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Abstract
The quantum approximate optimization algorithm (QAOA) has been put forth as a
method for near-term quantum computers to solve optimization problems. However,
assessments of QAOA performance have mostly focused on small structured prob-
lem instances while performance on more general instances is less clear. Here, we
numerically simulate QAOA pure state dynamics for every instance of MaxCut on
non-isomorphic unweighted graphs with nine or fewer vertices with depth parameters
p ≤ 3. We find the approximation ratios and optimized circuit parameters concen-
trate across graphs of a given size and empirically show increases in concentration as
graph size increases. The parameter concentration leads to two median-angle heuris-
tics that overcome difficulties in QAOA parameter optimization and obtain mean
approximation ratios within 3% and 0.2% of the optimal. We also analyze the prob-
ability to measure an optimal solution and find increasing variations between graphs
as depth increases, in stark contrast to the approximation ratios which concentrate as
depth increases. The resulting benchmark data set gives empirical bounds for on-going
experimental realizations and lays groundwork for theoretical extensions to greater
problem sizes and depths where QAOA may prove important for practically relevant
problems.
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1 Introduction

Noisy, intermediate-scale quantum (NISQ) computers may soon solve problems of
practical importance with a quantum computational advantage [2,3]. One promising
approach uses the quantum approximate optimization algorithm (QAOA) [4–18] or
its variants [19–25] to find approximate solutions to combinatorial optimization prob-
lems. By using alternating layers of a mixing operator and a cost operator, QAOA
promises to prepare an approximation to the quantum state that maximizes the expec-
tation value of the cost operator [4]. Moreover, the cost operator may represent an
instance of unconstrained combinatorial optimization, which opens the application of
QAOA to a wide variety of practical but challenging computational problems, includ-
ing the well-known graph problem MaxCut.

Alongside theoretical guarantees, the empirical performance of QAOA is an impor-
tant open question for evaluating computational utility. The optimal number of
alternating circuit layers as well as their tuning has been observed to vary with spe-
cific problem instances. Previous efforts examining MaxCut have tested performance
in terms of the approximation ratio, which quantifies the average cost function value
observed relative to the optimal value. These include studies on families of prob-
lem instances represented by 2-regular graphs [4–6], 3-regular graphs [7–11], small
samples of random graphs [12,13], and small samples of graphs with various fixed
symmetries [14]. Notably, Crooks has shown that, for some instances, QAOA exceeds
the worst-case performance bounds set by the Goemans–Williamson algorithm [13],
which yields the best conventional lower bound on the approximation ratio for Max-
Cut. Theoretical arguments indicate QAOAwill not exceed Goemans–Williamson for
all instances [26,27], however, as a heuristic method it need not exceed this bound
for every instance to be useful in practice. Similarly, a classical algorithm has been
developed which can outperform QAOA onMaxCut when the depth parameter p = 1
(to be defined shortly) [28], however, QAOAmay still have practical utility as a heuris-
tic when p > 1. This collection of results has encouraged further study of the more
general circumstances under which QAOA may provide a practical improvement in
performance.

An additional measure of QAOA performance is the resources required to prepare
the optimized circuit layers. By design, the alternating layers of QAOA are tuned
to prepare the approximate quantum state using parameterized gates optimized with
respect to the observed cost value. However, the effort to identify these optimized
circuits becomes intractable for large numbers of parameters. Previous studies have
used optimization heuristics based on machine learning [13,14] and various numerical
optimization algorithms [7–9,12,23]. These results have been limited to small sets of
graphs, often with simple regular structures, and an open question is whether there are
general heuristics that yield good parameters quickly and consistently.

Here, we use numerical simulations of pure state dynamics to quantify performance
bounds of QAOA solving an exhaustive set of MaxCut instances for n ≤ 9 vertex

123



Empirical performance bounds for quantum approximate… Page 3 of 32 403

graphs at depths p ≤ 3. The exhaustive problem-instance set gives a thorough and sys-
tematic account of QAOA behavior on MaxCut for small graphs. We also evaluate the
effectiveness of circuit optimization using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [29] by benchmarking against exact optimization software and
brute force solutions for all graphs at p = 1 and for graphs with n ≤ 6 vertices at
p = 2. We confirm BFGS returns optimal angles for QAOA state preparation in all
these cases. Ultimately, our simulation results reveal patterns in the optimized circuits
that support heuristics for more efficient parameter selection.

Our characterizations of QAOA performance for solving MaxCut address the
approximation ratio and the probability of obtaining the optimal result. While the
former measure estimates the average cost function value returned by QAOA rela-
tive to the actual optimal value, the latter quantifies the probability to recover the
optimal cut. We compile the results for each graph instance into a data set [1] that
serves as a validated benchmark to support experimental testing of QAOA on NISQ
devices as well as analyses of how specific graph structure features are correlated with
performance, see Ref. [30].

The remainder of the presentation is organized as follows: we review QAOA in
Sect. 2 and discuss our approach to variational circuit simulations in Sect. 3. We
present results from these simulations in Sect. 4, including trends in the performance
measures and gate parameters, before concluding with our key findings in Sect. 5.

2 Quantum approximate optimization algorithm

The quantum approximate optimization algorithm (QAOA) is a variational algo-
rithm designed to find good approximate solutions to combinatorial optimization
problems [4]. A problem instance is specified by a cost function C(z) with z =
(zn−1, zn−2, . . . , z0) and z j ∈ {0, 1}. QAOA recovers a candidate solution z∗ and the
quality of this candidate can be quantified by the normalized value of the cost function

R(z∗) = C(z∗)
Cmax

. (1)

Here,

Cmax = max
z

C(z) (2)

is the globally optimal value with optimal solution

zmax = arg max
z

C(z) (3)

and R(zmax) = 1 whileR < 1 otherwise.
QAOA encodes the bitstring z as a quantum state with respect to the computational

basis |z j 〉 ∈ {|0〉, |1〉} such that |z〉 = |zn−1, . . . , z0〉. The cost function C(z) is
expressed as the operator Ĉ that is diagonal in the computational basis with matrix
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elements

〈z|Ĉ |z〉 = C(z). (4)

The initial state of QAOA is taken as a uniform superposition of the computational
basis states

|ψ0〉 = 1√
2n

2n−1∑

z=0

|z〉 (5)

that is transformed by a series of p unitary operations as

|ψp(γ ,β)〉 =
⎛

⎝
p∏

q=1

Û (B̂, βq)Û (Ĉ, γq)

⎞

⎠ |ψ0〉 (6)

with variational angle parameters γ = (γ1, . . . , γp) and β = (β1, . . . , βp). The first
unitary operator

Û (Ĉ, γq) = exp(−iγqĈ) (7)

applies a C(z)-dependent phase to each of the computational basis states. The second
unitary

Û (B̂, βq) = exp(−iβq B̂), (8)

applies coupling in the computational basis as

B̂ =
n−1∑

j=0

X̂ j , (9)

where X̂ j is the Pauli X operator on qubit j . The latter transitions between the {|z〉}
depend on theC(z)-dependent phases from Û (Ĉ, γq) and the angle parameters (γ ,β).
QAOA selects these parameters to maximize the value 〈Ĉ〉, as discussed in more detail
in Sect. 2.1.

Measurement of the state |ψp(γ ,β)〉 in the computational basis yields each z j ∈
{0, 1} and therefore a candidate solution z∗. The probability to observe a specific z is
given by the Born rule

P(z) = |〈z|ψp(γ ,β)〉|2. (10)

Following measurement, the observed result z is used to calculate the cost C(z).
Repeating the sequence of preparation andmeasurement approximates the distribution
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of z given by Eq. (10). The proposed solution z∗ may then be selected as the argument
that yields the largest cost function as defined by Eq. (1).

As shown by Farhi et al. [4], the probability that a measurement returns the optimal
solution zmax converges to unity as the QAOA depth p goes to infinity. At finite p
there are theoretical arguments for worst-case performance [26,27,31], e.g., for certain
bipartite graphs. Apart from worst-case performance bounds, less is known about the
performance of QAOA at finite p, where studies suggest a modest p may suffice for
achieving a quantum computational advantage [8,13].

2.1 Gate parameter optimization

Finding optimal solutions, or good approximations, to Eq. (1) requires optimizing
the angle parameters that tune each QAOA layer. A standard approach to optimizing
these angles is to pick an initial set of values (γ (0),β(0)) and then prepare and measure
many copies of the state |ψp(γ

(0),β(0))〉 to estimate the expectation value of the cost
function operator as

〈Ĉ(γ ,β)〉 =
∑

z

P(z)C(z). (11)

Analytically, P(z) depends on |ψp(γ ,β)〉 through Eq. (10).
When using an optimization algorithm, such as gradient descent or BFGS [29],

new angles (γ (1),β(1)) are tested for increases in 〈Ĉ〉. After (γ (1),β(1)) have been
selected, the process is repeated with the new angles: prepare and measure a set of
states |ψp(γ

(1),β(1))〉, send the results {z} to a classical computer to calculate an
estimate of 〈Ĉ(γ (1),β(1))〉, then pick new angles to try with the quantum computer.
The optimization process is repeated until a set of angles is found to maximize 〈Ĉ〉.
States with the optimized angles are repeatedly prepared and measured to sample z
and identify a solution z∗ that gives the best approximation.

Previous studies have found patterns in the optimized parameters that can poten-
tially simplify gate-angle optimization. Zhou et al. [7] examined regular graphs and
developed parameter optimization approaches for deep circuits using linear interpo-
lation or discrete cosine and sine transformations of parameters from lower depths.
Brandão et al. [10] have argued that parameters should be transferable between graphs
with sufficiently similar structure, suggesting that approaches like that of Zhou et al.
may be applicable within any families of structured graphs. Other studies suggest that
parameter patterns apply more generally between varying types of graphs, as observed
in small samples of random graphs [12,13], or perhaps even between varying problems
and QAOA-like algorithms, as in an approach to Max-k Vertex Cover using a variant
formulation of QAOA [23]. Together these studies suggest that parameter patterns
may be generic and important in simplifying optimization for QAOA. However, it is
unclear if these patterns will extend over general graphs or if they are byproducts of
the structures and small samples of graphs examined so far.

In addition to the angle parameters, a depth parameter p defines a given state
preparation circuit and instance of QAOA. Higher depths theoretically give better
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performance [4], but they also require more computationally intensive optimizations.
It is therefore efficient to use the smallest depth needed to obtain a desired quality
of solution. Previous studies have characterized performance for 2-regular graphs at
arbitrary depths [4,5] and established performance bounds for 3-regular graphs at
several low depths [11]. For general graphs, an analytical expression that character-
izes performance has been derived for the lowest-possible depth p = 1 [5,6] and the
relationship between depth and performance under specific parameter schedules has
been examined for graphs with varying symmetry [14]. Worst-case instances [26,31]
and complexity theory bounds [27] also place limitations on QAOA performance as a
universal approach to optimization. However, much less is known about QAOA per-
formance on general graphs at depths p > 1 and which depths suffice for applications.

2.2 Characterizing QAOA performance

The quality of a solution z∗ is characterized by the normalized cost function in Eq. (1).
In QAOA, z∗ depends on measurements that probabilistically sample the computa-
tional basis states following Eq. (10). Therefore, we characterize QAOA performance
using the quantum approximation ratio

r = 〈Ĉ(γ ,β)〉
Cmax

, (12)

where 〈Ĉ(γ ,β)〉 is the cost as in Eq. (11). The quantity r estimates the approximation
ratio with respect to measurements of |ψp(γ ,β)〉. Previously, Farhi et al. have argued
that measured bitstrings z∗ yieldR(z∗) ≥ r with high probability. They used the vari-
ance 〈C(z)2〉−〈C(z)〉2 to bound the mean cost value 〈C〉meas for a set of measurement
samples to within one of the theoretical mean, 〈C〉 − 1 ≤ 〈C〉meas ≤ 〈C〉 + 1. This
implies that at least one measured sample z∗ must have C(z∗) ≥ 〈C〉 − 1, hence
R(z∗) ≥ r − 1/Cmax ≈ r , cf. Sec. III of Ref. [4]. The quantum r is thus related to
the classical notion of an approximation ratio as a minimum bound on performance
for the optimization algorithm.

A second way to characterize QAOA quantifies the probability to obtain an optimal
solution zmax from Eq. (3).To be clear, QAOA is an approximation algorithm and it
is not expected to always return an optimal solution. The optimal solution probability
is of interest because it gives the likelihood of obtaining the best possible outcome of
using QAOA. In general, there can be multiple optimal solutions, which we denote as
the set of k optimal solutions {zimax}i∈[k], and the probability of obtaining an optimal
solution is

P(Cmax) =
k∑

i=1

P(zimax), (13)

where P(zimax) is the probability of zimax from Eq. (10). Letting Ps be a desired
threshold to recover the max cut, the minimal number of samples Ns to observe a
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cut that maximizes the cost function is given by

Ns = log (1 − Ps)

log (1 − P(Cmax))
, (14)

since the probability to observe no maximum cut in Ns samples is P ′ = (1 −
P(Cmax ))

Ns and P ′ = 1 − Ps .

2.3 MaxCut

MaxCut partitions a graph G such that the number of edges shared between the parti-
tions is maximized. Let G = (V , E) with V = {n − 1, . . . , 0} the set of vertex labels
and E = {〈 j, k〉 : j, k ∈ V } the set of unweighted edges. For each vertex j ∈ V , a cut
z = (zn−1, . . . , z0) assigns a binary label z j ∈ {0, 1} that denotes the corresponding
set. We express the cost function for MaxCut as a sum of pair-wise clauses

C(z) =
∑

〈 j,k〉
C〈 j,k〉(z) (15)

with

C〈 j,k〉(z) = z j + zk − 2z j zk =
{
1 z j �= zk
0 z j = zk

(16)

An individual clause C〈 j,k〉(z) is maximized when two vertices j, k connected by an
edge are assigned to opposing sets, and the purpose of MaxCut is to find a cut zmax
that maximizes Eq. (15). There are always at least two maximum cuts since the C〈 j,k〉
is invariant under 0 ↔ 1 for all the bits z j in any z.

From Eq. (4), the cost function is cast as a sum of operators for the edges

Ĉ =
∑

〈 j,k〉
Ĉ〈 j,k〉, (17)

with edge operators

Ĉ〈 j,k〉 = 1

2

(
1̂ − Ẑ j Ẑk

)
, (18)

where 1̂ is the identity operator and Ẑ j is the Pauli Z operator on qubit j . The notation
Ẑ j Ẑk uses an implicit tensor product with the identity operator on the Hilbert space
of unlisted qubits.
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Table 1 The number of
connected non-isomorphic
graphs Nn grows with the
number of vertices n

n 2 3 4 5 6 7 8 9

Nn 1 2 6 21 112 853 11,117 261,080

3 Simulations of QAOA

We simulate QAOA to solve MaxCut of all connected non-isomorphic graphs with
n ≤ 9 vertices [32]. We only consider connected graphs since solutions for any
disconnected graph can be constructed from separate solutions of the connected graph
components. The number of graphs Nn grows rapidly with the number of vertices n,
as shown in Table 1.

3.1 Global optimal solutions for p = 1

We first optimize instances of QAOA for depth p = 1 using the expectation value of
the cost function operator

〈Ĉ(γ1, β1)〉 =
∑

〈 j,k〉
〈Ĉ〈 j,k〉(γ1, β1)〉 (19)

Previously, Hadfield derived a general expression for 〈Ĉ〈 j,k〉〉 at depth p = 1 as [6]

〈Ĉ〈 j,k〉(γ1, β1)〉 = sin(4β1) sin(γ1)
(
cosd(γ1) + cose(γ1)

)

4

− sin2(2β1) cosd+e−2 f (γ1)
(
1 − cos f (2γ1)

)

4
+ 1

2
, (20)

where d = deg( j)−1 and e = deg(k)−1 are one less than the degrees of the vertices j
and k connected by the edge 〈 j, k〉 and f is the number of triangles containing 〈 j, k〉.

Wemaximize 〈Ĉ(γ1, β1)〉 using the numerical optimization software Couenne [33]
[?], which optimizes problems of the form

max F(x, y)

s.t. pi (x, y) ≤ 0 ∀i ∈ [n]
x ∈ Rn

y ∈ Zn . (21)

Here, we specify the continuous variable x = (γ1, β1) and the integer variable y is
not used. The function F(x, y) then corresponds with Eq. (19) while the polynomial
constraints pi (x) are not included since there are no constraints on the angles. Couenne
simplifies this problem by reformulating it with auxiliary variables. Then, a convex
relaxation of the reformulated problem is found and solved using branch and bound
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Fig. 1 Convergence of multi-start BFGS optimization for the 853 graphs with n = 7 vertices and depths
p = 1, 2, 3 in (a–c), respectively. Solid black lines show the mean approximation ratio r over the graphs
and black dashed lines show ± one standard deviation. For p = 1 BFGS converges to the global optimal
solutions from Couenne in red

techniques. The process is repeated until an optimal solution is recovered [33] [?]. The
results provide globally optimal instances of QAOA for p = 1.

3.2 Numerical searches for general p

For QAOA depth p > 1, we use the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimization algorithm [29]. BFGS has been used previously in a wide variety of
contexts including QAOA [7]. BFGS begins with an initial set of angles and then
iteratively finds angles that converge to a local maximum of 〈Ĉ(γ ,β)〉. Each iteration
is determined by the numerical gradient of 〈Ĉ〉 and an approximate Hessian second-
derivative matrix that is constructed from the gradient at successive steps. Using the
approximate Hessian when calculating the steps gives faster convergence than first-
order methods while also avoiding the computational expense of calculating the exact
Hessian.

Apart from our conventional optimization approach with BFGS, it is noteworthy
that other quantum-specific optimization approaches [34–36] and theoretical results
[37] have been topics of ongoing development in the literature. These methods purport
to improve on aspects of the variational parameter optimization, and may therefore
be of interest in future studies of QAOA. However, for the problems addressed here,
BFGS suffices to obtain perfect agreement with exact results in all cases we test, as
detailed below.

We test convergence of BFGS using random initial angles and monitoring the local
maximum of 〈Ĉ〉. We repeat the initialization procedure a fixed number of times that
varies with depth p. We use 50 random-angle seeds when p = 1, 100 random seeds
when p = 2, and 500 seeds when p = 3. As shown in Fig. 1a, the average and
standard deviation of the quantum approximation ratio at p = 1 quickly converges
to the solution obtained using Couenne. We compared results from BFGS to results
from Couenne for every graph with n ≤ 8 vertices and found exact agreement out to
the 6-digit precision of Couenne. We were unable to verify solutions at n = 9 due
to numerical issues with Couenne, so instead we checked these results using brute
force searches, thereby resolving the issue of being unable to verify with Couenne.
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Note these numerical issues are not with BFGS but with the Couenne approach for
checking optimality of BFGS. We are not aware of any numerical issues with BFGS,
or the results in this paper, which are computed with BFGS. As shown in Fig. 1b, c,
we observe similar behavior in convergence for the cases of p = 2 and 3.

We extend our validation of BFGS for n = 9 with p = 1 and n ≤ 6 at p = 2 using
brute force search.We evaluate 〈Ĉ〉 for all (γ1, γ2, β1, β2) on a gridwith spacingπ/100
for each angle. We found both BFGS and brute force return values for the optimal 〈Ĉ〉
to within an additive factor of 10−2. As BFGS consistently recovers larger maxima, we
attribute these differences to coarse-graining in the brute force method. We conclude
that BFGS is finding globally optimal results at p = 2 for these graphs.

To verify our results are consistent for n > 6 with p = 2 and for all n with p = 3,
we run BFGS calculations a second time using different sets of 100 or 500 random
seeds. We observe increases in 〈Ĉ〉 after the second round of BFGS for less than 1%
of graphs at each n and p. We conclude that BFGS typically finds globally optimal
solutions at these higher n and p though it is unclear how deviations may grow beyond
p = 3.

3.3 Symmetry analysis

The optimized angles recovered by BFGS exhibit a variety of symmetries, in which
multiple angle solutions give the same optimized expectation value of the cost func-
tion. We simplify these results by systematically reporting a single assignment for
the optimized angles to compare the distributions of angles recovered across different
graph instances. Symmetry analysis proves essential for revealing patterns in the opti-
mized angles discussed in Sects. 4.3–4.4. We summarize how we use the symmetries
below with detailed descriptions of the symmetries deferred to “Appendix.”

Many of these observed symmetries are identified by extending the analysis of
Zhou et al. for regular graphs [7], which we apply more broadly to graphs where each
vertex has even degree or each vertex has odd degree. Specifically, the angles βq are
periodic over intervals of π/2 and, without loss of generality, may always transform
to the interval −π/4 ≤ βq ≤ π/4 for all q. We always set β1 < 0 following the
“time-reversal” symmetry that follows from the dynamics in Eq. (6). There are no
symmetries in γq for generic graphs, so generally these have −π ≤ γq ≤ π for all q.
For graphs where every vertex has even degree or every vertex has odd degree, we use
symmetries to always transform to angles in the half-intervals −π/2 ≤ γq ≤ π/2.
A small number of graphs have additional symmetries and for these we report angles
with the most component (γq , βq) pairs inside the intervals

Γ = [−π/2, 0], B = [−π/4, 0]. (22)

4 QAOA simulation results

We analyze QAOA performance on the MaxCut problem for graphs with various
numbers of vertices n at various depths p using the two performance measures of
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Fig. 2 Distributions of the approximation ratios r for graphs with n = 7 vertices. (a–d) show p = 0, . . . , 3,
respectively, the red dashed line shows the worst-case approximation ratio from the Goemans–Williamson
algorithm rGW

Table 2 Mean r̄ , standard
deviation σ , and complimentary
cumulative distribution
functions F̄R(r) of Eq. (23) for
the r distributions in Fig. 2

p r̄ σ F̄0.7 F̄0.8 F̄0.9

0 0.633 0.063 0.116 0.004 0.000

1 0.809 0.053 0.986 0.551 0.039

2 0.884 0.037 1.000 1.000 0.321

3 0.930 0.029 1.000 1.000 0.825

Sect. 2.2. We also discuss patterns in the observed optimized angle distributions and
we construct a search heuristic that uses these patterns to reduce the computational
expense of parameter optimization.

4.1 Approximation ratio

Our first measure of QAOA performance onMaxCut is the approximation ratio r from
Eq. (12). We present the distribution of r across graphs with various n and p. Figure 2
shows an example of the distribution of r for all 853 graphs with n = 7 vertices for
depths p = 0, . . . , 3 in panels (a)–(d), respectively. Note that p = 0 corresponds to
the initial state in Eq. (5). Trends for other n are similar and described further below. In
Fig. 2, the width of the plotted bars is smaller than the histogram bin width w = 0.02
to clearly visualize the distributions. Each panel also overlays a Gaussian distribution
(w/

√
2πσ 2) exp(−(r−r̄)2/2σ 2) using themean r̄ and standard deviation σ in Table 2

as calculated from the observed distributions of r .
Figure 2a shows r for the initial states of Eq. (5). Every z is equally probable

in these states, so r is equivalent to the approximation ratio obtained by averaging
random cuts from the uniform distribution. This cuts half the edges in E on average,
〈Ĉ〉 = E/2, while the maximum number of cuts is bounded by the total number of
edges, Cmax ≤ E , so r = 〈Ĉ〉/Cmax ≥ 1/2.

Figure 2b–d shows similar distributions of the r for p = 1, 2, 3, respectively. These
are well described by Gaussian distributions for each p and r is approaching one as
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Fig. 3 Mean r across all graphs with various numbers of vertices n and depths p. (a–d) show p = 0, . . . , 3,
respectively. Error bars represent standard deviations of the r , the dashed red line represents the worst-
case approximation ratio rGW of the Goemans–Williamson algorithm, and crosses show the smallest
observed r

p increases. QAOA instances also perform more similarly with increasing depth as
indicated by the decrease in standard deviation of r .

We further quantify increases in r with p by calculating F̄R(r) as the fraction of
graphs with approximation ratio r that exceeds a threshold R. This is given by the
complimentary cumulative distribution function

F̄R(r) = 1

Nn

∑

G(n)

Θ(r − R), (23)

where Nn is the number of non-isomorphic connected graphs with n vertices,
∑

G(n)

is the sum over these graphs, and Θ is the Heaviside step function. Table 2 presents
F̄R(r) for n = 7 with R = 0.7, 0.8, and 0.9. Almost all graphs exceed r ≥ 0.7
at p = 1 and more than half exceed r ≥ 0.8. At p = 2, all graphs have r > 0.8
while most graphs have r > 0.9 at p = 3. We note that the latter instances exceed
the worst-case lower bound for the approximation ratio of rGW = 0.87856 set by
the Goemans–Williamson algorithm [38], which represents the best universal lower
bound from a conventional algorithm.

We analyzed the distribution of r for all n ≤ 9. Similar trends are observed for all n:
the mean r over the set of graphs increases as p increases and the distributions become
narrower in terms of the standard deviation. The distributions of r over different graphs
at the same n arewell described byGaussian distributionswhen n ≥ 7, while for n < 7
the small numbers of graphs yield more irregular histogram distributions.

Figure 3 shows the mean and minimum of r as a function of n for p = 0, . . . , 3
in panels (a)–(d), respectively. Averages for p = 0 are approximately 2/3 for all n
while the standard deviation decreases with increasing n due to the number of graphs
sampled increasing as Nn . For p �= 0 in Fig. 3b–d, the smallest graphs reach an optimal
r = 1 while larger graphs decay to steady values of r < 1 as n increases. There is not
much variation in the mean or standard deviation of r between nearby n, especially
at the largest n, so larger n might be expected to return similar r distributions. As p
increases, at each n the mean r becomes larger and the standard deviations become
smaller, which is consistent with the trends at n = 7 seen in Fig. 2. The mean r all
exceed the Goemans–Williamson rGW by at least a standard deviation at p = 3. The
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Fig. 4 Distributions of probabilities to obtain the maximum cut P(Cmax) for graphs with n = 7 vertices.
(a–d) show p = 0, . . . , 3, respectively

Table 3 Mean P̄(Cmax),
standard deviation σ , and
complimentary cumulative
distribution functions
F̄R(P(Cmax)) similar to
Eq. (23) for the P(Cmax)

distributions in Fig. 4

p P̄(Cmax) σ F̄0.25 F̄0.50 F̄0.75

0 0.046 0.051 0.009 0.001 0.000

1 0.211 0.132 0.278 0.035 0.009

2 0.426 0.172 0.835 0.318 0.046

3 0.610 0.187 0.975 0.715 0.252

minimum values of the r , however, do not exceed the Goemans–Williamson bound at
large n for the p in the figure; the worst-case graphs for each n and p are shown in
Supplemental Information. For a detailed analysis of QAOA performance and how it
relates to graph structure, based on the data set developed here, we refer the reader to
Ref. [30]. For all data considered here, see Ref. [1].

4.2 Probability of themaximum cut

We next assess the performance of QAOA in terms of the probability for obtaining the
maximum cut, P(Cmax). Figure 4 shows an example of the normalized distribution of
the P(Cmax) for the 853 graphs with n = 7 at varying depths p. Statistics describing
these distributions are given in Table 3.

The distribution for p = 0 shown in Fig. 4a peaks around P(Cmax) ≈ 0 with
a rapid decrease away from zero, as expected. An exponential fit for this histogram
distribution yields exp(−κ0P(Cmax)) with κ0 = 29.1 ± 0.9. At p = 0, each possible
cut is equally probable in the initial state and there are 2n possible cuts with at least
two maximum cuts. This implies the bound

P0(Cmax) ≥ 1/2n−1, (24)

where the “0” subscript refers to the initial state. The minimum value P0(Cmax) =
1/2n−1 gives the main contribution to the lowest bar in Fig. 4a while higher values
are obtained for those graphs with additional symmetries, for example, in a complete
graph where symmetry gives n′!/[(n′/2)!2] maximum cuts, where n′ = n for n even
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Fig. 5 Average spectrum of the
normalized cost function
C(z)/Cmax for graphs with
n = 7 vertices
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and n′ = n + 1 for n odd. The peak around P0(Cmax) = 1/2n−1 indicates that large
degeneracies like this are uncommon in the total set of graphs.

Figure 4b shows P(Cmax) when p = 1. We fit this distribution with an exponential
starting at the second histogram bar and similar to the p = 0 distribution. This yields
a smaller decay constant κ1 = 7.0 ± 0.3. Panels (c) and (d) show the distributions
for p = 2 and 3, respectively. These distributions are better described by Gaussian
distributions with means and standard deviations presented in Table 3. The means
increase with p and the distributions widen indicating greater differences between
graphs at larger p. The graphs pass thresholds P(Cmax) > R gradually, as seen by
F̄R(P(Cmax)).

We contrast distributions of P(Cmax) against distributions of the quantum approx-
imation ratio r in Fig. 2 and Table 2. The mean of P(Cmax) increases the least when
going from p = 0 to p = 1, while by contrast themean of r increases themost in going
from p = 0 to p = 1. The exponential andGaussian distributions are also significantly
different at small p. At higher p, P(Cmax) and r both followGaussian distributions but
there are differences in how their widths change with p, with increasing differences
between different graphs for P(Cmax) and the opposite for r .

We explain why distributions of r have high averages and narrow widths when
concurrently P(Cmax) presents broad widths and relatively small averages. Consider
the normalized eigenspectrum Ĉ/Cmax of energiesC(z)/Cmax. For each n, we made a
histogram ofC(z)/Cmax for each graph, then average these values to obtain an average
spectrum forC(z)/Cmax. Figure 5 shows the average spectrum ofC(z)/Cmax at n = 7
vertices with each data point indicating the fraction of basis states in a histogram
bin of width 1/12 averaged over all graphs with n = 7. The results look similar for
other n ≥ 6 while the distributions for n ≤ 5 are irregular due to small numbers of
graphs. We show error bars in the figure denoting the first and third quartiles of the
distributions of the fractions of basis states, calculated by listing the fractions for each
graph in increasing order then taking the entries 1/4 and 3/4 of the way up the list,
rounded to the nearest integer.

Most basis states give sub-optimal cuts C(z)/Cmax < 1 in the average spectrum of
Fig. 5, with the majority of states in the range 2/3 � C(z)/Cmax � 0.95 and with few
optimal states at C(z)/Cmax = 1. Thus, optimization of r in state preparation favors
large total probabilities in many states with near-optimal C(z)/Cmax over the smaller
probability of preparing truly optimal states. This gives relatively high and uniform r
for different graphs but a much more variable P(Cmax).
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Fig. 6 Probabilities for obtaining the maximum cut P(Cmax), averaged over graphs at various n, with
p = 0, . . . , 3 in (a–d), respectively. Asymmetric error bars show the quartiles of the distributions of
P(Cmax), the dashed black line in (a) follows 1/2n−1 from Eq. (24), crosses show minimum values, solid
lines show the exponential fits of Eq. (25) to the indicated data, with parameters from Table 4

Table 4 Parameters for the
exponential fits of Eq. (25) in
Fig. 6

p Np kp

0 3.2 ± 0.8 0.63 ± 0.07

1 2.3 ± 0.2 0.34 ± 0.02

2 2.6 ± 0.1 0.260 ± 0.008

3 2.6 ± 0.2 0.210 ± 0.008

Figure 6 shows how the average of P(Cmax) varies for the distribution of graphs
at various n and p using asymmetric error bars expressed as quartiles. The mean of
P(Cmax) decreases exponentially with n as shown by the blue fit to the averages

Pfit
mean(Cmax) = Npe

−kpn (25)

with the fit parameters in Table 4. We fit to a subset of the data at each p to include
only the largest n where decay is observed, and we show the n we fit at each p by the
location of the fit curve.

At p = 0 the first quartiles follow the minimum of Eq. (24), shown by the dashed
black line. This indicates many of the graphs saturate the minimum theoretical value
of P0(Cmax). As n increases, the averages and quartiles of the P(Cmax) distributions
approach small values near the minimum of Eq. (24).

Figure 6b shows the averages and quartiles of the distributions of P(Cmax) at p = 1.
The average P(Cmax) have increased relative to p = 0 and are again decreasing
exponentially with n, but the rate of exponential decay kp is about half of the rate at
p = 0, see Table 4. The error bars denoting quartiles reduce for n = 3, as these graphs
are approaching full optimization. For higher n the error bars increase to indicate there
are larger deviations between different graphs at p = 1.

The same trends continue at higher p: the average P(Cmax) increases with p,
with decreasing exponential decay constants in Table 4. The distributions widen as p
increases at large n, indicating P(Cmax) is increasingly sensitive to graph structure.
This is in contrast to the distributions of the r , which narrow as p increases, with more
similar r for different graphs.
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Fig. 7 Optimized angle
distribution histogram for p = 1
QAOA on graphs with n = 7
vertices

-0.25

0.00

0.25

-1.0 -0.5 0.0 0.5 1.0

β1/π

γ1/π

 1
 10

 100

counts+1

4.3 Optimized angle distributions

We next discuss the distribution of optimized angle parameters shown in Figs. 7, 8,
and 9 for the 853 graphs at n = 7. These figures present two-dimensional histograms
of the angle distributions, where the optimized (γ j , β j ) have been organized into bins
of size π/20 × π/20 and counted. We use a logarithmic color scale to visualize the
distributions and add a base of one counts in each bin so the logarithm does not diverge
when there are zero counts.

Patterns have been observed previously in the optimized angles for solving simple
families of graphs. Optimized angle patterns have been observed for 3-regular graphs
[7], small samples of random graphs [12,13], and even in a variant formulation of
QAOAsolving theMax-k VertexCover problem [23]. An argument has been given that
angle patterns should be expected within families of graphs with systematic structure
[10]. However, it is not clear if similar angle patterns hold for over the set of general
graphs considered here.

4.3.1 Angle patterns at p = 1

Figure 7 shows the distribution of optimized angles for all graphs with n = 7 vertices
at depth p = 1 in Eq. (6). The overwhelming majority of the angles are focused in
the bright spot near γ1 ≈ −π/6, β1 ≈ −π/8. This concentration is generic for all n
studied: a very limited range of angles (γ1, β1) are observed to optimize almost all
graphs with p = 1.

We categorize the optimized angles using a partitioning of parameter space. Using
Γ = [−π/2, 0] and B = [−π/4, 0] from Eq. (22), we say angle-pairs (γ j , β j ) inside
(Γ ,B) follow the angle patterns and say angle-pairs outside (Γ ,B) deviate from the
pattern. Categorizing by (Γ ,B) quantifies how many graphs have angles that follow
the observed patterns in Fig. 7 at p = 1 and also extends to categorizing graphs when
p > 1.

Let Dn,p be the number of n-vertex graphs that deviate from the angle patterns at
depth p. At p = 1, Dn,p is the number of graphs with (γ1, β1) /∈ (Γ ,B). For general
p, Dn,p is the number of graphs with (γ j , β j ) /∈ (Γ ,B) for any j . Let

Dn,p = Dn,p

Nn
(26)

be the fraction of n-vertex graphs that deviate from the patterns at depth p, where the
Nn is the total number of graphs fromTable 1.We calculate the Dn,p using a numerical
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Table 5 Numbers Dn,p and
fractions Dn,p of graphs with
optimized angles
(γ1, β1) /∈ (Γ ,B) at p = 1

n p Dn,p Dn,p

2 1 0 0

3 1 0 0

4 1 0 0

5 1 0 0

6 1 0 0

7 1 1 1.172 × 10−3

8 1 1 8.995 × 10−5

9 1 89 3.409 × 10−4

Fig. 8 Angle patterns at depth
p = 2 for graphs with n = 7
vertices, with (γ1, β1) from the
first layer in (a) and (γ2, β2) in
(b) -0.25
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error tolerance of ε = 10−5, so that γ j that are in Γ to within numerical error are
counted as γ j ∈ Γ , and similarly for the β j .

Table 5 lists Dn,p and the fractions Dn,p of graphs that do not follow the angle
patterns at p = 1 for n ≤ 9. Every graph follows the pattern with n ≤ 6, a small
number of graphs deviate beginning with n = 7. The number of graphs that deviate
increases with n, but they are a small fraction of the total number of graphs.

4.3.2 Angle patterns at p > 1

Figure 8 shows the distributions of optimized angles for all graphs with n = 7 vertices
with depth p = 2. The observed (γ1, β1) differ from the values at p = 1 because
these angles are optimized together with (γ2, β2) at p = 2. The majority of (γ1, β1)

are still concentrated near γ1 ≈ −π/6, β1 ≈ −π/8 as for p = 1, but the distribution
is more dispersed within (Γ ,B) in comparison with Fig. 7. There is a new cluster of
angles at γ1 ≈ π/3 with a spread over all the β1 (recall β1 ≤ 0 by the symmetry of
Sect. 3.3), and a small cluster of graphs with angles γ1 ≈ −9π/10, β1 ≈ −π/4.

Figure 8b shows the distribution of the second layer of angles (γ2, β2). Themajority
of angles followapeakeddistribution in the parameter spaceof (Γ ,B). Thedistribution
is shifted from the distribution at p = 1 to new angles γ2 ≈ −π/4 and β2 ≈ −π/13.
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Table 6 Fractions of graphs with optimized angles that deviate from the angle-pattern parameter space
(Γ ,B) at p = 2, see text for details

n p D(1)
n,p D(2)

n,p D(12)
n,p Dn,p

2 2 0.000 0.000 0.000 0.000

3 2 0.000 5.000 × 10−1 0.000 5.000 × 10−1

4 2 0.000 0.000 1.667 × 10−1 1.667 × 10−1

5 2 0.000 1.429 × 10−1 4.762 × 10−2 1.905 × 10−1

6 2 0.000 2.679 × 10−2 8.036 × 10−2 1.071 × 10−1

7 2 4.689 × 10−3 2.579 × 10−2 1.290 × 10−2 4.338 × 10−2

8 2 4.498 × 10−4 5.847 × 10−3 4.678 × 10−3 1.097 × 10−2

9 2 4.596 × 10−5 1.360 × 10−3 9.652 × 10−4 2.371 × 10−3

There are also subsets of graphs with angles that form clusters around seemingly
random parameter values.

We again categorize the optimized angles as agreeing with the pattern when they
are inside the parameter space of (Γ ,B) from Eq. (22) and deviating from the pattern
when they are outside (Γ ,B) to within numerical error. The total fraction of graphs
that deviate from the pattern is Dn,p from Eq. (26). We further separate the Dn,p into
components to understand which (γ j , β j ) deviate and their correlations at p = 2, 3.

Let D( j)
n,p denote the fraction of graphs that deviate only in the j th angle pair,

(γ j , β j ) /∈ (Γ ,B) and (γk, βk) ∈ (Γ ,B) for all k �= j . Let D( jk)
n,p denote the fraction

of graphs where two angle pairs deviate, (γ j , β j ) /∈ (Γ ,B) and (γk, βk) /∈ (Γ ,B) but

(γl , βl) ∈ (Γ ,B) for all l /∈ {k, j}, and similarly letD( jkl)
n,p denote the fraction of graphs

where the j th, kth, and lth angle-pairs deviate from (Γ ,B). The total fraction of graphs
that deviate from the angle patterns is the sum of fractions that deviate in different sets
of angle pairs, for example, at p = 2 the total fraction of graphs that deviate is the
sum of fractions that deviate in one or both angle pairs,Dn,p = D(1)

n,p +D(2)
n,p +D(12)

n,p .
Table 6 shows the fractions of graphs that deviate from the angle patterns at p = 2.

The total fraction of graphs that deviateDn,p typically decreases as n increases, how-
ever, theDn,p is also increasing with p as seen by comparison with Table 5. The angles

deviate most often in (γ2, β2) or in both (γ1, β1) and (γ2, β2), with D(2)
n,p ≈ D(12)

n,p ,

while deviations in only (γ1, β1) are observed less often, with D(1)
n,p < D(2)

n,p,D(12)
n,p .

Figure 9 shows the optimized angle distributions at p = 3 and n = 7; Table 7
shows the fractions of graphs that deviate from (Γ ,B). These continue the pattern:
the majority of angles are concentrated in a single cluster in (Γ ,B) at each layer, with
additional small clusters of angles distributed unpredictably over the parameter space.
The fractions of graphs in these clusters increases with p. Deviations from the angle
patterns occurmost often in thefinal layer of angles and in combinations connecting the
final layer with earlier layers, with relatively largeD(3)

n,p ≈ D(23)
n,p ≈ D(123)

n,p . Typically,

smaller fractions of graphs deviate in the earlier layers only, as in D(1)
n,p,D(2)

n,p, and

D(12)
n,p , or in disjoint layers, as inD(13)

n,p . The total fractions of graphs that deviate from
the patterns Dn,p decreases with n and increases with p.
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Fig. 9 Angle patterns at depth
p = 3 for graphs with n = 7
vertices, for the first layer
parameters (γ1, β1) in (a),
(γ2, β2) in (b), and (γ3, β3) in
(c)

-0.25

0.00

0.25

-1.0 -0.5 0.0 0.5 1.0(a)

β1/π

γ1/π

 1

 10

 100

counts+1

-0.25

0.00

0.25

-1.0 -0.5 0.0 0.5 1.0(b)

β2/π

3

/π

 1

 10
 100

-0.25

0.00

0.25

-1.0 -0.5 0.0 0.5 1.0(c)

β3/π

γ

2γ

/π

 1

 10
 100

The deviations in the clusters of angles away from (Γ ,B) appears to be due to
differences in graph structure. We have confirmed that optimal angles deviate from
(Γ ,B) for some graphs. While parameter optimization is limited by the sampling of
random seeds with BFGS, these deviations are not attributed to limits on sampling.
We expect the clusters contain graphs with similar structures, with more graphs in
the clusters at higher p indicating a greater sensitivity to graph structure features. In
Supplemental Information, we show an example of the cluster at γ1 > 0 for n = 7
and p = 2 from Fig. 8a. The graphs show similarities, such as an axis of reflection
symmetry, whichmay be related to their deviations in the angles. Our line of reasoning,
that similar graphs are optimized with similar angles, is consonant with the previous
theoretical analysis of Brandão et al. [10] who analyzed angles for graphs drawn from
similar distributions; see also Shaydulin et al. [14,39]who have used graph symmetries
in an approach for predicting QAOA angles. A new result brought out by our approach
is that angles that optimize a graph at a given p are not necessarily close to the angles
that optimize the same graph at p + 1. However, for most graphs at the n and p
tested here, the angle variations are minimal and contained in (Γ ,B). This motivates
a heuristic approach to identifying optimized angles for most graphs, developed in the
next section.

4.4 Median angles

We consider how patterns of optimized angles may identify good approximate angles
for most graphs and greatly reduce the computational cost of searching for angles with
BFGS. Similar uses of angle patterns have been considered for 3-regular graphs [7],
families of structured graphs [10], and small samples of random graphs [13].
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Table 8 Median optimized angles at n = 7 and p = 3, shown to five decimal places

β1/π β2/π β3/π γ1/π γ2/π γ3/π

−0.15244 −0.10299 −0.06517 −0.12641 −0.24101 −0.27459

Table 9 Mean and standard deviations of the differences between quantities rm, rmB, Pm(Cmax), and
PmB(Cmax) calculated with the median angles and quantities r and P(Cmax) calculated from BFGS opti-
mizations with random seeds, see text for details

r − rm r − rmB P(Cmax) − Pm(Cmax) P(Cmax) − PmB(Cmax)

Mean 2.2434 ×10−2 1.4198 ×10−3 7.2206 ×10−2 1.2641 ×10−2

Standard deviation 2.4664 ×10−2 6.2716 ×10−3 1.0585 ×10−1 5.9882 ×10−2

We define a set of angles that follows the angle patterns by first taking the median
γ1 over all γ1 for graphs with n = 7 and p = 3, then define similar median γ j and β j

for each j to obtain the set of angles shown in Table 8. We consider two approaches to
QAOA that use these angles to avoid the computationally expensive random seeding of
the standardBFGSapproach.Thefirst approachuses themedian angles in the evolution
of Eq. (6) without any optimization, results from this approach are denoted rm and
Pm(Cmax). The second approach uses the median angles as seeds in a single BFGS
optimization, results from this approach are denoted rmB and PmB(Cmax). Figures 10
and 11 compare results from the median angle approaches at n = 7 and p = 3 to our
previous results from BFGS optimization with hundreds of random seeds. The results
are visualized using two-dimensional histograms on a logarithmic color scale.

Figure 10a compares the standard r from the full BFGS search to the rm from
the median angles without any optimization. The results are concentrated near the
diagonal, shown by the white dotted line, and the mean and standard deviation of the
difference r − rm is small, as seen in Table 9. The median angles rm give a good
approximation to the r from the full BFGS search.

Figure 10b compares the standard r against the rmB from singleBFGSoptimizations
using the median angles as seeds. The rmB are significantly improved in comparison
with the rm,with 87%of the results satisfying rmB = r up to an additive factor of 10−6,
with significantly reduced mean and standard deviation of the difference rmB − r in
Table 9. The approximation ratio from the single runs of BFGS with the median angle
seeds are typically identical or close to results from the BFGS search with random
seeds and are calculated at a small fraction of the computational expense.

Figure 11 assesses the probability of obtaining the maximum cut in the median
angle approaches. The Pm(Cmax) in Fig. 11a roughly follow the P(Cmax) along the
diagonal but with some considerable spread below the diagonal; note the difference
in scale in comparison with the r in Fig. 10. There is also some spread above the
diagonal, indicating the median angles give higher probabilities for the maximum
cut for some graphs. The mean and standard deviation of the difference Pm(Cmax) −
P(Cmax) is shown in Table 9; they are small but larger than the corresponding values
for r − rm. Overall, the median angles give probabilities for the maximum cut that
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Fig. 10 Two-dimensional
histograms comparing the
approximation ratio from the full
BFGS search to results using the
median angles without
optimization (a) and using the
median angles as seeds in BFGS
(b), for n = 7 and p = 3.
Dashed white lines indicate the
diagonals where rm = r and
rmB = r
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are typically close to the full BFGS results, but the probabilities are more sensitive to
graph structures and vary significantly for some graphs.

Figure 11b shows PmB(Cmax), where the median angles have been used in a single
BFGS optimization. The results are much closer to the diagonal than in Fig. 11a and
the mean and standard deviation of the difference P(Cmax) − PmB(Cmax) are smaller
than the corresponding quantities with Pm(Cmax). In comparison with the rmB, we
again see the probability of obtaining the maximum cut is more sensitive to the choice
of angles, with greater deviations for some graphs in the figures and a larger mean and
standard deviation of the difference in Table 9. However, for most graphs the median
angles work very well, with 87% of graphs obtaining identical probabilities for the
maximum cut using the median angles as seeds in BFGS and using the much more
computationally expensive search over random seeds.

5 Conclusions

We have presented results that identify empirical performance bounds on optimized
instances of QAOA for MaxCut. Using numerical simulations, we investigated an
exhaustive set of MaxCut instances for depths p ≤ 3 on graphs with n ≤ 9 vertices.
We calculated optimal solutions using exact numerical search and brute force search
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Fig. 11 Histograms similar to
Fig. 10 but showing the
probability of obtaining a
maximum cut
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at p = 1 and 2 and validated results from BFGS at depths p ≤ 3. The catalog of graph
instances, optimized angles, and simulated states are available online [1].

Our analysis used the approximation ratio r and the probability for obtaining amax-
imum cut P(Cmax) as measures of QAOA performance. We observed that r becomes
more similar across graph structures as p and n increase and the Gaussian distributions
of r narrow.Most graphs at n ≤ 9 exceed the worst-case Goemans–Williamson bound
by p = 3 in these narrow distributions, indicating viability of modest-depth QAOA
to outperform the lower GW bound in many (though not all) instances. A detailed
analysis of correlations between graph features and QAOA performance, using this
data set, has been presented in Ref. [30].

In contrast to the narrowing distributions of r , distributions of P(Cmax)were found
to broadenwith increasing p.We attributed the difference to design of the cost function
and its corresponding spectrum. A preponderance of nearly optimal states skews the
optimization of r away from the much smaller set of truly optimal states. While this
yields a large, uniform value for r , it leaves P(Cmax) less constrained. One alternative
is to focus optimization on state preparation to ensure the largest values of P(Cmax), for
example by choosing gate angles that optimize a nonlinear function such as 〈exp(αĈ)〉
[24]. For p > 0, we observed an exponential decay in P(Cmax) with respect to n. The
rate constant, kp, was found to decrease as p increases, and this raises the question as
to whether such exponential behavior can predict performance metrics at larger n and
p.

123



403 Page 24 of 32 P. C. Lotshaw et al.

The patterns observed in the optimized angles across this exhaustive set of instances
mirror previous results for narrower cases [7,10,12,13,23]. Using these patterns as a
search heuristic demonstrated high-quality results for most graphs and required a
significantly smaller computational cost than BFGS search with random seeding. For
larger n and p, this work suggests identifying median angles from optimizations on
a small set of graphs and using these angles on varying graphs at the same n and p.
If the angle distributions remain concentrated, then median angles from the small set
of graphs should successfully transfer to the majority of other graphs. Future works
could check on the validity of the heuristic at higher n and p by comparing against
optimized results generated from other methods, such as BFGS or quantum natural
gradient, or assess how graph features affect the success of angle transfer. Identifying
the prevalence of angle patterns at larger n and p as well as the correlation with graph
properties may enable new search heuristics, for example, for general QAOA-like
algorithms, as suggested by the work of Cook et al. [23].
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A Angle symmetries

In this appendix, we discuss details of the angle symmetries from Sect. 3.3. Most of
the symmetries have been described previously by Zhou et al. [7], although we note
two of the symmetries they described for regular graphs apply more broadly to graphs
where every vertex has even degree or every vertex has odd degree. Each symmetry
relates different sets of angles (γ ,β) and (γ ′,β ′) that give the same approximation
ratio in Eq. (11),

〈Ĉ(γ ,β)〉 = 〈Ĉ(γ ′,β ′)〉, (27)

where

γ = (γ1, . . . , γq−1, γq , γq+1, . . . , γp),

123

https://doi.org/10.1007/s11128-021-03342-3
https://doi.org/10.1007/s11128-021-03342-3


Empirical performance bounds for quantum approximate… Page 25 of 32 403

β = (β1, . . . , βq−1, βq , βq+1, . . . , βp), (28)

with (γ ′,β ′) related to (γ ,β) in different ways for the different symmetries. An
example is periodic behavior of the βq angles over intervals of π/2, we use this to
restrict every βq component to the interval −π/4 ≤ βq ≤ π/4, as described by Zhou
et al. There are a variety of additional symmetries we describe below, with derivations
in subsequent subsections.

The first type of symmetry applies to graphs where every vertex has even degree.
In this case the γq angles are periodic over intervals of π since all the eigenvalues of
Ĉ are even, as shown in detail in the next subsection. Thus the symmetry of Eq. (27)
holds for any pair of angles with β = β ′ and

γ ′ = (γ1, . . . , γq−1, γq ± π, γq+1, . . . , γp), (29)

where γ ′ differs from γ by a shift γ ′
q = γq ± π for any q. We use this symmetry to

organize the angle distributions so |γq | ≤ π/2 for all q for graphs where every vertex
degree is even. We search for generic optimized angles in our implementation of the
BFGS algorithm from Sect. 3.2, but if we find a |γq | > π/2 then we add or subtract
π to get a |γ ′

q | ≤ π/2.
The second type of symmetry applies to graphs where every vertex has odd degree.

This gives a joint symmetry in both sets of angles in Eq. (27),

γ ′ = (γ1, . . . , γq−1, γq ± π, γq+1, . . . , γp)

β ′ = (β1, . . . , βq−1,−βq ,−βq+1, . . . ,−βp). (30)

In Eq. (30), γ ′ differs from γ in the qth component, γ ′
q = γq ± π for any q, and β ′

differs from β in the sign of all subsequent components, β ′
r = −βr for all r ≥ q. The

proof follows from Pauli operator commutation relations applied to the two unitary
operators of Eqs. (7)–(8), as shown in detail later. In our calculations, we use this
symmetry to organize the angles so |γq | ≤ π/2 for all q for graphs where every vertex
degree is odd, similar to how we organize the angles when all the vertex degrees are
even.

The third analytic symmetry we use is the “time-reversal” symmetry [7]

(γ ′,β ′) = (−γ ,−β). (31)

The symmetry is related to the B̂ and Ĉ operators in Eqs. (7)–(8) and the initial
state |ψ0〉 of Eq. (5), which have real-valued matrix elements and coefficients in the
computational basis. We give a proof at the end of “Appendix.” We use this symmetry
to always transform to angles with β1 ≤ 0. The βq for q > 1 can be positive or
negative.

We find additional symmetries in the optimized angles for a small subset of graphs.
For these, we report the angles with the most component-pairs (γi , βi ) ∈ (Γ ,B)

from Eq. (22). Using the angles with the most components in (Γ ,B) is designed to
emphasize the angle patterns in Sect. 4.3. The number of graphs M(p) we used the
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Table 10 Numbers of graphs
M(p) where we found
degeneracies and used the rule of
saving the angles with the most
components in (Γ ,B) following
Eq. (22), for various depths p

n M(1) M(2) M(3)

2 0 – –

3 0 1∗ –

4 0 2∗ 0

5 0 2∗ 1∗
6 0 1 3∗
7 0 0 2∗
8 0 1 1

9 0 0 1∗

Numbers with asterisks denote all the graphs we used the rule on were
fully optimized, dashes denote all the graphs were optimized at smaller
depths

(Γ ,B) symmetry on is shown for each n and p in Table 10. The symmetry was used
most often when a graph became fully optimized. For example, we found two sets of
angles for an n = 3 graph that optimized the cost function 〈Ĉ〉 = Cmax; we saved the
angles with the most components in (Γ ,B). Asterisks in the table denote each graph
which we used the rule on for that n and p was fully optimized. Note when graphs are
optimized at some p we do not simulate them at depths p′ > p, so they do not carry
over to columns for greater depths in the table. Overall, the rule is applied to a very
limited subset of the graphs we study.

A.1 Symmetry when all vertices have even degree

When all the vertices have even degree, the angle components γq are periodic over
intervals of π , as discussed around Eq. (29). To demonstrate equivalence of 〈Ĉ〉 in
Eq. (27) for the angles γ ′ from Eq. (29) and γ from Eq. (28), in the next paragraph
we show Ĉ of Eq. (17) has only even eigenvalues when each vertex has even degree.
Then C(z) = 2mz for all z, where mz is an integer. The periodicity over π follows
since the matrix elements from the unitary operator Û (Ĉ, γq) of Eq. (7) are invariant
under changes γq → γq ± π , since

〈z|Û (Ĉ, γq)|z〉 = exp(∓i2mzπ) exp(−i2mzγq)

= 〈z|Û (Ĉ, γq ± π)|z〉, (32)

where the factor 1 = exp(∓i2mzπ) connects the two expressions.
To show the eigenvalues C(z) are all even when all the vertex degrees are even, we

begin by showing there exists a single bitstring z(0) for whichC(z(0)) is even. Then we
show that if C(z) is even for any z and all the vertex degrees are even, then modifying
any bit zk in the bitstring z to get a new bitstring z′ will give a C(z′) that is also even.
Together these imply that every bitstring has even C(z) when all the vertex degrees
are even, since any bitstring can be made from a series of modifications to z(0) and
every modification gives an even C(z).
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First consider the zero bitstring z(0) = (0, 0, . . . , 0). From Eqs. (15)–(16),
this has C(z(0)) = 0 which is even. Next consider an arbitrary bitstring z =
(zn−1, zn−2, . . . , zk, . . . , z0) for which C(z) is even. Suppose we flip a bit zk to make
a new bitstring z′ = (zn−1, zn−2, . . . , z′k, . . . , z0) where z′k �= zk but the z j �=k are the
same. The change zk → z′k will change the value of each C〈 j,k〉 from Eq. (16) that is
associated with zk , so that ifC〈 j,k〉(z) = 1 thenC〈 j,k〉(z′) = 0 and vice-versa. The total
number of edge terms C〈 j,k〉 can be separated into κ terms that increase in value and
δ terms that decrease in value when z → z′. The value of the cost function for z′ can
then be expressed as C(z′) = C(z) + κ − δ. The number of edge components C〈 j,k〉
that depend on zk is even when each vertex degree is even, so δ + κ = 2m for some
integer m. This implies that κ and δ are either both even or both odd; either way, the
difference κ − δ is even. Since C(z) is even by assumption, C(z′) = C(z) + κ − δ is
also even.

We have shown there is a bitstring z(0) for whichC(z(0)) is even and we have shown
changing any such bitstring gives a new C(z′) which is also even. This implies C(z)
is even for all z for every graph where each vertex degree is even. By Eq. (32), the
angle components γq are periodic over intervals of π for these graphs.

A.2 Symmetry when all vertices have odd degree

When all the vertices have odd degree, there is a symmetry Eq. (27) for angle-pairs
(γ ,β) and (γ ′,β ′) from Eqs. (28) and (30), respectively. Only graphs with an even
number of vertices can have this symmetry since it is impossible to have a graph with
an odd number of vertices where every vertex has odd degree. We prove the symmetry
holds in a simple case with p = 1, the extension to p > 1 uses similar reasoning.
We begin by considering the relations between the unitary operators with (γ ,β) and
(γ ′,β ′), then use the analysis to relate the time evolution and probabilities P(z) for
states with the different angles.

Let γ ′
1 = γ1 ± π . The unitary operator Û (Ĉ, γ1) from Eq. (7) is a product of

unitary-operator components for each edge, a single component can be expressed as

exp(−iγ1Ĉ〈 j,k〉) = exp
(
−i

γ1

2
(1̂ − Ẑ j Ẑk)

)

= exp

(
−i

γ ′
1 ∓ π

2

)
exp

(
i
γ ′
1 ∓ π

2
Ẑ j Ẑk

)
. (33)

Separate out a term exp
(
∓i(π/2)Ẑ j Ẑk

)
= ∓i Ẑ j Ẑk to obtain

exp(−iγ1Ĉ〈 j,k〉) = eiδ Ẑk Ẑ j exp(−iγ ′
1Ĉ〈 j,k〉), (34)

where eiδ is an overall phase.
Now consider the unitary operator Û (Ĉ, γ1) of Eq. (7). Using Eq. (34), we have

Û (Ĉ, γ1) =
∏

〈 j,k〉
exp(−iγ1Ĉ〈 j,k〉)
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= eiη

⎛

⎝
n−1∏

j=0

Ẑ j

⎞

⎠ Û (Ĉ, γ ′
1), (35)

where eiη is a phase factor. The term
∏n−1

j=0 Ẑ j comes from the product of Ẑ j Ẑk for all

the edges—each Ẑ j is raised to an odd power in the product since each vertex degree
is odd and using (Ẑ j )

2 = 1̂ reduces this to
∏n−1

j=0 Ẑ j .
We will use Eq. (35) to simplify the time evolution of |ψp(γ1, β1)〉 in Eq. (6). This

includes the unitary operator Û (B̂, β1) from Eq. (8), which shows up in the product
Û (B̂, β1)Û (Ĉ, γ1). Our next goal will be to use commutation relations to move the∏n−1

j=0 Ẑ j to the left side of the product.

Express the Û (B̂, β1) from Eq. (8) as

Û (B̂, β1) =
n−1∏

j=0

(
cos(β1)1̂ − i sin(β1)X̂ j

)
. (36)

Now consider the product of the unitary operators

Û (B̂, β1)Û (Ĉ, γ1) = eiη
n−1∏

j=0

(
cos(β1)1̂ − i sin(β1)X̂ j

)

×
⎛

⎝
n−1∏

j=0

Ẑ j

⎞

⎠ Û (Ĉ, γ ′
1). (37)

The Pauli operators anticommute so

Û (B̂, β1)Û (Ĉ, γ1) = eiη

⎛

⎝
n−1∏

j=0

Ẑ j

⎞

⎠ Û (B̂,−β1)Û (Ĉ, γ ′
1). (38)

We are now ready to show the angles (γ1, β1) and (γ ′
1, β

′
1) give equivalent 〈Ĉ〉 in

Eq. (11), where γ ′
1 = γ1 ±π and β ′

1 = −β1. To demonstrate the equivalence we show
the computational basis state probabilities P(z) are the same for both (γ1, β1) and
(γ ′

1, β
′
1).

The probability amplitude for a basis state |z〉 is

〈z|ψ(γ1, β1)〉 = 〈z|Û (B̂, β1)Û (Ĉ, γ1)|ψ0〉. (39)

Using Eq. (38), this can be expressed as

〈z|ψ(γ1, β1)〉 = 〈z|eiη
⎛

⎝
n−1∏

j=0

Ẑ j

⎞

⎠ Û (B̂, β ′
1)Û (Ĉ, γ ′

1)|ψ0〉
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= eiη〈z|
⎛

⎝
n−1∏

j=0

Ẑ j

⎞

⎠ |ψ(γ ′
1, β

′
1)〉 (40)

Squaring the amplitudes, we obtain

|〈z|ψ(γ1, β1)〉|2 = 〈ψ(γ ′
1, β

′
1)|

⎛

⎝
n−1∏

j=0

Ẑ†
j

⎞

⎠ |z〉〈z|

×
⎛

⎝
n−1∏

j=0

Ẑ j

⎞

⎠ |ψ(γ ′
1, β

′
1)〉. (41)

The
(∏n−1

j=0 Ẑ j

)
can be moved to the left since it commutes with |z〉〈z|, then using

(∏n−1
j=0 Ẑ

†
j

) (∏n−1
j=0 Ẑ j

)
= 1̂ gives

P(z) = |〈z|ψ(γ1, β1)〉|2 = |〈z|ψ(γ ′
1, β

′
1)〉|2, (42)

where P(z) is the probability of |z〉 from Eq. (10). The P(z) are the same for (γ1, β1)

and (γ ′
1, β

′
1) so 〈Ĉ(γ1, β1)〉 = 〈Ĉ(γ ′

1, β
′
1)〉 in Eq. (11), which is the desired symmetry.

A.3 Time-reversal symmetry

Wefinally consider the “time-reversal” symmetry with the angles of Eqs. (28) and (31)
in the symmetry relation Eq. (27) [7]. The symmetry is related to structures of the B̂
and Ĉ operators, which have real-valued matrix elements in the computational basis
in Eqs. (9) and (17), and the structure of the initial state |ψ0〉, which has real-valued
coefficients in the computational basis in Eq. (5). To demonstrate the symmetry we
calculate generic computational basis probabilities P(z) for states with both sets of
angles and show they are equal, thus the 〈Ĉ〉 are equal following Eq. (11).

Consider the probability amplitude 〈z|ψp(γ ,β)〉 for a single basis state |z〉. From
Eqs. (5)–(8) this is

〈z|ψp(γ ,β)〉 = 1√
2n

∑

z′
〈z|

⎛

⎝
p∏

q=1

e−iβq B̂e−iγq Ĉ

⎞

⎠ |z′〉. (43)

Taking the complex conjugate of Eq. (43) only changes the sign of the angle terms
since the B̂ and Ĉ matrices have real-valued matrix elements in the computational
basis, thus

〈z|ψp(γ ,β)〉∗ = 〈z|ψp(−γ ,−β)〉. (44)
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The Born probabilities P(z) from Eq. (10) are the same for both states since

P(z) = |〈z|ψp(γ ,β)〉|2 = |〈z|ψp(γ ,β)〉∗|2
= |〈z|ψp(−γ ,−β)〉|2, (45)

so the 〈Ĉ〉 are the same in Eq. (11).
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