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Abstract
Invasive crayfish can cause shifts in lakes from clear, macrophyte-dominated states to eutrophic, phytoplankton-dominated 
states because of their burrowing and foraging behavior. While invasive crayfish populations have been linked to declines 
in water clarity of shallow lakes and wetlands in Asia and Europe, little research has been done on the potential for similar 
effects of invasive rusty crayfish (Faxonius rusticus) in large temperate lakes of the Midwestern USA. We related F. rusticus 
abundance in 17 lakes of northern Wisconsin, USA over time (1984‒2018) to measures of lake clarity (chlorophyll a concen-
tration and Secchi disc depth) estimated from remote sensing (Landsat imagery). Contrary to the effects of invasive crayfish 
in other study systems, we found a weak, positive association between F. rusticus abundance and water clarity. We propose 
that lake clarity may increase if declines in small fishes caused by F. rusticus lead to population growth of zooplankton and 
consequent decreases in phytoplankton through a trophic cascade. Alternatively, F. rusticus could be passengers to, rather 
than drivers of, lake clarity trends, responding positively to increased littoral benthic productivity when lakes are clearer. 
Future research should aim to determine if F. rusticus causes or responds to changes in water clarity, but should also inves-
tigate the impacts of crayfish invasions on water clarity across a greater variety of lentic ecosystems.
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Introduction

Invasive species can be major drivers of ecological change, 
with negative effects on native biodiversity, human well-
being, and ecosystem services (Pejchar and Mooney 2009). 
Aquatic invasive species are particularly harmful, with many 
of their impacts mediated through ecosystem engineering 
(Matsuzaki et al. 2009; Gallardo et al. 2016). In freshwater 
lakes, invasive species occasionally cause transitions in lake 
clarity from clear to turbid conditions, often due to bioturba-
tion and the destruction of nearshore aquatic macrophytes 
(Parkos et al. 2003; Matsuzaki et al. 2009). Destroying mac-
rophytes is particularly impactful on lake clarity because 
macrophytes trap nutrients in nearshore environments and 

prevent their use by offshore phytoplankton (Takamura et al. 
2003). Invasive common carp (Cyprinus carpio) are well 
known for causing declines in the water clarity of shallow 
lakes and wetlands (e.g., Williams et al. 2002; Parkos et al. 
2003), but similar impacts have also been observed for other 
invasive species, such as the red swamp crayfish (Procamba-
rus clarkii). Changes in water clarity from clear to turbid 
states because of macrophyte destruction and burrowing by 
P. clarkii have been documented in shallow lakes and wet-
lands in Asia and Europe (Angeler et al. 2001; Rodríguez 
et al. 2003; Geiger et al. 2005; Matsuzaki et al. 2009). Other 
crayfish invaders also destroy macrophytes (Usio et al. 2009; 
Twardochleb et al. 2013), but shifts in lake clarity like those 
caused by P. clarkii have not been documented for other 
invasive crayfish.

The invasive rusty crayfish (Faxonius rusticus), native 
to the Ohio River watershed of the eastern USA, was intro-
duced to lakes in the northern USA and Canada through 
pathways such as the bait trade (Capelli and Magnuson 
1983; Olden et  al. 2006). In invaded lakes, F. rusticus 
reaches hyper-abundance relative to native crayfishes, caus-
ing declines in fishes, macrophytes, and macroinvertebrates 
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such as freshwater snails (Wilson et al. 2004; Roth et al. 
2007), and impacts of F. rusticus on these community mem-
bers are consistent with other, globally invasive crayfishes 
like P. clarkii (McCarthy et al. 2006; Twardochleb et al. 
2013). The loss of benthic organisms and macrophytes at the 
base of food webs following F. rusticus invasions can alter 
energetic pathways in lakes, further exacerbating the impacts 
of this species (Kreps et al. 2016; Nilsson et al. 2012). In just 
one county, economic costs of F. rusticus invasion were esti-
mated at $1.5 million annually due to lost fishing opportuni-
ties for yellow perch (Perca flavescens) and sunfish (Lepomis 
spp.; i.e., Keller et al. 2008).

The total cost of F. rusticus invasions (including loss 
of fisheries, decreased recreation, decreased home values, 
etc.) may be even higher than previous estimates if F. rus-
ticus decreases water clarity through either its destruction 
of macrophytes or bioturbation while foraging (Dodds et al. 
2009). Like P. clarkii, F. rusticus reduces the abundance 
and species richness of macrophytes by consumptive and 
non-consumptive effects (Lodge and Lorman 1987; Twar-
dochleb et al. 2013). The negative relationship between F. 
rusticus and macrophytes is strong, with severe declines of 
macrophytes at typical abundances for this species (Wilson 
et al. 2004; Roth et al. 2007; Vander Zanden et al. 2017). 
However, changes in water clarity due to macrophyte loss 
or bioturbation in the temperate lakes invaded by F. rusticus 
have not been documented. The vulnerability of ecosystems 
to water clarity alterations is affected by characteristics such 
as lake size and depth (Scheffer et al. 1993; Jeppesen et al. 
1997; Scheffer and van Nes 2007). Therefore, the larger, 
deeper lakes invaded by F. rusticus could be more resistant 
to crayfish-induced changes in water clarity than the shallow 
lakes and wetlands where P. clarkii has been studied (e.g., 
Rodríguez et al. 2003). Alternatively, it could be that shifts 
in water clarity due to F. rusticus invasions have just been 
undocumented or overlooked relative to other impacts of 
this invader.

We combined a long-term dataset of F. rusticus popula-
tions (Larson et al. 2019) with remote sensing data from 
Landsat satellites (e.g., Brezonik et al. 2005; Rose et al. 
2017) to evaluate linkages between crayfish invasions and 
lake clarity in 17 north temperate lakes between 1984 and 
2018. Long-term datasets are rare but important for under-
standing the impacts of invasive species, which vary over 
time and with invasion stage (Strayer et al. 2006, 2017; 
Sokol et al. 2017). For example, studies of the impacts of P. 
clarkii on water clarity were conducted over less than a dec-
ade, usually in single water bodies or mesocosms (Angeler 
et al. 2001; Rodríguez et al. 2003; Matsuzaki et al. 2009). 
In contrast, our use of Landsat data permitted the inclusion 
of lakes and time periods for which in situ measurements 
of water clarity were not available (e.g., Olmanson et al. 
2008; Rose et al. 2017), expanding the spatial and temporal 

replication of the study. We expected that F. rusticus might 
decrease water clarity in north temperate lakes due to its 
well-documented destruction of aquatic macrophytes, simi-
lar to the effects of P. clarkii in shallow lakes and wetlands 
in Asia and Europe. Conversely, our study lakes could be 
resistant to modifications in lake clarity because of their 
relatively large size and depth, revealing context dependency 
of invasive crayfish impacts to lentic ecosystems (Thomsen 
et al. 2011; Sokol et al. 2017).

Methods

Study region

We used a long-term dataset on F. rusticus relative abun-
dance for 17 lakes in Vilas County, Wisconsin, USA (Fig. 1 
and Table 1; Larson et al. 2019). Lakes of this region were 
formed during the last glaciation and are generally oligo-
trophic to mesotrophic, although some have naturally low 
clarity due to high concentrations of dissolved organic mat-
ter from wetlands in their watersheds (Hanson et al. 2007). 
Land cover in this sparsely populated study region consists 
of deciduous and coniferous forest (62%), wetlands (25%), 
and lakes (13%), but human development along lake shore-
lines has increased in recent decades, primarily due to the 
construction of summer homes (Carpenter et al. 2007; Han-
son et al. 2007). Additionally, northern Wisconsin experi-
ences severe winters, and during winter months lake surfaces 
are covered with ice, though climate change is causing aver-
age ice duration to decrease over time (Hewitt et al. 2018). 
There are also occasional periods of drought, and the con-
sequent changes in lake water level can negatively impact 
aquatic organisms like crayfish (Hansen et al. 2013). Faxo-
nius rusticus was introduced to Vilas County in the 1960s 
through invasion pathways including live fishing bait and has 
widely established in lakes with firm or rocky substrates and 
sufficient (> 2.5 mg/l) calcium levels (Capelli and Magnuson 
1983; Olden et al. 2006).

Population monitoring of F. rusticus

Population monitoring for F. rusticus across 67 lakes in 
Vilas County, Wisconsin began in 1972 (Capelli and Mag-
nuson 1983). Various researchers continued monitoring F. 
rusticus populations in this region following the same meth-
ods as Capelli and Magnuson (1983), creating a standard-
ized dataset of F. rusticus abundance (Olsen et al. 1991; 
Larson et al. 2019). We chose to use F. rusticus abundance 
data from a subset of 17 lakes that were sampled most often 
(10–17 times; Fig. 2) between the original sampling and 
2018. Faxonius rusticus was already the dominant crayfish 
in some of the study lakes when sampling began, but other 
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Fig. 1  The 17 study lakes in 
Vilas County, Wisconsin, with 
study lakes in blue and all other 
surface waters in grey. The 
lakes used to train remote sens-
ing models are cross-hatched 
(including Trout Bog and Crys-
tal Bog). Sparkling Lake served 
as a proxy lake for data on 
climate covariates (ice duration, 
water level, water temperature) 
that might affect water clarity
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Table 1  Summary of study lake characteristics in Vilas County, Wis-
consin, including GPS coordinates (latitude, longitude as decimal 
degrees), surface area  (km2), maximum depth (m), average crayfish 

catch-per-unit effort (CPUE, crayfish  trap−1; Larson et al. 2019), and 
CPUE range (crayfish  trap−1)

Lake location, surface area, and maximum depth are from Wisconsin Department of Natural Resources (https:// dnr. wi. gov/ lakes/ lakep ages/). We 
used our remote-sensed estimates of water clarity to calculate average Chl-a (μg.L−1), Chl-a range (μg.L−1), average Secchi disc depth (SDD, in 
m), and the range of Secchi disc depth values (m)

Lake Lat, long Surface area Max depth Avg. CPUE CPUE range Avg. Chl-a Chl-a range Avg. SDD SDD range

Big 46.154,  – 89.769 3.35 18.6 19.5 8.5–31.5 5.71 1.37–9.72 2.71 1.66–6.45
Boulder 46.124,  – 89.661 2.09 7.0 16.9 5.7–33.3 10.30 1.39–21.74 2.54 1.03–7.66
Birch 46.217,  – 89.838 2.05 13.7 5.6 0.8–9.7 7.14 1.09–11.94 2.45 1.21–6.97
Clear 46.147,  – 89.811 2.08 13.7 4.0 0.1–14.1 4.76 2.48–8.45 3.28 1.83–4.91
High 46.155,  – 89.548 3.00 11.0 3.0 0–9.9 5.18 1.26–8.18 3.21 1.86–7.24
Island 46.116,  – 89.792 3.50 10.7 10.1 2.7–30.6 8.30 2.4–13.34 2.07 1.42–4.40
Little John 46.014,  – 89.645 0.61 5.8 10.2 0–17.9 10.44 2–33.64 2.44 1.17–5.27
Little Star 46.115,  – 89.861 1.05 20.4 9.1 1.7–28.3 2.77 1.08–4.50 4.31 2.82–7.28
Papoose 46.184,  – 89.802 1.71 19.8 26.8 10.4–45.8 4.14 1.07–6.54 3.35 2.05–7.43
Presque Isle 46.222,  – 89.780 4.71 31.4 32.4 23.5–44.9 2.50 0.8–3.74 4.84 3.10–9.41
Plum 46.003,  – 89.519 4.28 17.4 13.7 4.2–23 4.88 1.4–7.18 3.06 1.82–5.98
Spider 46.121,  – 89.823 1.13 13.1 6.2 1.5–23.8 5.47 2.05–10.32 2.76 1.62–4.64
South Turtle 46.211,  – 89.894 1.89 12.2 11.0 5.9–16 8.38 2.24–14.46 2.42 1.40–6.61
Trout 46.041,  – 89.671 15.64 35.7 17.2 0–26.5 2.31 0.70–3.51 5.29 3.29–10.32
Van Vliet 46.193,  – 89.757 0.93 6.1 0.8 0–3.5 6.95 1.26–9.98 2.43 1.63–6.98
Wild Rice 46.065,  – 89.797 1.55 7.9 0.1 0–0.3 6.39 2.02–12.05 2.56 1.23–4.75
White Sand 46.088,  – 89.594 3.02 21.6 7.0 0–17.5 3.64 1.12–5.71 3.66 2.40–7.33

https://dnr.wi.gov/lakes/lakepages/
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lakes have monitoring data which predate invasion. Many of 
the study lakes have maintained high F. rusticus abundances 
over time, although some have experienced recent popula-
tion declines that may be due to habitat modification by the 
crayfish (i.e., macrophyte destruction; Larson et al. 2019) 
or factors such as disease (Sargent et al. 2014). Regardless, 
our study captures a range of F. rusticus abundances both 
between and within lakes over time (Table 1; Fig. 2).

Consistent with Capelli and Magnuson (1983), subse-
quent population monitoring of F. rusticus was conducted 
using cylindrical, wire-mesh Gee minnow traps with open-
ings enlarged to 3.5 cm diameter on either end. Between 12 
and 74 traps were set per lake depending on lake size and 
habitat heterogeneity (see Larson et al. 2019 for details), 
and each trap was baited with 120 g of beef liver. The same 
trap locations (spaced at least 100 m apart) were used each 
year, first identified on a bathymetric map and then later 
by a handheld Global Positioning System (GPS). Trapping 
occurred over one night at depths of 1–3 m. Because baited 
traps select for male crayfish, F. rusticus abundance was esti-
mated by calculating catch-per-unit effort (CPUE) as male 
F. rusticus per trap, which closely matches density estimates 
from other methods such as SCUBA surveys (Olsen et al. 

1991). Trapping almost always occurred between mid-July 
and late August, after F. rusticus had molted from its repro-
ductively inactive Form II to its reproductively active or 
mature Form I.

Measures of lake clarity

We chose two measures of water clarity, chlorophyll a con-
centration (Chl-a) and Secchi disc depth, which represent the 
possible effects of F. rusticus on lake clarity through either 
bioturbation or macrophyte destruction. Chl-a is an index of 
phytoplankton production and was selected to capture any 
changes in lake clarity because of increased pelagic nutrient 
availability due to macrophyte destruction by F. rusticus. We 
chose Secchi disc depth because it functions as an estimate 
of overall lake clarity and thus also accounts for any pos-
sible effects of F. rusticus on clarity other than Chl-a, such 
as increased turbidity from bioturbation (e.g., Angeler et al. 
2001). Secchi disc depth in our study lakes includes turbid-
ity, but is strongly influenced by dissolved organic carbon 
or colored dissolved organic matter (Hanson et al. 2007).

Chl-a and Secchi disc depth have generally not been 
measured in our study lakes at the same time as our crayfish 

Fig. 2  Faxonius rusticus CPUE 
by lake during the study period 
(1984–2018), sorted by average 
CPUE. For ease of interpreta-
tion, trends in F. rusticus CPUE 
are shown using locally esti-
mated scatterplot smoothing
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population monitoring. Accordingly, we chose to estimate 
these measures across lakes and years using remote sensing 
imagery from Landsat satellites (e.g., Brezonik et al. 2005; 
Olmanson et al. 2008). We chose Landsat over other sources 
of remote-sensed data because Landsat data are available 
for the greatest number of years when F. rusticus sampling 
occurred. Further, we used Landsat Level-2 data (available 
for 1984–present) from the United States Geological Survey 
(USGS) because these data have been radiometrically and 
atmospherically corrected (USGS 2019; https:// earth explo 
rer. usgs. gov/). Consequently, even though F. rusticus abun-
dance has been monitored since 1972, our choice of Landsat 
Level-2 data limited our use of F. rusticus abundance data 
to 1984–2018.

For training water clarity models, we chose between The-
matic Mapper (TM) data from Landsat 5 (e.g., Kloiber et al. 
2002; Olmanson et al. 2008), Enhanced Thematic Mapper 
Plus (ETM +) data from Landsat 7 (e.g., Torbick et al. 2008; 
Olmanson et al. 2008), and Operational Land Imager (OLI) 
data from Landsat 8 (e.g., Yang and Anderson 2016) based 
on the availability of cloud-free images from each satellite 
both between and within years. For sampling years prior 
to 1999, only TM data were available. From 1999 through 
2012, both TM data and ETM + data were available, and 
from 2013 through 2018 both ETM + and OLI data were 
available. In each year, we selected the Landsat image that 
was the most cloud free and taken closest to August 15th, 
the approximate midpoint of crayfish trapping over time, to 
ensure the images accurately represented water clarity when 
F. rusticus sampling occurred. In cases where data from dif-
ferent satellites were taken equally close to August 15th, we 
selected TM or OLI data over ETM + data due to the 2003 
Scan Line Corrector (SLC) failure on Landsat 7.

We trained remote sensing models of Secchi disc depth 
and Chl-a using empirical field data collected by the North 
Temperate Lakes Long-Term Ecological Research Network 
(NTL-LTER; funded by the National Science Foundation 
and operated by the University of Wisconsin—Madison: 
https:// lter. limno logy. wisc. edu/). Since 1981, Secchi disc 
depth and Chl-a have been routinely monitored for seven 
lakes (including Trout Lake; Fig. 1) in the study region 
by the NTL-LTER. The NTL-LTER measures Secchi disc 
depth every 2 weeks during the ice-free season at the deepest 

point of each lake. The NTL-LTER uses spectrophotometry 
to measure Chl-a every 2 weeks from water samples taken 
at the deepest point of each lake at anywhere from two to ten 
different depths, depending on the lake. We only used Chl-a 
values taken at the surface of each lake. For training remote 
sensing models, we used water clarity measurements from 
the NTL-LTER lakes on the nearest available date to when 
each of the selected Landsat images were captured.

We sampled Landsat images using random points in each 
NTL-LTER water body, rather than a whole-lake average, to 
avoid sampling land or shallow bars during low-water years. 
We established 20 sampling points in large lakes (all > 30 
hectares) and 10 sampling points in extremely small lakes 
(< 2 hectares). This was necessary in part because two of the 
training lakes are small bogs (Fig. 1). Because the resolution 
of Landsat imagery is 30 m, we required random points to be 
a minimum of 30 m apart to avoid sampling more than once 
in any Landsat raster cell. We randomly generated replace-
ment points if any initial points were cloud covered or under 
SLC-off lines. At each of the sampling points, we extracted 
the values for red, green, and blue wavelengths. For each 
lake, we took an average of each of the bands (red, green, 
and blue) and three band ratios: blue:green, blue:red, and 
green:red. We trained linear regression models on the band 
ratios and in situ data, matching the Chl-a and Secchi disc 
measurements from the NTL-LTER with the corresponding 
Landsat-derived band ratio from that lake and year (Kloiber 
et al. 2002; Brezonik et al. 2005; Torbick et al. 2008; Olman-
son et al. 2008).

We developed separate models for each sensor (TM, 
ETM + , OLI) with every possible combination of band and 
band ratio adding to a natural-log-transformed response 
(either Secchi disc depth or Chl-a). We created different 
models for each sensor because the sensors have slight vari-
ations in the wavelength bins that define each color. For each 
of the six sensor by water clarity measures, we selected the 
most-supported model based on Akaike information crite-
rion corrected for small sample size (AICc; Burnham and 
Anderson 2002). The variability explained by the models 
differed by sensor, and in all but one case, R2 exceeded 0.5 
(R2 = 0.48–0.89; Table 2).

In most cases, we were able to extrapolate to the complete 
set of 17 study lakes using the same images used for model 

Table 2  The most-supported 
model (by lowest AICc value) 
for each Landsat sensor (TM, 
ETM + , and OLI) estimating 
either Chl-a or Secchi disc 
depth, with model R2

Colors indicate the color wavelength bins and color ratios included in each model (where b is blue, g is 
green, and r is red), while bands indicate the band number of each of those colors for each sensor

Chl-a Secchi disc depth

Sensor Colors Bands R2 Sensor Colors Bands R2

TM b + b:r 1 + 1:3 0.56 TM b + b:g + b:r 1 + 1:2 + 1:3 0.65
ETM + b + g + g:r 1 + 2 + 2:3 0.56 ETM + b + g + g:r 1 + 2 + 2:3 0.48
OLI g + r + b:r + g:r 3 + 4 + 2:4 + 3:4 0.80 OLI b + g + r + b:g + b:r 2 + 3 + 4 + 2:3 + 2:4 0.89

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://lter.limnology.wisc.edu/
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training. It was only when images were not sufficiently cloud 
free over the study lakes that we had to select a new image, 
and we followed the same image selection process used for 
model training. We selected cloud-free Landsat data taken 
closest in time to August 15th, and if two images were taken 
equally close to August  15th, we chose either TM or OLI 
data over ETM + data. For 1 year (2008), a lack of cloud-free 
data forced us to use TM data for 6 lakes and ETM + data for 
the remaining 11. Otherwise, all lakes in any given year were 
sampled using the same image. We sampled each image 
using 20 points per lake, as we did for the larger lakes in our 
training dataset, and then matched the data source of each 
image (TM, ETM + , or OLI) with the corresponding most-
supported model for that sensor (Table 2). Overall, we were 
able to estimate Secchi disc depth and Chl-a (Table 1) from 
1984 until 2018 (n = 7–14 years per lake).

Statistical analysis

We sought to relate remote-sensed estimates of lake clarity 
to F. rusticus abundance over time and across lakes. We 
assumed that higher F. rusticus abundance corresponds with 
decreased abundance and richness of aquatic macrophytes 
due to past work on this relationship in these lakes (Roth 
et al. 2007; Baldridge and Lodge 2014) and because our 
study lakes lack intensive macrophyte data over time (Larson 
et al. 2019). Faxonius rusticus may also impact water clarity 
in the study lakes through bioturbation caused by foraging or 
burrowing, although such an effect may be weaker relative to 
crayfish species like P. clarkii which are stronger burrowers 
(Berrill and Chenoweth 1982; Harvey et al. 2019).

We also wanted to account for other covariates besides 
F. rusticus abundance that could affect lake clarity, such 
as precipitation, water temperature, and winter severity. In 
years with higher precipitation, more dissolved organic car-
bon, nitrogen, and phosphorus is delivered to lakes, reducing 
water clarity (Williamson et al. 2014; Sinha et al. 2017). 
Warmer summer temperatures can improve growing condi-
tions for phytoplankton and increase summer algae blooms 
(Elliott et al. 2006). Finally, mild winter conditions decrease 
ice duration and nitrate accumulation under ice, leading to 
a decline in annual nutrient availability and summer phyto-
plankton production (Powers et al. 2017). Though the rela-
tionships between these covariates and water clarity are not 
a central focus of our study, we chose to account for them 
to explain variation in water clarity which is not related to 
F. rusticus abundance, thus further isolating the relation-
ship between F. rusticus abundance and the two measures 
of water clarity.

Data on precipitation, water temperature, and winter 
severity were not available for most of the study lakes in 
years with F. rusticus abundance data. Instead, for our three 
covariates we chose to use data from a proxy lake which was 

not included in our dataset, but located close enough to serve 
as an indicator for regional climate conditions. We used 
water level, surface water temperature, and ice duration data 
from the NTL-LTER for Sparkling Lake (46.009,  – 89.701; 
Fig. 1) as measures of precipitation, water temperature, and 
winter severity, respectively. We chose Sparkling Lake as 
a proxy because of its proximity to the study lakes, data 
availability through NTL-LTER, and because it is a seepage 
lake with no inlets or outlets, rather than a stream-fed drain-
age lake, making its water level especially sensitive to pre-
cipitation and drought (Perales et al. 2020). Every 2 weeks 
during the ice-free season, the NTL-LTER records water 
level using a staff gage and water temperature using a YSI 
meter at 1 m intervals from the surface of Sparkling Lake. 
For water temperature data, we only used surface measure-
ments because of seasonal stratification of Sparkling Lake. If 
two measurements of water level or temperature were taken 
equally close to August 15th, we used the average of the two 
values. Finally, we calculated ice duration as the number of 
days each year open water in Sparkling Lake was closed by 
ice, as the NTL-LTER records the last day of open water 
before ice in the fall and the first day of open water in the 
spring of each year.

We also included lake as a random effect in our statistical 
models because water clarity could be affected by any num-
ber of between-lake differences for which we do not neces-
sarily have data. For example, lake clarity can be affected 
by factors such as density of wetlands in the watershed 
(Xenopoulos et al. 2003) or by lake depth and surface area 
(Jeppesen et al. 1997; Nõges 2009). We used linear mixed-
effects models in R 4.0.0 from the nlme package to account 
for lake as a random effect (R Core Team 2019; Pinheiro 
et al. 2019). In the linear mixed-effects models, we included 
each covariate (water level, ice duration, and water tempera-
ture) and F. rusticus CPUE as fixed effects, and lake as a 
random effect. We detrended each of our covariates by time 
to remove temporal trends in climatic variables and instead 
emphasize year-to-year variability, and similarly detrended 
F. rusticus CPUE (e.g., Pathak et al. 2016; Hewitt et al. 
2018). We conducted all detrending by taking the difference 
between the untransformed data and long-term means for 
each variable. We only log-transformed Chl-a values prior 
to analysis.

We evaluated the mixed-effects models using information 
theoretic model competition (Burnham and Anderson 2002) 
and ranked them based on AICc (Symonds and Moussalli 
2011). We considered every possible model combination, 
including those with interaction terms between the three 
covariates. We allowed interaction terms between the covari-
ates to account for a greater portion of the variation in water 
clarity and further isolate the effects of F. rusticus abun-
dance. To maintain interpretability of the predictor of pri-
mary interest, we did not consider any covariate interactions 
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with F. rusticus abundance. We calculated model-averaged 
coefficients for each parameter using the MuMIn package in 
R (Bartoń 2020) using the full set of most-supported models 
(∆AICc ≤ 2; Burnham and Anderson 2002). However, we 
did not interpret covariate effects, because they are not a cen-
tral focus of our study and the presence of interaction terms 
complicates the interpretation of main effects (Engqvist 
2005; Schielzeth 2010). All data used in models of relation-
ships between crayfish relative abundance and lake clarity 
can be found at https:// doi. org/ 10. 13012/ B2IDB- 42939 62_ 
V1.

To assess possible multicollinearity of model parameters, 
we calculated the variance inflation factor (VIF) for each 
parameter in R using the car package (Fox and Weisberg 
2019). No VIFs were above 10, so we retained all covariates 
and their interactions in our models (Montgomery and Peck 
1992). Because the impacts of invasive species can vary over 
time (Strayer et al. 2006), we also conducted a sensitivity 
test in which we ran the same analyses using only years and 
lakes which captured the initial growth phase of F. rusticus 
populations. The sensitivity test omits post-growth popu-
lation plateaus or subsequent declines where water clarity 
might decouple from F. rusticus abundance due to stable 
state shifts in which phytoplankton might inhibit macrophyte 
recovery even as crayfish populations decline (supplemen-
tary file; Hansen et al. 2013; Larson et al. 2019).

Results

We found eight most-supported (∆AICc ≤ 2) models relat-
ing combinations of F. rusticus CPUE and our covariates 
to Chl-a and six most-supported models relating these pre-
dictors to Secchi disc depth (Table 3). For our models of 
Chl-a, R2 ranged from 0.42 to 0.44, while for our models 
of Secchi disc depth, R2 ranged from 0.28 to 0.33. Of the 
most-supported models, F. rusticus CPUE was included 
in four Chl-a models and four Secchi disc models. Faxo-
nius rusticus CPUE was negatively associated with Chl-a 
(model-averaged slope =  – 0.001, 95% CI =  – 0.004, 0.003) 
and positively associated with Secchi disc depth (model-
averaged slope = 0.020, 95% CI =  – 0.012, 0.051; Fig. 3). 
Model-averaged 95% confidence intervals for slopes of 
the relationship between F. rusticus CPUE, our covariates, 
and both water clarity responses included zero (Table 4), 
although some individual model slopes did not include 
zero in 95% confidence intervals. We interpreted F. rusti-
cus CPUE despite the inclusion of zero in model-averaged 
coefficients because F. rusticus CPUE was included in 
several most-supported models. A sensitivity test limiting 
analyses to lakes and years during the growth phase of F. 
rusticus populations found no effect of crayfish abundance 
on either lake clarity metric (see supplementary file).

Table 3  Most-supported models 
relating F. rusticus CPUE, water 
level, water temperature, and ice 
duration to Chl-a or Secchi disc 
depth (∆AICc ≤ 2)

Includes difference in AICc from the top model (∆AICc), AICc weight (AICc Wi), and conditional R2. The 
symbol ‘:’ between predictors indicates an interaction between those predictors was included in the model, 
while the symbol ‘*’ between predictors indicates both the interaction term between those predictors and 
the individual effect of each predictor was included in the model

Model combination ∆AICc AICc  Wi Cond.  R2

Chl-a models
Water temperature + water level: ice duration 0.00 0.19 0.44
Water level * ice duration 0.33 0.16 0.44
Water level: ice duration 0.58 0.14 0.43
Water temperature + water level * ice duration 0.60 0.14 0.45
F. rusticus CPUE + water temperature + water level: ice duration 1.08 0.11 0.42
F. rusticus CPUE + water level: ice duration 1.33 0.11 0.42
F. rusticus CPUE + water level * ice duration 1.50 0.09 0.43
F. rusticus CPUE + water temperature + water level * ice duration 1.96 0.07 0.44
Secchi disc models
F. rusticus CPUE + water temperature + water level: ice duration 0.00 0.23 0.30
F. rusticus CPUE + water temperature + water level * ice duration 0.87 0.15 0.31
F. rusticus CPUE + water level * ice duration 0.97 0.14 0.30
F. rusticus CPUE + water level: ice duration 1.17 0.13 0.28
Water temperature + water level: ice duration 1.46 0.11 0.31
Water temperature + water level * ice duration 1.83 0.09 0.33

https://doi.org/10.13012/B2IDB-4293962_V1
https://doi.org/10.13012/B2IDB-4293962_V1
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Discussion

We found a weak, negative effect of F. rusticus abundance 
on Chl-a, and a weak, positive effect of F. rusticus on 
Secchi disc depth. We interpret the weak effect of F. rus-
ticus abundance on lake clarity because it was included in 
several most-supported models (Burnham and Anderson 
2002). This finding is the opposite of what we predicted, 
and diverges from the strong, negative effects of P. clarkii 
on water clarity in shallow lakes and wetlands of Asia 
and Europe (Angeler et al. 2001; Rodríguez et al. 2003; 
Matsuzaki et al. 2009). The deviation of our weak or non-
existent effects from the impacts of P. clarkii could be 
explained by differences in study systems or natural his-
tory (e.g., burrowing ability) between the two crayfishes. 
Further, a possible positive association between F. rusti-
cus and water clarity could either be a consequence of a 
trophic cascade caused by the crayfish in which zooplank-
ton are freed from predation pressure from fish, or could 

indicate that F. rusticus abundance responds to, rather than 
causes, changes in lake water clarity.

The divergence of our result from the water clarity 
impacts of P. clarkii was unexpected, especially because 
the effects of P. clarkii on water clarity (even more pro-
nounced than those of C. carpio) are mediated mainly 
through declines of macrophytes (Matsuzaki et al. 2009), 
which F. rusticus similarly destroys (Lodge and Lorman 
1987; Baldridge and Lodge 2014). One possible explana-
tion for the contrast between our results and the effects of P. 
clarkii is that the two crayfishes have been studied in differ-
ent types of ecosystems. For example, the lakes in our study 
are generally deep temperate lakes, with an average maxi-
mum depth of 16 m (Table 1). Conversely, studies which 
examined the impacts of P. clarkii in Europe were conducted 
in shallow lakes and wetlands such as Lake Chozas, which 
has a maximum depth of 1.8 m (Rodríguez et al. 2003), and 
the wetlands of Las Tablas de Daimiel National Park, which 
have an average depth of 0.91 m (Angeler et al. 2001). In 
Asia, Matsuzaki et al. (2009) investigated the impacts of P. 
clarkii on water clarity in experimental ponds with depths 
of 0.7–0.8 m. Because shallow lakes are more susceptible 
to changes in water clarity than deep lakes (Jeppesen et al. 
1997), our relatively deep study lakes may have been more 
resistant to any impacts of F. rusticus on pelagic nutrient 
levels than the relatively shallow waterbodies used to study 
the impacts of P. clarkii. Consistent with this explanation, 
visual comparison of F. rusticus abundance to Chl-a and 
Secchi disc depth in our largest study lake (Trout Lake, max 
depth = 35.7 m, surface area = 15.64  km2) reveals no evident 
relationship (Fig. 4). Even in Little John Lake, which served 
as partial inspiration for this study because of its pronounced 
summer algal blooms and smaller size (max depth = 5.8 m, 
surface area = 0.61  km2), there is seemingly no relationship 
between crayfish abundance and clarity (Fig. 4). Indeed, Lit-
tle John Lake had strong phytoplankton blooms in the 1930s, 
long before the introduction of F. rusticus (Wilson 1935).

Differences in water clarity impacts between F. rus-
ticus and P. clarkii might also be partially explained by 

Fig. 3  Effects of detrended 
crayfish catch-per-unit effort 
(CPUE, crayfish  trap−1) on a.) 
log-transformed Chl-a (μg.
L−1) and b.) Secchi disc depth 
(m) from the most-supported 
models (Table 3) that include 
crayfish. Rug plots on the axes 
represent the distribution of data 
points. Scatterplots of the raw 
data are not shown because the 
figures account for covariates 
and represent model-predicted 
relationships

Table 4  Model-averaged slopes and 95% confidence intervals (CI) for 
each predictor of the most-supported models ( Δ AICc < 2) relating F. 
rusticus CPUE, water level, water temperature, and ice duration to 
Chl-a or Secchi disc depth (Table 3)

Predictor Slope CI Lower CI Higher

Chl-a models
Crayfish  – 0.001  – 0.004 0.003
Ice duration  < 0.001  – 0.002 0.002
Ice duration: water level  + 0.015 0.010 0.020
Water level  + 0.041  – 0.067 0.149
Water temperature  – 0.009  – 0.035 0.016
Secchi disc models
Crayfish  + 0.02  – 0.01 0.05
Ice duration  – 0.002  – 0.01 0.01
Ice duration: water level  – 0.08  – 0.11  – 0.05
Water level  – 0.23  – 0.88 0.41
Water temperature  + 0.09  – 0.09 0.27
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differences in burrowing activity and ability between these 
species. Faxonius rusticus is considered a tertiary burrower 
(Berrill and Chenoweth 1982), indicating a species that will 
burrow rarely or under duress, whereas P. clarkii is a sec-
ondary burrower that burrows routinely and to great effect 
in invaded systems (Harvey et al. 2019). Because of this 
natural history difference between species, we suspect that 
P. clarkii suspends a greater amount of sediment than F. rus-
ticus, negatively impacting water clarity (e.g., Angeler et al. 
2001). However, given the dominant role that macrophyte 
destruction plays in mediating the impacts of P. clarkii on 
lake clarity (Matsuzaki et al. 2009), it is more likely that 
our results are the consequence of differences in study sys-
tem rather than differences between study species. Invasive 
species impacts can be highly context-dependent (Thomsen 
et al. 2011; Sokol et al. 2017), and future studies should 
investigate how invasive crayfish impacts can vary between 
different ecosystems.

Based on the observed negative association between F. 
rusticus abundance and Chl-a, and the observed positive 
association between F. rusticus abundance and Secchi disc 
depth, we propose that F. rusticus abundance may act as a 

positive driver of water clarity through a trophic cascade. 
Some small and planktivorous fish populations are reduced 
by F. rusticus through direct consumption, loss of macro-
phyte habitat, and predation on fish eggs (Wilson et al. 2004; 
Roth et al. 2007). Because of this decreased abundance of 
small fishes and increased availability of F. rusticus for 
prey, the foraging of larger piscivores is increased in the 
littoral zone and reduced in the pelagic zone (Nilsson et al. 
2012; Kreps et al. 2016). We hypothesize that the decline 
in small planktivores and altered feeding habits of larger 
piscivores due to F. rusticus could be releasing zooplank-
ton grazers feeding on phytoplankton from fish predation, 
thereby decreasing phytoplankton and increasing lake clar-
ity (Brooks and Dodson 1965; Vanni et al. 1997). Future 
studies could investigate our hypothesized trophic cascade 
by comparing the abundance of small fishes, zooplankton, 
and phytoplankton to F. rusticus abundance over time or 
across lakes, perhaps using NTL-LTER or similar long-term 
ecosystem data.

Alternatively, F. rusticus may not impact water clar-
ity but respond to it, acting as a passenger, rather than a 
driver, to this particular ecosystem change in temperate 
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Fig. 4  Photographs, water clarity data, and F. rusticus CPUE for our 
smallest study lake (Little John Lake, top panel) and largest study 
lake (Trout Lake, bottom panel; Table  1). Chl-a (green triangles), 
Secchi disc depth (brown squares), and F. rusticus CPUE (black tri-
angles) are shown for each lake over the duration of the study period 

(1984–2018). For ease of interpretation, trends in F. rusticus CPUE 
are shown using locally estimated scatterplot smoothing. These two 
case studies are presented to provide transparency of our results using 
our two most dissimilar study lakes; i.e., the absence of strong, nega-
tive relationships between F. rusticus abundance and lake clarity
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lakes (Didham et al. 2005; Light and Marchetti 2007). In 
lakes with lower water clarity, less light penetrates to the 
lakebed, and benthic primary and secondary production 
declines (Vadeboncoeur et al. 2008; Karlsson et al. 2009). 
Though omnivorous, F. rusticus prefers to consume zoob-
enthoos (Roth et al. 2006), and consequently could decline 
in abundance in years with lower lake clarity caused by 
climate or other factors (i.e., eutrophication from lake-
shore development; Moore et al. 2003). Future studies 
could investigate the effects of lake clarity on abundance, 
growth, or production of F. rusticus as mediated through 
primary or secondary benthic production (Abrahamsson 
and Goldman 1970; Nyström et  al. 2006). We did not 
invert the order of our model to relate abundance of F. 
rusticus to lake clarity because our a priori prediction from 
past work on P. clarkii (Angeler et al. 2001; Rodríguez 
et al. 2003) was that F. rusticus might causally affect lake 
clarity, but future studies might consider a different model 
structure. Those studies could also control for factors 
known to affect crayfish population dynamics like habitat 
quality, predation pressure, or disease (Roth et al. 2007; 
Sargent et al. 2014; Larson et al. 2019) to reveal whether 
abundance of F. rusticus in temperate lakes is causally 
affected by water clarity.

While our use of Landsat imagery enabled us to include 
lakes and time periods for which we lacked in situ water clar-
ity data, our remote-sensed estimates of lake clarity do have 
several limitations. For example, we have a relatively low 
number of training lakes (seven) for models of lake clarity 
relative to some other studies that use hundreds or thousands 
of training lakes (e.g., Chipman et al. 2004; Olmanson et al. 
2008). Our approach could be improved by increasing repli-
cation of training lakes through emerging databases such as 
AquaSat, which provides 600,000 water clarity to Landsat 
matchups across the contiguous USA (Ross et al. 2019). The 
study by Ross et al. (2019) was published after we completed 
our data analysis, but a larger number of training lakes might 
improve our estimates of water clarity (R2 = 0.48–0.89 in 
model training). We also might have considered water clar-
ity at other times of the year than our mid-August period 
for crayfish population monitoring. Mid- to late summer is 
often the period of lowest lake clarity and lowest variability 
in lake clarity (Stadelman et al. 2001; Chipman et al. 2004; 
Olmanson et al. 2008). However, lake clarity can also be 
affected by spring algal blooms (Peeters et al. 2007), and 
subsequent work could relate F. rusticus abundance to water 
clarity throughout most of the year. Lastly, there are errors 
inherent in both the processing of raw Landsat data and 
modeling water clarity from these Landsat data, and these 
errors are propagated forward to our final models relating F. 
rusticus abundance and other covariates to lake clarity (e.g., 
Crosetto et al. 2001). Accordingly, we might have isolated 
stronger effects of F. rusticus on Chl-a and Secchi disk depth 

if we were able to use in situ measures of water clarity rather 
than estimates of these responses from remote sensing.

Stronger evidence for a positive association between F. 
rusticus and water clarity would have interesting implica-
tions for lake ecosystems and their management. For exam-
ple, if F. rusticus changes water clarity through a trophic 
cascade, the consequent increases in benthic production 
may benefit F. rusticus populations in a positive feedback 
loop. Other studies have proposed feedback loops in which 
F. rusticus populations may either benefit (Roth et al. 2007; 
Hansen et al. 2013) or harm themselves (Larson et al. 2019) 
through interactions with predatory fishes and habitat like 
macrophytes. However, the positive feedback loop we sug-
gest between F. rusticus and water clarity would be a novel 
mechanism through which invasive crayfish populations 
could benefit themselves by a form of ecosystem engineering 
(Matsuzaki et al. 2009; Gallardo et al. 2016). Alternatively, 
if F. rusticus abundance instead responds to extrinsic vari-
ability or drivers of water clarity, then populations of this 
invasive crayfish may be more susceptible to control or erad-
ication in years or lakes with lower water clarity. This idea 
is similar to findings by Hansen et al. (2013) that showed 
F. rusticus was easier to control when drought conditions 
stranded its preferred rocky or cobble habitat out of water in 
Sparkling Lake. Overall, future studies should aim to address 
whether F. rusticus is a passenger or driver of water clar-
ity across a variety of lentic ecosystems. Changes in water 
clarity are a common effect of many aquatic invasive species 
(e.g., Matsuzaki et al. 2009; Higgins and Vander Zanden 
2010; Gallardo et al. 2016) and improving our understand-
ing of the context dependency of these impacts might enable 
researchers and managers to better allocate resources while 
protecting aquatic ecosystems.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10201- 021- 00683-x.
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