how well our model, trained on

such images as we have, could predict interference fringes

in more general situations, remains open. One would hope

that transfer learning57 could be applied using our model as

a starting point for similar ESPI images, lowering the

requirement for new training data. Earlier we stated that

using transfer learning using ImageNet weights proved no

better than starting from scratch, but the similarity between

ESPI images (versus their difference from typical ImageNet

images) could prove beneficial.

Not all instruments exhibit elliptical-shaped antinode

regions; however, we conjecture that the shape is not a pri-

mary limiting factor if one wishes to count fringes apart

from requiring precise bounds on the antinode regions.

Some early work we performed using image-segmentation

model Mask-RCNN58,59 indicated it could find peanut-

shaped and triangle-shaped antinode regions, even when

trained on ellipses; however, the code structured on a deep

level as a classifier and we elected not to try to modify it for

regression.

The variability in the human annotations of the real

data prevented us from objectively scoring highly when

evaluating the model (because even the testing set exhibited

the same inconsistencies), and although using the fake data

(particularly CGSmall) allowed us to gauge how well the

model might perform on consistently annotated ESPI

images, these fake data were not physically motivated. An

alternate path to obtaining physically realistic training data

would be to perform physical simulations of the steelpan60

via methods such as Finite Element modeling61,62 and then

apply “styling” techniques, such as CycleGAN, to make the

fake images look like the real ones.

VI. CONCLUSIONS

Using an object detector comprised of convolutional

neural networks, it is possible to locate and track antinode

regions on oscillating steelpan drums, and to solve the

regression task of estimating the number of interference

rings in each antinode. While variations in the human anno-

tations prevented high scores on accuracy metrics, our

J. Acoust. Soc. Am. 150 (4), October 2021 Scott H. Hawley and Andrew C. Morrison 2443

https://doi.org/10.1121/10.0006110

https://doi.org/10.1121/10.0006110


“SPNet” model’s performance was sufficient to extract

oscillation information at the correct frequencies in highly

time-dependent, transient regimes. Data from our analysis

indicate a significant discrepancy between audio recordings

of second harmonic oscillations (sympathetic to a drum

struck on a fundamental note) and optical measurements

(i.e., video frame analysis by SPNet). Explaining this dis-

crepancy in terms of likely physical processes remains

beyond the scope of our current effort. Subsequent analysis

published in future papers may reveal additional insights.
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