
Evaluating Critical Reinforcement Learning
Framework In the Field

Song Ju, Guojing Zhou, Mark Abdelshiheed, Tiffany Barnes, and Min Chi

Department of Computer Science
North Carolina State University, Raleigh, NC 27695, USA

{sju2,gzhou3,mnabdels,tmbarnes,mchi}@ncsu.edu

Abstract. Reinforcement Learning (RL) is learning what action to take
next by mapping situations to actions so as to maximize cumulative re-
wards. In recent years RL has achieved great success in inducing effective
pedagogical policies for various interactive e-learning environments. How-
ever, it is often prohibitive to identify the critical pedagogical decisions
that actually contribute to desirable learning outcomes. In this work, by
utilizing the RL framework we defined critical decisions to be those states
in which the agent has to take the optimal actions, and subsequently, the
Critical policy as carrying out optimal actions in the critical states while
acting randomly in others. We proposed a general Critical-RL framework
for identifying critical decisions and inducing a Critical policy. The ef-
fectiveness of our Critical-RL framework is empirically evaluated from
two perspectives: whether optimal actions must be carried out in critical
states (the necessary hypothesis) and whether only carrying out optimal
actions in critical states is as effective as a fully-executed RL policy (the
sufficient hypothesis). Our results confirmed both hypotheses.
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1 Introduction

Intelligent Tutoring Systems (ITSs) have been shown to be effective for improv-
ing student learning. Most ITSs are adaptive instructional systems in that tutor
decides what to do next. For example, the tutor can elicit the solution to the
next step from the students with prompting and support or without. At each
step, the ITS records its success or failure and may give feedback (e.g. cor-
rect/incorrect signals) and hints (suggestions for what to do next) automatically
or on-demand. Alternatively, the tutor can choose to tell students the solution
to the next step directly. Each of these tutor decisions will affect the students’
subsequent actions and performance, and some may be more impactful than oth-
ers. Pedagogical policies are used for the agent (tutor) to decide what action to
take next in the face of alternatives.
Reinforcement Learning (RL) offers one of the most promising approaches to
data-driven decision-making. RL algorithms are designed to induce effective poli-
cies that determine the best action for an agent to take in any given situation
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to maximize a cumulative reward. In recent years, RL, especially Deep RL, has
achieved superhuman performance in several complex games [31, 32, 1]. However,
different from the classic game-play situations where the ultimate goal is to make
the agent effective, in human-centric tasks such as ITSs, the ultimate goal is for
the agent to make the student-system interactions more productive and fruit-
ful. Several researchers have studied the application of existing RL algorithms
to improve the effectiveness of interactive e-learning environments such as ITSs
[7, 26, 25, 22, 33, 10, 40, 43, 30, 28, 27]. While promising, relatively little work has
been done to analyze, interpret, explain, or generalize RL-induced policies. While
traditional hypothesis-driven, cause-and-effect approaches offer clear conceptual
and causal insights that can be evaluated and interpreted, RL-induced policies
especially Deep RL-induced ones, are often referred to as black-box models. This
raises a major open question: How can we identify the critical system pedagogical
decisions that are linked to student learning outcomes?

In this work, by utilizing the RL framework, we defined critical decisions to be
those states in which the agent has to take the optimal actions and subsequently
defined Critical policy as carrying out optimal actions in the critical states while
acting randomly in others. We proposed a general Critical-RL framework for
identifying critical decisions and inducing a Critical policy. In our prior work, we
evaluated the effectiveness of our Critical-RL framework using simulations and
our results showed that by carrying out critical decisions only, our Critical policy
can be as effective as a fully executed RL policy. In this work, we empirically
evaluate the Critical-RL framework in a classroom setting. To confirm whether
the identified critical decisions are indeed critical, we argue that our identified
critical decisions and induced Critical policy should satisfy two conditions.

First, they should satisfy the Necessary Hypothesis stating that it is necessary
to carry out optimal actions in critical states otherwise the performance would
suffer. To validate it, we compared two policies: Critical-optimal (Criticalopt) vs.
Critical-suboptimal (Criticalsub). Both policies would carry out random actions
in non-critical states and the only difference is that in critical states, Criticalopt
takes optimal actions while Criticalsub takes suboptimal actions. As expected,
our results showed that the former was indeed significantly more effective than
the latter. Second, our induced Critical policy should satisfy the Sufficient Hy-
pothesis stating that carrying out optimal actions in the critical states is suffi-
cient. In other words, only carrying out optimal actions in critical states is as ef-
fective as a fully-executed RL policy. To validate it, we compared the Criticalopt
policy with a Full RL policy which takes optimal actions in every state. Our
results showed that no significant difference was found between them.

In this work, we focus on pedagogical decisions at two levels of granularity:
problem and step. More specifically, our tutor will first make a problem-level
decision and then make step-level decisions based on the problem-level decision.
For the former, our tutor first decides whether the next problem should be a
worked example (WE), problem solving (PS), or a faded worked example (FWE).
In WEs, students observe how the tutor solves a problem; in PSs students solve
the problem themselves; in FWEs, the students and the tutor co-construct the
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solution. Based on the problem-level decision, the tutor then makes step-level
decisions on whether to elicit the next solution step from the student or to show
it to the student directly. We refer to such decisions as elicit/tell decisions. If
WE is selected, an all-tell step policy will be carried out; if PS is selected, an
all-elicit policy will be executed; finally, if FWE is selected, the tutor will decide
whether to elicit or tell a step based on the corresponding induced step-level
policy. While much of the prior work has relied on hand-coded or RL-induced
pedagogical policies on these decisions, there is no well-established theory or
widely accepted consensus on how WE vs. PS. vs. FWE can be best used and
how they may impact students’ learning. As far as we know, no prior research
has investigated when it is critical to give WE vs. PS vs. FWE. In this work, by
empirically confirming that our identified critical decisions and Critical policy
satisfy the two hypotheses, we argue that the proposed Critical-RL framework
sheds some light on identifying the moments that offering WE, PS, or FWE can
make a difference.

2 Related Work

2.1 Applying RL to ITSs

Prior work has shown that RL can induce effective pedagogical policies for In-
telligent Tutoring Systems [6, 14, 38, 21, 11, 3, 2]. For example, Shen et al. [29]
applied an offline RL approach, value iteration, to induce a pedagogical policy
with the goal of improving students’ learning performance. Empirical evaluation
results suggested that the RL policy can improve certain learners’ performance
as compared to a random policy. Mandel et al. [14] applied a partially observable
Markov decision process (POMDP) to induce a pedagogical policy that aims to
maximize students’ learning gain. The effectiveness of the POMDP policy was
evaluated by comparing it with an expert policy, and a random policy, on both
simulated students and real students. Results showed that the POMDP policy
significantly outperformed the other two. Wang et al.[38] applied a variety of
Deep RL (DRL) approach to induce pedagogical policies aims at improving stu-
dents’ normalized learning gain in an educational game. Simulation evaluation
results suggested that the DRL policies were more effective than a linear model-
based RL policy. Finally, Zhou et al. [41] applied Hierarchical Reinforcement
Learning (HRL) to induce a pedagogical policy to improve students’ normalized
learning gain. The HRL policy makes decisions first at the problem level and
then at the step level. In a classroom study, the HRL policy was compared with
two step level policies: DQN and random. Results showed that the HRL policy
was significantly more effective than the other two.
In sum, prior work suggests that employing RL-induced pedagogical policies
can improve the effectiveness of ITSs. However, despite this effectiveness, RL
policies often make a lot of fine-grained decisions in training. For example, the
HRL policy induced by Zhou et al. [41] can make over 400 decisions in 12 training
problems. Therefore, it can be difficult to identify and study the origin of this
fine-grained decision-making style of RL policies.
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2.2 Identifying Critical Decisions

Recent advances in computational neuroscience have enabled researchers to sim-
ulate and study the decision-making mechanisms of humans and animals through
computational approaches [19, 24, 34, 13, 15]. A number of works showed that
RL-like learning and decision-making processes exist in humans/animals and we
humans use immediate reward and Q-value to make decisions [13, 15]. In RL,
the Q-value is defined as the expected cumulative reward for taking an action a
at state s and following the policy until the end of the episode. Therefore, the
difference of Q-values between two actions reflects the magnitude of difference in
the final outcomes. Motivated by research in human and animal behaviors, a lot
of RL work has applied Q-value difference to measure the importance of a state
and decide when to give advice in a simulated environment called the “Student-
Teacher” framework [8, 36, 44, 9]. In this framework, a “student” agent learns
from the interaction with the environment, while a “teacher” agent provides ac-
tion suggestions to accelerate the learning process. Their research question is
not what to advise but when to advise, especially with a limited budget of ad-
vice. Results showed that the Q-value difference approach is significantly better
than baseline strategies such as random advising and early advising. Overall,
prior studies explored the problem of when to give advice in simulated environ-
ments. They showed that Q-value difference is an accurate heuristic function
to estimate the importance of a state. However, they have not considered the
immediate rewards and have not validated their findings on human students.

2.3 WE, PS and FWE

A variety of studies have explored the effectiveness of WE, PS, FWE, and their
various combinations [17, 16, 37, 23, 20, 42, 39]. For example, Mclaren et al. com-
pared WE-PS pairs with PS-only in a study [17] and WE-only, PS-only and
WE-PS pairs in another study [16]. Overall, results suggested that studying WE
can be as effective as doing PS, but students spend less time on WE. For FWE-
involved studies, Renkl et al. [23] compared WE-FWE-PS with WE-PS pairs.
Results showed that the WE-FWE-PS condition significantly outperformed the
WE-PS condition, and there is no significant time-on-task difference between
them. Similarly, Najar et al. [20] compared adaptive WE/FWE/PS with WE-
PS pairs and found the former is significantly more effective than the latter. In
summary, prior studies have demonstrated that adaptively alternating amongst
WE, PS, and FWE is more effective than hand-coded expert rules in terms of
improving student learning. However, it is still not clear which alternating is
critical to the student learning outcome.

3 Method

3.1 Critical Deep Q-Network

To determine whether a state is critical, our Critical-RL framework considers
both short-term reward (immediate reward) and long-term reward (Q-value dif-
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ference). For the former, we consider the amount of the immediate rewards over
all possible actions to determine the criticalness of a state. One of the primary
challenges is that on most ITSs we only have delayed rewards, and immediate
rewards are often not available. The most appropriate rewards to use in ITSs are
student learning performance, which is typically delayed until the entire trajec-
tory is complete. This is due to the complex nature of learning, which makes it
difficult to assess students’ knowledge level moment by moment, and more impor-
tantly, many instructional interventions that boost short-term performance may
not be effective over the long term. To tackle this issue, we apply a Deep Neural
Network-based approach called InferNet [4] to infer the immediate rewards from
delayed rewards. Prior work has evaluated the effectiveness of inferred rewards,
and results showed that inferred immediate rewards can be as effective as real
immediate rewards in our application. Therefore, we think the inferred imme-
diate rewards from InferNet are reliable to be considered as short-term rewards
in our Critical-RL framework. More specifically, we apply the elbow method on
the distribution of the inferred immediate rewards to determine two thresholds:
one is a positive reward threshold above which the agent should pursue and the
other is a negative reward threshold below which the agent should avoid. If any
action on a state can lead to an inferred immediate reward either higher than
the positive threshold or lower than the negative one, it should be critical.
To get the long-term rewards, our Critical-RL framework used Deep Q-Network
(DQN). In recent years, DQN has shown a strong ability to handle complicated
tasks, such as robot control and video game playing [18]. DQN approximates the
Q-value function using deep neural networks following the Bellman equation. In
the original DQN, the Q-values are calculated based on the assumption that
the agent takes the optimal action in every state. However, in our Critical-
RL framework, the Critical policy takes optimal actions only in the critical
states, and takes random action in the non-critical states. To accommodate this
difference, we modify the original Bellman equation:

Q(s, a) =

{
r + γmaxQ(s′, a′) s’ is critical

r + γmeanQ(s′, a′) s’ is non-critical.
(1)

In Equation 1, when the state s′ is critical, its value function is the max Q-
value of the optimal action while when it is non-critical, its value function is
the mean Q-value over all the available actions. To induce the Critical-DQN
policy, during each iteration in training, our algorithm first calculates the Q-
value difference ∆(Q) for all states in the training dataset, where ∆(Q) =
maxaQ(s, a) − minaQ(s, a). Then the median of the differences is defined as
a threshold. If the ∆(Q) of a state is greater than the threshold, it is critical;
otherwise, it is non-critical. After the critical states have been determined, the
algorithm follows Equation 1 to update the Q-values. Then in the next itera-
tion, the updated Q-values are applied to determine a new median threshold to
update the critical states recursively. This process will repeat until convergence.
Once the Critical-RL policy is induced, for any given state we calculate its Q-
value difference and compare it with the corresponding median threshold. If the
Q-value difference is larger than the threshold, the state is critical.
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3.2 Hierarchical RL Policy Induction

Our tutor can make both problem-level decisions (WE/PS/FWE) and step-level
decisions (elicit/tell). With the two levels of granularity, we extended the existing
flat-RL algorithm to Hierarchical RL (HRL), which aims to induce an optimal
policy to make decisions at different levels. Most HRL algorithms are based
upon an extension of Markov Decision Processes (MDPs) called Discrete Semi-
Markov Decision Processes (SMDPs). Different from MDPs, SMDPs have an
additional set of complex activities [5] or options [35], each of which can invoke
other activities recursively, thus allowing the hierarchical policy to function.
The complex activities are distinct from the primitive actions in that a complex
activity may contain multiple primitive actions. In our applications, WE, PS,
and FWE are complex activities while elicit and tell are primitive actions. For
HRL, learning occurs at multiple levels. A global learning generates a policy
for the complex level decisions and local learning generates a policy for the
primitive level decisions in each complex activity. More importantly, the goal
of local learning is not inducing the optimal policy for the overall task, but
the optimal policy for the corresponding complex activity. Therefore, our HRL
approach learns a global problem level policy to make decisions on WE/PS/FWE
and learns a local step level policy for each problem to choose between elicit/tell.
More specifically, both problem and step level policies were learned by recursively
using DQN or Critical-DQN to update the Q-value function until convergence.

4 Policy Induction

Training Corpus: Our training dataset contains a total of 1,148 students’ inter-
action logs collected over six semesters’ classroom studies (16 Fall to 19 Spring).
During the studies, all students used the same tutor, followed the same general
procedure, studied the same training materials, and worked through the same
training problems. The components for RL induction are defined as follows:
State: From the student-system interaction logs, 142 features were extracted to
represent the student learning state, which can be categorized into five groups:
Autonomy(10) features describe the amount of work done by the student; Tem-
poral(29) features are the time-related information during tutoring; Problem
Solving(35) features indicate the context of the problem itself; Performance(57)
features denote student’s performance, and Student Action(11) features record
the student behavior information. Action: Our tutor can make both problem
and step-level decisions. There are two actions (elicit/tell) at the step level and
three actions (WE/PS/FWE) at the problem level. Reward: There’s no imme-
diate reward during tutoring and the delayed reward is the students’ Normalized
Learning Gain (NLG), which measures their learning gain irrespective of their
incoming competence. NLG is defined as posttest−pretest√

1−pretest , where 1 is maximum

score for both pre- and post-test.

Three Policies: We induced a standard DQN policy as the Full policy to carry
out optimal actions in all states. Note that our prior work showed that the
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Full policy significantly outperformed the expert-designed policy on improving
students’ learning performance [12]. In this work, we induced a Critical-DQN
policy to identify critical states. The Criticalopt policy would carry out optimal
actions in critical states but the Criticalsub policy would take sub-optimal actions
with minimum Q-value. In non-critical states, both of them acted randomly.

5 Empirical Experiment

Participants: This study was given to students as a homework assignment in an
undergraduate Computer Science class in the Spring of 2020. Students were told
to complete the study in one week and they will be graded based on demonstrated
effort rather than learning performance. 164 students were randomly assigned
into three conditions: N = 58 for Criticalopt, N = 55 for Criticalsub and N =
51 for Full. Due to preparation for final exams and the length of study, 129
students completed the study. In addition, 14 students were excluded from our
subsequent statistical analysis in which 8 students performed perfectly in the
pre-test and 6 students worked in groups. The final group sizes were N = 37 for
Criticalopt, N = 39 for Criticalsub and N = 39 for Full. A Chi-square test on
the relationship between students’ condition and their completion rate found no
significant difference among the conditions: χ2 (2) = 0.167, p = 0.92.

Pyrenees Tutor: Our tutor is a web-based ITS teaching probability. It covers
ten major principles of probability, such as the Additional Theorem, De Mor-
gan’s Theorem, and Bayes Rule. The Pyrenees tutor provides step-by-step adap-
tive instructions, immediate feedback, and on-demand hints to prompt students’
learning. More specifically, help in Pyrenees tutor is provided via a sequence of
increasingly specific hints, in which the last hint tells the student exactly what
to do next.

Procedure & Grading: In the classroom study, students were required to com-
plete 4 phases: 1) pre-training, 2) pre-test, 3) training on Pyrenees tutor, and
4) post-test. During the pre-training phase, all students studied the domain
principles through a probability textbook, reviewed some examples, and solved
certain training problems. Students then took a pre-test which contained 14
probability problems. The textbook was not available at this phase and students
were not given feedback on their answers, nor were they allowed to go back to
earlier questions. This was also true for the post-test. During training, students
in all three conditions received the same 12 problems in the same order on Pyre-
nees tutor. The minimal number of steps needed to solve each problem ranged
from 20 to 50, which included defining variables, applying principles, and solving
equations. Each domain principle was applied at least twice in the 12 problems,
and all of the students could access the textbook during this phase. Finally, all of
the students completed a post-test with 20 problems: 14 of the problems were
isomorphic to the pre-test, and the remaining six were non-isomorphic compli-
cated problems. The pre- and post-test were graded in a double-blind manner
by experienced graders. All scores are normalized in the range of 0 to 1.
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6 Results

We will report our results based on the two hypotheses. For the Necessary Hy-
pothesis, we compare Criticalopt vs. Criticalsub conditions and for the Sufficient
Hypothesis, we compare Criticalopt vs. Full conditions.

6.1 Necessary Hypothesis (Criticalopt vs. Criticalsub)

Table 1 shows the comparisons between Criticalopt (in gray) vs. Criticalsub.
The left four columns show the mean and standard deviation (SD) of their
learning performance, percentage of critical states and tutor decisions with the
corresponding pairwise t-test results. No significant difference was found between
the two conditions on pre-test: t(112) = 0.56, p = .57, d = 0.13. The result
suggests that the two conditions are balanced in terms of incoming competence.

Table 1. Results of Necessary Hypothesis: Criticalopt vs. Criticalsub

Learning Performance

Criticalopt Criticalsub Pairwise T-test Result Full

Pre 0.75 (0.18) 0.72 (0.20) t(112) = 0.56, p = .570, d = 0.13 0.70(0.19)

Iso Post 0.89 (0.16) 0.86 (0.16) t(112) = 0.81, p = .420, d = 0.18 0.84(0.20)

Full Post 0.82 (0.19) 0.78 (0.19) t(112) = 0.99, p = .320, d = 0.23 0.75(0.20)

Iso NLG 0.70 (0.36) 0.40 (0.85) t(112) = 2.27, p = .025∗, d = 0.52 0.56(0.40)

Full NLG 0.41 (0.39) 0.01 (1.25) t(112) = 2.18, p = .031∗, d = 0.49 0.18(0.55)

Time 94.5 (35.1) 78.1 (26.7) t(112) = 2.30, p = .023∗, d = 0.52 91.5(31.7)

Percentage of Critical States

Prob-Level 46.9 (23.4) 31.5 (17.6) t(112) = 3.69, p <.001∗, d = 0.84 38.4(12.4)

Step-Level 60.2 (20.1) 45.3 (26.0) t(112) = 2.42, p = .017∗, d = 0.55 62.1(34.0)

Tutor Decisions

PS 3.56 (1.85) 2.38 (1.41) t(112) = 3.60, p <.001∗, d = 0.81 3.32(0.81)

WE 2.54 (1.87) 5.13 (1.51) t(112) = -7.27, p <.001∗, d = 1.65 5.24(1.19)

FWE 3.90 (2.00) 2.49 (1.34) t(112) = 4.01, p <.001∗, d = 0.91 1.43(1.10)

Elicit 83.3 (49.2) 44.0 (30.6) t(112) = 4.37, p <.001∗, d = 0.99 33.2(35.1)

Tell 82.9 (50.3) 55.4 (35.2) t(112) = 3.06, p = .003∗, d = 0.69 29.8(28.3)

Improvement through training: To measure the improvement students gained
through the ITS training, we compared their pre-test and isomorphic post-test
scores. A repeated measures analysis showed that both conditions scored signif-
icantly higher in the post-test than in the pre-test: F (1, 38) = 13.68, p = .0004,
η = 0.392 for Criticalopt and F (1, 38) = 11.5, p = .0011, η = 0.362 for



Evaluating Critical Reinforcement Learning Framework In the Field 9

Criticalsub. It suggests that our ITS indeed helps students learning regardless of
the pedagogical policies deployed.
Learning Performance: To investigate students’ learning performance be-
tween the two conditions, we compared their isomorphic NLG (calculated based
on Pre- and Iso Post-test) and full NLG (based on Pre- and Full Post-test).
The full post-test contains six additional multiple-principle problems. Pairwise
t-tests showed that Criticalopt scored significantly higher than Criticalsub on
both the isomorphic NLG: t(112) = 2.27, p = .025, d = 0.52 and the full NLG:
t(112) = 2.18, p = .031, d = 0.49. The results showed that the Criticalopt policy
is more effective than the Criticalsub policy. It supports our hypothesis that dif-
ferent actions in the critical states can make a significant difference, so optimal
actions must be made in critical states.
Time on Task and Percentage of Critical States: A pairwise t-test anal-
ysis revealed that Criticalopt spend significantly more time (measured in min-
utes) than Criticalsub in the training phase: t(112) = 2.30, p = .023, d = 0.52.
The middle section in Table 1 presents the percentage of critical states (both
problem and step level) each condition experienced. Pairwise t-test showed that
Criticalopt experienced significantly more critical states than Criticalsub on both
problem level: t(112) = 3.69, p < .001, d = 0.84 and step level: t(112) = 2.42,
p = .017, d = 0.55. This suggests that the Criticalopt policy is more likely to
lead students to the critical intersections that make a difference.
Tutor Decisions: We investigated the number of different types of actions
students received during training, as shown in the lower section of the Table
1. Note that for step level decisions, we only considered the elicits and tells in
the FWEs. For the problem level, Criticalopt received significantly more PS:
t(112) = 3.60, p < .001, d = 0.81, more FWE: t(112) = 4.01, p < .001, d = 0.91
and fewer WE: t(112) = −7.27, p < .001, d = 1.65 than Criticalsub. For the step
level, the former also received significantly more elicit: t(112) = 4.37, p < .001,
d = 0.99 and more tell: t(112) = 3.06, p = .003, d = 0.69 than Criticalsub.
The results indicate that the Criticalsub policy prefers WEs while the Criticalopt
policy prefers PSs and FWEs.

6.2 Sufficient Hypothesis (Criticalopt vs. Full)

In the Sufficient Hypothesis, we expect no significant difference in learning per-
formance between the Criticalopt and Full conditions. To align the analysis, we
still focus on the three aspects as above (learning performance, critical states,
tutor decisions). To save space, the statistics of the Full condition were shown
in the rightmost column in Table 1. A pairwise t-test showed that there is no
significant difference between Criticalopt (2nd column in gray) vs. Full (last col-
umn) on the pre-test score: t(112) = 1.18, p = .24, d = 0.27. This suggests again
that our random assignment indeed balanced students’ incoming competence.
Improvement through training: A repeated measures analysis using test-
type (pre-test and isomorphic post-test) as factors and test score as dependent
measure showed that similar to Criticalopt, Full scored significantly higher in
isomorphic post-test than in pre-test: F (1, 36) = 11.0, p = .0015, η = 0.363.
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Learning Performance: The pairwise t-tests showed that there is no significant
difference between the Criticalopt and Full conditions on the two learning metrics,
isomorphic NLG: t(112) = 1.00, p = .32, d = 0.23, full NLG: t(112) = 1.24,
p = .217, d = 0.29. It implied that only carrying out optimal actions in critical
states can be as effective as a fully-executed policy.
Furthermore, to determine whether these null results are significant, that is, the
Criticalopt is indeed perform as effective as Full, we calculated the effect size on
all the comparisons and we found that they are all not statistically significant
in that β < 0.8. On the other hand, across all the comparisons, Criticalopt
was slightly better than the Full. This result suggests that if we have enough
population samples, the former can outperform the latter.
Time on Task and Percentage of Critical States: A pairwise t-test analysis
revealed that the Criticalopt condition spend a similar amount of time as the Full
condition in the training phase: t(112) = 0.42, p = .678, d = 0.10. Pairwise t-
tests showed that the Criticalopt condition has significantly more critical states
than the Full condition in the problem level: t(112) = 2.02, p = .046, d = 0.46
but no difference in the step level: t(112) = −0.29, p = .769, d = 0.07. The
result suggests that the optimal actions in the non-critical states could reduce
the chance of entering critical states.
Tutor Decisions: For the problem level, the Criticalopt condition received sig-
nificantly more FWE: t(112) = 6.91, p < .001, d = 1.59, fewer WE: t(112) =
−7.50, p < .001, d = 1.72 decisions than the Full condition, but no difference
on PS: t(112) = 0.72, p = .472, d = 0.17. For the step level, the Criticalopt
condition received significantly more elicit: t(112) = 5.50, p < .001, d = 1.26
and more tell: t(112) = 5.83, p = .003, d = 1.34 than the Full condition. The
results suggest that the random actions in non-critical states could lead the RL
policy to give more FWE and fewer WE in critical states.

7 Conclusion

In this study, we evaluated the effectiveness of the Critical-RL framework in
identifying critical decisions through an empirical classroom study. Specifically,
we compared the Criticalopt policy with two baseline policies: a Criticalsub policy
and a Full policy. The comparisons are based upon two hypotheses: 1) optimal
actions must be carried out in critical states (the Necessary Hypothesis), 2)
only carrying out optimal actions in critical states can be as effective as the
fully-executed policy (the Sufficient Hypothesis). The result shows that in terms
of students’ learning performance, 1) the Criticalopt condition significantly out-
performs the Criticalsub condition; 2) more importantly, the former performs
as effective as the Full condition. It suggests that our Critical-RL framework
indeed identifies the critical decisions and satisfies the two hypotheses that 1)
taking optimal actions in the identified critical states is significantly more effec-
tive than taking suboptimal actions; 2) only taking optimal actions during the
critical moments can be as effective as taking optimal actions in every moment.
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