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Abstract
The quantum approximate optimization algorithm (QAOA) is a promising method of
solving combinatorial optimization problems using quantum computing. QAOA on
the MaxCut problem has been studied extensively on graphs with specific structure;
however, little is known about the general performance of the algorithm on arbitrary
graphs. In this paper, we investigate how different graph characteristics correlate with
QAOA performance at depths at most three on the MaxCut problem for all connected
non-isomorphic graphs with at most eight vertices. Some good predictors of QAOA
success relate to graph symmetries, odd cycles, and density. For example, on eight
vertex graphs, the average probability for selecting an optimal solution for graphs that
contain no odd cycles after three iterations of QAOA is 60.6% compared to 48.2% for
those that do. The data generated from these studies are shared in a publicly accessible
database to serve as a benchmark for QAOA calculations and experiments. Knowing
the relationship between structure and performance can be used to identify classes of
combinatorial problems that are likely to exhibit a quantum advantage.
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1 Introduction

Quantum computing has been shown to provide a theoretical advantage over classical
computing in different areas such as machine learning and algorithms on shallow
circuits [1,2], and noisy intermediate-scale quantum (NISQ) devices provide an
opportunity to test this advantage. The quantum approximate optimization algorithm
(QAOA) is a promising application of NISQ devices developed by Farhi, Goldstone,
and Gutmann to solve combinatorial optimization (CO) problems [3]. Large-scale
testing of QAOA has been difficult, as the size of problems that can be tested on
NISQ hardware is limited and quantum simulations can be time-consuming for small
problems. Thus, the current literature has mostly focused on examining graphs with a
predetermined structure [4].

The impact of problem structure on computational efficiency is well understood
in optimization community [5]: it is common for a difficult class of problems to
become easy when a certain structure is imposed. By focusing on graphs with a
predetermined structure in QAOA, there is a risk that conclusions made will not
extend to the broader class of problems. In this paper, we seek to remedy this issue
by performing an exhaustive analysis of how graph structure can impact QAOA on
MaxCut problems, which have been the major focus of recent quantum computing
research. We specifically examine connected graphs that have between three and eight
vertices. The MaxCut problem on an undirected, simple graph G = (V (G), E(G))

is to determine how to partition V (G) into two sets such that the number of edges
between them ismaximized. This problem is classically hard; however, heuristics exist
that find near-optimal solutions [6,7].

QAOA for MaxCut has been studied on two and three regular graphs [3,8–11],
and random regular bipartite graphs [4], which are families that are not representative
of the vast majority of graphs. Other work has focused on more general graphs, for
instance Erdős-Rényi random graphs [12], but over small samples. Additionally, some
of the more commonly studied measure of QAOA success are the expected value of
C , 〈C〉, and the approximation ratio [13], 〈C〉

Cmax
, where Cmax is the size of the cut in an

optimal solution. Our goal is to look at general graphs and determine which structures
correlate to better performances of QAOA on MaxCut for not only 〈C〉 and 〈C〉

Cmax
but

also the probability of measuring an optimal solution, P(Cmax), and the change in the
approximation ratio from level p QAOA to level p + 1.

To this end, we analyze graph structures and compare them to simulations of the
algorithm on MaxCut at one, two, and three levels for all non-isomorphic, connected
graphs on up to eight vertices. We then examine correlations between the graph prop-
erties and the metrics of QAOA success listed in the following section. A summary of
the results is found in Table 2. Finally, we created a database containing all connected
graphs on at most eight vertices and the structures that were examined. The details for
accessing the database are found in Appendix 2.

This paper is organized as follows: First, we reviewMaxCut andQAOA inSect. 2. In
Sect. 3, we discuss graph characteristics and their correlations to QAOA performance
metrics. We then summarize the results and discuss future work in Sect. 4.
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2 QAOA andMaxCut background

In order to use QAOA to solve a CO problem, two operators, U (C, γ ) = e−iCγ and
U (B, β) = e−i Bβ , are applied in succession on an initial state. Here, β and γ are
angles that lie in the interval [0, 2π). The initial state is denoted |s〉 and is often the
uniform superposition, |s〉 = 1√

2n
∑

z |z〉, where z refers to the computational basis
states. QAOA applied p times to |s〉 is denoted p-QAOA. The combined operator for
the p-QAOA is

|γ, β〉 = U (B, βp)U (C, γp)...U (B, β1)U (C, γ1)|s〉.

C encodes the problem to be solved and B is a mixing operator.
MaxCut is a CO problem that is relatively straightforward to encode and solve

with QAOA. The goal of the MaxCut problem is to partition the vertices of a graph
G = (V (G), E(G)) such that the number of edges that has an endpoint in each set is
maximized. We identify each vertex of G with a qubit and let C = ∑

i j∈E(G) Ci j and
define

Ci j = 1/2(−σ z
i ⊗ σ z

j + I ),

where σ z
i refers to the Pauli-z matrix acting on qubit i and I refers to the 2n identity

matrix. B is typically
B =

∑

v∈V (G)

Bv.

In this case, Bv = σ x
v is the Pauli-x operator acting on the vth qubit. If B is chosen

differently, |s〉 is chosen such that it is an eigenstate of B.
The expected value of C after p iterations is 〈γ, β|C |γ, β〉, which we denote as

〈C〉p or 〈C〉 when p is clear from context. The approximation ratio is one common
metric of QAOA success is 〈C〉/Cmax, where Cmax is the optimal solution to the CO
problem.

3 Graph structures

In the previous work, we ran numerical simulations of QAOA solving the MaxCut
problem on all non-isomorphic graphs with the number of vertices, n, ranging between
three and eight [14]. The angles that maximize 〈C〉 after one iteration of QAOA
were solved using the open-source software Couenne [15]. For larger p, we used the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to find angles that maximize
〈C〉. The algorithm inputs an initial collection of angles and then uses a numeri-
cal gradient and second-order approximate Hessian to find angles that converge to
local maxima of 〈C〉 [16]. The BFGS algorithm was used as a heuristic to deter-
mine optimized angles using hundreds of random seeds for each graph. We used 50
random-angle seeds when p = 1, 100 random seeds when p = 2, and 500 seeds when
p = 3. The optimized results are consistent between different implementations and
are confirmed to be global optimal solutions in small cases with n ≤ 6 and p = 2 by
comparing against a brute-force search. We ran BFGS calculations a second time on
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Table 1 The number of connected, non-isomorphic graphs on n vertices for 3 ≤ n ≤ 8

n Number of connected, non-isomorphic graphs on n vertices, Nn

3 2

4 6

5 21

6 112

7 853

8 11117

all graphs with n > 6 for p = 2 and for all n with p = 3, using different sets of 100 or
500 random seeds in order to verify the results were consistent. Thus, the correlations
we draw can be thought of as applying to “best-case” results for QAOA. The values
of 〈C〉 and probabilities of measuring an optimal solution are compiled in a publicly
accessible data set [17].

Using the numerical simulations from earlier work, we determine QAOA metrics
of interest. The metrics used are:

• 〈C〉: The expected value of C
• P(Cmax): The probability of measuring a state that represents a maximum cut
• Level p approximation ratio: 〈C〉p

Cmax

• Percent change in approximation ratio (� ratio) at p:
〈C〉p
Cmax

− 〈C〉p−1
Cmax

1− 〈C〉p−1
Cmax

= 〈C〉p−〈C〉p−1
Cmax−〈C〉p−1

.

〈C〉 can be written as the sum of expected values for the operator acting on each edge
in the graph, where each edge expectation value at p iterations depends on vertices up
to p edges away, so more iterations of QAOA allow the algorithm to “see” more of
the graph structure. The level p approximation ratio is the expected value of the cost
function for MaxCut for QAOA performed at level p as a percentage of the optimal
solution, and the � ratio tells us the rate of change of the level per iteration.

For three vertex graphs, QAOA was only run on two levels, as the correct solution
was found with two iterations. Three iterations of QAOA were applied to graphs with
n ≥ 4. Table 1 lists the number of connected, non-isomorphic graphs on n vertices.
As there are only two connected graphs on three vertices, the data for n = 3 do not
give much insight into the correlations between the structures and different QAOA
properties, so we exclude the data for three vertex graphs from all tables. We study
only connected graphs because if the graph is disconnected, each component has fewer
vertices, and we can independently solve each connected sub-problem. We also study
non-isomorphic graphs, as isomorphic graphs have the same properties and result in
the same solutions.

We collected properties of the tested graphs and found the Pearson’s correlation
coefficient between them and each metric. The properties examined were:

• Number of edges
• Diameter
• Clique number
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Table 2 The trends in correlations between the group properties and each QAOA metric

Graph property 〈C〉 P(Cmax)
〈C〉p
Cmax

〈C〉p−〈C〉p−1
Cmax−〈C〉p−1

Edges = − − =

Diameter = − =

Clique number − − −
Bipartite − −
Eulerian = =

Distance regular = = =

Number of cut vertices = = + =

Number of minimal odd cycles − − − −
Group size = = =

Number of orbits = − − −
The symbol “+” refers to correlations that tend to increase, “−” refers to a correlation that tend to decrease,
and “=” refers to correlations that tend to stay constant for fixed n as p increases. An empty space refers to
a property with no strong correlation or discernible trend

Fig. 1 〈C〉 and the approximation ratio, denoted “A.R.”, plotted against the total number of edges in the
graph for p = 3. There is a strong positive correlation, with r = .875 in 2a and lack of correlation in 2b,
with coefficient r = .042

• Number of cut vertices
• Number of minimal odd cycles
• Group size
• Number of orbits
• Bipartite (Boolean)
• Distance regularity (Boolean)
• Eulerian (Boolean)

Throughout the text and charts, r denotes the correlation coefficient and n denotes
the number of vertices. Definitions of the graph theory terms are presented inAppendix
1. These properties are a subset of all the possible graph properties, but were chosen
because they are commonly studied. We are providing the database to enable others to
identify other structures of interest. The tables listing correlation coefficients are found
in Appendix 3. The graphs and numbering system are from the connected graph files
by Brendan McKay [18]. In the following subsections, we discuss graph properties
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(a) (b)

(c) (d)

Fig. 2 The correlations between the number of edges for each n vertex graph and each of the QAOAmetrics
for p

and their correlations with different QAOAmetrics. Throughout each section, we will
focus on the behavior of r as n and p increase, as these are small graphs that would
not be representative of interesting problems that can provide a quantum advantage.
Additionally, there are few graphs on four and five vertices compared to n ∈ {6, 7, 8},
so data points for n ∈ {4, 5} may not be representative of the trends in correlations.
Thus, we will focus our analysis on n ≥ 6.

3.1 Edges, clique number, andminimal odd cycles

The correlation between number of edges and the metrics computed varies greatly.
There is a very strong correlation between the number of edges and 〈C〉, which can be
seen in Figs. 1 and 2a. This makes intuitive sense for the following reason. Arbitrarily
adding edges to a given graph will not decrease the objective value of any given
solution, only potentially increase it, so we would expect that denser graphs will have
higher 〈C〉 values. However, the results in Fig. 2b show that the number of edges is
negatively correlated with the probability of sampling an optimal solution for large n
and p. We believe this is in part because the more edges that are added in a graph, the
more near-optimal solutions there are that QAOAmay favor over the optimal solution.
These near-optimal solutions compete with exact optimal solutions in sampling, as
QAOA optimizes 〈C〉, it can favor near-optimal states over truly optimal ones.

Note that as n increases, the correlation coefficient between edges and 〈C〉 increases
toward 1 for fixed p, while the coefficients with P(Cmax), the approximation ratio,
and the � ratio slightly decrease, as seen in Fig. 2. It is unclear why the size of n
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Fig. 3 The correlation
coefficients of number of edges
with clique number and number
of minimal odd cycles

impacts the correlation coefficient. At large p, we expect that 〈C〉 would take the
value of Cmax, so eventually, all of the approximation ratios will reach one, making
them independent of the number of edges. The negative correlation in the change in
approximation ratios can be explained as follows. As previously mentioned, denser
graphs have high 〈C〉 and thus tend to have good approximation ratios. Hence, there
is less room for improvement, whereas sparser graphs have more. We expect that for
a fixed n ≥ 6, � will approach zero as the number of iterations increases, as shown
in Fig. 2d. The correlation is determined by the values of � and the fluctuations
in � between graphs with various numbers of edges. When � becomes small, the
fluctuations between graphs overwhelm the typical variations in � with the number
of edges, so the correlation tends to zero.

Since the edge density, clique number, and number of minimal odd cycles are cor-
related for small n, as seen in Fig. 3, it is no surprise that they have strong correlations
with the same QAOA metrics. Refer to Tables 4, 5, 6, and 7 to view their correla-
tion coefficients. The properties become less correlated as n increases so it is unclear
whether the properties will have similar r values for higher vertex graphs. The prop-
erties may need separate analyses for larger graphs. It could be that even though the
properties become less correlated with each other, they remain highly correlated with
some of the QAOA metrics.

In summary, the highest correlation between edges and the QAOA metrics is with
〈C〉. Thus, if a high expected value is the desired metric for success, graphs that are
dense are optimal for QAOA. Edge density does not appear to have a large impact
on P(Cmax) and the approximation ratio; however, simulations of larger graphs are
needed to determine whether the correlations between edges and these metrics tend
toward a limit between zero and negative one, or instead continue toward it. If the
limit approaches negative one, then graphs with low edge density may yield higher
probabilities ofmeasuring an optimal solution or obtaining a high approximation ratio.

3.2 Diameter and number of cut vertices

For the most part, the diameter of a graph, d, correlates negatively with the QAOA
metrics, but the correlation becomes less negative as n increases, which is the reverse
of the correlations with the number of edges. The correlation is particularly strong
with 〈C〉 for low values of p, as seen in Fig. 4a. This is not unexpected as diameter
is negatively correlated with edge density. As seen in Fig. 4b, the correlation between
diameter and probability of measuring an optimal state is stronger for smaller n and
tends to approach zero for fixed n as p increases. Similarly to the probability, the
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(a) (b)

(c) (d)

Fig. 4 The correlations between the diameter for each n vertex graph and each of the QAOA metrics for p

Fig. 5 The correlation
coefficients between diameter
and number of cut vertices for
graphs on n vertices

correlation between d and the approximation ratio is stronger for smaller n and tends
to approach zero for fixed n as p increases, as does the correlation between d and the
� ratio. This is seen in Fig. 4c, d.

The number of cut vertices, like the diameter, correlates negatively with QAOA
metrics, which makes sense as the two properties are positively correlated, as seen in
Fig. 5; however, the correlation weakens as n increases. Thus, the two quantities may
not correlate similarly with all of the QAOA metrics for larger n. See Tables 4, 5, 6,
and 7 to see how the correlation coefficients compare between diameter and number
of cut vertices.

As n increases, the correlation coefficient between diameter and 〈C〉 decreases as
p increases, while the other metrics tend to increase, as seen in Fig. 4. In fact, the
correlation with the other metrics approaches zero for high n and p. If these trends
continue for n ≥ 9, it would imply that diameter is not indicative of the success QAOA
has when solving a MaxCut problem.
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(a) (b)

(c) (d)

Fig. 6 The correlations between the number of orbits for each n vertex graph and each of the QAOAmetrics
for p

3.3 Group size

The group size of a graph tends to have high positive correlations with all QAOA
properties for small n. However as n increases, the correlations tend to zero. A zero
correlation, however, might not indicate that the two are unrelated in this case. The size
of the symmetry groups ranges from 1 to 2n for all graphs on n vertices. Correlations
are intended to measure linear relationships, so using data that is scaled exponentially
on n could “wash out” the correlations. Instead of group size, we look at the number or
orbits to better investigate the relationship between symmetry andQAOAperformance.

3.4 Number of orbits

An automorphism of a graph is a relabeling of vertices that preserves edges and
therefore is a type of symmetry. An orbit of a vertex v is the set of vertices with which
v can be swapped in an automorphism. Thus, if there are two vertices in the same orbit
but in different sets of an optimal MaxCut solution, there is a possibility that they can
be swapped to give another optimal solution. If there are fewer large orbits, there are
more possible symmetries than with many small orbits.

All vertices in the same orbit have the same degree, else the edges cannot be
preserved. If there are more orbits, there are fewer symmetries, as there are fewer
potential vertex mappings that preserve edges. It is not obvious why fewer orbits tend
to produce better expected values and better approximation ratios. In Fig. 6a–d, we
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Fig. 7 The fraction of eight
vertex bipartite and non-bipartite
graphs with a given probability
of finding an optimal solution
for p = 3

Fig. 8 The fraction of eight
vertex Eulerian and
non-Eulerian graphs with a
given probability of finding an
optimal solution for p = 3

see that, upon discarding n = 4, the correlation coefficient between number of orbits
and the QAOA metrics tends to increase as n increases. Additionally, the correlation
coefficient with the approximation ratio becomesmore negative as p increases. Hence,
graphs with small group sizes and larger orbits should achieve higher approximation
ratios after several iterations of QAOA. Thus, group size and symmetry should play an
important role in the quality of solution, which has been noted by Shaydulin, Hadfield,
Hogg, and Safro [19].

3.5 Bipartite

Since there are so few bipartite graphs compared to non-bipartite for fixed n, looking at
the average of each QAOAmetric offers more insight into how a graph being bipartite
affects the quality of QAOA solution. The average for all QAOAmetrics are lower for
bipartite graphs than non-bipartite when p = 1 for fixed n; however, the probability
and change in approximation ratio are higher for bipartite graphs for larger p as seen
in Table 8 and Fig. 7. Depending on the preferred metric of success, bipartite graphs
either perform worse than non-bipartite, as in the case for the approximation ratio and
〈C〉, or better, as in the case of probability of measuring an optimal solution or� ratio.
The average� ratio being higher for bipartite graphs suggests that a low approximation
ratio at p = 1 does not imply that the approximation ratio at larger iterations cannot
surpass those of non-bipartite graphs. The fact that the approximation ratio tends to be
lower for bipartite graphs agrees with previous literature [4]. In fact, Wurtz and Love
conjecture that for p iterations of QAOA on any graph, the approximation ratio of an
n vertex graph is lower when there are no odd cycles of length at most 2p + 1 than
graphs that have length at most 2p + 1 [20].

3.6 Eulerian

There are so few Eulerian graphs in the data set that the correlation coefficients are
not particularly helpful; however, plotting the performance of Eulerian graphs makes
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the relationship between them and the QAOA metrics more evident. As seen in Table
9, the average maximum probability, level p approximation ratio, and � ratios are
significantly higher for Eulerian graphs than for non-Eulerian for most n and p, while
the averages are comparable for the expected value ofC . Figure 8 shows a histogram of
the number of Eulerian and non-Eulerian graphs on eight vertices and the probability
of obtaining an optimal solution. As seen in the histogram, for any given graph, the
probability of measuring an optimal MaxCut solution is higher for Eulerian graphs
than non-Eulerian.

3.7 Distance regular

Similarly to Eulerian graphs, distance regularity does not appear to have a strong
correlation with any of the QAOA metrics because there are so few distance regular
graphs compared to non-distance regular ones, so we do not make a chart of the
correlations. In particular, there are only ten distance regular graphs on fewer than
seven vertices. We also do not make a histogram with the probabilities as we did for
Eulerian and bipartite graphs because the average probability of measuring an optimal
solution for only a handful of distance regular graphs cannot be compared as well to
the average probability of thousands of non-distance regular graphs. However, graphs
with n ∈ {4, 5} vertices that are distance regular have a probability of one of obtaining
the optimal solution when p = 2. These graphs in particular are C4, K4, C5 and
K5, where Cn denotes the cycle on n vertices and Km denotes the complete graph
on m vertices. These are the only distance regular graphs on four or five vertices,
up to isomorphism. Interestingly enough, when n = 7, both distance regular graphs,
C7 and K7, obtain a probability of one of being in the optimal state when p = 3;
however, this is not the case for n = 6. When n = 6, three of the four distance regular
graphs have a probability greater than 0.99 of giving the correct solution; however, the
complete bipartite graph with partitions both containing three vertices (K3,3) achieves
a probability of 0.97. This is far higher than the average for arbitrary graphs with
n = 6 and p = 3. These results lead us to believe that distance regular graphs on n
vertices achieve a high probability of obtaining the optimal solution when p ≥ 	 n

2 
;
however, more testing and a rigorous mathematical proof would be needed to confirm
this.

4 Conclusion

The quantum approximate optimization algorithm has been studied in detail for the
MaxCut problem on graphs with rigid structures including degree regularity and
whether or not a graph is bipartite [3,8–10].While the studies give insight into how the
algorithm works, examining graphs with specific structures excludes the vast majority
of graphs. Thus, we looked at properties of all connected graphs on at most eight ver-
tices and found the correlation between different graph properties and the probability
of finding an optimal solution, the expected value of C , the level p approximation
ratio, and the change in ratio from p − 1 to p for p at most three.
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Table 3 A summary of graph properties and average correlation coefficient over all p ≥ 1 to QAOAmetrics
for n = 8

Graph Property 〈C〉 P(Cmax )
〈C〉p
Cmax

〈C〉p−〈C〉p−1
Cmax−〈C〉p−1

Edges + − + −
Diameter − −
Clique number + − + −
Bipartite + +

Eulerian − −
Distance regular

Number of cut vertices −
Number of minimal odd cycles + − + −
Group size

Number of orbits − −
A “+” means a strong positive average coefficient, “−” represents a strong average negative correlation
coefficient, and an empty space means the average correlation coefficient is in the interval (−.1, .1), which
is not significant

There are two metrics that strongly correspond with the graph properties studied,
namely 〈C〉 and P(Cmax). Graphs that have a lot of edges have a high positive corre-
lation with 〈C〉. Diameter, clique size, number of cut vertices, and number of small
odd cycles also correlate with 〈C〉, either positively or negatively. This is expected
because these properties correlate positively or negatively with the number of edges
for small n. Trends in the data for fixed n and increasing p are summarized in Table 2.
The probability of measuring the optimal solution, expected value of C , and optimal
angles was taken from [14,17].

Bipartite, Eulerian, and distance regular graphs tend to have higher probabilities of
measuring the optimal solution than graphs that do not have any of these properties.
For bipartite, this occurs for p ≥ 2. Previous work shows that the approximation ratio
for bipartite graphs tends to beworse than non-bipartite [4], so depending on themetric
of success, bipartite graphs may or may not be suitable graphs for testing. Similarly,
for larger p, Eulerian and distance regular graphs tend to have higher probabilities of
measuring the optimal solution than non-Eulerian and non-distance regular graphs.
Thus, we expect that QAOA for MaxCut on highly symmetric graphs, which are those
with larger orbits, bipartite, Eulerian, and distance regular graphs will have a relatively
high probability of measuring the optimal solution. Table 3 gives a summary of the
average correlation coefficient over all p ≥ 1 for each graph property and each QAOA
metric on graphs with eight vertices.

Additionally, we created a data set containing the graphs and their properties. The
data set information is located in Appendix 2. For future work, a similar data set for
other problems, such as maximum independent set or problems with low circuit depth
[21], would be useful to create benchmarks for experiments on NISQ devices. Other
avenues of future work include using machine learning to determine whether MaxCut
on a graph will have a high probability of measuring the optimal solution after p
rounds of QAOA. Mathematically proving if QAOA for MaxCut on distance regular
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graphs with n vertices gives better solutions than non-distance regular graphs after
	 n
2 
 iterations would be of interest, as well.

Acknowledgements The authorswould like to thankRyanBennink for his helpful comments on early drafts
of thismanuscript. Thisworkwas supported byDARPAONISQprogramunderAwardW911NF-20-2-0051.
J. Ostrowski acknowledges the Air Force Office of Scientific Research Award, AF-FA9550-19-1-0147. G.
Siopsis acknowledges the Army Research Office Award W911NF-19-1-0397. J. Ostrowski and G. Siopsis
acknowledge the National Science Foundation Award OMA-1937008. This manuscript has been authored
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The
United States Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan. (http://energy.gov/downloads/doe-
public-access-plan).

Appendix

Appendix A: graph theory definitions

In this section, we define some of the less common graph theory terms that appear in
the paper.

Definition A.1 (Diameter) The diameter of a graph G = (V , E) is maxu,v d(u, v),
where d(u, v) denotes the distance between u, v ∈ V .

Definition A.2 (Distance) The distance between two vertices, u and v, of a graph
G = (V , E) is the number of edges in the shortest path between u and v.

Definition A.3 (Clique number) The clique number of a graph is the size of the largest
complete subgraph.

Definition A.4 (Bipartite) A graph is bipartite if the vertices can be partitioned into
two sets such that all edges are incident to a vertex in both sets.

Definition A.5 (Eulerian cycle) An Eulerian cycle is a cycle that uses all edges of a
graph exactly once.

Definition A.6 (Eulerian) A graph is Eulerian if it is connected and contains an Eule-
rian cycle.

Definition A.7 (Distance Regular) A graph G = (V , E) is distance regular if for any
pair of vertices x, y ∈ V , the number of vertices that are distance i from x equals
the number of vertices that are distance i from y, for i ∈ {1, 2, ..., d}, where d is the
diameter of G.

Definition A.8 (Cut vertex)Acut vertex of a connected graph is a vertexwhose removal
disconnects the graph.

Definition A.9 (Graph Automorphism) A graph automorphism is a relabeling of ver-
tices that preserves the set of edges. Mathematically, it is a map α : V −→ V such
that i j ∈ E if and only if α(i)α( j) ∈ E .
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Definition A.10 (Automorphism Group) The set of all graph automorphisms of G
forms an automorphism group of G.

Definition A.11 (Group Size) The group size of G is the size of the automorphism
group of G.

Definition A.12 (Orbit) An orbit of a vertex v is the set of all vertices α(v) where α is
an automorphism of G.

Appendix B: database details

The data generated from these studies are shared in a publicly accessible GitHub
Repository to serve as a benchmark QAOA calculations and experiments. This data
set consists of csv files for each set of graphs on n vertices for 3 ≤ n ≤ 8. The
generated graph entries, which populate each set, are indexed by a graph number
and include the following properties: bipartite (Boolean), number of edges, diameter,
clique number, distance regular (Boolean), Eulerian (Boolean), list of cut vertices,
number of cut vertices, cycle basis, degree sequence, automorphism group generator,
automorphism group size, orbits, number of orbits, and the number of small cycles on
3 to n vertices. In addition to the data set, we have provided two options for storing and
sorting this data by desired graph properties. The first option is to insert the data into a
MySQL database structure. The user can then query the database to select the desired
data and insert new columns for additional properties, calculations, and experimental
results.We have provided scripts for creating the database tables, populating the tables
using the csv files, querying the database, and inserting new columns. For additional
information on how to download and use MySQL, see the MySQL Documentation.To
work with the data set directly, we have also included a Python script which utilizes
the data analysis library pandas. Pandas is a library which allows the user to store
and manipulate data in two-dimensional, labeled data structures called DataFrames.
We have provided a Python script which allows the user to import the csv data into
pandas DataFrames and create new DataFrames with the desired graph properties. For
more information on how to use and install pandas, see the Pandas Documentation.
Both MySQL and Pandas are free, open-source software packages. This data set, the
MySQL Scripts, and Python script can be accessed through the QAOA Small Graph
GitHub Repository.

Appendix C: data tables

In this section, we include the tables containing all correlations between different
graph properties and metrics. For the Boolean properties, we assign “1” to TRUE and
“0” to FALSE. See Tables 4, 5, 6, 7, 8, and 9.
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