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Abstract
We calculate the energy levels of a system of neutrinos undergoing collective oscilla-
tions as functions of an effective coupling strength and radial distance from the neutrino
source using the quantum Lanczos (QLanczos) algorithm implemented on IBM Q
quantum computer hardware. Our calculations are based on the many-body neutrino
interaction Hamiltonian introduced in Patwardhan et al. (Phys Rev D 99, https://doi.
org/10.1103/PhysRevD.99.123013, 2019). We show that the system Hamiltonian can
be separated into smaller blocks, which can be represented using fewer qubits than
those needed to represent the entire system as one unit, thus reducing the noise in
the implementation on quantum hardware. We also calculate transition probabilities
of collective neutrino oscillations using a Trotterization method which is simplified
before subsequent implementation on hardware. These calculations demonstrate that
energy eigenvalues of a collective neutrino system and collective neutrino oscillations
can both be computed on quantum hardware with certain simplification to within good
agreement with exact results.
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1 Introduction

According to the standard model of particle physics, neutrinos are neutral elementary
particles that exist in three leptonic flavors: electron, muon, and tau neutrino. Exper-
iments conducted in over two decades [2–5] have demonstrated that neutrino flavors
oscillate which implies that at least two neutrinos are massive and mass eigenstates do
not coincidewith flavor eigenstates. Neutrinos have been observed to oscillate between
different flavors as they propagate, which is a quantum mechanical phenomenon.

Early research in neutrino oscillations boosted observations of the flux of solar
neutrinos [6], experimental studies of neutrino beams, as well as theoretical research
in the nature of neutrinos that appear to be emitted and absorbed in flavor eigenstates
but travel as mass eigenstates. After studying neutrino flavor transitions, it has been
realized that neutrinos experience self-maintained coherent oscillations [7].Moreover,
these collective neutrino oscillations are not disrupted by a homogeneous and isotropic
environment. This phenomenonwas studied in detail in connection with early universe
scenarios [8] and supernovae [9].

In the astrophysical events mentioned above, an abundant number of neutrinos are
created. For example, in a core-collapse supernova event the energy released is of order
∼ 1059 MeV and 99% of this energy is carried away by neutrinos and anti-neutrinos.
This large amount of energy corresponds to ∼ 1058 neutrinos [10]. Studying interac-
tions between these many neutrinos using classical computers is a daunting task. One
needs to account for strong correlations due to collective neutrino oscillations. Calcu-
lating the energy spectrum of the collective neutrino system is central to understanding
the physics behind neutrino interactions giving rise to a collective behavior. In Ref.
[1], a mean-field approximation was used to calculate the eigenvalues and eigenstates
of a collective neutrino system. They introduced a method to systematically obtain the
eigenvalues and eigenstates of a many-body Hamiltonian describing collective neu-
trino oscillations. Remarkably, using this method, one can perform calculations in a
15-neutrino system with a personal computer.

On the other hand, the exponential speedup that fault-tolerant quantum computers
provides hope to simulate and understand high energy physics that is inaccessible to
classical computers. Recently, there has been exciting progress, for example, toward
understanding parton showers using quantum computers [11]. A similar speedup with
quantum computers is also expected in the study of collective neutrino oscillations.
The first attempt to study neutrino oscillations on a quantum processor was discussed
in [12] where a scheme to study the dynamics of neutrino oscillations on a trapped-ion
quantum computer was introduced. The first experimental results on the dynamics of
neutrino oscillations employing quantum hardware were presented in Ref. [13]. Two-
and three-flavor neutrino oscillations were represented on a superconducting quantum
processor, and the survival probability of different neutrino flavors was studied as a
function of neutrino energy. Here, we make use of the quantum Lanczos [14] and
hybrid quantum-classical algorithms to obtain energy spectra for the Hamiltonian in
the mass basis of neutrino systems undergoing oscillations, in addition to transition
probabilities. Our calculations are based on the approximate many-body neutrino
interaction Hamiltonian introduced in Ref. [1]. This Hamiltonian includes only two
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flavor/mass states for the neutrinos and ignores interactions with anti-neutrinos and
the background matter.

Concurrently with the present work, Ref. [15] also studied the simulation of collec-
tive neutrino oscillations on a quantum computer. The authors of that study explore the
real-time many-body evolution of a collective neutrino system using first-order Trot-
terization combined with error mitigation, a complementary technique to the quantum
Lanczos (QLanczos) method used in the present work.

Our experimental results for the energy eigenvalues of N = 4 collective neutrino
system are in very good agreement with exact diagonalization, enabling us to observe
flavor oscillations in the collective neutrino system with N = 3 and N = 4 neutrinos.

The layout of this paper is as follows. In Sect. 2, we introduce the collective neutrino
system to be implemented on a quantum computer. Next, in Sect. 3 we discuss how the
neutrino system can be studiedwith a quantumcomputer, including themethods for the
calculation of the energy levels of the system and the transition probabilities between
neutrinos of different flavors. In Sect. 4, we present our results for the energy levels of a
four-neutrino system as functions of the coupling parameter that depends on the radial
distance from the neutrino source using the QLanczos algorithm. We also discuss the
calculation of transition probability amplitudes for 3- and 4-qubit collective neutrino
systems as a function of time using a simplified first-order Trotterization method.
Finally, in Sect. 5 we summarize our conclusions and outlook.

2 Themodel

Neutrino interactions can be described by a many-body Hamiltonian which consists
of neutrino oscillations in vacuum, interactions of neutrinos with background matter
and other neutrinos and anti-neutrinos. In Ref. [1], eigenvalues and eigenstates of the
many-body collective neutrino oscillation Hamiltonian were studied after applying
certain simplifications such as limiting to two flavor/mass states of neutrinos, ignoring
interactions with anti-neutrinos as well as the background matter. With these simplifi-
cations, the Hamiltonian representing the vacuum and neutrino self-interaction terms
can be written as

H =
∑

p

ω p �B · �Jp +
√
2GF

V

∑

p,q

(1 − cosϑ pq) �Jp · �Jq , (1)

where �B = (0, 0,−1)mass = (sin 2θ, 0,− cos 2θ)flavor, θ is the vacuummixing angle,
ω p = δm2/(2| p|) are the vacuum oscillation frequencies, ϑ pq is the intersection angle
between the trajectories of neutrinos with 3-momenta p and q, V is the quantization
volume, and GF is the Fermi coupling constant. The neutrino mass-basis isospin
operators �Jp can be written in terms of fermionic creation and annihilation operators
as

J+
p = a†1( p)a2( p) , (2)
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J−
p = a†2( p)a1( p) , (3)

J zp = 1

2

(
a†1( p)a1( p) − a†2( p)a2( p)

)
. (4)

In the case where neutrinos are assumed to be emitted isotropically from a single
spherical emission surface, the neutrino self-interaction term can be simplified to

H ≈
∑

p

ω p �B · �Jp + μ(r)

⎛

⎝
∑

p

�Jp
⎞

⎠
2

(5)

whereμ(r) = GF√
2V

(
1 −

√
1 − R2

v

r2

)2

, with r the distance from the center of a neutrino

sphere of radius Rν , and p the index labeling the oscillating frequencies present in the
system.

3 Quantum computation

We use the hybrid quantum-classical QLanczos algorithm discussed in [14,17] to find
the eigenvalues of the collective neutrino many-body interaction Hamiltonian (5). To
study a Hamiltonian on a quantum computer one needs to express it in terms of Pauli
spin matrices. Since neutrinos are fermions, observables can be represented using a
two-dimensional SU (2) algebra. The isospin operators can be expressed in term of
Pauli matrices as Ji = σi

2 , where σi ∈ {X ,Y , Z} are Pauli spin matrices. Therefore,
the neutrino interaction Hamiltonian (5) in mass basis can be written as

H = −1

2

M∑

p=1

ωp Z p + μ(r)

4
(X2 + Y2 + Z2) , (6)

where p labels the oscillation frequencies present in the system, X = (X1, . . . , XM ),
and similarly for Y and Z.

We choose a system with N neutrinos distributed evenly across M oscillation fre-
quencies, and for simplicity we set M = N . In this system, one needs to calculate
2N eigenvalues, which becomes an intractable problem on classical computers as the
number of neutrinos grows. Fault-tolerant quantum computers are expected to provide
an exponential speedup in the calculation of eigenvalues and eigenvectors as functions
ofμ/ω0, where the oscillation frequencies are given byωp = pω0 [18]. However, due
to limitations in current and near-term quantum hardware, hybrid quantum-classical
algorithms are utilized. We use the numerical parameters for dense neutrino gasses
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provided in Ref. [18]. Experimentally, ω0 = 1.055 × 10−16 MeV. Here, we work
in units in which ω0 = 1, thus effectively we calculate dimensionless energy levels,
E/ω0, as functions of the dimensionless parameter μ(r)/ω0 (μ(r) is treated as a free
parameter to be varied).

The system Hamiltonian (6) in the mass basis is separable into independent blocks.
This follows from the fact that H commutes with the total number operator

N =
N∑

p=1

I − Z p

2
. (7)

SinceN has N +1 distinct eigenvalues, 0, 1, . . . , N , the Hamiltonian splits into N+1
blocks that can be studied independently. The kth block has dimension dk = (N

k

)
, and

d0 + d1 + · · · + dN = 2N . The largest block grows asymptotically as 2N√
N
, requiring

N − 1
2 log2 N qubits. This is not a significant improvement for large N , but for values

of N relevant toNISQdevices, it provides a significant reduction in required resources.
To compute the spectra, we express each reduced block Hamiltonian as a sum of

unitary matrices [19]:

Hblock =
∑

I

cIσI (8)

where I = {i0, . . . , inq−1} and σI = σi0σi1 . . . σinq−1 , with σ ∈ {I , X ,Y , Z} and nq
the number of qubits used for this block Hamiltonian. The coefficients cI are found
from

cI = 1

2nq
Tr[HblockσI ] . (9)

Here, we study the four-neutrino system Hamiltonian. The matrix elements cor-
responding to no particle, i.e., in the state |0000〉, and four particles, i.e., in the
state |1111〉, form one-dimensional blocks, so the eigenvalues are readily available
analytically. The subspaces of single-particle states, {|1000〉, |0100〉, |0010〉, |0001〉}
and three-particle states, {|1110〉, |0111〉, |1011〉, |1101〉} form independent four-
dimensional blocks each of which can be represented by a two-qubit system.
The largest block corresponds to the six-dimensional subspace of two-particle states,
{|1100〉, |0101〉, |1010〉, |1001〉, |0011〉, |0110〉} that can be studied using a three-
qubit system. They form a block Hamiltonian that can be written as

Hblock = (ω0 + 6μ)

4
I + μ

2
H1 + H2 (10)
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with

H1 = X0X1X2 + Z0X1X2 + Y0Y1X2 + X0X1 + X0Z1

+ Z0X1 + Y0Y1 + X1X2 + Z1X2 − Z0Z1

+ X0 + X1 + X2 ,

(11)

H2 = (2ω0 − μ)

2
Z0Z1 + ω0

4
Z1Z2 + μ + ω0

2
Z0

+ 2μ − ω0

4
Z1 + ω0

4
Z2 ,

(12)

where we added arbitrary values (additional energy levels E ′
1, E

′
2) as the last two

elements of the diagonal to create a matrix for a 3-qubit system. One needs to make
sure that these additional energy levels are not at the end of the energy spectrum, or
choose an initial statewhich is orthogonal to the corresponding eigenvectors, otherwise
the QITE algorithm may converge to these spurious states. We set E ′

1 = E ′
2 = ω0.

Similarly,

H±
block =6μ ± 5ω0

2
I + μ(X0 + X1 + X0X1)

+ ω0(Z0 + 1

2
Z1) ,

(13)

gives the reduced Hamiltonian blocks for 1-particle (H−
block) and 3-particle (H+

block)
states, respectively.

3.1 QLanczos algorithm

In this section, we provide a short discussion on how we apply our hybrid quantum-
classical QITE /QLanczos algorithm to calculate the energy eigenvalues of a collective
neutrino system.

TheQLanczos algorithm is based on the quantum imaginary-time evolution (QITE)
algorithm (explained in Appendix A) whose main goal is to simulate the non-unitary
imaginary-time evolution of a system on a quantum computer with only unitary opera-
tions. It was proposed in Ref. [14] and, unlike other approaches [20], does not require
ancilla qubits or classical optimization. However, it is implemented with multiple
single- and two-qubit gates at each step of the imaginary-time evolution until the
system converges to the ground state energy. To make the implementation more com-
patible with NISQ devices, we proposed certain adaptations that reduced the depth of
the quantum circuits [16,17,19].

At each step of the QITE algorithm, we calculate energy expectation values which
are then used as input by theQLanczos algorithm. Asmentioned earlier, to increase the
performance of our algorithm, we divide the Hamiltonian for the collective neutrino
system in the mass basis into independent blocks. We apply the QITE and QLanczos
algorithm on each block Hamiltonian choosing initial states informed by the symme-
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try of the block in order to reduce the number of imaginary-time steps required for
convergence.

Having found the ground state, one can in principle use the QITE algorithm to
obtain excited states by selecting an initial state |�0〉 orthogonal to the ground state.
However, this in practice is an impossible task on NISQ devices due to errors. Instead,
we apply the quantum Lanczos (QLanczos) algorithm which uses the QITE states and
energy expectation values at selected steps as inputs. These states span the Krylov
space K of the QLanczos algorithm such that (K) is spanned by {|	0〉, |	2〉, . . . }
where |	l〉 = cle−l
τHblock |�s〉 and |�s〉 is the state at the s-th QITE step. After
filling out the Krylov space we build the overlap (T ) and Hamiltonian (H) matrices
from the energy expectation value measurements on quantum hardware. The elements
of these matrices are defined as

Tl,l ′ = 〈	l |	l ′ 〉 , Hl,l ′ = 〈	l |Hblock|	l ′ 〉 , (14)

respectively. We need to express these quantities in terms of energy expectation values
which are obtained from measurements on a quantum computer. We obtain

Tl,l ′ = 〈	l |	l ′ 〉 = clcl ′

c2r
, (15)

and

Hl,l ′ = 〈	l |Hblock|	l ′ 〉 = Tl,l ′ 〈	r |H |	r 〉 , (16)

The normalization constants are found recursively through

1

c2r+1

= 〈	r |e−2
τHblock |	r 〉
c2r

(17)

where r = l+l ′
2 and l, l ′ are even integers. For the experimental realization of these

coefficients, we expand the numerator to second order in
τ as 〈	r |e−2
τHblock |	r 〉 =
1 − 2
τ 〈	r |Hblock|	r 〉 + 2(
τ)2〈	r |H2

block|	r 〉 + O((
τ)3). This second-order
expansion requires measuring energy expectation values as well as second moments,
〈H2

block〉, at each QITE step on quantum hardware. Although this doubles the number
of measurements required on quantum hardware with the method described earlier,
after obtaining the QITE states from noisy simulator we can do circuit bundling and
combine up to 900 (depending on the provider and back-end) circuits in a single job and
run these circuits on quantum hardware. For this second-order expansion, to improve
the result with higher μ(r) values one needs to choose a smaller value of 
τ since
the order of magnitude of the neutrino system Hamiltonian is directly proportional to
the μ(r) value.

The next step is to solve the generalized eigenvalue equation

Hx = ET x , (18)
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which provides an approximation,

|�[E]〉 = cE
(
x (E)
0 |	0〉 + x (E)

1 |	2〉 + . . .
)

, (19)

to the eigenvectors of the Hamiltonian. Here, c−1
E = ‖∑

l=0,1,... x
(E)
l |	l〉‖. The

eigenvalues E provide an approximation to the energy levels of the Hamiltonian.
Unfortunately, these eigenvalues are numerically unstable due to the noise from quan-
tum hardware. As the number of qubits increases in the system, the measurement
outcomes become more noisy resulting in incorrect energy levels. To decide if an
energy E obtained from (3.1) using experimental results is close to the exact energy
eigenvalue of the Hamiltonian (6), we use a minimum uncertainty criterion: we calcu-
late the uncertainty in energy from 
E = ||Hblock|�[E]〉 − E |�[E]〉||. We scan the
eigenvalues obtained fromKrylov space at each QITE step and discard the eigenvalues
with uncertainty that is greater than a certain value δ, i.e., we require 
E ≤ δ. We
summarized the QLanczos algorithm in Fig. 10 of Ref. [17].

We use the information from symmetry considerations of the reduced block Hamil-
tonian to choose different initial states, |�0〉, for each block in order to obtain all energy
levels of the Hamiltonian (6).

Due to the noise in the hardware, no information is added when we add more
than two QLanczos vectors to the Krylov space. Therefore, we worked with two-
dimensional Krylov spaces. Using the reduced block Hamiltonian in two- and
three-qubit systems, we first ran the QITE algorithm to obtain the two lowest energy
eigenvalues of the symmetry sector corresponding to the initial state choice. To obtain
the two highest energy eigenvalues, we ran the QITE algorithm using −Hblock with a
different initial state. This yielded all energy eigenvalues of a two-qubit reducedHamil-
tonian block. For the two remaining energy levels of a three-qubit Hamiltonian block
(recall that two eigenvalues were added arbitrarily to supplement the six-dimensional
block), we obtained the eigenstates exactly by exploiting the symmetry of the reduced
Hamiltonian block and then constructed quantum circuits generating them which we
implemented on quantum hardware to obtain the experimental energy eigenvalues. As
it is easily seen from the three-qubit reduced block Hamiltonian in (10), the eigen-
value 2μ is degenerate and the corresponding eigenvectors are 1√

2
(|010〉− |011〉) and

N [(1 + 2
μ
)|010〉 − |000〉 − 2|001〉 + |101〉 + 2|100〉], where N−2 = 11 + 4

μ
+ 4

μ2 .
In the case of larger systems described by a larger number of qubits, in order to reach

the middle energy levels, one can modify the Hamiltonian to H ′
block = (Hblock −αI)2,

where the parameter α is adjusted so that the energy levels in the middle turn into the
lowest energy levels. This provides a method to calculate all energy levels of a system
with more than four neutrinos.

3.2 Trotterization

Next, we turn to the calculation of the transition probability amplitude of collective
neutrino flavor oscillations. To this end, we need to calculate the real-time evolution

123



Collective neutrino oscillations on a quantum computer Page 9 of 22    84 

Fig. 1 The quantum circuit obtained using IBM Qiskit’s isometry function for the Trotterization of a three-
qubit block Hamiltonian of the neutrino system

of an initial state governed by the unitary time evolution operator U = e−i Hflavort with

Hflavor = − 1

2

M∑

p=1

ωp(cos 2θ Z p − sin 2θX p)

+ μ(r)

4
(X2 + Y2 + Z2) ,

(20)

where we substituted �B = (sin 2θ, 0,− cos 2θ)flavor in Eq. (5) for the flavor-basis
magnetic field and used sin2(2θ) = 0.1 for the two-flavormixing anglewhich has been
obtained from observations of neutrino oscillations [18]. The transition probability
amplitude between a given initial state |�initial〉 and a final state |�final〉 is

Pf i (t) = |A f i |2 , A f i (t) = 〈�final|U(t)|�initial〉 . (21)

First-order Trotterization is one of the commonly used methods to decompose the
unitary time evolution so that the unitary time evolution operator can be approximated
by operators which can be expressed in terms of one- and two-qubit operators of
the quantum computers. To this end, we split the Hamiltonian into three parts each
consisting of commuting matrices, H = HX + HY + HZ , where

HX = sin 2θ

2

M∑

p=1

ωp X p + μ(r)

4
X2

HY = μ(r)

4
Y2

HZ = −cos 2θ

2

M∑

p=1

ωp Z p + μ(r)

4
Z2 (22)

and use

e−i H
t = e−i HX
t e−i HY
t e−i HZ
t + O((
t)2) (23)

Then,

U(t) ≈
[
e−i HX
t e−i HY
t e−i HZ
t

]n
(24)
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Fig. 2 ROEMenergy eigenvalues of 4-neutrino system as a function of the radial dependence of the coupling
system μ(r)/ω0 obtained using QLanczos algorithm. The experiments were run on various IBM Q devices
(Athens, Casablanca, Guadalupe, Ourense, Rome, Santiago and Vigo) for Nruns = 2 times and error bars
represent ±σ . The straight lines represent the exact eigenvalues obtained from exact diagonalization

for t = n
t . To implement each step on quantum hardware, several gates are needed.
Due to the limited decoherence time in NISQ devices, it is often not possible to
implement a large number of Trotter step. To circumvent this problem, we used the
isometry function in the IBM Qiskit library to simplify the circuits. The resulting
quantum circuits can be seen in Fig. 1, where U(θ i ) with i ∈ {1, 2, 3, 4} are a series
of single-qubit U3(θ, λ, φ) gates. The circuits are of this form independently of the
number of Trotterization steps. As we add more steps, only the angles change in the
circuit of Fig. 1, which allows us to implement Trotterization on the IBM Q devices.

Although this simplification is not scalable, it is advantageous for NISQ devices, as
the angles change at each Trotter step but the depth of the quantum circuit remains the
same. Using this tool is sometimes not straightforward because the quantum circuits
obtained using the isometry function involve connections between all qubits in the
circuit which is not the case for many IBM Q devices. If hardware does not have
this kind of connectivity, then addition of extra SWAP gates is required resulting in
additional noise in the system. A possible solution for this kind of problem could be
using an ion trap quantum computer that has all-to-all connectivity, thus requiring no
additional SWAP gates.

4 Results

First, as seen in Fig. 2 we performed calculations with the 4-neutrino systemHamil-
tonian expressed in the neutrino mass basis to find the eigenvalues as functions of the
radial-distance-dependent coupling parameterμ(r)/ω0 using the QLanczos algorithm
and our experimental data agrees very well with the energy eigenvalues obtained from
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Fig. 3 a Energy vs. imaginary time calculated exactly using 2-qubit Hblock and compared to IBM Q Aer
QASM noiseless and noisy simulator with μ(r)/ω0 = 0.2 and getting the measured energy expectation
values from IBM Q Vigo hardware (data collected on 01/09/2021). b Energy vs. imaginary time calculated
exactly using 3-qubit −Hblock and compared to IBM Q Aer QASM noiseless and noisy simulator with
μ(r)/ω0 = 0.2 and using A[s] operators fromnoisy simulator to get themeasured energy expectation values
from IBM Q Guadalupe hardware (data collected on 05/16/2021). The experiments were run Nrun = 2
times and the error bars represent ±σ . The energies converge to the ground state energy level a −3.415 ±
0.003 with percentage error of 1.3 % and b −2.431 ± 0.083 with percentage error of 3.3 %

Fig. 4 The transition probability amplitude comparison for transition from (a) |initial〉 = |νeνeνe〉 to
|final〉 = |νeνeνe〉, (b) |initial〉 = |νeνeνeνe〉 to |final〉 = |νeνeνeνe〉 as a function of time between exact
time evolution calculations, noiseless simulated Trotterization and values obtained using Trotterization
implemented on the seven-qubit IBM Q Casablanca hardware. The error mitigation methods applied is
readout error mitigated (ROEM). The parameters are chosen such that sin2 (2θ) = 0.10, ωp = pω0 and
μ(r)/ω0 = 1.0. The experiments were run Nrun = 3 times on 9/23/2021 and the error bars represent ±σ

exact diagonalization. To this end, we divided the Hamiltonian of the system into two-
and three-qubit subsystems which helped us obtain results with less hardware noise
compared to a four-qubit system needed for the full Hamiltonian. We ran the QITE
algorithm as described above for two-qubit circuits on IBM Q Athens, Casablanca,
Ourense, Rome, Santiago, and Vigo devices. We ran three-qubit quantum circuits
on IBM Q Guadalupe, and Santiago, switching between devices depending on their
availability.

We present two sample data sets obtained with the QITE algorithm in Fig. 3.
Figure 3a and b depicts QITE algorithm results for a two-qubit reduced Hamiltonian
block (Hblock) and three-qubit block with reversed sign (−Hblock), forμ(r)/ω0 = 0.2,
implemented on IBM Q Vigo and Guadalupe, respectively. The convergence of the
energy expectation value to the ground state energy is evident for the two-qubit Hblock
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in Fig. 3a starting with initial state |�0〉 = |10〉. This convergence is obscured by
hardware noise in the 3-qubit casewith−Hblock startingwith initial state |�0〉 = |001〉,
as seen in Fig. 3b.We compare the energy expectation value as a function of imaginary
time between those obtained from exact diagonalization, noiseless simulator, noisy
simulator with quantum hardware noise, and experimental runs performed on the
IBM Q Vigo and Guadalupe devices. We repeated this procedure with different initial
states and values of the coupling μ(r) with similar results. We then used the output of
the QITE algorithm to find all eigenvalues using the QLanczos algorithm.

To obtain Fig. 2, we performed experiments with Nruns = 2 runs and Nshots =
8192 shots per run. The error bars represent ±σ . To obtain the experimental energy
eigenvalues in Fig. 2, we used both readout error mitigation (ROEM) and Richardson
extrapolation error mitigation techniques. In the implementation of the QLanczos
algorithm we discarded eigenvalues if the total uncertainty of two states in Krylov
space exceeded a certain value, 
E > δ was minimum. Thus, for three-qubit data,
we discarded data with uncertainty exceeding δ = 1.3, whereas for two-qubit data
we set δ = 0.6. The larger value of the threshold δ in the three-qubit case reflects the
presence of more noise in the larger quantum circuit which resulted in no data with
uncertainty below δ = 1.3. It would be desirable to reduce the noise so that a lower
threshold can be attained. Nevertheless, the experimental eigenvalues obtained with
the aid of the QLanczos algorithm agreed well with eigenvalues obtained from exact
diagonalization.

We performed calculations for various values of the coupling μ(r). Smaller val-
ues yielded better agreement of experimental and exact energy levels. Applying the
QLanczos algorithm on Hblock and −Hblock with a two-dimensional Krylov space
yields a couple of lowest and highest eigenvalues in the spectrum, respectively. While
this spans the spectrum in the two-qubit case, for a three-qubit system there are a couple
of intermediate size eigenvalues which this procedure does not calculate. Fortunately,
the remaining eigenvalues correspond to eigenvectors that can be computed exactly
using symmetry considerations of the block. We obtain the states 1√

2
(|010〉 − |011〉)

andN [(1+ 2
μ
)|010〉−|000〉−2|001〉+|101〉+2|100〉], whereN−2 = 11+ 4

μ
+ 4

μ2 .
We obtained these eigenvalues experimentally by running the quantum circuits for the
corresponding eigenstates on IBM Q hardware; see Fig. 2.

We also calculated the transition probability amplitudes for collective neutrino
oscillations on a quantum computer. The transition probabilities for 3- and 4-neutrino
systems are shown in Fig. 4a and b, respectively. We compare exact transition proba-
bilities, transition probabilities from noiseless simulated first-order Trotterization, and
experimental results obtained from IBM Q hardware. To obtain the time evolution of
the initial state we used the Trotterization method discussed in Sect. 3. The experi-
ments were performed on the IBMQ 7-qubit Casablanca hardware device. We ran the
experiments Nruns = 3 times such that each run had 8192 shots. Error bars represent
±σ . In these experiments, we only implemented ROEM since Richardson extrapola-
tion did not improve results. Evidently, the main source of error is not algorithmic, but
due to quantum hardware noise. We again compared the exact, noiseless simulator,
noisy simulator with the quantum hardware noise. This comparison shows that the
noisy simulator with noise parameters from the quantum device is not good enough to
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reflect all noise present in the quantum hardware. It appears that the cross-talk errors
present in quantum hardware are not reflected in the error parameters of the so-called
fake back-end noise models.

In Fig. 4a, we were able to obtain the transition amplitudes within the error bars
up to t ≈ 1.5 for 3-qubit case and we can clearly observe the flavor oscillation
for this particular case. On the other hand, although most of the exact data points
are not within the error bars of the experimental data points and there is significant
drift in the experimental data, we were able to observe the flavor oscillation even
for 4-qubit case (Fig. 4b). To explore how these errors depend on the device chosen
we conducted the same experiments on other IBM Q 7-qubit devices, i.e., Jakarta and
Lagos, and compared their performancewith the performance of Casablanca device. In
Appendix B, we present Fig. 6 which compares the transition amplitudes obtained for
3- and 4-neutrino systems as a result of experiments run on these 3 devices. In Table 1,
we present IBM-reported calibration data (T1, T2, readout assignment error, SX-error,
and two-qubit CNOT error values) for these 3 devices for the qubits that are used
during the experiments. We chose qubits [2,1,3] and [2,1,3,5] for devices Casablanca
and Jakarta, and qubits [3,5,6] and [1,3,5,6] for device Lagos. These qubits are chosen
such that they had the best CNOT error rates reported by IBM on that particular day.
Table 2 demonstrates the average values of the values reported in Table 1 and the error
values obtained from the plots. According to these data, even though on average 2-
qubit errors are the least in Lagos device the errors obtained from plots for Casablanca
device are the least. The average error for the device Jakarta is consistent with the
reported average CNOT error rate. There is an ongoing research to explore how well
IBM-reported error rates obtained using randomized benchmarking reflect the errors
obtained from experiments.

There are two obvious sources of errors contributing to the error in the transition
amplitudes in addition to other quantum hardware noise. The first one is that the isom-
etry function in the Qiskit library provides quantum circuits that require a hardware
layout with a connection between all physical qubits. Thus, implementing it on quan-
tum hardware for the transition probabilities, it results in more noise on a four-qubit
quantum circuit compared to a three-qubit quantum circuit. In most of IBM quantum
devices, all-to-all connection between qubits is not available. To trigger interaction
between qubits that are not connected, SWAP gates are added to the quantum cir-
cuit. Each additional SWAP gate costs 3 CNOT gates on an IBM quantum system
increasing the noise in the system significantly. To address this source of error we
are going to conduct this experiment on an ion-trapped quantum computer which has
all-to-all qubit connectivity and work in this direction is in progress. In addition to
the connectivity issue, the quantum circuit is deeper in 4-qubit case than in 3-qubit
case and this is another source of error considering the decoherence time in quantum
hardware. This source of error can be addressed using different circuit optimization
tools such as QSearch [26] or QGo [27] which might provide a shorter circuit depth
and reduce the number of CNOT gates in the quantum circuit. Work in this direction
is also in progress. However, the error mitigation strategies we followed allowed us
to obtain energy eigenvalues of a 4-neutrino system in very good agreement with the
exact eigenvalues.
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For the 3-qubit data presented in Fig. 2, we used both readout error mitigation
(ROEM) and zero noise extrapolation (ZNE) to mitigate the error caused by the noise
from quantum hardware. To mitigate the error from the measurements, we employed
tools included in IBM’s qiskit-ignis making use of a constrained matrix inversion
approach. The response matrix is obtained from the measurements on 2Nqubits calibra-
tion quantum circuits prepared so that initialization of the qubits was followed by all
combinations of the single-qubit X gate. These quantum circuits were bundled with
the circuits of interest in the same job. For the error mitigation of the two-qubit gate
errors, we used the zero-noise extrapolation [28] where we added double CNOT gates
to the circuit for each CNOT gate in the original quantum circuit in order to increase
the noise due to CNOT gate. Then, we extrapolated to “noiseless” expectation values
for the energy measurements and count values for the transition probability measure-
ments. We ran the quantum circuits with r = 1, 3, 5, 7, 9, where r is the number of
CNOT gates in the quantum circuit for each CNOT gate in the original circuit. Then,
we fitted the data points by a polynomial of degree n for n-qubit quantum circuits
(n = 3, 4). For two-qubit circuits and Trotterization, we only used ROEM.

5 Conclusion

In this work, we performed calculations involving many-body collective neutrino-
flavor oscillations on a quantum computer using the QLanczos algorithm as well as a
first-order Trotterization algorithm. We obtained the energy levels of the Hamiltonian
of the system and transition probabilities demonstrating neutrino oscillations on a
quantum computer. Working with the collective neutrino oscillations Hamiltonian
in the neutrino mass basis, we reduced the Hamiltonian into smaller Hamiltonian
blocks to reduce the noise on quantum hardware. With the inclusion of the readout
and Richardson extrapolation error mitigation strategies, we were able to calculate the
energy levels of the system and found them to be in very good agreement with the exact
values for a four-neutrino system. We were also able to observe collective neutrino-
flavor oscillations in three- and four-neutrino systems on a quantum computer.

Besides the quantum-classical QLanczos algorithm used here, recently a number
of novel methods have been proposed for the calculation of the ground state energy as
well as higher energy levels of quantum systems. For example, the quantum inverse
iteration algorithm [29] introduces an approximate ground state which is prepared
by a successive application of the inverse Hamiltonian. Another method that was
recently proposed is the quantum version of the power method [30] in whichHn|ψ〉,
where H is the Hamiltonian, is calculated from a time-discretized version of the
higher-order derivative of the time-evolution operator U(t) = e−iHt using Hn =
indnU(t)/dtn|t=0. Also the quantum power method was applied to Krylov-subspace
diagonalization. On the other hand, Krylov space methods such as classical Lanczos
algorithm have also been proposed as an error mitigation method in [31]. This method
is hardware agnostic and compatible with other error mitigation techniques, and is
worth exploring in the context of neutrino oscillations.

The quantum circuits thatwere employed in thiswork generally require connections
between all qubits in the circuit. It would be interesting to implement our algorithm
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on an ion-trapped quantum computer with an all-to-all connectivity and see how our
results would improve with less noise. This would also allow us to increase the number
of neutrinos in the system. Although all-to-all connectivity might decrease the noise
due to addition of extra SWAP gates, this might result in a significant decrease in
gate and algorithmic speeds [32]. It is important to optimize the trade-off between
connectivity and speed of the algorithm. An exploration of possible optimization
methods is in progress.
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Appendix A: QITE algorithm

In this appendix, we briefly discuss the quantum imaginary-time evolution (QITE)
algorithm which provides the basis for the quantum Lanczos (QLanczos) algorithm
that is used to calculate the energy spectrum of the collective neutrino system that we
studied.

In the QITE algorithm, the non-unitary imaginary-time evolution operator U =
e−βHblock for imaginary-time evolution of an initial state can be expressed as

|�(β)〉 = cn(e
−
τHblock)n|�0〉 (A1)

after dividing the imaginary-time evolution into n small steps with 
τ = β
n . We

included a normalization constant cn = 1√
〈�0|U2|�0〉

. The sth step of this imaginary-

time evolution is approximated by real-time evolution in terms of a unitary operator
as

|�s〉 = cs
cs−1

e−
τHblock |�s−1〉 ≈ e−i
τ A[s]|�s−1〉 (A2)
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where cs is a normalization constant that can be calculated recursively starting with
c0 = 1. The unitary update operators can be written as

A[s] =
∑

i0,...,inq−1

aI [s]σI . (A3)

where I = {i0, . . . , inq−1}, nq is the number of qubits for the reduced block Hamilto-
nian, and σ ∈ {X ,Y , Z} are Pauli operators. The coefficients aI [s] are calculated by
solving the linear system of equations (S +ST ) · a = b up to order O(
τ 2), where

SI = 〈σIσI ′ 〉 , bI = −i

√
cs−1

cs
〈σI Hblock〉 (A4)

These expectation values are calculated with respect to the state in the previous QITE
step, |�s−1〉. The exponentially growing size of the matrices b and S challenges the
scalability of the algorithm. In our case, certain properties of the Hamiltonian, such as
real matrix elements, help us reduce the size of thesematrices. Due to the large number
of measurements required for the calculation of matrix elements on quantum hardware
accessible through cloud services, for a timely completion of calculations some of our
measurements were performed using a noisy simulator instead. This resulted in a
reduction of overall error but did not affect results significantly, as was ascertained by
a comparison of results between sample quantum hardware and simulated runs.

We point out that circuit bundling, which is sometimes used to minimize the size
of jobs submitted for quantum hardware runs, is not an option in our case, because
the outcome of each step is used in the following step. Moreover, the QITE algorithm
requires single- and two-qubit gates at each step resulting in a quantum circuit depth
exceeding the decoherence time inNISQdevices.We took steps to shorten the quantum
circuits by adapting methods we introduced in our earlier work [17,19].

In detail, we started by determining the number ofQITE steps in the implementation
of our algorithm. We selected the number of steps that yielded convergence of energy
expectation values within ε = 0.001 of the ground state energy. We used this criterion
to estimate the required number of steps numerically. Then, we ran experiments on a
noisy simulator of the quantum device that produced thematrix elements for S and b at
each step, and used them to solve classically the system of equations (S+ST ) ·a = b
obeyed by the coefficients aI [s] introduced in Eq. (A3). Next, to shorten the depth of
the quantum circuit so it is manageable by NISQ devices, we employed the isometry
function from the IBMQiskit librarywhich uses the algorithmdeveloped in [33]where
a given isometry is decomposed into single-qubit and Controlled-NOT (CNOT) gates
with the aim of having the least number of CNOTgates.We used this isometry function
to simplify the circuits of the state at the sth step,

|�s〉 = e−i
τ A[s]e−i
τ A[s−1] · · · e−i
τ A[1]|�0〉 . (A5)

It turns out that the resulting quantum circuit at each QITE step has the same gate
components but with different rotation angles making the implementation of the QITE
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Fig. 5 The gate map of the
qubits of IBM Quantum 7-qubit
devices Casablanca, Jakarta, and
Lagos

algorithmpossible onNISQdevices.We ran these quantumcircuits on IBMQquantum
hardware to obtain experimental energy expectation values.

Appendix B: transition probabilities calculated on different 7-qubit
hardware

In this section, we present the collective neutrino oscillations transition probability
results that we obtained from currently available 7-qubit IBM Quantum hardware.
Fig. 6a, b compares the 3-neutrino (4-neutrino) oscillations transition probability
values from |�initial〉 = |νeνeνe〉 (|�initial〉 = |νeνeνeνe〉) to |�final〉 = |νeνeνe〉
(|�final〉 = |νeνeνeνe〉). In each panel, the transition probabilities obtained from exact
Trotterization, noiseless simulator, noisy simulator of the particular quantum hard-
ware, and 7-qubit IBM Quantum hardware are plotted. We ran the experiments on
IBM Quantum Casablanca, Jakarta, and Lagos (from top to bottom) devices. These
devices have processor type of Falcon r5.11H and their gate maps can be seen in
Fig. 5. In each of these runs we used Nshots = 8192 and each experiment were run
Nruns = 2 times. For the experiments run in Casablanca and Jakarta we used qubits
[2,1,3] ([2,1,3,5]) for 3-qubit (4-qubit) runs and for the experiments run in Lagos we
used qubits [3,5,6] ([1,3,5,6]) for 3-qubit (4-qubit) runs. The experiments conducted
on IBMQuantum Casablanca and Jakarta were run on 9/23/2021 and the experiments
run on Lagos were run on 9/16/2021.

In Table 1, we present the IBM-reported T1, T2, readout error (eRO ), SX gate error
(eSX ), and two-qubit CNOT gate error (e2Q) values for each qubit used on each device.
These qubits were chosen such that the reported CNOT error rates for the chosen qubit
pairs are minimum throughout the device. In Table 2, we report the mean values for
the IBM-reported calibration values demonstrated in Table 1 and 3- and 4-qubit errors,
e3-qubit and e4-qubit obtained from the plots. The errors from the plots were calculated
by finding the standard deviation of the hardware data from the exact Trotterization
data and then adding it all up for each data point. As a result, as seen in Fig. 6 there is
not a significant difference between hardware data obtained from each device. 3-qubit
results are better than the 4-qubit results since 3-qubit quantum circuit is much shorter
than 4-qubit one. Even though, 4-qubit data demonstrates a significant hardware noise
the collective neutrino oscillations are visible in both cases. For 3-qubit experiments
run on different 7-qubit devices, some of the data points lie in error bar limits of the
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Fig. 6 The transition probability amplitude comparison for transition from (a) |initial〉 = |νeνeνe〉 to
|final〉 = |νeνeνe〉, (b) |initial〉 = |νeνeνeνe〉 to |final〉 = |νeνeνeνe〉 as a function of time between exact
time evolution calculations, noiseless simulated Trotterization and values obtained using Trotterization
implemented on the three different 7-qubit IBM Q hardware (Casablanca, Jakarta, and Lagos, from top
to bottom). The error mitigation method applied is readout error mitigation (ROEM). The parameters are
chosen such that sin2 (2θ) = 0.10, ωp = pω0 and μ(r)/ω0 = 1.0. The experiments were run Nrun = 3
times on 9/23/2021 for systems Casablanca and Jakarta and on 9/16/2021 for Lagos. The error bars represent
±σ

exact Trotterization data. Another interesting observation from these data is that noisy
simulator does not capture all quantum hardware error since it does not include errors
such as cross-talk between qubits.
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