
Quantum Information Processing (2021) 20:59
https://doi.org/10.1007/s11128-021-03001-7

Lower bounds on circuit depth of the quantum
approximate optimization algorithm

Rebekah Herrman1 · James Ostrowski1 · Travis S. Humble2 ·
George Siopsis3

Received: 10 August 2020 / Accepted: 14 January 2021 / Published online: 9 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The quantum approximate optimization algorithm (QAOA) is a method of approxi-
mately solving combinatorial optimization problems. While QAOA is developed to
solve a broad class of combinatorial optimization problems, it is not clear which
classes of problems are best suited for it. One factor in demonstrating quantum advan-
tage is the relationship between a problem instance and the circuit depth required to
implement the QAOAmethod. As errors in noisy intermediate-scale quantum (NISQ)
devices increase exponentially with circuit depth, identifying lower bounds on circuit
depth can provide insights into when quantum advantage could be feasible. Here, we
identify how the structure of problem instances can be used to identify lower bounds
for circuit depth for each iteration of QAOA and examine the relationship between
problem structure and the circuit depth for a variety of combinatorial optimization
problems including MaxCut and MaxIndSet. Specifically, we show how to derive a
graph, G, that describes a general combinatorial optimization problem and show that
the depth of circuit is at least the chromatic index of G. By looking at the scaling
of circuit depth, we argue that MaxCut, MaxIndSet, and some instances of vertex
covering and Boolean satisfiability problems are suitable for QAOA approaches while
knapsack and traveling salesperson problems are not.

B James Ostrowski
jostrows@utk.edu

Rebekah Herrman
rherrma2@utk.edu

1 Department of Industrial and Systems Engineering, University of Tennessee at Knoxville,
Knoxville, Tennessee 37996-2315, USA

2 Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830,
USA

3 Department of Physics and Astronomy, University of Tennessee at Knoxville, Knoxville, Tennessee
37996-1200, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-021-03001-7&domain=pdf
http://orcid.org/0000-0001-6944-4206

59 Page 2 of 17 R. Herrman et al.

Keywords Quantum approximate optimization algorithm · Circuit depth ·
Combinatorial optimization · Chromatic index

1 Introduction

In 2014, Farhi et al. [1] introduced the quantum approximate optimization algorithm
(QAOA) to approximately solve combinatorial optimization problems. In classical
combinatorial optimization, problems are defined by n bits and m clauses. To solve
optimization problems using QAOA, the clauses are converted to Hamiltonians, and
the state of the graph is initially |s〉 = 1√

2n
�z |z〉, where {|z〉} is the computational

basis. For p ∈ N, the p-level QAOA requires 2p angles, �γ = (γ1, . . . , γp) and
�β = (β1, . . . , βp) and alternates between themixing Hamiltonian, B, and the problem
Hamiltonian, C , to generate the state

∣
∣
∣ψ(�γ , �β)

〉

= U (B, βp)U (C, γp) . . .U (B, β1)U (C, γ1)|s〉

where U (A, φ) = e−i Aφ . B and C depend on the problem of interest and the angles
that maximize them can be found using classical pre-processing [2–4].

Previously, QAOA has been used to solve bounded constraint problems [5] and
has been studied on near-term devices [6]. Additionally, it has been used to look at
lattice protein folding [7] and the Max-k vertex cover problem [8] and has inspired
an approach for solving linear systems using quantum computing [9]. MaxCut and
maximum independent set are examples of two problems that have been well studied
with QAOA [10–13]. Both can be represented as quadratic unconstrained problems,
otherwise known as aQUBO. It has also been shown to exhibit a formof computational
advantage in the sense that the output of low depth circuits cannot be efficiently
classically simulated [14], and general strategies have been studied for implementing
it on hardware graphs [15].

In this paper, we investigate the potential of using quantum computing to solve
combinatorial optimization problems of the form

min c(x) (1)

s.t. pi (x) ≤ bi ∀i ∈ P (2)

x ∈ {0, 1}n (3)

where both pi , contained in the collection of polynomial constraints P , and c are
polynomial functions in R

n[x1, x2, ..., xn] and bi ∈ R.
We identify the relationship between combinatorial optimization problems and the

corresponding depth of circuit for QAOA approaches to solving this problem. It has
been shown that the cost function for QAOA decreases with the number of gates and
level of noise in NISQ devices [16–18], so in this paper, we specifically focus on
circuit depth, although an equally important component of the fidelity of a solution is
the number of iterations needed.We only look at a single iteration because we consider
all iterations have the same depth.

123

Lower bounds on circuit depth of the quantum approximate… Page 3 of 17 59

In Sect. 2, we define graph theory terms that will be used throughout the paper. Next,
in Sect. 3, we discuss how to map arbitrary combinatorial optimization problems
to polynomial unconstrained binary optimization problems (PUBOs) by dualizing
constraints and apply themethod toMaxCut,Maximum Independent Set, and a general
combinatorial optimization problem. Additionally, we discuss how to use the PUBOs
to derive a hypergraph that represents a specific optimization problem and show that
one plus the chromatic index of the hypergraph is equal to the depth of QAOA circuit
needed to run a combinatorial optimization problem. Using this result, we analyze the
depth of circuit for theMaxCut,Maximum Independent Set, and general combinatorial
optimization problems. The depth of circuit argument is made assuming that arbitrary
n-qubit gates can be performed on the hardware; however, in Sect. 4, we show how the
depth of circuit scales if the largest operation that can bemade is on two qubits.We then
consider vertex covering, knapsack, traveling salesperson, and Boolean satisfiability
problems, determine the depth of circuit required to use QAOA to solve them, and
discuss the feasibility of performing them on NISQ devices in Sect. 5. Finally, in
Sect. 6, we discuss avenues for future work.

2 Background

In this section, we define graph theory terms that will be used in upcoming sections.
An edge coloring of a simple graph G = (V , E) is a labeling f : E −→ [k], where
each number represents a color. An edge coloring is proper if for all edges uv and xv,
f (uv) 	= f (xv). The smallest number of colors needed for a proper coloring of G
is the edge chromatic number, sometimes referred to as the chromatic index, denoted
χ ′(G), and we say all edges with the same label belong to the same color class. A
well-known result by Vizing states that χ ′(G) ∈ {�,�+1}, where� is the maximum
degree of G [19].

A hypergraph H = (VH , EH) is a generalization of a graph in which an edge may
join more than two vertices. If there are n vertices in H , then E ⊂ P \ {∅}. H is
linear if two edges share at most one vertex, and it is k-uniform if all edges contain
exactly k vertices. A hypergraph clique is a collection of edges, Hc ⊂ EH , such that
every element of Hc is pairwise intersecting. A proper hypergraph edge coloring is
analogous to an edge coloring of a graph in that if a vertex is contained in multiple
edges, they all receive distinct colors.

3 Mapping arbitrary combinatorial optimization problems to PUBO

When considering combinatorial optimization problems, we will use the method of
dualizing constraints to solve them and analyze circuit depth. Other methods may give
different results. Consider a constraint pi (x) ≤ bi , where x = {x1, ..., xn}. We can
dualize this constraint by penalizing any solution x ′ with pi (x ′) ≥ bi as follows. Let
p
i
= min

x∈{0,1}n pi (x). The “most feasible” solution with respect to constraint i is going

123

59 Page 4 of 17 R. Herrman et al.

to be f easi = bi − p
i
away from the constraint. Let ki = �ln f easi� + 1. We can

omit constraint i from the set of constraints and add the term

λi

⎛

⎝pi (x) +
∑

j∈[ki]
2 j−1δi j − bi

⎞

⎠

2

(4)

where λi is any large, positive parameter penalizing violation of constraint i and δi j
are additional binary variables.

In multiplying out the above constraint, we get

λi

⎛

⎝pi (x)
2 + 2

∑

j=∈[ki]
2 j−1 pi (x)δi j − 2bi pi (x)

+
⎛

⎝
∑

j∈[ki]
2 j−1δi j

⎞

⎠

2

− 2
∑

j∈[ki]
2 j−1biδi j + b2i

⎞

⎟
⎠ . (5)

The cost of this transformation is an increase in the potentially large number of new
δi j variables.

Using the above process, we can write any combinatorial optimization problem of
type (1) as

min
x∈{0,1}n ,δ∈{0,1}ki

c(x) +
∑

i∈P

λi

⎛

⎝pi (x)
2 + 2

∑

j∈[ki]
2 j−1 pi (x)δi j − 2bi pi (x)

+
⎛

⎝
∑

j∈[ki]
2 j−1δi j

⎞

⎠

2

− 2
∑

j∈[ki]
2 j−1biδi j + b2i

⎞

⎟
⎠ . (6)

If all pi constraints are linear and c is quadratic, the resulting unconstrained prob-
lem is a QUBO. Simplifying notation, we can think of a combinatorial optimization
problem as the sum of monomials of the polynomial pi (x),

min
x∈{0,1},δ∈{0,1}ki

∑

mi∈ Mi

mi (x, δ),

where Mi is the set of monomials of pi (x)

3.1 Examples

In this section, we give examples of problems whose edge operators act on at most
two qubits and how to map them to PUBOs.

123

Lower bounds on circuit depth of the quantum approximate… Page 5 of 17 59

Fig. 1 The wheel graph on six
vertices with the edges properly
colored. There are five color
classes: solid green, dashed blue,
densely dotted red, loosely
dotted black, and dotted dashed
orange (Color figure online)

v1

v2

v3

v4

v5 v6

Example: MaxCut
In the combinatorial optimization problem MaxCut, the vertices of a graph, G =

(V , E), are partitioned into two sets such that the number of edges with an end point
in each set is maximized. This problem can be formulated as

min
x∈{0,1}n

∑

i j∈E(G)

x j (xi − 1) + xi (x j − 1) = min
x∈{0,1}n

∑

i j∈E(G)

2xi x j − xi − x j

Note that P = {∅}, so there are no δi j terms when the problem is dualized. For
example, consider the wheel graph on six vertices, W6, as seen in Fig. 1.

In this example, we want to minimize

2(x1x2 + x1x3 + x1x4 + x1x5 + x1x6 + x2x3 + x2x6 + x3x4 + x4x5 + x5x6)

− 5x1 − 3(x2 + x3 + x4 + x5 + x6)

where xi ∈ {0, 1} for all i ∈ [6].
Example: Maximum Independent Set
Let G = (V , E) be a simple, undirected graph. In the maximum independent set

problem, often denoted MaxIndSet, the goal is to find the largest set of independent
vertices, or vertices that are not pairwise adjacent. This problem can be written as

max
∑

i∈V
xi (7)

s.t. xi x j = 0 ∀(i, j) ∈ E (8)

x ∈ {0, 1}n (9)

P 	= {∅}, as |P| = |E |, but for all pi , pi = 0, so feasi = 0 for all i , and the new
formulation is

max
x∈{0,1}n

∑

i

xi +
∑

(i, j,)∈E
λxi x j .

123

59 Page 6 of 17 R. Herrman et al.

For the graph given in Fig. 1, the resulting optimization function is:

x1 + x2 + x3 + x4 + x5 + x6
+ λ(x1x2 + x1x3 + x1x4 + x1x5 + x1x6 + x2x3

+ x3x4 + x4x5 + x5x6 + x2x6)

Example: General Problem As a general example, consider

max
∑

i∈[3]
xi (10)

s.t. x1x2 + x2x3 + 2x1x3 ≤ 3 (11)

xi ∈ {0, 1} (12)

Now, pi = 0, so feas = 3. Dualizing the first constraint, we get

max(x, λ)
∑

i∈[3]
xi + λ(x1x2 + x2x3 + 2x1x3 − δ11 − 2δ12 − 3)2

=
∑

i∈[3]
xi + λ(−5x1x2 + 10x1x2x3 − 5x2x3 − 8x1x3 − 2δ11x1x2

− 2δ11x2x3 − 4δ11x1x3 − 4δ12x1x2 − 4δ12x2x3
− 7δ11 + 16δ12 + 4δ11δ12 + 9).

3.2 A QAOA approach

This section assumes we are optimizing a problem of the form minx∈{0,1}n
∑

mi∈M
mi (x). The natural extension of QAOA on general PUBOs is to define the unitary
operator U (C, γ) = e−iγC = ∏

mi∈M e−iγmi = ∏

mi∈M U (mi , γ), while the mixing
operator remains U (B, β) = e−iβB where B = �v∈V (G)Bv , Bv = σ x

v for v ∈ V (G)

and σ x
v is the Pauli X operator acting on qubit v. U (C, γ) can be compiled on a

circuit by decomposing it into a sequence of gates performing allU (mi , γ) operators.
The number of qubits each U (mi , γ) acts on is the number of variables in monomial
mi , which depends on the size of the support of pi , denoted supp(pi). We seek to
explore the relationship between the structure of the monomial and the minimum
depth required for a quantum circuit to optimize such a function.

First, we assume that all mi have been combined optimally to fit the hardware,
meaning each polynomial has size atmost themaximal gate size the hardware supports,
and any monomials that can be combined and fit on one gate have been combined.
Although current hardware currently supports gate width of two, we look at larger
gate width for completeness. OperatorsU (mi , γ) andU (m j , γ) cannot be performed
in parallel unless they act on disjoint sets of qubits. With that in mind, we construct a
proper hypergraph edge coloring that minimizes the total depth of circuit, where edges
of the same color represent sets of operators that can be performed in parallel. We let

123

Lower bounds on circuit depth of the quantum approximate… Page 7 of 17 59

H = (VH , EH) be such a hypergraph where VH = {1, . . . , n} and EH consists of
edges ei = supp(mi) for all mi ∈ M .

Theorem 1 Every proper edge coloringof H corresponds to a valid circuit for PU BO,
where the depth of the shallowest circuit is χ ′(H) + 1.

Proof Let vavb...vd be the support of monomial mi and vev f ...vh be the support of
monomialm j such that {va, vb, ..., vd}∩{ve, v f , ..., vh} = {∅}. Then,U (Cmi , γ) and
U (Cm j , γ) can be implemented simultaneously in a circuit. Since the intersection is
empty, the edgesmay receive the same color in a proper coloring, but do not necessarily,
as there may be several proper colorings of one graph. Thus, a proper edge coloring
gives a feasible implementation of a circuit that can be used to solve a combinatorial
optimization problem. There exists a coloring of H that uses exactly χ ′(H) colors, and
by definition, any coloring that uses fewer colors is not proper. If the coloring is not
proper, two edges that share a vertex have the same color and their corresponding gates
cannot be implemented simultaneously. Hence, the depth of the shallowest circuit is
χ ′(H) + 1, as one must be added to account for U (B, β). ��

Determining the chromatic index of hypergraphs in general is a difficult problem.
In 1972, Erdös, Faber, and Lovász conjectured that the chromatic index of any linear
hypergraph on n vertices is at most n [20]. Since then, the conjecture has been proven
if H satisfies �(H) ≤ √

n + √
n + 1 [21]. Additionally, Chang and Lawler showed

that the chromatic index of a hypergraph H on n vertices is at most �1.5n − 2� with
no restriction on the degrees of the vertices. In 1992, Kahn showed that χ ′(H) ≤
n + o(n) for linear H [22]. Note that since any two edges in a linear hypergraph
intersect in at most one vertex, that is equivalent to saying any two monomials in
an optimization problem share at most one common variable. As there are bounds
on the chromatic index of linear hypergraphs, in a general combinatorial optimization
problem, one could attempt to relax the problem such that for any twomonomials a and
b, |supp(a) ∩ supp(b)| ≤ 1 in order to have a rough bound on the depth of the circuit.

In addition to linear hypergraphs, there has been work on bounding the chromatic
index of k-uniform hypergraphs. Pippenger and Spencer proved that if a k-uniform
hypergraph has minimum degree asymptotic to the maximum degree and asymptotic
codegree negligible compared to the maximum degree, then for some δ > 0, χ ′(H) ≤
(1+ δ)�(H) [23]. Later, Alon and Kim showed that if H is k-uniform and if any two
edges have at most t vertices in common and maximum degree sufficiently large as a
function of k, then |Eh | ≤ (t − 1 + 1

t)�(H), which bounds the chromatic index of
H from above [24]. As each edge in a k-uniform hypergraph contains k vertices, it is
equivalent to the original combinatorial optimization problem containing monomials
that consist of precisely k variables. Thus, the circuit depth of problems that can be
written such that each monomial has the same size support can be bounded.

We can potentially combineU (Ca, γ) andU (Cb, γ) intoU (Ca,b, γ), which could
reduce the number of colors needed for the corresponding graph. Doing so, however,
requires solving a potentially difficult optimization problem. Consider the problem:

min
∑

c∈C
zc (13)

123

59 Page 8 of 17 R. Herrman et al.

s.t.
∑

s∈S
xcs ≤ |S| − 1 ∀ c ∈ C, S s.t. | ∪s∈S s| > L (14)

xce ≤ zc ∀ e ∈ E, c ∈ C (15)

x, z ∈ {0, 1} (16)

where L is the number of qubits in the largest gate the hardware can perform, c is
a color in the collection of colors C , s is an edge of S ⊂ E(H), and xcs indicates
that s receives color c in a particular proper coloring. One obvious example of how
to combine gates is, if for monomials a and b, supp(a) ⊂ supp(b) then the size of
the gate required for U (Ca,b, γ) will be identical to U (Cb, γ). Thus, U (Ca, γ) and
U (Ca,b, γ) can be combined since supp(a) ∪ supp(b) = supp(b).

Throughout the rest of this paper, we define the derived graph as the graph cor-
responding to a combinatorial optimization problem whose vertex set consists of the
variables in the problem and whose edges connect vertices that are found in a common
monomial. The derived hypergraph is similarly defined.

3.2.1 Examples continued

In this section, we analyze the structure of the resulting hypergraphs built from the
examples in Sect. 3.1 and discuss how this impacts the difficulty of performing each
problem on NISQ devices.

Example: MaxCut, continued
The support of the cost function is six, but each gate acts on two qubits in the circuit

since each monomial has at most two unique xi terms. We define gatesU (Ci, j , γ) for
monomials that have two variables, xi and x j .

As i, j,m, and n must be unique in order to run Ci, j and Cm,n at the same time, we
can color the edges of a graph G and perform operators associated to the edges of the
same color class at once. Thus, the depth of the circuit for MaxCut is either χ ′(G)+1,
as one must be added to account for the B gates, and the depth scales linearly with the
number of iterations of the algorithm. Figure 2 is a circuit diagram for implementing
MaxCut on W6 using the PUBO mapping and QAOA approach.

Example: Maximum Independent Set, continued
The support of the optimization function has size six, and each monomial is com-

prised of at most two variables. The circuit diagram for this example is the same as in
Example: MaxCut, continued, as it contains the same monomials, up to constants
and signs.

Example: General Problem, continued
Since several monomials in the function to optimize are contained in the

support of others, the gates needed in the QAOA circuit are those acting on
x1x2x3, x1x2δ11, x1x2δ12, x1x3δ11, x1x3δ12, x2x3δ11, x2x3δ12 and δ11δ12, and
the associated hypergraph and coloring for it is Fig. 3. The circuit diagram for this
example is seen in Fig. 4.

123

Lower bounds on circuit depth of the quantum approximate… Page 9 of 17 59

|x1〉
Cx1,x2

Cx1,x3 Cx1,x4 Cx1,x5 Cx1,x6

B

|x2〉 Cx2,x6

Cx2,x3

|x3〉
Cx3,x4

Cx1,x3

|x4〉
Cx4,x5

Cx1,x4

|x5〉
Cx5,x6

Cx1,x5

|x6〉 Cx2,x6 Cx1,x6

Fig. 2 The circuit diagram for a 1-level QAOA on the wheel graph on six vertices. We use the notation Ci, j
to represent U (Ci, j , γ) to make the image clearer to read. If two qubits are used in one gate but not next
to each other in number order, the gate in the diagram appears split, but the pieces are in the same column

4 Decomposing gates

The above arguments assume that the given PUBO fits onto the given hardware. In
cases where the required gate sized are larger than what is available, we would need
to decompose the problem. This comes with an additional cost.

4.1 Classically converting a PUBO to a QUBO

Classically, we can convert a PUBO of degree k to a QUBO in the following manner.
Suppose we have a monomial of the form u = x1x2 . . . xk . Note that dualizing u

will create monomials with degrees larger than k
2 . Instead of doing this, we enforce

this equality by ensuring that u takes the appropriate values by adding the following
set of linear constraints.

u ≤ xi ∀ i ∈ [k]
u ≥

∑

i∈[k]
xi − k + 1

Adding in the slack variables, sm,n , we have

u − xi + s1,i = 0 ∀ i ∈ [k]
u −

∑

i∈[k]
xi + k − 1 +

∑

j∈[�log(k)�+1]
s2, j = 0

Note that k-many slacks are added to the first constraint and the latter requires at
least �log(k)� many. With the additional u variable, this means that k + �log(k)� + 2
ancillary qubits are needed for this decomposition.

123

59 Page 10 of 17 R. Herrman et al.

x1 x2 x3

δ11 δ12

x1 x2 x3

δ11 δ12

Fig. 3 The coloring for the hypergraph in Example: General Problem. It has vertices x1, x2, x3, δ11, and
δ12. The edges have been placed into two separate images to show the coloring more clearly, though the
entire hypergraph contains the edges found in both figures. No colors are repeated between the left and
right sides, and the hypergraph requires seven colors (Color figure online)

|x1〉

Cx1,x2,x3

Cx1,x2,δ11 Cx1,x2,δ12

Cx1,x3,δ11 Cx1,x3,δ12

|x2〉

Cx2,x3,δ11

Cx2,x3,δ12

|x3〉

Cx1,x3,δ11

Cx1,x3,δ12

|δ11〉

Cδ11,δ12

Cx1,x2,δ11

|δ12〉 Cx1,x2,δ12 Cx2,x3,δ12 Cx1,x3,δ12

Fig. 4 The circuit diagram for the general combinatorial optimization example. We use Ci, j,k to represent
U (Ci, j,k , γ) to make the image clearer to read. If multiple qubits are used in one gate but not next to each
other in number order, the gate in the diagram appears split, but the pieces are in the same column

Dualizing the first constraint gives the following binomials:

uxi us1,i xi s1,i ∀i ∈ [k],

while dualizing the second gives binomials:

uxi xi xi ′ us2, j xi s2, j s2, j s2, j ′ ∀i, i ′ ∈ [k], j, j ′ ∈ [�log(k)� + 1].

In the graph representation of the above constraints, the degree of u is 2k +
�log(k)�+1 so it will take a circuit of at least this depth to enforce the decomposition.

Example: General Problem, continued In this example, we show how to decom-
pose x1x2x3 into a sum of monomials in two variables. This method applies in general.

Let u = x1x2x3. Then the constraints u ≤ x1, u ≤ x2, and u ≤ x3 must be
added to the problem, and we want to penalize the solution u ≥ x1 + x2 + x3, so
we have six new variables, u, s1,i for i ∈ [3], and s2, j for j ∈ [2]. Dualizing this

123

Lower bounds on circuit depth of the quantum approximate… Page 11 of 17 59

x1

x2

x3

u

s11 s12

s13

s21

s22

Fig. 5 The derived graph for x1x2x3. The chromatic index of this graph is eight

problem, we get all terms of the forms xi xi ′ , xi s1,i , xi s2,1, uxi , us1,i , us2, j s2,1s2,2
and uxi for i, i ′ ∈ [3] and j ∈ [2]. The derived graph is shown in Fig. 5, and
eight colors are needed for a proper edge coloring, which is minimal as u has degree
eight.

Thus, it takes a depth of eight to implement U (Cxi x j xk , γ) in a circuit. When
decomposing multiple gates on the same circuit, many of the operations can be either
aggregated or done in parallel. For example, in the above example, decomposition
of both U (Cx1x2δ11) and U (Cx1x2δ12) contain operations on x1 and x2 that can be
aggregated while operations regarding the ancilla added during each decomposition
can all be done in parallel.

Note that as the above decomposition converts a PUBO into a QUBO, we can
identify the depth of circuit for the decomposed problem by finding the maximum
degree vertex in the graph (non-hypergraph) encoding of the QUBO. In the above
decomposition, a vertex representing xi will be adjacent to other vertices x j if and
only if they are in at least one monomial term in the PUBO. Moreover, each vertex
representing xi is adjacent to �log(k)�+3 unique ancilla vertices for eachmonomial of
degree k. We can similarly easily identify the maximim degree of the ancilla vertices,
as the degree of the u vertex is shown to be 2k + �log(k)� + 1, which will always be
larger than the degree of the s-vertices. With this, we can easily identify the depth of
circuit required to enforce this decomposition.

Note that theremaybe differentways to decompose a givenmonomial. For example,
we can use the above to decompose x1x2x3x4 or we can write it as u12u34 where
u12 = x1x2 and u34 = x3x4. Enforcing this decomposition may result in more ancilla
being used at the benefit of a smaller depth of circuit. We will explore this tradeoff in
future work.

123

59 Page 12 of 17 R. Herrman et al.

4.2 Decomposing a n qubit gate into two qubit gates

In general, any unitary acting on n qubits can be decomposed into 4n controlled- not
gates [25], so each U (Cx1,...xk , γ) can be implemented with 4k controlled-not gates.
Let D be the set consisting of the number of qubits on which each unitary operates
in the circuit diagram. Since the proof is not constructive in general, it is unknown
how many of these controlled-not operations can be performed in parallel, but it does
provide an upper bound for the depth of circuit

∑

j∈D 4 j . As a special case, Bullock
and Markov showed that if a unitary operator is diagonal in the computational basis,
such as C for MaxCut, it can be decomposed into 2n+1 − 3 controlled not and single
qubit z rotation gates [26]. In general, a complex valued matrix is diagonalizable if it
commutes with its conjugate transpose or is Hermitian, so all but a subset of matrices
of Lesbesgue measure zero are diagonalizable.

Thus, if allCx1,...,xk are diagonal, eachU (Cx1,...xk , γ) can be implemented in 2k+1−
3 one or two qubit gates. Then, the depth of circuit for all diagonal unitaries is at most
∑

j∈D 2 j+1 −3. In either case, the depth of each circuit increases exponentially in the
number of qubits upon which each operator acts.

The number of one and two qubit gates needed to implement U (Cx1,...xk , γ)

can be reduced at the cost of ancillary qubits. Cao et al. [27] introduced an itera-
tive method to construct a logical sequence consisting of 3 qubit systems from a
k qubit system by subdividing the space in �log(k − 2)� iterations. The method
uses Hamiltonian subdivision gadgets and requires k − 3 ancillary qubits to per-
form the operations. After partitioning the space, the subdivision gadget is used
to construct a new Hamiltonian. Then, a penalty Hamiltonian is applied and the
space is perturbed. To then reduce to two-qubit interactions, one additional qubit
is needed. Thus, an arbitrary k qubit operation in the circuit can be written as a
similar logical sequence using k − 2 ancillary qubits. The overall cost is linear in
the number of operators that need be reduced, but error is accumulated with the
number of subdivisions needed. The number of two qubit gates needed to perform
the subdivision depends on the structure of each term in the k body Hamilto-
nian.

5 QAOA circuit depth bounds for some combinatorial optimization
problems

In this section, we review some combinatorial optimization problems and discuss
the depth of circuit required for one QAOA iteration of each problem instance.
NP-complete problems can be reduced to other NP-complete problems; how-
ever, the act of reducing may impact the depth of circuit, which may or may
not be desirable depending on the hardware. In each case below, the depth of
circuit assumes fully connected hardware, so these scenarios are the best possi-
ble.

123

Lower bounds on circuit depth of the quantum approximate… Page 13 of 17 59

5.1 Vertex covering

Avertex cover of a graphG = (V , E) is a collection S ⊂ V such that for all xy ∈ E , at
least one of x or y is contained in S. Finding a minimum vertex covering is classically
NP-complete [28] and is written as

min
∑

i∈V
xi

s.t. (1 − xi) + (1 − x j) ≤ 1 ∀(i, j) ∈ E

xi ∈ {0, 1}

As each constraint consists of the sum of two unique variables and a constant,
dualizing them gives monomials consisting of at most two distinct variables, as each
monomial corresponds to an edge in the graph. The derived graph has vertex set
V = xi ∪ δi j for i ∈ [n] and j 	= i with j ∈ [n]. Note that δi j is incident only to
vertices xi and x j , as it only occurs in constraints including those variables. Thus, the
depth of circuit is 2χ(G)+1, so the difficulty of covering problems is directly related
to the maximum degree of the problem. Graphs with low degree allow for a shallow
circuit in one iteration of QAOA, so they should be suitable for NISQ devices.

5.2 Knapsack

In the knapsack problem, a collection of objects, xi for i ∈ [n], are assigned a weight,
wi , and a value, vi . The goal is to maximize the sum of the value of the objects while
the sum of the weights of the objects is restricted to be less than some constant W .
This problem is NP-complete classically, as well [28]. As an integer program, it is
written

max
∑

i∈[n]
vi xi

s.t.
∑

i∈[n]
wi xi ≤ W

xi ∈ {0, 1}

Knapsack problems where W is large pose problems for testing on quantum com-
puters because the larger W is, the more δi j variables are needed when dualizing
the constraint. The derived graph contains vertices for each x variable and δ variable
and is complete, meaning that its edge coloring has minimum coloring of at least
n + ln(W); however, pre-processing can be used to reduce the depth of the embed-
ding. Assuming the weights are ordered such that w1 ≤ w2 ≤ · · · ≤ wn , the total
weight of an optimal solution must be at least W − wn , since, if not, there is room in
the knapsack for an additional item. With this in mind, the knapsack constraint can be
written as W − wn ≤ ∑

i∈[n] wi xi ≤ W , which now requires ln(wn) many additional
variables and leads to a circuit depth of n + ln(wn). In order for there to be nontrivial

123

59 Page 14 of 17 R. Herrman et al.

instances of the knapsack problem with small wn , there necessarily must be small
W . Knapsack problems with small W can be suitable for experimentation; however,
classically, problems with bounded W are polynomial and can be easily solved by
conventional computing by dynamic programming [29,30]. Thus, they may not be
suitable for quantum computing.

5.3 Traveling salesperson

The traveling salesperson problem (TSP) can be viewed as a problem on a graph
G = (V , E) where each edge e has an associated weight, we. The goal is to start
in a vertex, say v1, use edges to visit each vertex exactly once, and return to v1, all
while minimizing the sum of the weights of the edges used. This problem is classically
NP-hard, but there exist some heuristics for the problem [31,32].

Let xe represent if the salesperson travels along edge e. One formulation of the
problem is

min
∑

e∈E
wexe

s.t. 0 ≤ xe ≤ 1 ∀e ∈ E
∑

e�i
xe = 2 ∀i ∈ V

∑

e=(i, j), i∈Q, j∈Q
xe ≤ |Q| − 1 Q � [n], |Q| ≥ 2.

The derived graph for TSP has vertex set xi ∪ δi j , where there are two δi j variables
per constraint. The edges form a complete graph on all xi vertices and connect δi j to δik
for j 	= k. As there are two δ variables per constraint, they form a disjoint collection of
edges. The rest of the edges connect every xi variable to every δi j variable. Thus, the
maximum degree of the graph is n−1 plus twice the number of constraints. Denoting
the number of constraints as Nc, the depth of circuit is n − 1 + 2Nc, where Nc can
be large, depending on the problem instance. Similarly to knapsack problems, it can
be difficult to implement TSP on NISQ devices because of the subtour constraint,
Q � [n], and the fact that so many new variables are introduced in dualizing.

5.4 SAT

In Boolean satisfiability problems (SAT), there are a set of clauses, C , containing a
set of literals, N . The goal is to determine if the values of TRUE or FALSE can be
assigned to each literal in a clause such that it evaluates to TRUE. This problem, again,
is classically NP-complete [28], even when each clause contains only three literals.
Let {zc}c∈C be a collection of indicator variables for clauses in three variables, where
zi = 0 if clause i is satisfied and 1 if not. Let xi be the indicator variable denoting if
literal i is satisfied. Let TRUEc (FALSEc) be the set of literals that must be true (false)
to satisfy clause c. Then, the problem can be written as

123

Lower bounds on circuit depth of the quantum approximate… Page 15 of 17 59

min
∑

c∈C
zc

s.t.
∑

xi=TRUEc

xi +
∑

xi=FALSEc

(1 − xi) ≥ 1 + zc ∀c ∈ C

xi , zc ∈ {0, 1}

However, taking the contrapositive, we have
∑

xi=TRUE(1− xi)+∑

xi=FALSE xi ≤
2+zc. The derived graph, is again, a graph consisting of all xi vertices and two dummy
variables, δ1c and δ2c , per clause. If xi appears in the set of clauses Cxi ⊂ C , the degree
of the xi , dxi , is dxi = | ∪c∈Cxi

c| − 1+ 2|Cxi |. SAT can be a good problem for NISQ
devices if the set of literals is large while the number of literals in each clause and
the number of clauses are relatively small, as this guarantees a literal cannot occur in
many clauses and each literal does not appear in clauses with several others.

6 Discussion

We have shown how to map arbitrary combinatorial optimization problems to polyno-
mial unconstrained binary optimization problems (PUBOs) by dualizing constraints,
and applied the method to a few combinatorial optimization problems. Additionally,
we discussed how use the PUBOs to derive a graph that represents problem instances
and used this to show that the depth of the QAOA circuit needed to run the problem
is χ ′(G) + 1. We then considered various combinatorial optimization problems and
determined the depth of circuit required to use QAOA to solve them. In particular,
since the vertex covering problem has a low depth of circuit, it appears to be suitable
for NISQ devices, as do instances of SAT problems that have large sets of literals
but few clauses and few literals in each clause. Due to the number of new variables
that must be introduced to dualize knapsack and TSP, they do not appear to be good
problems to test on NISQ devices.

Clearly, the maximum degree of a vertex affects the circuit depth in combinatorial
optimization problems in which each monomial consists of at most two unique vari-
ables, such as MaxCut and MaxIndSet. Specifically, the depth of the QAOA circuit
is χ ′(G) + 1, where χ ′(G) for graphs that are not hypergraphs is Δ or Δ + 1, by
a classic result of Vizing [19]. In the case of monomials of at least three variables,
a lower bound for the circuit depth is the number of colors needed in a proper edge
coloring of the associated hypergraph, H , which is a difficult problem. A trivial lower
bound on this number is the maximum degree of H while a trivial upper bound is the
number of edges in H .

The depth of circuit is hard to determine in part because when dualizing, squaring
p(x) can potentially yield monomials with larger support than any in c. Sparser con-
straints are preferable because the polynomials have smaller support, which decreases
the size of each gate. However, sparser constraints does not imply a shallower circuit
depth. For example. consider MaxCut on a star graph on n vertices, that is a connected
bipartite graph in which one part contains one vertex and the other contains n − 1.
The depth of circuit is n, as each edge must have a unique color.

123

59 Page 16 of 17 R. Herrman et al.

As any combinatorial optimization problem can bemapped to a PUBOvia dualizing
constraints,we can examine the resultingQAOAcircuit and bound the depth of it by the
edge coloring of the hypergraph associated to the problem instance. Although current
hardware is limited to two qubit gates, larger gates can be decomposed into two qubit
gates. It would be interesting to see if there is a way to construct a graph associated
to the decomposed gates and if its chromatic number, or some other property of the
graph, determines the depth of circuit.

Acknowledgements This work was supported by DARPA ONISQ program under award W911NF-20-2-
0051. J. Ostrowski acknowledges theAir ForceOffice of ScientificResearch award,AF-FA9550-19-1-0147.
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan.
(http://energy.gov/downloads/doe-public-access-plan).

References

1. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint
arXiv:1411.4028 (2014)

2. Guerreschi, G.G., Smelyanskiy, M.: Practical optimization for hybrid quantum-classical algorithms.
arXiv preprint arXiv:1701.01450 (2017)

3. Streif, M., Leib, M.: Training the quantum approximate optimization algorithm without access to a
quantum processing unit. arXiv preprint arXiv:1908.08862 (2019)

4. Shaydulin, R., Safro, I., Larson, J.: Multistart methods for quantum approximate optimization. In: 2019
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–8. IEEE (2019)

5. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm applied to a
bounded occurrence constraint problem. arXiv preprint arXiv:1412.6062 (2014)

6. Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization
algorithm: performance, mechanism, and implementation on near-term devices. arXiv preprint
arXiv:1812.01041 (2018)

7. Fingerhuth, M., Babej, T., et al.: A quantum alternating operator ansatz with hard and soft constraints
for lattice protein folding. arXiv preprint arXiv:1810.13411 (2018)

8. Cook, J., Eidenbenz, S., Bärtschi, A.: The quantum alternating operator ansatz on max-k vertex cover.
arXiv preprint arXiv:1910.13483 (2019)

9. Huang, H.-Y., Bharti, K., Rebentrost, P.: Near-term quantum algorithms for linear systems of equations.
arXiv preprint arXiv:1909.07344 (2019)

10. Saleem, Z.H.: Maximum independent set and quantum alternating operator ansatz. arXiv preprint
arXiv:1905.04809 (2019)

11. Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for
maxcut: a fermionic view. Phys. Rev. A 97(2), 022304 (2018)

12. Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut
problem. arXiv preprint arXiv:1811.08419 (2018)

13. Guerreschi, G.G.,Matsuura, A.Y.: Qaoa formax-cut requires hundreds of qubits for quantum speed-up.
Sci. Rep. 9, 1–7 (2019)

14. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1602.07674 (2019)

15. Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: xy-mixers: analytical and numerical results for
qaoa. arXiv preprint arXiv:1904.09314 (2019)

16. Xue, C., Chen, Z.-Y., Wu, Y.-C., Guo, G.-P.: Effects of quantum noise on quantum approximate
optimization algorithm. arXiv preprint arXiv:1909.02196 (2019)

123

http://energy.gov/downloads/doe-public-access-plan
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1701.01450
http://arxiv.org/abs/1908.08862
http://arxiv.org/abs/1412.6062
http://arxiv.org/abs/1812.01041
http://arxiv.org/abs/1810.13411
http://arxiv.org/abs/1910.13483
http://arxiv.org/abs/1909.07344
http://arxiv.org/abs/1905.04809
http://arxiv.org/abs/1811.08419
http://arxiv.org/abs/1602.07674
http://arxiv.org/abs/1904.09314
http://arxiv.org/abs/1909.02196

Lower bounds on circuit depth of the quantum approximate… Page 17 of 17 59

17. Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., Coles, P.J.: Noise-induced barren
plateaus in variational quantum algorithms. arXiv preprint arXiv:2007.14384 (2020)

18. Marshall, J., Wudarski, F., Hadfield, S., Hogg, T.: Characterizing local noise in qaoa circuits. arXiv
preprint arXiv:2002.11682 (2020)

19. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Discret Anal. 3, 25–30 (1964)
20. Erdős, P.: Problems and results in graph theory and combinatorial analysis. In: Proceedings of the 5th

British Combinatorial Conference, pp. 169–192 (1975)
21. Paul, V., Germina, K.A.: On edge coloring of hypergraphs and erdös-faber-lovász conjecture. Discrete

Math. Algorithms Appl. 4(01), 1250003 (2012)
22. Kahn, J.: Coloring nearly-disjoint hypergraphs with n+ o (n) colors. J. Comb. Theory, Ser. A 59(1),

31–39 (1992)
23. Pippenger, Nicholas, Spencer, Joel: Asymptotic behavior of the chromatic index for hypergraphs. J.

Comb. Theory, Ser. A 51(1), 24–42 (1989)
24. Alon, N., Kim, J.H.: On the degree, size, and chromatic index of a uniform hypergraph. J. Comb.

Theory, Ser. A 77(1), 165–170 (1997)
25. Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev.

Lett. 92(17), 177902 (2004)
26. Bullock, S.S., Markov, I.L.: Asymptotically optimal circuits for arbitrary n-qubit diagonal computa-

tions. arXiv preprint quant-ph/0303039 (2008)
27. Cao, Y., Babbush, R., Biamonte, J., Kais, S.: Hamiltonian gadgets with reduced resource requirements.

Phys. Rev. A 91(1), 012315 (2015)
28. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger,

J.D. (eds.) Complexity of computer computations, pp. 85–103. Springer (1972)
29. Andonov, R., Poirriez, V., Rajopadhye, S.: Unbounded knapsack problem: dynamic programming

revisited. Eur. J. Oper. Res. 123(2), 394–407 (2000)
30. Frieze, A.M.: Shortest path algorithms for knapsack type problems. Math. Program. 11(1), 150–157

(1976)
31. Ouaarab, A., Ahiod, B., Yang, X.-S.: Discrete cuckoo search algorithm for the travelling salesman

problem. Neural Comput. Appl. 24(7–8), 1659–1669 (2014)
32. Masutti, T.A.S., de Castro, L.N.: A self-organizing neural network using ideas from the immune system

to solve the traveling salesman problem. Inf. Sci. 179(10), 1454–1468 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2007.14384
http://arxiv.org/abs/2002.11682

	Lower bounds on circuit depth of the quantum approximate optimization algorithm
	Abstract
	1 Introduction
	2 Background
	3 Mapping arbitrary combinatorial optimization problems to PUBO
	3.1 Examples
	3.2 A QAOA approach
	3.2.1 Examples continued

	4 Decomposing gates
	4.1 Classically converting a PUBO to a QUBO
	4.2 Decomposing a n qubit gate into two qubit gates

	5 QAOA circuit depth bounds for some combinatorial optimization problems
	5.1 Vertex covering
	5.2 Knapsack
	5.3 Traveling salesperson
	5.4 SAT

	6 Discussion
	Acknowledgements
	References

