
InferNet for Delayed Reinforcement Tasks:
Addressing the Temporal

Credit Assignment Problem
1st Markel Sanz Ausin

North Carolina State University
Raleigh, USA

msanzau@ncsu.edu

2nd Hamoon Azizsoltani
North Carolina State University

Raleigh, USA

3rd Song Ju
North Carolina State University

Raleigh, USA

4th Yeo Jin Kim
North Carolina State University

Raleigh, USA

5th Min Chi
North Carolina State University

Raleigh, USA
mchi@ncsu.edu

Abstract—Rewards are the critical signals for Reinforcement
Learning (RL) algorithms to learn the desired behavior in a
sequential multi-step learning task. However, when these rewards
are delayed and noisy in nature, the learning process becomes
more challenging. The temporal Credit Assignment Problem
(CAP) is a well-known and challenging task in AI. While RL,
especially Deep RL, often works well with immediate rewards
but may fail when rewards are delayed or noisy, or both. In
this work, we propose delegating the CAP to a Neural Network-
based algorithm named InferNet that explicitly learns to infer
the immediate rewards from the delayed and noisy rewards.
The effectiveness of InferNet was evaluated on three online RL
tasks: a GridWorld, a CartPole, and 40 Atari games; and two
offline RL tasks: GridWorld and a real-life Sepsis treatment task.
The effectiveness of InferNet rewards is compared to that of
immediate and delayed rewards in two settings: with and without
noise. For the offline RL tasks, it is also compared to a strong
baseline, InferGP [7]. Overall, our results show that InferNet
is robust to delayed or noisy reward functions, and it could be
used effectively for solving the temporal CAP in a wide range
of RL tasks, when immediate rewards are not available or they
are noisy.

Index Terms—Credit Assignment Problem, Deep Reinforce-
ment Learning

I. INTRODUCTION

A large body of real-world tasks can be characterized as
sequential multi-step learning problems, where the outcome of
the selected actions is delayed. Discovering which action(s) are
responsible for the delayed outcome is known as the (tempo-
ral) Credit Assignment Problem (CAP) [5], [25]. Solving the
CAP is especially important for delayed reinforcement tasks
[40], in which rt, a reward obtained at time t, can be affected
by all previous actions, a0, a1, ..., at−1, at and thus we need
to assign credit or blame to each of those actions individually.

Prior research has explored solving the CAP by formulating
it as a Reinforcement Learning (RL) problem [10], [39], in
which an agent learns how to interact with a potentially non-
stationary, stochastic, and partially observable environment

to maximize the long-term cumulative reward. Such delayed
reinforcement tasks become extremely challenging if there
are long delays between the actions and their corresponding
outcomes. Furthermore, noise is a common problem that
machine learning systems need to deal with in many real-
world situations. In RL, noise can be present in either the
observations or the rewards. When the reward signal is noisy,
the agent can have a difficult time learning the optimal behav-
ior, since the rewards can be biased or have large variances.
Previously, Temporal Difference (TD) learning methods [41]
have been widely used to resolve CAP problems [42]. In
particular, the TD(λ) algorithm [41], [43] uses eligibility traces
to update the value of a state by using all the future rewards
in the episode, which makes it easier to assign credit for long
trajectories. For example, Mesnard et al used Counterfactual
Credit Assignment to create a future-conditional value function
that considers the delayed reinforcement [24].

One way to mitigate the CAP is to use model-based
RL or simulations, which allow collecting vast amounts of
data. However, in many real-life domains such as healthcare,
building accurate simulations is especially challenging because
disease progression is a rather complex process; moreover, it
is not feasible or ethical to induce medical treatment policies
while interacting with patients. In addition, reward functions in
such domains are often both delayed and noisy, so solving the
CAP is essential. Typically, in healthcare, the most appropriate
rewards are patient outcomes, which can only be obtained after
the entire trajectory has been completed. The reason for this
delay is that the subtle yet complex progression of the disease
makes it difficult to assess patient health state moment to
moment, and that many clinical or medical interventions that
boost short-term performance may not be effective over the
long run. Moreover, immediate reward mechanisms in these
domains are often imperfect representations of underlying true
reward mechanisms. As an example of inaccurate or noisy

patient outcomes, the 30-day readmission rate among sepsis
survivors across 633,407 hospitalizations and 3,315 hospitals
is 28.7% [27].

A lot of prior research has investigated modifying the
reward function through reward shaping or reward engineering
[16], [22], [23], [38], [46]. One main application of reward
shaping has been including intrinsic rewards to the agent’s
reward signal, where these intrinsic rewards encourage the
agent to explore unseen states [29]. This approach improves
the exploration policy of the agent and mitigates the sparse
reward problem. Chen and Lin used self-imitation learning
to help a robot learn in a sparse reward setting [11]. Other
work by Trott et al. [44] used a distance-based metric to shape
a reward function that enhances the sparse rewards from the
environment and prevents the agent from getting stuck in local
optima. Most prior methods develop a separate reward function
that augments the existing reward function.

To mitigate the temporal CAP, our approach is to distribute
or infer the final delayed reward into the immediate rewards
along the trajectories. Previously, we presented InferGP [7],
which uses Gaussian Processes (GP) to infer unobservable
immediate rewards from delayed rewards and then the inferred
rewards can be used in standard RL algorithms for policy
induction. That work, however, had three crucial limitations:
1) it did not examine how InferGP handled noisy reward
functions, even though GP is widely recognized to be robust
to noise; 2) InferGP is not very scalable due to its poor
time and space complexity, as shown in section IV-A; and
3) While most RL algorithms are trained online, InferGP can
only be used for offline-RL since it incorporates all training
data when applying Bayesian inference to infer the rewards. In
offline RL, the agent learns the policy from pre-collected data,
while in online RL, the agent learns while interacting with
the environment. Many RL tasks involve online learning, and
many RL algorithms, especially Deep RL (DRL) algorithms
often require millions or billions of interactions in order
to develop competitive policies. As InferGP can only work
offline, it becomes impractical for large datasets or for online
RL.

In this work, we propose an intuitive and powerful Neural
Network (NN) based approach named InferNet, which infers
“immediate rewards” from the delayed and noisy rewards and
can be used to train an RL agent. InferNet is a general, scalable
mechanism that works alongside any online and offline RL
algorithms. It is an easy yet effective add-on mechanism for
mitigating the temporal CAP. The effectiveness of InferNet
was evaluated on three online RL tasks: a GridWorld, the
CartPole task and 40 Atari games; and two offline RL tasks:
GridWorld and a real-world Sepsis treatment task. For sim-
plicity, in the following, policies resulting from InferGP and
InferNet inferred rewards will be called InferGP and InferNet
policies, respectively. Likewise, policies that are generated
by using immediate or delayed rewards are referred to as
immediate or delayed policies. Note that 1) the InferGP policy
is only applicable to offline RL tasks, and 2) immediate
rewards are not available for the Sepsis treatment task.

Algorithm 1 InferNet Online

1: Initialize InferNet buffer D ← ()
2: // Pretrain InferNet
3: for episode← 1 to K do
4: Play an episode randomly and collect the data
5: Delayed reward Rdel = r0 + r1 + ..+ rT−1
6: D ← D ∪ (s0, a0, ..., sT−1, aT−1, Rdel)
7: Train InferNet on a batch of episodes B ∼ D: L(θ) =

(R−
∑T−1
t=0 f(st, at)|θ))2

8: end for
9: for episode← 1 to M do

10: Set episode data sequence tmp← ()
11: while not end of episode do
12: Get state s from env, select action a ∼ π, and execute

on environment s′, r ∼ env(s, a)
13: tmp← tmp ∪ (s, a, r, s′)
14: Train RL agent on historical data with inferred re-

wards
15: Train InferNet on a batch of episodes B ∼ D:

L(θ) = (R−
∑T−1
t=0 f(st, at)|θ))2

16: end while
17: Use InferNet to infer rewards for the steps in tmp
18: D ← D ∪ tmp
19: Replace rewards in tmp with InferNet rewards
20: Store the tmp data (with the InferNet rewards) to train

the RL agent later on
21: end for

For the three online RL tasks, the InferNet policy is eval-
uated against the immediate and delayed policies under two
reward settings: Noise-free (no noise) and Noisy. On the offline
RL tasks, InferNet is evaluated using both noise-free and
noisy reward settings on the GridWorld first, and then on the
sepsis shock prevention task, where the rewards are delayed
and noisy. Overall, our results show that the effectiveness
of InferNet is robust against noisy reward functions and is
an effective add-on mechanism for solving temporal CAP
in a wide range of RL tasks, from classic RL simulation
environments to a real-world RL problem and for both online
and offline learning.

II. INFERNET: NEURAL NET INFERRED REWARDS

a) Problem Definition: In conventional RL, an agent’s
interactions with an environment are often framed as a Markov
decision process (MDP), where at each time-step t the agent
observes the environment in state st, it takes an action at and
receives a scalar reward rt and the environment moves to state
st+1. In the discrete case, at is selected from a discrete set
of actions at ∈ A = {1, ..., |A|}. The RL agent is tasked with
maximizing the expected discounted sum of future rewards,
or return, defined as Rt =

∑T
τ=t γ

τ−trt, where γ ∈ [0, 1] is
the discount factor and T is the last timestep in the episode.
A value function is commonly used to estimate the expected
return for each state or state-action pair. The optimal action-
value function is defined as Q∗(s, a) = maxπQ

π(s, a), where

Fig. 1: Left: The original GridWorld with the true immediate rewards. Right: The InferNet predicted rewards.

Qπ estimates the long-term reward the agent would observe
after taking action a from state s and following policy π
thereafter.

b) InferNet: The intuition behind InferNet is rather
straightforward. InferNet uses a deep neural network to infer
the immediate rewards from the delayed reward in an episode.
At each timestep, the observed state and action are passed
as input to the neural network, which will output a single
scalar, the inferred immediate reward for that state and action:
rt = f(st, at|θ). Here θ indicates the parameters (weights and
biases) of the neural network. To address the credit assignment
problem, InferNet distributes the final delayed reward among
all the states in the episode. More specifically, the network
learns to infer the immediate rewards from the delayed reward
by applying a constraint on the predicted rewards: the sum of
all the predicted rewards in one episode must be equal to the
delayed reward, as shown in Equation 1 where Rdel indicates
the delayed reward. This way, the network needs to model the
reward function, conditioned on the state-action pair for each
timestep, and it will minimize the loss between the sum of
predicted rewards and the delayed reward for each episode.

Rdel = f(s0, a0|θ)+f(s1, a1|θ)+ ...+f(sT−1, aT−1|θ) (1)

We used the TimeDistributed layer on TensorFlow Keras [1],
[12] so that we can repeat the same neural network operation
multiple times, sharing weights across time, and pass the entire
episode at once as input to the neural network. It should
be noted that despite sharing weights across time, there is
no internal state that is passed to the next timestep (as in a
recurrent neural network). Each output is only dependent on
the state and action passed as inputs at that timestep. We train
InferNet by minimizing the loss function shown in Eq. 2.

Loss(θ) = (Rdel −
T−1∑
t=0

f(st, at|θ))2 (2)

Algorithm 1 shows the pseudo-code for training InferNet
alongside an RL algorithm. In this algorithm, the first loop is
used to collect data and pre-train InferNet, without training the
RL agent. The second loop, is the standard RL loop. The agent
interacts with the environment collecting data, and both the
agent and the InferNet neural network get trained. The main

difference in our algorithm is that the RL agent is trained on
the InferNet rewards instead of the regular rewards.

This process can be seen as making the neural network learn
a function that outputs a reward for each state-action pair,
subject to the constraint of all rewards in an episode summing
up to the delayed reward for that episode. To evaluate the ef-
fectiveness of InferNet, we divide the experimental evaluation
into online and offline RL tasks. Note that Table I summarizes
all the hyper-parameters used in different experiments.

III. ONLINE RL EXPERIMENTS

The effectiveness of InferNet is investigated on three types
of tasks: a GridWorld, the CartPole, and 40 games using the
Atari 2600 Learning Environment. We compare the following
reward settings: 1) Immediate rewards: when available, they
are the gold standard. 2) Delayed rewards: these rewards are
used as a baseline. All the intermediate rewards will be zero
and the reward that indicates how good or bad the intermediate
actions were will only be provided at the end of the episode.
When the rewards are not delayed by nature, we simulate
the delayed rewards by “hiding” the immediate rewards and
providing the sum of all the immediate rewards at the end of
the episode, as one big delayed reward, following the idea of
reward accumulation proposed by Arjona et al. [4]. 3) InferNet
rewards: our proposed method which uses a Neural Network
to predict the immediate rewards from the delayed reward.

Fig. 2: Training process for InferNet. Minimizing the objective
loss (red line) results in also minimizing the true loss (blue
line), which is what we want to ultimately achieve.

(a) Q-Learning (no noise) (b) Q-Learning (noisy) (c) TD(λ) (no noise) (d) TD(λ) (noisy)

Fig. 3: Results of training a Q-Learning agent (a) and (b) and a TD(λ) agent (c) and (d) on the GridWorld task, for immediate,
delayed, and InferNet rewards. No noise in the rewards (a) and (c). Gaussian noise (N (0, 0.082)) added for (b) and (d).

For each type of tasks, we also evaluate the power of InferNet
when the reward function is noisy.

A. Grid World
Fig. 1 (left) shows the GridWorld environment used in this

work as a standard RL testbed. Here, we can compare the
true immediate rewards to the inferred rewards produced by
InferNet. The three available actions are: move up, left, and
down. To prevent the agent from collecting the same reward
more than once, the states that have a reward of +1 or -1 only
have one action available: move left. The inferred rewards
predicted by InferNet are shown in Fig. 1 (Right), and it
shows that InferNet can recover the original reward setting
effectively. The rewards in the range (-0.03, 0.03) have been
intentionally left blank to simplify the visualization. It should
be noted that in this environment, the rewards are a function
of the state and the action. For this reason, Fig. 1 (Right) only
shows the largest (positive or negative) reward in each state.

Fig. 2 shows that by minimizing the training error in
Eq. 2 (the difference between the delayed reward and the
sum of immediate predicted rewards) (red line), InferNet
minimizes the true error (the difference between the predicted
and true immediate rewards) (blue line). We then evaluate the
effectiveness of the rewards predicted by InferNet when used
to train an RL agent, and compare them to the immediate
and delayed rewards. We repeated each experiment five times
with different random seeds, and show the mean and standard
deviation of those runs. We explored Q-Learning and TD(λ)
as RL agents; the latter is known for being able to mitigate
the temporal CAP.
Q-Learning is a TD-Learning method, but it does not employ
any eligibility traces, and it usually only uses a 1-step reward.
Fig. 3 (a) shows the result of training different Q-Learning
agents on the three reward settings without noise. These results
clearly show that the Q-Learning agent that uses the delayed
rewards cannot learn to solve the simple GridWorld task; it is
no better than a random agent. However, when we first use
InferNet to infer the “immediate” rewards from the delayed
ones, the agent is able to solve the task as effectively as the
agent uses the immediate rewards. When the reward function is
noisy, Fig. 3 (b) shows that the immediate reward agent suffers
significantly, and cannot solve the environment completely,
while InferNet is much more robust to the noise.

TD(λ) is known to be one of the strongest methods to tackle
the CAP. This algorithm takes advantage of the benefits of TD
methods and includes eligibility traces, which allows the agent
to look at all the future rewards to estimate the value of each
state. This makes propagating the delayed reward easier than
in the case of 1-step rewards. Despite all these advantages,
Fig. 3 (c) shows that when the rewards are delayed, the agent
is not able to learn as effectively as the agent that has access to
the true immediate rewards. However, the agent that uses the
InferNet predicted reward achieves the same performance as
the agent that uses the immediate rewards; they can both fully
solve the environment. When the reward function is noisy, Fig.
3 (d) shows that none of the agents suffer. This result shows
that TD(λ) is more robust to noisy rewards than Q-Learning.

B. CartPole

Fig. 4 (left) shows the CartPole environment. The goal in
CartPole is to move a cart left and right in order to keep a pole
balanced in its vertical position. The reward function provides
a rewards of +1 for each step where the pole is kept vertical.
This means that the reward function InferNet needs to learn
is pretty simple, a reward of +1 for each timestep, regardless
of the state and action passed as inputs. The difficulty in this
environment lies on the continuous state space, that makes
tabular RL methods inoperable. For this reason, we compared
the same three reward settings using the Deep Q-Network
(DQN) algorithm [26]. For the InferNet setting, we trained

Fig. 4: Left: CartPole environment. Right: Comparison of
immediate, delayed and InferNet policies in the CartPole task.

Fig. 5: Examples of two Atari Learning Environment games.
Left: Boxing. Right: MsPacman.

the DQN agent [26] and InferNet simultaneously, providing
the DQN agent with the rewards produced by InferNet.

Fig. 4 (Right) shows the results of using the immediate,
delayed and InferNet rewards. It shows the mean and standard
deviation of training each agent with 20 different random seeds
as a function of the number of training steps. These results
show that InferNet can work effectively in combination with
a Deep RL agent, to mitigate the credit assignment problem
and boost the performance of the agent when only delayed
rewards are available, and can perform as well as the agent that
uses the immediate rewards. Meanwhile, the agent that learns
from the delayed rewards cannot completely solve this task,
although it is able to get a reasonable score. We repeated the
experiment with noisy rewards, but none of the agents’ results
were affected by the noise, so we did not include a separate
comparison. It’s probably because a reward of +1 is given at
each step in the CartPole. Thus the agent can still figure out
that its goal is to balance the cart as long as possible, even if
there is noise on the rewards.

C. Atari Learning Environment (ALE)

The ALE provides visually complex environments in which
the state space is very high dimensional, represented by pixels
on a screen. Fig. 5 shows two examples of these games. It is
important to note that in some games, an episode consists of
thousands of steps, so learning from a single delayed reward
is no trivial task. We used OpenAI gym [9] to simulate the
games, and the stable baselines library [14] to train the Deep
RL agent. Here, we evaluate the performance of InferNet in
conjunction with a Prioritized Dueling DQN agent [34], [45].
Network Architecture The NN architecture for Deep RL
agent was the same as in [45]. InferNet also uses the same
architecture as the agent. The only differences were 1) the
output layer consists of a single value for InferNet, 2) InferNet
uses dropout during training for regularization, and 3) we
wrapped all the InferNet layers in the TimeDistributed layer,
in order to be able to pass all the steps in an episode as input
at once, and infer the immediate reward for each of those steps
(see Algorithm 1). It should be noted that the hyper-parameters
(including the replay buffer size) are different from those in the
Dueling DQN paper. We allowed for these changes because

our goal is not to outperform the current state of the art method
or to improve upon some prior Deep Reinforcement Learning
algorithm. Our task is to create a method that infers better
rewards and can be used by other RL algorithms in order
to learn more effectively. Modifying some of these hyper-
parameters allowed for less expensive training.

Fig. 6 shows the results of a Prioritized Dueling DQN agent
on 40 Atari games with the two reward settings: noise free
(Left) and noisy (Right). The black vertical line at x = 0 in
each subgraph represents the baseline performance obtained
when training DQN using delayed rewards. This allows us
to compare the three types of rewards, after normalizing the
performance for each game. It is important to know that
as we did not intend to outperform any other algorithm or
state-of-the-art method, our evaluation was different from the
Dueling DQN paper in several ways: 1) the size of the
experience replay buffer was 10,000 instead of 1,000,000; 2)
the evaluation was performed by making the loss of a life
indicate the end of the episode; 3) we used the default hyper-
parameters in the stable baselines library.
Noise-free Rewards: Fig. 6 (Left) shows the results of
training the Dueling DQN agent on the three different reward
settings. The agent trained on the rewards provided by InferNet
performs as well as or better than the agent which uses the
delayed rewards in almost all games. In some cases, it can even
match the performance of the agent in the immediate setting.
These results clearly show that when immediate rewards are
not available, using our InferNet is preferable to overly using
the delayed rewards.
Noisy Rewards: We repeated the Atari experiments after
adding Gaussian noise to the observed rewards. As the noise
is unbiased, the expectation of the sum of rewards is the same
with and without noise, as shown in Eq. 3.

E[R] = E[r0 + ...+ rT−1] =

E[r0 +N (0, σ2) + ...+ rT−1 +N (0, σ2)]
(3)

Fig. 6 (right) shows the results of training the same Prior-
itized Dueling DQN agent on noisy rewards with immediate,
delayed, and InferNet rewards. When compared to the noise-
free immediate rewards (Left), the agent trained on noisy im-
mediate rewards performs significantly worse. When compared
to the noise-free setting, InferNet provides better performance
in many games. Fig. 7 shows two examples of this (Seaquest
and Freeway).
Impact of Different Noise Levels We also examine how
different levels of noise affect different reward settings. Three
distinctly different Atari games were studied: Centipede, Free-
way, and Seaquest. The six levels of standard deviations (0.0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6) of the Gaussian distribution that
generated the white noise were explored (the mean remained
zero). Figs. 8, 9, and 10 show the mean performance of the
agent over two runs with different random seeds. Overall,
among the three types of rewards, using InferNet rewards
results in the best overall performance and robustness against
different levels of noise.

Fig. 6: Performance of the Prioritized Dueling DQN agent on the different Atari games with the three reward settings: Delayed
(vertical line at x=0), Immediate (red) and InferNet (Blue). Noise-free rewards (Left) and with noisy rewards (Right). The
results have been normalized to show the Delayed rewards at x=0 as a vertical line, and each bar shows how many times better
the other agents are.

(a) Seaquest (no noise) (b) Seaquest (noisy) (c) Freeway (no noise) (d) Freeway (noisy)

Fig. 7: Training process for Seaquest (a) and (b), and Freeway (c) and (d). No noise added for (a) and (c). Gaussian noise
(N (0, 0.62)) added for (b) and (d).

IV. OFFLINE RL EXPERIMENTS

When applying RL to solve many real-life tasks such as
healthcare, we have to perform offline learning. That is, the
training of the RL agent needs to be done from a fixed
training dataset, and no further exploration of the environment
is possible. In these situations, having a method that effectively
solves the CAP is crucial. For the offline experiments, InferNet
is also compared against InferGP. Our prior work has shown
that InferGP works reasonably well in a wide range of offline
RL tasks [7]. Our goal is to determine the effectiveness of
InferNet for offline RL tasks when compared to immediate,
delayed, and InferGP rewards. We use the same GridWorld
environment as in Section III-A. Additionally, we want to
evaluate our method in a real-world problem: a healthcare task
where the goal of the agent is to induce a policy for sepsis
treatment and septic shock prevention.

A. GridWorld

In this offline RL experiment, we use the same GridWorld as
in section III-A. However, to make the training happen offline,
we first use a random policy to interact with the GridWorld
randomly and collect gameplay data. Then, we use the delayed
rewards in the data to infer the immediate rewards, and finally
we train an RL agent with the newly inferred rewards.
Root Mean Squared Error (RMSE): We evaluated the
amount of data needed for InferNet and InferGP to approx-
imate the true immediate rewards. We calculated the RMSE
between the inferred rewards and the true immediate rewards
in the training dataset by varying the amount of training data.
Fig. 11 (Left) compares this RMSE for InferNet and InferGP.
Overall, with 100 or more trajectories, InferNet consistently
has a lower RMSE than InferGP. Fig. 11 (Right) compares
the RMSE of the two approaches with noisy rewards. Adding

Fig. 8: Training on Centipede with different noise levels. Left: Immediate. Center: InferNet. Right: Delayed.

Fig. 9: Training on Seaquest with different noise levels. Left: Immediate. Center: InferNet. Right: Delayed.

Fig. 10: Training on Freeway with different noise levels. Left: Immediate. Center: InferNet. Right: Delayed.

noise makes the CAP more challenging, and InferGP cannot
adapt as well as InferNet (InferGP increases from 0.15 to 0.5
and InferNet increases from 0.13 to 0.2), despite the fact that
GP is known to be able to handle noisy data.

Offline Q-Learning: We trained a tabular Q-learning agent
for 5000 iterations on the same dataset used to infer the
rewards. We compared the four reward settings: immediate,
delayed, InferGP, and InferNet. Once our RL policies are
trained, their effectiveness is evaluated online by interacting
with the GridWorld environment directly. Fig. 12 (left) shows
the mean and standard deviation of the performance of the
agent when interacting with the environment for 50 episodes,
as a function of the number of episodes available in the
training dataset. Fig. 12 (left) shows that, as expected, the
delayed policy performs poorly, while the Immediate policy
can converge to the optimal policy after only 10 episodes of
data; additionally, both InferNet and InferGP can converge to

the optimal policy but they need more training data (around
150 episodes) than the Immediate policy. Fig. 12 (Right) shows
the performance of the policies when the rewards are noisy.
It clearly shows that adding noise to the rewards function
deteriorates the Immediate policy, while InferNet and InferGP
policies also suffer but it seems that InferNet is the best option
among the four.

Time Complexity: Fig. 13 empirically compares the time
complexity of InferNet and InferGP: the training time of
InferNet is less sensitive to the size of the training dataset,
while the training time of InferGP increases cubically as
the training data increases. Fundamentally, InferGP has an
asymptotic time complexity of O(n3) and asymptotic space
complexity of O(n2), where n refers to the size of the dataset.
InferNet has a time complexity of O(n) since we sample a
constant amount of mini-batches from the dataset for each
gradient descent step, and we only need to train the network

Fig. 11: RMSE between the inferred and the true immediate
rewards as a function of the number of episodes collected from
the GridWorld environment. Left: No noise. Right: Gaussian
noise (N (0, 0.32)).

for a constant number of epochs. The space complexity for
InferNet is O(f ∗ l), where f is the number of features in the
state and action that are passed as inputs, and l is the length
of the episode that is passed as input.

B. Healthcare

We evaluate InferNet and InferGP, on a real-world sepsis
treatment task. Sepsis is a life threatening infection, and the
septic shock, the most severe complication of sepsis, leads to
a mortality rate as high as 50% [32]. Our goal is to learn
an optimal treatment policy to prevent patients from going
into septic shock. Since as many as 80% of sepsis deaths
could be prevented with timely diagnosis and treatment [18],
it is crucial to monitor sepsis progression and recommend the
optimal treatment as early as possible.

In this task, we used Electronic Health Records (EHRs)
where the actions (treatment) are sparse and the rewards
(patients’ health status) are both delayed and noisy. By the
nature of human bodies, the reactions to certain treatment such
as medication or oxygen assistance would not be immediately
observed, and thus it is challenging to make a long-term treat-
ment plan for an individual patient. If the agent can estimate
immediate rewards of treatment from delayed rewards, that
could help to improve the decision making process of medical
treatment. Recently, several DRL approaches have been inves-
tigated for septic treatment, utilizing EHRs. However, [17],
[30] only considered delayed rewards, while [7] leveraged the
Gaussian process based immediate reward inference method,
which is one of our baselines.
Data: Our EHRs were collected from Christiana Health Care
System (July 2013 to December 2015). We identified 2, 964
septic shock positive visits and sampled 2, 964 negative visits
based on the expert clinical rules, keeping the same ratio of
age, gender, race, and the length of hospital stay as in the
original EHRs. We selected 22 sepsis-related state features
such as vital signs, lab results, and medical interventions,
and defined four types of treatments as actions: no treatment,
oxygen control, anti-infection drug, and vasopressor.
Reward: The rewards were assigned by the expert-guided
reward function based on the multiple septic stages. These
rewards are delayed in time and noisy. The delayed rewards
are given when the patient goes into septic shock or recovers

Fig. 12: Performance of Q-Learning agents on the GridWorld
environment as a function of the number of training episodes.
Left: No noise. Right: Gaussian Noise (N (0, 0.32))

at the end of their stay, and the noise in the rewards is a result
of imperfect sensors or incomplete measurements.
Experiment setting: We compared three reward settings: the
original delayed, InferGP, and InferNet, since the immediate
rewards are not available. InferNet predicts one reward for
each timestep. After inferring the immediate rewards, the
septic treatment policies were induced using a Dueling DQN
agent. We split data into 80% for training, 20% for test using
the stratified random sampling keeping the same ratio of septic
shock. The hyper-parameters are shown in Table I.
Evaluation metric: In similar fashion to prior studies ([7],
[17], [30]), the induced policies were evaluated using the septic
shock rate, which is the portion of shock-positive visits in each
group belonging to the corresponding agreement rate, as the
agreement rate increases from 0 to 1 with a 0.1-rate interval.
It is desirable that the higher the agreement rate, the lower the
septic shock rate. The policy agreement rate in the non-shock
patients should be higher, which means that our policy agrees
more with the physicians’ actions for the non-shock patients.
Results: The underlying assumption is that the agreed treat-
ments are adequate and acceptable, as they were taken by real
doctors in real clinical cases, but may not necessarily optimal.
Fig. 14 shows the septic shock rate in the visiting group for
the training (Left) and test (Right) sets, as a function of the
corresponding agreement rates.

For InferNet, the septic shock rate almost monotonically
decreases in the test set evaluation, as the agreement rate
increases and reaches the lowest shock rate of all policies.

Fig. 13: Time analysis of training InferNet and InferGP.

Fig. 14: Healthcare: Septic shock rate as a function of the agreement rate between the policy and the physician actions for the
training (Left) and test (Right) sets.

InferGP shows a general trend of decreasing shock rate with a
larger variance than InferNet as the agreement rate increases,
while delayed fails to learn an effective shock prevention
policy. This supports that InferNet significantly improves the
policy training process at preventing septic shock, compared
with InferGP and delayed. Furthermore, InferNet and InferGP
induced policies that agree with the physicians more for the
non-shock patients, while when the patients are more likely to
go into septic shock, the agents try to search for a different
treatment strategy from the given treatments that resulted in
septic shock.

V. HYPER-PARAMETERS

Table I shows the hyper-parameters for all the experiments
in this work. The dashes indicate that the hyper-parameter was
not used, either because the training was performed offline
or because of a design decision. The hyper-parameters were
chosen to balance the computational cost and the performance
of the agents. In the case of TD(λ) for the online GridWorld,
we performed a grid search with the values for λ and α, as well
as the type of traces to be used (we considered accumulating,
replacing and dutch traces), and chose the hyperparameters
that worked best across the different reward settings.

VI. RELATED WORK

By utilizing deep learning and novel RL algorithms, Deep
RL (DRL) has shown great success in various complex tasks
[8], [36]. Much of prior work on DRL has focused on online
learning where the agent learns while interacting with the
environment. Immediate rewards are generally much more
effective than delayed rewards for RL because of the CAP: the
more we delay rewards or punishments, the harder it becomes
to assign credit or blame properly. Different approaches have
been proposed and applied for solving the CAP. For example,
when applying DRL for games such as Chess, Shogi and

Go, the final rewards are determined by the outcomes of the
game: −1/0/+1 for loss/draw/win respectively; and for each
state, Monte Carlo Tree Search (MCTS) was used to learn
the likelihood of each outcome [36], [37]. Because of the
CAP, RL algorithms often need more training data to learn an
effective policy using delayed rewards than using immediate
rewards. More importantly, for some extremely complicated
games, DRL may fail to learn an effective policy altogether.
As a result, prior research used expert-designed immediate
rewards, or learned a reward function from expert experience
trajectories, using reward engineering methods such as Inverse
RL [2], [20], [31], [48]. For example, Berner et al. used
human-crafted intermediate rewards to simplify the CAP. They
designed a reward function based on what expert players
agree to be good in that game [8]. While effective, such
expert-designed rewards are often labor-intensive, expensive,
and domain specific. Additionally, these expert rewards might
introduce expert bias into the process, leading to sub-optimal
agent performance, as shown by AlphaGo Zero [37] outper-
forming the original AlphaGo [35].

The human brain can be very efficient at solving the CAP
when learning to perform new tasks [6], [33]. Thus a wealth of
neuroscience research focuses on understanding the learning
and decision-making process in animals and humans. For
example, [3] studied the structural and temporal CAP and
suggested unification of the problem for multi-agent, time-
extended problems. In RL, the temporal CAP has been widely
studied [40], and solutions to it have been proposed in order
to more successfully train neural network systems [19], [28].

In machine learning, prior research investigated solving the
CAP by formulating it as an RL task [39]. To the best of
our knowledge, the best-known family of algorithms to tackle
the CAP are the Temporal Difference (TD) Learning methods
and TD(λ) in particular [41]. It employs eligibility traces to

TABLE I: Hyper-parameters used for the different experiments.

Parameter Name GW Online GW Offline Healthcare CartPole Atari

InferNet Hidden Layers 3 Dense 3 Dense 3 Dense 3 Dense 3 Conv + 1 Dense
InferNet Num. Units 3x256 3x256 3x256 3x64 Conv: 32, 64, 64. Dense: 512
InferNet Activation Leaky ReLU Leaky ReLU Leaky ReLu ReLU ReLU
InferNet Dropout Rate — — 0.2 0.2 0.2
InferNet Optimizer Adam Adam Adam Adam Adam
InferNet Learning Rate 1e-4 1e-3 1e-4 1e-4 3e-3
InferNet Batch Size 32 ep. 32 ep. 20 ep. 10 ep. 1 ep.
InferNet Training Steps 500,000 50,000 1,000,000 60,000 Varying per game
InferNet Buffer Size 500 — — 500 ep. 500 ep.
Agent Training Steps 2,000 ep. 5,000 1,000,000 150,000 Varying per game
Agent Discount γ 0.9 0.90 0.99 0.99 0.99
Agent Batch Size — 32 32 32 32
Agent Buffer Size — — — 500,000 10,000
Agent Hidden Layers — — 2 Dense 2 Dense 3 Conv + 1 Dense
Agent Num. Units — — 2x256 2x32 Conv: 32, 64, 64. Dense: 512
Agent Activation — — ReLU ReLU ReLU
Agent Learning Rate — — 1e-4 2.5e-4 1e-4
TD(λ): λ 0.91 — — — —
TD(λ): α 0.1 — — — —
TD(λ): trace type Dutch — — — —

use all the future rewards when updating the value of each
state, resulting in the better assignment of credit/blame for
each action. More recently, the Expected TD(λ) or ET(λ) has
been proposed [21], where the concept of Expected Eligibility
Traces is introduced, to introduce an algorithm that has lower
variance than the TD(λ) alternative.

The sparse reward issue [11] is closely related to the
temporal CAP, in that both need to learn from very few and
delayed rewards. To mitigate the problem of sparse rewards,
reward shaping and reward engineering have been studied in
the past [16], [22], [23], [38], [46]. Prior work has also studied
using intrinsic motivation as an added reward, to encourage
the agent to explore the environment more effectively [29],
[44]. Intrinsic rewards have also been used to improve the
performance of RL agents in combination with a policy
gradient algorithm [47], and showed that these new rewards
results in better performance on the Atari games.

Closely related to this work, RUDDER uses a neural
network-based approach for addressing the temporal CAP [4].
However, RUDDER does not predict the immediate rewards
directly with the neural network; rather, it predicts the fi-
nal return, and then uses the differences in predictions to
redistribute the immediate rewards. Their results show that
RUDDER can greatly improve the training of the RL agent
in several simulated tasks as well as four Atari games. Prior
work has also helped memory-based RL agents solve the
CAP, as shown by the work by Hung et al. [15], where they
develop an algorithm named Temporal Value Transport (TVT),
which predicts future rewards with a Neural Network, and
then adds the prediction term to the bootstrapped term of the
Bellman Equation. A different family of algorithms to tackle
the CAP was suggested by Harutyunyan et al. [13]. They
denote the family of methods they developed as Hindsight

Credit Assignment (HCA). The core idea in their work is to
sample a trajectory, and use the importance sampling ratio to
assign credit to the actions in that trajectory. They show that
their method outperforms the default policy gradient method
in three simple RL tasks.

VII. CONCLUSION

We propose and evaluate an intuitive and useful deep
learning mechanism named InferNet that explicitly tackles
the CAP by generating immediate rewards from the delayed
rewards. Our results show that our algorithm makes it easier
for the RL algorithm of choice to solve the task at hand,
both for online and offline RL while mitigating the problem
generated by noisy rewards. We showed that InferNet can
accurately predict the true immediate rewards on a simple
GridWorld and help Q-Learning and TD(λ) agents solve the
environment. We showed that it can be used for slightly more
complex tasks such as the CartPole, where the InferNet policy
is as good as the immediate policy. Furthermore, we showed
that our algorithm scales to large datasets and to online RL,
which allows it to help solve more complex pixel-based games
such as the Atari games, and it can be especially useful when
the reward is noisy as shown by the performance of the agent
on the noisy version of the Atari games. Finally, an RL agent
that learns a treatment to avoid septic shock from a real-life
healthcare dataset can also benefit from the rewards provided
by InferNet to make more effective decisions. In the future, we
will compare our method to other recently published methods
that provide different approaches to tackle the CAP, such as
RUDDER or ET(λ).

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, and Eugene Brevdo.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1, 2004.

[3] Adrian K Agogino and Kagan Tumer. Unifying temporal and structural
credit assignment problems. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume
2, pages 980–987. IEEE Computer Society, 2004.

[4] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas
Unterthiner, Johannes Brandstetter, and Sepp Hochreiter. Rudder: Return
decomposition for delayed rewards. arXiv preprint arXiv:1806.07857,
2018.

[5] Dilip Arumugam, Peter Henderson, and Pierre-Luc Bacon. An
information-theoretic perspective on credit assignment in reinforcement
learning. CoRR, abs/2103.06224, 2021.

[6] Wael F Asaad, Peter M Lauro, János A Perge, and Emad N Eskandar.
Prefrontal neurons encode a solution to the credit-assignment problem.
Journal of Neuroscience, 37(29):6995–7007, 2017.

[7] H. Azizsoltani et al. Unobserved is not equal to non-existent: Using
gaussian processes to infer immediate rewards across contexts. In In
Proceedings of the 28th IJCAI, 2019.

[8] C. Berner, G. Brockman, et al. Dota 2 with large scale deep reinforce-
ment learning. arXiv:1912.06680, 2019.

[9] G. Brockman et al. Openai gym, 2016.
[10] Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware

model-based reinforcement learning for continuous control. CoRR,
abs/2005.05440, 2020.

[11] Zhixin Chen and Mengxiang Lin. Self-imitation learning in sparse
reward settings. CoRR, abs/2010.06962, 2020.

[12] F. Chollet. Keras. https://keras.io, 2015.
[13] Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Ghesh-

laghi Azar, Bilal Piot, Nicolas Heess, Hado P van Hasselt, Gregory
Wayne, Satinder Singh, Doina Precup, et al. Hindsight credit assignment.
Advances in neural information processing systems, 32:12488–12497,
2019.

[14] Ashley et al. Hill. Stable baselines. https://github.com/hill-a/stable-
baselines, 2018.

[15] Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi
Mirza, Federico Carnevale, Arun Ahuja, and Greg Wayne. Optimizing
agent behavior over long time scales by transporting value. Nature
communications, 10(1):1–12, 2019.

[16] Yonatan Hutabarat, Kittipong Ekkachai, Mitsuhiro Hayashibe, and Wa-
ree Kongprawechnon. Reinforcement q-learning control with reward
shaping function for swing phase control in a semi-active prosthetic
knee. Frontiers Neurorobotics, 14:565702, 2020.

[17] M Komorowski, LA Celi, O Badawi, et al. The artificial intelligence
clinician learns optimal treatment strategies for sepsis in intensive care.
Nat Med, 24, 2018.

[18] A. Kumar, D. Roberts, et al. Duration of hypotension before initiation
of effective antimicrobial therapy is the critical determinant of survival
in human septic shock. Critical care medicine, 2006.

[19] Benjamin James Lansdell, Prashanth Prakash, and Konrad Paul Kording.
Learning to solve the credit assignment problem. arXiv:1906.00889,
2019.

[20] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse
reinforcement learning with gaussian processes. In Advances in Neural
Information Processing Systems, pages 19–27, 2011.

[21] S Madjiheurem, H van Hasselt, Matteo Hessel, A Barreto, D Silver, and
Diana Borsa. Expected eligibility traces. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35. Association for the
Advancement of Artificial Intelligence (AAAI), 2021.

[22] Ofir Marom and Benjamin Rosman. Belief reward shaping in rein-
forcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger,
editors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 3762–3769. AAAI Press, 2018.

[23] Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Ufuk Topcu, and
Scott Niekum. Self-supervised online reward shaping in sparse-reward
environments. CoRR, abs/2103.04529, 2021.

[24] Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor,
Alaa Saade, Anna Harutyunyan, Will Dabney, Tom Stepleton, Nicolas
Heess, Arthur Guez, Marcus Hutter, Lars Buesing, and Rémi Munos.
Counterfactual credit assignment in model-free reinforcement learning.
CoRR, abs/2011.09464, 2020.

[25] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the
IRE, 49:8–30, 1961.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[27] Brett Norman, Colin Cooke, Eugene Ely, and John Graves. Sepsis-
associated 30-day risk-standardized readmissions: Analysis of a nation-
wide medicare sample. Critical care medicine, 45, 04 2017.

[28] Alexander G Ororbia, Ankur Mali, Daniel Kifer, and C Lee
Giles. Conducting credit assignment by aligning local representations.
arXiv:1803.01834, 2018.

[29] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 2778–2787. PMLR, 2017.

[30] A Raghu, M Komorowski, I Ahmed, et al. Deep reinforcement learning
for sepsis treatment. In Workshop on ML for Health, NeurIPS, 2017.

[31] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement
learning. In IJCAI, volume 7, pages 2586–2591, 2007.

[32] C Rhee, TM Jones, Y Hamad, et al. Prevalence, underlying causes, and
preventability of sepsis-associated mortality in us acute care hospitals.
JAMA Netw Open., 2(2), 2019.

[33] Blake A Richards and Timothy P Lillicrap. Dendritic solutions to the
credit assignment problem. Current opinion in neurobiology, 54:28–36,
2019.

[34] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. CoRR, abs/1511.05952, 2015.

[35] David Silver, Aja Huang, Chris J Maddison, et al. Mastering the game
of go with deep neural networks and tree search. nature, 529(7587):484,
2016.

[36] David Silver, Thomas Hubert, Julian Schrittwieser, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[37] David Silver, Julian Schrittwieser, Karen Simonyan, et al. Mastering the
game of go without human knowledge. Nature, 550(7676):354, 2017.

[38] Halit Bener Suay, Tim Brys, Matthew E. Taylor, and Sonia Chernova.
Learning from demonstration for shaping through inverse reinforcement
learning. In Catholijn M. Jonker, Stacy Marsella, John Thangarajah, and
Karl Tuyls, editors, Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, Singapore, May 9-13,
2016, pages 429–437. ACM, 2016.

[39] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT Press, Cambridge, MA, USA, 8 2018.

[40] Richard S Sutton. Temporal credit assignment in reinforcement learning.
1985.

[41] Richard S Sutton. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

[42] Richard S Sutton and Andrew G Barto. Time-derivative models of
pavlovian reinforcement. 1990.

[43] Gerald Tesauro. Practical issues in temporal difference learning. Ma-
chine learning, 8(3):257–277, 1992.

[44] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher.
Keeping your distance: Solving sparse reward tasks using self-balancing
shaped rewards. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 10376–
10386, 2019.

[45] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc
Lanctot, and Nando De Freitas. Dueling network architectures for deep
reinforcement learning. arXiv:1511.06581, 2015.

[46] Yuchen Wu, Melissa Mozifian, and Florian Shkurti. Shaping rewards for
reinforcement learning with imperfect demonstrations using generative
models. CoRR, abs/2011.01298, 2020.

[47] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic
rewards for policy gradient methods. arXiv preprint arXiv:1804.06459,
2018.

[48] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey.
Maximum entropy inverse reinforcement learning. In Aaai, volume 8,
pages 1433–1438. Chicago, IL, USA, 2008.

