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Abstract. In clinical deployment, the performance of a model trained
from one or more medical systems often deteriorates on another system
and such deterioration is especially evident among minority patients who
often have limited data. In this work, we present a multi-source adversar-
ial domain separation (MS-ADS) framework which unifies domain adap-
tation and domain generalization. MS-ADS is designed to address two
types of discrepancies: covariate shift stemming from differences in pa-
tient populations, and systematic bias on account of differences in data
collection procedures across medical systems. We evaluate MS-ADS for
early prediction of septic shock on three tasks. On a task of domain adap-
tation across three medical systems, we show that by leveraging data
from multiple systems while accounting for both types of discrepancies,
MS-ADS improves the prediction performance across all three systems;
on a task of domain generalization to an unseen medical system, we show
that MS-ADS can perform better than or close to the gold standard su-
pervised models built for the system; last but not least, on a task that
involves both domain adaptation and domain generalization: generaliza-
tion to unseen racial groups across medical systems, MS-ADS shows ro-
bust out-performance by addressing covariate shift across different racial
groups and systematic bias across medical systems simultaneously.

Keywords: Domain Adaptation · Domain Generalization · Cross-racial
Transfer · Septic Shock.

1 Introduction

Machine learning is used increasingly in clinical care to improve diagnosis, treat-
ment policy, and healthcare efficiency. Because machine learning models learn
from historically collected data, electronic health records (EHRs), populations
that are under-represented in the training data are often vulnerable to harm
by incorrect predictions. For example, between the two medical systems in-
volved in this work, the percentages of White vs. African American are 71%
vs. 22.5% in Christiana Care whereas 91% vs. 3% in Mayo clinic. For certain



2 F. Khoshnevisan and M. Chi

diseases like sepsis, different racial groups often exhibit distinct progression pat-
terns [35]. Therefore, a model that can leverage EHRs across multiple medical
systems to improve prediction among minority racial groups is needed. However,
EHRs across medical systems can vary dramatically because different systems
serve different demographic populations and often employ different infrastruc-
ture, workflows and administrative policies [1]. For this work, we refer to the
discrepancies caused by the heterogeneous patient populations as covariate shift
and those caused by incompatible data collection procedures as systematic bias.

We propose a multi-source adversarial domain separation (MS-ADS) frame-
work which unifies domain adaptation and domain generalization. More specifi-
cally, MS-ADS separates the local representation of each domain from the global
latent representation across all domains to address systematic bias and leverages
multi-domain discriminator in conjunction with gradient reversal layer to address
the covariate shift across each pair of domains. More specifically, our MS-ADS
is built atop variational recurrent neural networks (VRNN) [5] due to VRNN’s
ability to handle variabilities in EHRs, such as missing data, and its ability to
capture complex conditional and temporal dependencies [26,39]; it is shown that
VRNN significantly outperforms commonly-used variations of RNN such as long
short-term memory (LSTM) on EHRs [16, 39]. The effectiveness of MS-ADS is
compared against another strong VRNN-based domain adaptation framework
called VRADA [28] for early prediction of a challenging condition in hospitals,
septic shock. Sepsis is a life-threatening condition caused by a dysregulated body
response to infection [32]. Septic shock is the most severe complication of sepsis,
associated with high mortality rate and prolonged length of hospitalization [32].
Timing is critical for this condition as every hour delay in antibiotic treatment
leads to 8% increase in the chance of mortality. Early prediction of septic shock is
challenging due to vague symptoms and subtle body responses [19]. Also, sepsis,
like cancer, involves various disease etiologies that span a wide range of syn-
dromes, and different patient groups may show vastly different symptoms [35].

To investigate the early prediction of septic shock, we leverage EHRs col-
lected from three large medical systems located in different parts of the US. The
effectiveness of MS-ADS is evaluated on three tasks involving domain adaptation
(DA), domain generalization (DG), or both. First, on a task of DA across three
medical systems, we compare MS-ADS against VRADA and a VRNN model
trained on all three domains and show that MS-ADS improves the prediction
performance across the three domains and outperforms all baselines. Further,
through visualization we show that MS-ADS indeed capture both covariate shift
and systematic bias. Second, on a task of DG to an unseen system, we evaluate
the performance of MS-ADSs trained with two medical systems on a third target
system. The results suggest that MS-ADS can perform as well as or better than
the gold standard: supervised model trained on the target domain. Finally, prob-
ably the most important, we evaluate MS-ADS on the task of generalization to
an unseen racial group across medical systems. We demonstrate that by treating
each medical system and each racial group as a separate domain, our MS-ADS
is capable of addressing both covariate shifts across different racial groups and
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systematic bias across medical systems. Our results suggest that MS-ADS sig-
nificantly improves generalization performance to African American population
in Mayo as compared to the other baselines. Our contributions are:

– By tackling two different types of discrepancies, MS-ADS can effectively
leverage EHRs from multiple medical systems to improve prediction perfor-
mance on each system individually and also combined.

– Domain-invariant representations generated by MS-ADS are generalizable
to new domains such that they perform close to or better than the gold
standard supervised models trained on those systems.

– By unifying DA and DG, as far as we know, MS-ADS is the first framework
that shows great potential on generalization to unseen racial groups across
medical systems.

2 Methodology

Problem Description We have K domains: {D1,D2, ...,DK} and a domain
contains n patient visits represented as X = {x1, ...,xn}. Each visit xi is a mul-
tivariate time-series that is composed of T i medical events and can be denoted
as xi = (xit)

T i

t=1 where xit ∈ RD. Additionally, each visit has a visit-level outcome
label represented as Y = {y1, ..., yn} where yi ∈ {1, 0} indicates the outcome
of visit i: septic shock or non-septic shock. By combining X and Y for each
domain, we have: Dk = {xiDk

, yiDk
}nk
i=1, where nk is the number of visits in Dk;

Here we assume each {xiDk
, yiDk

}nk
i=1 is drawn from distribution pk(x, y) that is

different from {pj(x, y) : j 6= k}. Our objective is to minimize the discrepancies
between these K domains in a common latent space by aligning their latent
representations: zD1

, ..., zDK
, so that to create a unified, generalizable classifier

C : z 7→ y that predicts the outcome optimally in all K domains. To do so, we
adversarially learn

(
K
2

)
discriminators to minimize the distance between global

latent representations of each pair of domain zDi
and zDj

. We describe this
framework in detail in the following.

Multi-Source Adversarial Domain Separation (MS-ADS) Fig. 1 illus-
trates MS-ADS architecture: it separates one globally-shared latent representa-
tion for all domains from domain-specific (local) information. This architecture
would allow global information to be purified so that the discrepancies caused
by systematic bias are addressed. MS-ADS employs VRNN as the base model to
process sequential input EHRs. VRNN has an encode-decoder structure where
its four internal operations interact with each other to capture dependencies be-
tween latent random variables across time steps (please see [5] for more details).
MS-ADS ensures that the global latent representations are different from the
local ones by maximizing a dissimilarity measure. Additionally, multiple domain
discriminators and a label predictor are employed to ensure domain-invariant
and class-discriminative projection. In the following, we briefly describe the two
steps for training the MS-ADS framework.
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Fig. 1: Multi-Source Adversarial Domain Separation (MS-ADS) Framework

Step 1: Pre-train Source and Target VRNNs. Optimal local latent rep-
resentations zlD1

, ..., zlDK
are obtained by pre-training a local VRNN per each

domain separately. The VRNN’s loss objective (Llvrnn) optimizes the inference
(encoder) and the generative (decoder) processes to minimize the reconstruction
loss [5].

Step 2: Discriminative Adversarial Separation. As shown in Fig. 1, MS-
ADS is composed of the K pre-trained local VRNNs from step 1, and one global
VRNN that takes the concatenation of all K domains as input. The global
Encoder will generate global latent representations, and the global decoder re-
constructs the input for each domain. The set of discriminators align the global
latent representations between every two domains from Di and Dj . Finally, the
unified classifier learns to predict the outcome labels using all latent representa-
tions regardless of their source domain. Following formalizes each component’s
loss objective.

1. Global and Local VRNNs: The parameters of local VRNND1
,..., VRNNDK

are initialized based on the K pre-trained VRNNs to generate local repre-
sentations: zlD1

, ..., zlDK
. The global VRNN also takes concatenation of all

domain’s data as input and the global encoder generates zgD1
, ..., zgDK

. Fur-
ther, for optimizing reconstruction loss in each of the local and global VRNNs
we follow the original VRNN loss as follows:

Llvrnn(xD1
, ...,xDK

;Θl) =
K∑
i=1

Lvrnn(xDi
; θei , θdi) (1)
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Lgvrnn([xD1
, ...,xDK

];Θg) = Lvrnn([xD1
, ...,xDK

];Θg) (2)

where Θl =
K⋃
i=1

(θei , θdi) and Θg = (θge , θ
g
d) indicate the local and global

VRNN parameters, respectively.
The main novelty of MS-ADS is to separate local and global features by
maximizing the distance between them so that they extract system specific
features such as systematic bias. To do so, we add a dissimilarity measure-
ment between (zgDi

, zlDi
) for all Di, i ∈ {1, ...,K} for each sample, defined

by a Frobenius norm which measures the orthogonality between global and
local representation from each domain. Let us denote matrix Zg

Di
as global

matrix of Di where each row j of it is composed of zgDi
for sample j in this

domain. Similarly, Zl
Di

indicates local matrix of Di. Therefore, the difference
loss is defined as:

Ldiff(xD1 , ...,xDK
;Θl, Θg) =

K∑
i=1

∥∥∥ZgDi

>
ZlDi

∥∥∥2

F
(3)

where ‖·‖2F refers to the squared Frobenius norm where zero indicates or-
thogonal vectors. Finally, the overall separation loss is:

Lsep(xD1
, ...,xDK

;Θ) =Llvrnn(xD1
, ...,xDK

;Θl) + Lgvrnn([xD1
, ...,xDK

];Θg)

+ αLdiff(xD1
, ...,xDK

;Θl, Θg).

(4)

2. Classifier: A simple fully connected neural network is used as a classifier
that consumes the global latent representations from the last time step T .
This network is optimized based on the binary cross-entropy loss (LB) for
all domains as:

Lclf(xD1 , ...,xDK
; θc, θ

g
e) =

K∑
i=1

LB(Cθc(Eg(xDi ; θ
g
e)T ), yDi) (5)

where θc indicates the classifier parameters.
3. Discriminator: To minimize the difference between source domains, we

propose to build a domain discriminator for each pair of domains. Therefore,
each discriminator Di,j is a fully connected neural network that takes the last
time step from global representations zgDi

and zgDj
as input to infer a domain

label. This will result in
(
K
2

)
binary classifiers and the total discriminator

loss would become:

Ldisc(zgD1
, ..., zgDK

; θdisc) =

(
K

2

)−1 K−1∑
i=1

K∑
j=i+1

LB(Di,j(z
g
Di
, zgDj

); θi,jdisc) (6)
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where θi,jdisc indicates the parameters of discriminator Di,j . The discrimi-
nator’s objective is to minimize this loss while the global VRNN tries to
maximize this loss. Therefore, the adversarial learning process captures the
notion of invariant latent representations between different domains. We have
explored multiple other discriminative adversarial learning designs for multi-
source problems such as a single discriminator with one vs. rest discrimina-
tion or with accumulated gradients [33, 38], but the results show that the
pairwise architecture performs the best.

Inspired by Ganin et al. [10] we use the gradient reversal layer (GRL) to ef-
fectively combine and optimize all three loss components using backpropagation.
GRL can be represented as R(x) with different forward and backward propa-
gation behavior, where I is the identity matrix and λ is a constant (a specified
schedule during training can be used):

R(x) = x;
∂R
∂x

= −λI (7)

The GRL would handle the gradients from the discriminators that should be
optimized in the reverse order and the overall optimization becomes:

arg min
Θ,θc,θdisc

Lsep(xD1
, ...,xDK

;Θ) + Lclf(xD1
, ...,xDK

; θc, θ
g
e)+

Ldisc(R(zgD1
), ...,R(zgDK

); θdisc)
(8)

Equation 8 yields a multi-source domain adaptation framework that can sepa-
rate domain-specific features from the globally-shared latent representations and
adversarially learn an invariant representation between each pair of the source
domains. We hypothesize that MS-ADS will address both systematic bias and
covariate shift effectively in a multi-source learning environment and builds a
unified classifier that is robust across all source domains. We assess this hypoth-
esis through experimentation in the following sections.

3 Experimental Setup

Three EHR Datasets: 210,289 visits of adult patients (i.e. age > 18) admit-
ted to Christiana Care Health System (CCHS) in Newark, Delaware (07/2013-
12/2015); 106,844 adult patient visits from Mayo Clinic in Rochester, Minnesota
(07/2013-12/2015); and 53,423 ICU visits of patients admitted to Beth Israel
Deaconess Medical Center in Boston, Massachusetts (2001-2012), MIMIC-III
[15]. Note that the nature of MIMIC-III data is different from CCHS and Mayo.
To be consistent among all datasets, we define our target population as suspected
of infection, identified by administration of any anti-infectives, or a positive PCR
test result. This definition and the following data pre-processing steps are deter-
mined by three leading clinicians with extensive experience on this subject.
Labeling: We adopt the agreement between International Classification of Dis-
eases, Ninth Revision (ICD-9) codes recorded in EHRs, and our expert-defined
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rules based on the Third International Consensus Definitions for Sepsis and Sep-
tic Shock [32] to achieve the most reliable population across all datasets. Our
clinicians identify septic shock at event-level as having received vasopressor(s) or
persistent hypotension for more than 1 hour (systolic blood pressure (SBP)<90;
or mean arterial pressure<65; or drop in SBP>40 in an 8-hour window).
Sampling: Using the agreement criteria results in 2,963 positive cases in CCHS,
3,499 in Mayo, and 2,459 cases in MIMIC-III. To balance the number of positive
and negative cases, we perform a stratified random sampling by 1) maintaining
the same underlying age, gender, ethnicity, and length of stay distribution, and
2) having the same level of severity as positive samples. The severity of septic
shock visits is identified as the presence of different stages of sepsis in their visits:
infection, inflammation, and organ failure as defined by experts.
Aggregation: To align the sampling frequency across all datasets, we use a 30-
minutes aggregation window to summarized all records into a single event and
missing if none. Our feature set includes 7 vital signs (e.g.: SBP, Temperature),
2 oxygen information (FIO2 and OxygenFlow), and 10 lab results (e.g.: WBC,
BUN). To handle the remaining missing values, we first use expert rules to carry
forward vital signs (for 8 hours) and lab results (for 24 hours), then we apply the
mean imputation along with the missing indicator. Our experiments show that
this strategy will help VRNN address such variabilities in data more efficiently.

Fig. 2: Septic shock early prediction task

Prediction Task: Fig. 2 shows our
prediction task setup: using EHRs in an
observation window to predict whether
a patient is going to develop septic
shock n hours later; n varies from 24
to 72 hours denoted as prediction win-
dow and observation window is set to
be capped at 48 hours as suggested
by the leading physicians. All the se-
quences are aligned by their end time,
which is the shock onset for positive vis-
its and a truncated time point for non-
shock visits. To prevent the potential
bias in models, negative visits are truncated such that they have the same dis-
tribution of length as positives. As the prediction window expands, the number
of visits remaining in the observation window will drop. For a fair comparison,
we sample the same number of positive/negative visits in all domains. This re-
sults in 1,315 total visits from each domain for 24 hours early prediction and
620 visits for 72 hours. Therefore, as the number of samples decreases, it is more
crucial to integrate different domains to build more robust classifiers.

Parameters and Training: As illustrated in Equation 8, there are three sets of
parameters: discriminator (θdisc), classifier (θc), and VRNN (Θ) parameters opti-
mized through a GRL for adversarial training using NAdam optimizer [34], with
learning rate αtotal = 8e−4. Then the classifier and VRNN models are optimized
in an additional step to compete against the gradients from the discriminator,
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with learning rates: αc = 10e−4, αVRNN = 10e−4. In every epoch, the order of
optimization between the three optimizers is altered from the previous epoch to
prevent over-training of a specific network. All the models are implemented in
Tensorflow using mini-batch with batch size 32. The same experimental setup
is used for all the models with 160 epochs and early stopping. The VRNN’s
hidden size is set to 30 and the latent size is defined as 50. All the sequences
are zero-padded to have the same length and the zero-paddings are masked for
reconstruction loss calculation.
Evaluation Metrics: Our evaluation metrics include accuracy, recall, precision,
F1 score, and area under ROC curve (AUC) obtained from 2-fold cross-validation
in three independent runs. We mainly use F1 and AUC as the main metrics as
they offer a trade-off between precision, recall, and specificity.

4 Multi-Source DA across the Three Medical Systems

By leveraging data from multiple medical systems while accounting for both co-
variate shift and systematic bias across them, we expect MS-ADS would improve
the prediction performance across all three systems. Therefore, in this task, the
test set is composed of an equal number of visits from CCHS, Mayo, and MIMIC.
MS-ADS is compared against six baselines:

1. VRNN(CCHS): a VRNN trained on CCHS only.
2. VRNN(Mayo): a VRNN trained on Mayo only.
3. VRNN(MIMIC): a VRNN trained on MIMIC-III only.
4. VRNN(Separate): will use the individual VRNN trained above to predict the

corresponding test data.
5. VRNN(All): a VRNN trained on a combined data from CCHS, Mayo, MIMIC.
6. Multi VRADA [28]: a modified version of VRADA to address multi-source

DA by changing the domain classifier loss to categorical cross-entropy loss.

24 Hours Early Prediction: Table 1 presents the DA results for 24 hours
early prediction on the combined test data (ALL) first (top) and then on test
data in each system separately. The top row shows that 1) among the five non-
adaptive baselines (1-5), VRNN(All) outperforms all single-domain VRNNs and
VRNN(Separate). This result suggests that a more effective classifier can be
achieved by leveraging more training samples; 2) By comparing the two multi-
source DA models against VRNN(All), we show that VRADA is not able to
outperform VRNN(All) while MS-ADS performs robustly and achieves the best
performance on all measures except on recall. The highest recall is achieved by
VRNN(MIMIC) at a cost of low precision.

The bottom three rows in Table 1 show whether the performance of these
models differ across different medical systems (domains). Due to the space lim-
itation, for each domain, we only listed the performance of the corresponding
VRNN trained on the same domain compared with the best of the remaining
six models. Table 1 shows MS-ADS consistently to be the best model on CCHS
and MIMIC but for Mayo, VRNN (Mayo) has a higher F1 score and very close
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Table 1: Multi-source DA performance (± std) evaluated on integration of ALL do-
mains and each domain separately for 24 hours early prediction task.

Test
Domain

Model Accuracy Precision Recall F1 Score AUC

ALL

1. VRNN(CCHS) 0.735(±0.012) 0.823(±0.019) 0.6(±0.048) 0.692(±0.026) 0.815(±0.014)

2. VRNN(Mayo) 0.741(±0.017) 0.753(±0.021) 0.718(±0.053) 0.734(±0.026) 0.81(±0.015)

3. VRNN(MIMIC) 0.732(±0.016) 0.677(±0.023) 0.894**(±0.037) 0.769(±0.009) 0.814(±0.015)

4. VRNN(Separate) 0.803‡(±0.012) 0.817‡(±0.017) 0.781(±0.037) 0.797‡(±0.017) 0.864(±0.01)

5. VRNN(All) 0.795(±0.004) 0.791(±0.014) 0.801(±0.022) 0.796(±0.006) 0.882‡(±0.003)

6. Multi VRADA 0.78(±0.029) 0.778(±0.046) 0.766(±0.034) 0.771(±0.021) 0.855(±0.031)

7. MS-ADS 0.81**(±0.011) 0.828**(±0.018) 0.782‡(±0.027) 0.804**(±0.014) 0.893**(±0.009)

CCHS
1. VRNN(CCHS) 0.778(±0.008) 0.833(±0.022) 0.698(±0.034) 0.759(±0.014) 0.837(±0.012)

7. MS-ADS 0.777(±0.012) 0.791(±0.016) 0.75(±0.028) 0.77(±0.014) 0.862(±0.013)

Mayo
2. VRNN(Mayo) 0.731(±0.011) 0.732(±0.016) 0.729(±0.04) 0.73(±0.017) 0.795(±0.004)

7. MS-ADS 0.73(±0.022) 0.752(±0.034) 0.688(±0.046) 0.718(±0.028) 0.796(±0.02)

MIMIC
3. VRNN(MIMIC) 0.9(±0.018) 0.888(±0.014) 0.917(±0.038) 0.902(±0.02) 0.961(±0.014)

7. MS-ADS 0.921(±0.015) 0.935(±0.018) 0.907(±0.018) 0.921(±0.016) 0.974(±0.005)

· The best and the second best models are labeled with ** and ‡, respectively.

Table 2: Multi-source DA performance evaluated for 24-72 hours early prediction.

Model Accuracy Precision Recall F1 Score AUC

1. VRNN(CCHS) 0.674(±0.04) 0.734(±0.055) 0.559(±0.052) 0.63(±0.041) 0.728(±0.046)

2. VRNN(Mayo) 0.66(±0.031) 0.678(±0.037) 0.624(±0.075) 0.645(±0.044) 0.712(±0.032)

3. VRNN(MIMIC) 0.689(±0.014) 0.633(±0.015) 0.909**(±0.029) 0.745(±0.009) 0.759(±0.016)

4. VRNN(Separate) 0.755‡(±0.025) 0.775‡(±0.031) 0.719(±0.053) 0.742(±0.031) 0.804(±0.023)

5. VRNN(All) 0.749(±0.012) 0.757(±0.021) 0.743(±0.051) 0.747‡(±0.019) 0.835‡(±0.01)

6. 3-d VRADA 0.746(±0.021) 0.751(±0.034) 0.739(±0.043) 0.743(±0.022) 0.829(±0.024)

7. MS-ADS 0.771**(±0.016) 0.782**(±0.016) 0.75‡(±0.033) 0.765**(±0.02) 0.85**(±0.012)

· The best and the second best models are labeled with ** and ‡, respectively.

AUC score to MS-ADS. Additionally, MIMIC data has extremely good results
while the performance on Mayo is the worst. Such results suggest that early
sepsis shock prediction is relatively trivial for MIMIC dataset probably because
MIMIC only includes ICU visits. Therefore, in the following, we mainly focus on
generalization to CCHS and Mayo only.

Varying 24-72 Hours Early Prediction: Table 2 shows the average perfor-
mance by varying the prediction window from 24 to 72 hours, with every 12
hours interval. For each prediction window, our test set has an equal number
of visits from each domain. Table 2 shows MS-ADS significantly outperforms
all other baselines including VRADA and VRNN(All) for all metrics except re-
call. VRNN(MIMIC) performs with the highest recall across all domains, but
at the cost of very low precision. Comparing VRNN(Separate) with MS-ADS
shows a ∼3% improvement for recall and ∼4.5% improvement for AUC across
all three domains. This result demonstrates that by integrating EHRs across
medical systems, MS-ADS can address insufficient labeled data problems and
by adopting an effective domain adaptation architecture, MS-ADS can address
both systematic bias and covariate shift across medical systems.
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(a) Original space (b) Latent space (c) Local CCHS

(d) Local Mayo

(e) Local MIMIC (f) Global

Fig. 3: Visit-level t-SNE visualization of (a) Original vs. (b) Latent space of MS-ADS.
(c)-(e) show domain-specific representations while (f) illustrates the globally-shared
representation. Solid dots represent septic shock visits.

Visit-level Visual Investigation. Fig. 3 illustrates t-SNE visualization of the
original and latent representation of all visits for 24 hours early prediction. In all
graphs, different colors represent different medical systems and solid and hollow
points represent shock and non-shock visits, respectively. Fig. 3a illustrates the
original space and 3b shows that the latent space generated by MS-ADS can
separate the three local representations (c), (d), (e) (enlarged in Fig. 3c-3e)
from the global ones (f) (enlarged in Fig. 3f). Fig. 3c-3e suggests that MS-ADS
can address systematic bias effectively while Fig. 3f shows that in the global
space, samples from different domains are close together and mostly aligned and
mixed. This shows that MS-ADS can address covariate shift effectively as well.
Event-level Visual Investigation. Further, we look at the original and global
latent space at the event level to validate if covariate shift is addressed by MS-
ADS along the temporal axis. We select two similar septic shock visits across
CCHS and Mayo such that both develop inflammation and multiple organ failure
symptoms within the observation window. Fig. 4 shows these two traces (CCHS
(red) and Mayo (blue)) in the original and global latent spaces. Despite their
similarity, their progression deviates in the original space while in the latent
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Fig. 4: Event-level t-SNE visualization of Original (left) vs. Global Latent (right) rep-
resentation of MS-ADS on CCHS and Mayo. Red (CCHS) and Blue (Mayo) traces
show sepsis progression of two similar patients.

Table 3: DG performance to unseen target domains for 24 hours early prediction.

Source
Unseen
Target

Model Accuracy Precision Recall F1 Score AUC

MIMIC + Mayo

CCHS

VRNN 0.747(±0.02) 0.739‡(±0.041) ↑0.77(±0.028) 0.753(±0.011) 0.831(±0.015)

MIMIC + Mayo VRADA 0.763‡(±0.021) 0.739(±0.043) ↑0.826(±0.048) ↑0.778(±0.013) ↑0.846‡(±0.017)

MIMIC + Mayo MS-ADS 0.764(±0.017) 0.74(±0.027) ↑0.813‡(±0.023) ↑0.774‡(±0.013) ↑0.851(±0.008)

CCHS VRNN 0.778(±0.008) 0.833(±0.022) 0.698(±0.034) 0.759(±0.014) 0.837(±0.012)

CCHS + MIMIC

Mayo

VRNN 0.698(±0.014) 0.725‡(±0.036) 0.644(±0.066) 0.678‡(±0.028) 0.763‡(±0.018)

CCHS + MIMIC VRADA 0.678‡(±0.039) 0.702(±0.035) 0.608(±0.072) 0.65(±0.055) 0.739(±0.039)

CCHS + MIMIC MS-ADS ↑0.73(±0.012) ↑0.796(±0.025) 0.62‡(±0.011) 0.697(±0.01) ↑0.8(±0.014)

Mayo VRNN 0.731(±0.011) 0.732(±0.016) 0.729(±0.04) 0.73(±0.017) 0.795(±0.004)

· In each block, the best performance is in bold; Models that outperform the gold
standard (bottom) are labeled with ↑.

representation their temporal progression is aligned. This further demonstrates
the effectiveness of MS-ADS in addressing covariate shift at a temporal level.

5 Domain Generalization to Unseen Medical System

In the second task, MS-ADS is trained on EHRs from two medical systems and
evaluated on an unseen target system: CCHS or Mayo. MS-ADS is compared
against two baselines: a VRNN trained on the combination of two source do-
mains and the original VRADA applied for DA across the two domains. Table
3 presents the generalization performance of all three models for 24 hours early
prediction. Table 3 shows MS-ADS outperforms the two baselines for most met-
rics in both target domains. Finally, we also compared them against the gold
standard supervised VRNN model trained on the target domain (last row in
each section), Table 3 shows that MS-ADS outperforms the supervised VRNN
for AUC metric in both target domains.
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Table 4: VRNN performance trained and tested on different racial groups across med-
ical systems for 24 hours early prediction.

Train Domain Test Domain Accuracy Precision Recall F1 Score AUC

CCHS(WA)
CCHS(WA) 0.888(±0.014) 0.869(±0.025) 0.916(±0.017) 0.891(±0.013) 0.956(±0.008)

CCHS(AA) 0.885(±0.011) 0.874(±0.018) 0.9(±0.004) 0.887(±0.01) 0.946(±0.007)

Mayo(WA)
Mayo(WA) 0.841(±0.038) 0.83(±0.043) 0.86(±0.039) 0.844(±0.036) 0.909(±0.03)

Mayo(AA) 0.809(±0.025) 0.821(±0.042) 0.813(±0.038) 0.816(±0.024) 0.847(±0.038)

CCHS(AA) Mayo(AA) 0.715(±0.031) 0.751(±0.031) 0.68(±0.061) 0.712(±0.038) 0.811(±0.037)

CCHS(WA+AA) Mayo(AA) 0.792(±0.032) 0.834(±0.048) 0.753(±0.054) 0.79(±0.034) 0.872(±0.021)

Table 5: Generalization performance to unseen African American (AA) patients in
Mayo using 2-domains and 3-domains.

Train Domains Model Accuracy Precision Recall F1 Score AUC

CCHS(WA + AA), Mayo(WA)

VRNN(All) 0.844(±0.031) 0.895(±0.012) 0.793(±0.075) 0.839(±0.04) 0.913(±0.01)

2-d VRADA 0.87(±0.025) 0.87(±0.034) 0.873(±0.063) 0.87(±0.029) 0.922(±0.021)

2-d MS-ADS 0.854(±0.017) 0.901(±0.033) 0.813(±0.068) 0.852(±0.026) 0.914(±0.012)

CCHS(WA), CCHS(AA), Mayo(WA)
3-d VRADA 0.847(±0.016) 0.861(±0.033) 0.847(±0.049) 0.852(±0.017) 0.917(±0.034)

3-d MS-ADS 0.87(±0.012) 0.876(±0.007) 0.876(±0.035) 0.875(±0.014) 0.947(±0.005)

· The best overall performance is in bold..

6 Unseen Racial Group across Medical Systems

In this task, we focus on two racial groups: White American (WA) and African
American (AA). Table 4 compares the performance of models that are trained
and tested on different racial groups across medical systems. Table 4 shows that
while the model trained on CCHS(WA) performs equally well on CCHS(WA)
and CCHS(AA); the model trained on Mayo(WA) performs much better on
Mayo(WA) than Mayo(AA). This is probably because the percentages of WA
and AA are more balanced than those of Mayo: 71% vs. 22.5% in CCHS while
91% vs. 3% in Mayo. The last block in Table 4 shows transfer across medical
systems. The model trained on CCHS(AA) does not perform well on Mayo(AA)
probably due to systematic bias across medical systems while adding CCHS(WA)
to the training population can help predictions on Mayo(AA) probably because
of more training data. As a result, our training domain settings will involve WA
in Mayo and WA and AA in CCHS.

Table 5 compares the generalization performance on Mayo(AA) by using two
training domains: CCHS (WA+AA) and Mayo (WA) (upper) vs. three training
domains: CCHS (WA), CCHS(AA), and Mayo (WA) (bottom). For the two-
domain generalization, MS-ADS is compared against the best non-DA baseline:
VRNN(All) and VRADA. Table 5 shows that both VRADA and MS-ADS out-
perform the VRNN(All) and VRADA achieves the best F1 and AUC. When
we conduct the same task by using three domains, the bottom block in Table
5 shows that the performance of VRADA suffered while the performance of
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MS-ADS improved. Indeed, Table 5 shows that the F1 and AUC of 3-domain
MS-ADS on Mayo(AA) are 0.875 and 0.947, catching up with the other three
racial groups across the two systems. We argue the effectiveness of 3-domain
MS-ADS over 2-domain MS-ADS is probably because the former can leverage
1) Mayo(WA) (same system different race), 2) CCHS(AA) (same race, different
system), 3) the DA mechanism learned from unifying AA and WA in CCHS
(addressing covariate shift within the same system), and 4) the DA learned from
unifying WA between CCHS and Mayo (addressing systematic bias in the same
racial group).

7 Related Work

Septic Shock Early Prediction: A variety of machine learning models have
been developed to predict septic shock several hours before the onset. Among tra-
ditional approaches, multivariate logistic regression and survival analysis models
have been proposed for early detection [14,31]. Moreover, sequential pattern min-
ing approaches have shown to be effective for early prediction of septic shock
while producing explainable patterns [12, 17]. Recently, various deep learning-
based approaches have been proposed, especially variations of recurrent neural
networks such as LSTM, and they have shown promising power in predicting
septic shock several hours before the onset [22, 40, 41]. Despite the great power
of LSTM models, they are not designed to address the high missing rate in
EHR [18]. Variational recurrent neural network (VRNN) [5] is recently proposed
to model complex temporal and conditional dependencies in sequential data and
account for variabilities, like missing data, and has shown great promise [4,26,39].

Multi-source Domain Adaptation: The majority of existing DA work ei-
ther addresses this problem by generating an invariant feature space for all pairs
of source-target distributions [27, 43] or constructs the target distribution as a
weighted combination of source distributions [23, 37]. For example, VRADA is
a VRNN-based DA that has been applied to EHRs from different groups of
patients and it has shown significant improvement in creating domain-invariant
representations using adversarial learning [28]. In this work, we further expanded
VRADA’s architecture to address multi-source DA problems and use it as a
baseline. These studies treat multiple medical systems as “source” domains to
improve the prediction performance in a specific “target” medical system. By
treating all domains equally, a group of DA studies aim at learning a unified
minimal risk model from multiple domains [6,8,30]. While the majority of such
DA research is conducted in computer vision and text classification, a few stud-
ies have proposed DA approaches to integrate EHRs across multiple medical
systems and improve prediction in a target domain by addressing covariate shift
and feature mismatch [36,38]. All existing approaches have shown great power in
accounting for the covariate shift but not domain-specific characteristics or sys-
tematic bias that should not be unified across domains. Our MS-ADS model is
capable of integrating multiple medical systems to build a robust unified model
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that improves prediction across all systems while accounting for the covariate
shift and systematic bias simultaneously but differently.

Domain Generalization aims to learn a model from an arbitrary number
of source domains such that it can generalize to previously unseen target do-
mains [9, 13, 29]. One class of approaches proposes to learn domain-invariant
representations by minimizing domain mismatch across source domains, simi-
lar to DA approaches [11, 21, 25]. For example, Motiian et al. propose a unified
DA and DG model exploiting Siamese architecture using a contrasting loss to
minimize the distance between samples from the same class but in different
domains [24]. Another type of DG method utilizes meta-learning techniques
to synthesize domain shift and directly learn and optimize for generalization
task [3, 7, 20]. Despite the critical application of DG in clinical deployment, es-
pecially in presence of limited data, this problem is still under-explored.

Further, to close the gap between performances among different groups of
patients, previous studies have explored DA approaches to account for the co-
variate shift between groups within a medical system [2,28]. For example, Zhang
et al. proposed a time-aware adversarial LSTM network to transfer knowledge
across different racial, age, and gender groups and improve prediction for mi-
nority groups [42]. As far as we know, this study is the first that investigates
DG to simultaneously address the covariate shift across different racial groups
and systematic bias across medical systems to generalize robustly and improve
prediction among minority groups.

8 Conclusion

In this work, we propose a multi-source adversarial domain separation (MS-
ADS) framework that unifies domain adaptation (DA) and domain generaliza-
tion (DG) by accounting for systematic bias across medical systems and covariate
shift among different patient groups to achieve a robust generalization. In spe-
cific, MS-ADS separates the global representation of each domain from the local
ones to address systematic bias and leverage a multi-domain discriminator with
Gradient Reversal Layer (GRL) to account for the covariate shift. We evaluate
MS-ADS in three tasks for septic shock early prediction using EHR from three
medical systems. First, on a task of DA across three medical systems, we show
that the effective adaptation under MS-ADS leads to performance improvement
in all three domains. Second, on a task of DG to an unseen medical system,
we demonstrate the generalization power brought by MS-ADS architecture by
comparing and showing its robustness against a gold standard supervised model
on the target domain. Lastly, on a task of generalization to unseen racial groups
across the medical system, we show that unifying DA and DG MS-ADS can
significantly improve prediction among minority racial groups.

Acknowledgments This research was supported by the NSF Grants #2013502,
#1726550, #1651909, and #1522107.



Unifying Domain Adaptation and Generalization 15

References

1. Agniel, D., et al.: Biases in electronic health record data due to processes within
the healthcare system: retrospective observational study. BMJ 361 (2018)

2. Alves, T., Laender, A., Veloso, A., Ziviani, N.: Dynamic prediction of icu mortality
risk using domain adaptation. In: IEEE Big Data. pp. 1328–1336. IEEE (2018)

3. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain gener-
alization using meta-regularization. In: NeurIPS. pp. 998–1008 (2018)

4. Chien, J.T., Kuo, K.T., et al.: Variational recurrent neural networks for speech
separation. In: Interspeech, VOLS 1-6: Situated Interaction. pp. 1193–1197 (2017)

5. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent
latent variable model for sequential data. In: NeurIPS. pp. 2980–2988 (2015)

6. Ding, X., Shi, Q., Cai, B., Liu, T., Zhao, Y., Ye, Q.: Learning multi-domain adver-
sarial neural networks for text classification. IEEE Access 7, 40323–40332 (2019)

7. Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via
model-agnostic learning of semantic features. arXiv:1910.13580 (2019)

8. Dredze, M., Kulesza, A., Crammer, K.: Multi-domain learning by confidence-
weighted parameter combination. Machine Learning 79(1-2), 123–149 (2010)

9. Du, Y., Xu, J., Xiong, H., Qiu, Q., Zhen, X., Snoek, C.G., Shao, L.: Learning
to learn with variational information bottleneck for domain generalization. In:
European Conference on Computer Vision. pp. 200–216. Springer (2020)

10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
arXiv:1409.7495 (2014)

11. Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization
for object recognition with multi-task autoencoders. In: CVPR

12. Ghosh, S., Li, J., Cao, L., Ramamohanarao, K.: Septic shock prediction for icu
patients via coupled hmm walking on sequential contrast patterns. JBI 66

13. Gong, R., Li, W., Chen, Y., Gool, L.V.: Dlow: Domain flow for adaptation and
generalization. In: CVPR. pp. 2477–2486 (2019)

14. Henry, K.E., et. al: A targeted real-time early warning score (trewscore) for septic
shock. Science translational medicine 7(299) (2015)

15. Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible
critical care database. Scientific data 3, 160035 (2016)

16. Khoshnevisan, F., Chi, M.: An adversarial domain separation framework for septic
shock early prediction across ehr systems. arXiv:2010.13952 (2020)

17. Khoshnevisan, F., Ivy, J., Capan, M., Arnold, R., Huddleston, J., Chi, M.: Recent
temporal pattern mining for septic shock early prediction. In: IEEE ICHI. pp.
229–240. IEEE (2018)

18. Kim, Y.J., Chi, M.: Temporal belief memory: Imputing missing data during rnn
training. In: IJCAI (2018)

19. Kumar, A., Roberts, D., Wood, K.E., Light, B., Parrillo, J.E., Sharma, S., Suppes,
R., Feinstein, D., Zanotti, S., Taiberg, L., et al.: Duration of hypotension before
initiation of effective antimicrobial therapy is the critical determinant of survival
in human septic shock. Critical care medicine 34(6), 1589–1596 (2006)

20. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-
learning for domain generalization. arXiv:1710.03463 (2017)

21. Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D.: Deep domain
generalization via conditional invariant adversarial networks. In: ECCV



16 F. Khoshnevisan and M. Chi

22. Lin, C., Zhangy, Y., Ivy, J., Capan, M., Arnold, R., Huddleston, J.M., Chi, M.:
Early diagnosis and prediction of sepsis shock by combining static and dynamic
information using convolutional-lstm. In: IEEE ICHI. pp. 219–228. IEEE (2018)

23. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple
sources. In: NeurIPS. pp. 1041–1048 (2009)

24. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised
domain adaptation and generalization. In: CVPR. pp. 5715–5725 (2017)

25. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant
feature representation. In: ICML. pp. 10–18 (2013)

26. Mulyadi, A.W., Jun, E., Suk, H.I.: Uncertainty-aware variational-recurrent impu-
tation network for clinical time series. arXiv:2003.00662 (2020)

27. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching
for multi-source domain adaptation. In: CVPR. pp. 1406–1415 (2019)

28. Purushotham, S., Carvalho, W., Nilanon, T., Liu, Y.: Variational recurrent adver-
sarial deep domain adaptation (2016)

29. Qiao, F., Zhao, L., Peng, X.: Learning to learn single domain generalization. In:
Proceedings of the CVPR. pp. 12556–12565 (2020)

30. Schoenauer-Sebag, A., Heinrich, L., Schoenauer, M., Sebag, M., Wu, L.F.,
Altschuler, S.J.: Multi-domain adversarial learning. arXiv:1903.09239 (2019)

31. Shavdia, D.: Septic shock: Providing early warnings through multivariate logistic
regression models. Ph.D. thesis, Massachusetts Institute of Technology (2007)

32. Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D.,
Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.D., Coopersmith, C.M., et al.:
The third international consensus definitions for sepsis and septic shock (sepsis-3).
Jama 315(8), 801–810 (2016)

33. Tasar, O., Tarabalka, Y., Giros, A., Alliez, P., Clerc, S.: Standardgan: Multi-source
domain adaptation for semantic segmentation of very high resolution satellite im-
ages by data standardization. In: CVPR Workshops. pp. 192–193 (2020)

34. Tato, A., Nkambou, R.: Improving adam optimizer (2018)
35. Tintinalli, J., J, S., O, J.M., D, C., R, C., G, M.: Tintinallis emergency medicine A

comprehensive study guide, chap. 146: Septic Shock, pp. 1003–1014. McGraw-Hill
Education, 7 edn. (2011)

36. Wiens, J., Guttag, J., Horvitz, E.: A study in transfer learning: leveraging data
from multiple hospitals to enhance hospital-specific predictions. Journal of the
American Medical Informatics Association 21(4), 699–706 (2014)

37. Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: Multi-source
unsupervised domain adaptation with category shift. In: CVPR

38. Yoon, J., Jordon, J., van der Schaar, M.: Radialgan: Leveraging multiple datasets
to improve target-specific predictive models using generative adversarial networks.
arXiv:1802.06403 (2018)

39. Zhang, S., Xie, P., Wang, D., Xing, E.P.: Medical diagnosis from laboratory tests
by combining generative and discriminative learning. arXiv:1711.04329 (2017)

40. Zhang, Y., Lin, C., Chi, M., Ivy, J., Capan, M., Huddleston, J.M.: Lstm for septic
shock: Adding unreliable labels to reliable predictions. In: IEEE Big Data. pp.
1233–1242. IEEE (2017)

41. Zhang, Y., Yang, X., Ivy, J., Chi, M.: Attain: attention-based time-aware lstm
networks for disease progression modeling. In: IJCAI. pp. 10–16 (2019)

42. Zhang, Y., Yang, X., Ivy, J., Chi, M.: Time-aware adversarial networks for adapting
disease progression modeling. In: IEEE ICHI. pp. 1–11. IEEE (2019)

43. Zhao, H., Zhang, S., Wu, G., Moura, J.M., Costeira, J.P., Gordon, G.J.: Adversarial
multiple source domain adaptation. In: NeurIPS. pp. 8559–8570 (2018)


