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Abstract 16 

Construction worker activity recognition is essential for worker performance and safety 17 

assessment. With the development of wearable sensing technologies, many researchers developed 18 

kinematic sensor-based worker activity recognition methods with considerable accuracy. 19 

However, the limitations of the previous studies remain at the challenge of using smartphones for 20 

practical implementation, fewer classified activities, and limited recognized motions and body 21 

parts. This study proposes an ANN-based automated construction worker activity recognition 22 

method that can recognize complex construction activities. The proposed methodology discusses 23 

data acquisition, data fusion, and artificial neural network (ANN) model development. A case 24 

study of scaffold builder activities was investigated to validate the proposed methodology's 25 

feasibility and evaluate its performance compared to other existing methods. The results show that 26 

the proposed model can recognize fifteen scaffold builder activities with an accuracy of 94% with 27 

0.94 weighted precision, recall, and F1 Score. 28 
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1. Introduction 34 

The US construction industry is one of the world's largest markets, with annual expenditures 35 

of over $1,293 billion and seven million employees [1]. However, the construction industry is 36 

facing a massive skilled workforce shortage [2]. More than 80% of the construction companies 37 

have reported that they have a hard time finding skilled craft workers. It is estimated that more 38 

than one million craft professionals are required by 2023, which includes various crafts such as 39 

carpentry, masonry, electricians, pipefitters, ironworkers, and scaffold builders, etc. [3]. In 40 

particular, the demand for craft professionals is very high in the US Gulf Coast area, with an 41 

increase in petrochemical investments [3]. As a result of workforce shortage, there is a significant 42 

impact on the project outcomes and worker performance, such as delayed project completion, an 43 

increase in overall project cost, and an increase in workload for the existing skilled workers [4]. 44 

One of the primary reasons for the workforce shortage in the construction industry is the premature 45 

retirement of the experienced, skilled workforce due to safety and health issues [5]. The 46 

Construction Industry Institute (CCI) and the Center for Construction Research and Training 47 

(CPWR) have established various training programs and investigated various new technologies to 48 

improve construction safety and health [6]. Various researchers have proposed different 49 

technology-based solutions to prevent the workers' premature retirement and exposure to safety 50 

and health issues (e.g., computer-vision technologies, building information modeling, wearable 51 

sensing technologies, and data mining and management) [6-10]. Moreover, these technology-52 

based solutions help monitor and improve workers' performance by providing feedback [11-13]. 53 
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Among these technology-based solutions, wearable sensing technologies have increased attention 54 

in recent years since they provide a wide range of opportunities for researchers and practitioners 55 

to develop automated and real-time systems for workers' safety and performance monitoring [13], 56 

in which the fundamental requirement for the workers' performance and safety assessment is 57 

activity recognition [14-17]. 58 

 Previous studies proposed various activity recognition systems using kinematic-based 59 

methods [13,18-20], vision-based methods [11,12,21-23], and audio-based methods [15] to 60 

recognize construction worker activities. Each of these methods has its advantages and 61 

disadvantages. Computer-vision-based methods use an image or video data captured using optical 62 

cameras to provide information on worker activities. Even though vision-based methods provide 63 

semi-real-time information and reliable documentation for the future, these methods are sensitive 64 

to environmental factors, affected by obstacles, require large data storage, and high equipment cost 65 

[13]. Whereas the audio-based methods use sounds captured using audio sensors to recognize 66 

activities, they are not suitable for noisy environments and predict activities with accuracy 67 

compared to other methods [13]. Among the three methods, the kinematic-based methods have 68 

gained increased attention due to ease of use, low-cost, non-intrusive, reliable, and high accuracy 69 

activity recognition models compared to vision-based or audio-based methods [13,16,18]. The 70 

kinematic-based methods involve wearable sensors such as an inertial measurement unit (IMU) 71 

attached to the workers' body to recognize the activities' kinematic patterns. The previously 72 

proposed kinematic-based construction workers' activity recognition systems have used a 73 

smartphone or IMU sensor attached to the waist, arm, thigh, chest, and wrist to acquire 74 

accelerometer and gyroscope data of the worker performing activities such as bricklaying, 75 

carpentry, hammering, sawing, wrenching, hauling, unloading, and drilling [13,16,18,24-32]. 76 
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Although most of the previous studies have achieved good accuracies, there are some the 77 

limitations such as restrictions on using smartphones on construction sites pose challenges for 78 

practical implementation, use of multi smartphones or IMU sensors is challenging while 79 

performing construction activities due to the dynamic nature of the construction work, and the 80 

current models have predicted few activities involving limited motions and body parts. Moreover, 81 

the recent state-of-the-art review articles on construction worker activity recognition methods [13] 82 

and wearable sensor applications in construction safety and health [6] stated that using sensor 83 

fusion and hybrid model could be the solution to obtain more precise and generalized methods to 84 

commercialize the workers' activity recognition and other construction safety applications such as 85 

fatigue monitoring or workload evaluation. Therefore, to overcome the challenges of the current 86 

construction workers' wearable sensor-based activity recognition methods, this study proposes 87 

developing automated construction workers' activity recognition using forearm electromyography 88 

(EMG) and IMU data. Moreover, this study validates the feasibility through a case study of 89 

scaffold builders who are important craft to the industrial and commercial construction projects. 90 

In the case study, forearm physiological data collected from EMG sensor and kinematic data 91 

collected from IMU sensor were analyzed for recognizing complex scaffold builder activities that 92 

involve different body parts (wrist, forearm, upper body, lower body, and whole-body) and various 93 

motions (repetitive motion, impulsive motion, and free motion) performed in a short time. To 94 

achieve the proposed objective, we first collected forearm EMG and IMU data from six 95 

participants using the armband sensor while performing scaffold builder activities from six 96 

participants. The dataset consists of 38 variables (accelerometer - 3, gyroscope – 3, and EMG – 97 

32) with approximately 150,000 datapoints. Secondly, the collected data were preprocessed and 98 

prepared for Artificial Neural Network (ANN) model building and training. Then, the ANN model 99 
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was trained and evaluated. Finally, the performance of the proposed model was evaluated on real-100 

time un-labeled data and compared the performance of different sensor combinations and 101 

classification algorithm. 102 

 The rest of the paper is divided as follows. First, we reviewed the background and related 103 

work regarding construction workers' activity recognition using wearable sensors. Next, the 104 

proposed automatic construction workers' activity recognition model was introduced and followed 105 

by the experiment section, including model validation and performance evaluation of the proposed 106 

method. In the end, it concludes with the discussions of the findings, limitations of the study, and 107 

future research directions. 108 

 109 

2. Literature Review 110 

2.1.Human Activity Recognition, Deep Learning, and Sensor Modality 111 

An activity is defined as a group of actions that include a series of consecutive movements 112 

[13]. Human activity recognition (HAR) involves predicting a person's movement based on sensor 113 

data and machine learning models [33]. HAR is broadly classified into two types, i.e., sensor-based 114 

and vision-based [34]. The vision-based activity recognition system detects human motion using 115 

images or videos, whereas sensor-based systems focus on the motion data from smart sensors such 116 

as accelerometers, gyroscopes, electromyography, audio sensors, vibration sensors, etc. [35]. 117 

The wearable sensor-based activity recognition using traditional pattern recognition (PR) 118 

methods mainly involves three steps, i.e., sensor data collection, feature extraction, and model 119 

training [36]. Firstly, acquiring the data from sensors such as accelerometers, gyroscope, 120 

magnetometers, electromyography sensors, audio sensors, vibration sensors, etc. Secondly, 121 

features such as time-domain, frequency-domain, or statistical features are manually extracted 122 
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from the data based on human experience or domain knowledge. Finally, features are used to train 123 

the models to recognize activities [37]. The deep learning models are preferred over traditional 124 

pattern recognition (PR) because of the following reasons [35,38]: 125 

 In traditional PR methods, the features are extracted through a heuristic and hand-crafted 126 

approach, which relies heavily on human experience and domain knowledge [39]. 127 

 From the human experience, only statistical features such as mean, median, amplitude, 128 

frequency, minimum, maximum, etc., can be learned by the models. These statistical 129 

features alone are not sufficient to recognize complex activities. 130 

 The traditional pattern recognition methods require a large amount of labeled data for 131 

training models, whereas deep learning networks can utilize the unlabeled data for model 132 

training. 133 

 The traditional pattern recognition models focus on training from static data, whereas in 134 

real life, the activity data is streamed real-time, which requires robust and incremental 135 

learning. 136 

The deep learning models are used to overcome the limitations of traditional pattern 137 

recognition models. Unlike traditional pattern recognition models, the feature extraction and model 138 

training are performed simultaneously in the deep learning models by extracting the high-level 139 

features in deep layers, which helps recognize complex activities. In the case of extensive 140 

unlabeled data, deep generative models can exploit unlabeled data for model training. Moreover, 141 

the models trained on extensive labeled data can be transferred to new activities with few or none 142 

labels [34,35,38]. 143 

The sensor modalities for human activity recognition (HAR) can be classified into body-144 

worn sensors, object sensors, ambient sensors, and hybrid sensors [38]. The body-worn sensors, 145 
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such as accelerometers, gyroscope, magnetometers, etc., wore on the body are among the most 146 

common modalities in HAR. The body-worn sensors are found in wristwatches, smartphones, 147 

glasses, bands, and helmets [33,35,38]. The object-worn sensors are attached to the objects to 148 

recognize the object's movement to infer human actions. The most common object-worn sensors 149 

used for HAR are radio frequency identifiers (RFID) tags and accelerometers. However, object-150 

worn sensors are less popular than body-worn sensors due to their deployment [40]. 151 

In contrast, ambient sensors such as sound, radar, temperature, and pressure sensors capture 152 

the interaction between humans and the environment. Human activities are inferred based on the 153 

changes in the environment. Similar to the object-worn sensor, the ambient sensors are difficult to 154 

deploy. Moreover, only certain types of activities can be inferred using ambient sensors. In recent 155 

years, hybrid sensors (a combination of body-worn, object-worn, and ambient) is gaining 156 

importance due to the rich information of human activities provided by the sensors and improving 157 

HAR accuracy. The hybrid sensors can recognize the complex activities of multiple occupants of 158 

smart homes [41,42]. Various deep learning models such as a deep neural network (DNN), 159 

convolution neural network (CNN), recurrent neural network (RNN), deep belief network (DBN), 160 

stacked autoencoder (SAE), and hybrid models are available for HAR [35,38]. All these deep 161 

learning models are the classes of ANN which are used based on the data type. For example, CNN 162 

and RNN models are used for image/video and sequence data, respectively [43]. 163 

2.2.Wearable Sensing Technology Applications in Construction 164 

In recent years, wearable sensors are widely used in the construction industry for different 165 

applications, especially in construction safety and health. The different types of sensors widely 166 

used for construction applications are kinematic sensors (such as IMU), cardiac activity (such as 167 

Electrocardiogram (ECG or EKG), and photoplethysmogram (PPG)), skin response (such as 168 
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Electrodermal Activity (EDA) and Skin Temperature (ST)), eye movement (such as eye-tracking), 169 

muscle engagement (such as EMG), and brain activity (such as electroencephalogram (EEG)). 170 

IMU sensors are widely used as wearable sensors in the construction industry to measure the 171 

objects' kinematic movement, including construction workers, equipment, and tools. IMU sensors 172 

attached to workers' bodies were used to determine workers' body posture, acceleration, and 173 

orientation [44-46], and were also used for preventing musculoskeletal disorder by detecting 174 

awkward postures [47-49] and fall protection by identifying a sudden change in body acceleration 175 

[50-52]. The measure of cardiac activity using ECG and PPG sensors facilitates in determining the 176 

workers' physiological status. The metrics such as heart rate variability (HRV), inter-beat-intervals 177 

(IBI), pulse-rate variability (PRV), and heart-rate reserve (HRR) derived from heart rate are 178 

essential to determine the physical and mental condition of the workers [53,54]. The EMG sensors 179 

capture muscle activity used to assess the muscle load and forces used for ergonomic assessment 180 

[55]. The PPG, EDA, ST, and heart rate sensors were extensively used for assessing the workers' 181 

physical workload and fatigue [8,56-58]. The use of eye-tracking to measure eye positions and 182 

movements relative to the participant's head helps evaluate the construction safety training and 183 

hazard recognition abilities [59,60]. The EEG sensors which measure brain activity are used to 184 

assess the workers' mental status on the job site and the effectiveness of training programs [61,62]. 185 

Even though several have shown the feasibility of using wearable sensors for construction safety 186 

and health, there exist some challenges such as noise and artifacts in field measurements, 187 

variability in standard to assess personal safety and health risks, the uncertainty of return of 188 

investments, and user resistance for adoption [6].  189 

 190 

 191 
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2.3.Construction Activity Recognition 192 

Construction activity recognition helps in safety, productivity, and quality control analysis. 193 

Advancements in automated data acquisition systems to quantity progress and track resources to 194 

streamline the crew activity analysis have shown promising results compared to conventional 195 

methods such as direct observation or survey-based methods, which are time-consuming, tedious, 196 

and error-prone. However, automated data collection technologies are still being investigated for 197 

their feasibility and reliability in construction domain applications. The automated data acquisition 198 

systems can be broadly classified into vision-based and wireless sensor-based systems. The vision-199 

based techniques have been proposed and evaluated by various researchers for activity recognition 200 

and process monitoring [63]. On the other hand, wireless sensor-based systems are assessed to 201 

collect Spatio-temporal activity data [64]. However, vision-based techniques are often prone to 202 

illumination variability and occlusions on the job site, whereas wireless sensor-based methods 203 

overcome the challenges of the line of sight (LOS) and occlusions. Moreover, sensor-based 204 

methods are a low-cost solution for activity analysis. 205 

Wearable sensor-based activity recognition aims at identifying the physical actions from a set 206 

of sensor signal data, which can be achieved by utilizing machine learning techniques. The inertial 207 

measurement units (IMUs), which include accelerometer, gyroscope, and magnetometer, are the 208 

most commonly used wearables sensors used for construction activity recognition. The overall 209 

process of developing an activity recognition system using sensor signal data and machine learning 210 

techniques is as follows: raw signal data acquisition and annotation, segmentation of labeled data 211 

for feature extraction, training machine learning-based classifier algorithms, and validation of the 212 

models. Even though the framework for activity recognition using wearable sensors and ML 213 

algorithms remains the same, it is essential to investigate the feasibility of using different wearable 214 
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sensors for an activity or action recognition in the construction domain to improve accuracy, 215 

reliability, and usability.  The model accuracy depends on various factors such as type of sensor 216 

data (acceleration, gyroscope, EMG, etc.), feature set (time-, frequency-, and discrete 217 

representation domain), classifier algorithms (k-nearest neighbor, neural network, support vector 218 

machine, and decision tree). Various studies have developed using different ML models and 219 

investigated the influence of several factors for construction activity recognition using different 220 

wearables sensors. Joshua and Varghese [65] investigated the use of wired accelerometers attached 221 

to the waist of the mason to recognize brick laying actions for productivity analysis. The study 222 

reported that the multilayer perceptron and neural network classifier algorithm best performance 223 

with 80% accuracy using features such as mean, maximum, variance, correlation, and energy. 224 

Joshua and Varghese [66] developed the accelerometer-based method for ironwork and carpentry 225 

activities classification using a decision tree with 90.07 and 77.74 percent accuracy. Cezar [24] 226 

has developed a construction activity recognition model using a dominant hand accelerometer and 227 

gyroscope data to recognize hammering, sawing, sweeping, and drilling activities with the highest 228 

accuracy of 91% Quadratic Discriminant Analysis (QDA). Khan and Sohail [25] have evaluated 229 

17 classification algorithms and three sensor positions to recognize nine construction activities. 230 

The study concluded that the waist position had achieved the highest accuracy of 93.90% for the 231 

Random Forest classifier. Moreover, Joshua and Varghese [26] have proposed a framework to 232 

select the accelerometer sensor's position to obtain the best classification results. A bricklaying 233 

case study proved that the sensor's position has a significant effect on classification accuracy. 234 

Yang, et al. [27] have developed automated near miss fall incidents in ironworkers using IMU data 235 

from waist and support vector machine (SVM), which obtained an accuracy of 91.1%. In contrast, 236 

the near-miss classification model of Lim, et al. [28] obtained an accuracy of 94% by using 237 
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accelerometer data from a smartphone placed at the hip pocket.  Akhavian and Behzadan [29] 238 

developed a construction activity recognition and classification system using raw accelerometer 239 

and gyroscope data from a smartphone placed on the upper arm while performing sawing, 240 

hammering, wrenching, loading, hauling, and unloading. The study evaluated the performance of 241 

the classification algorithms such as K-nearest neighbor (KNN), ANN, logistic regression (LR), 242 

decision trees (DT), and support vector machine (SVM) using the features such as average, 243 

minimum, maximum, interquartile range (IQR), and root means square (RMS). The 10-fold cross-244 

validation of the classifiers reported that the NN algorithm performed better than other classifiers 245 

with an average accuracy of 93.63%.  Further, the study was extended to determine the activity 246 

duration using an ANN model with 90.74% accuracy [20]. Ryu, et al. [67] tested the feasibility of 247 

using an accelerometer-embedded wrist-worn for construction workers' action recognition such as 248 

spreading motor, laying blocks, adjusting blocks, and removing mortar precision performing 249 

bricklaying activity. The study investigated the classification accuracy of KNN, DT, multilayer 250 

perceptron, and SVM for different window sizes and features (time- and frequency -domain); the 251 

10-fold cross-validation results reported that SVM with 4s window size showed the highest 252 

classification accuracy of 88.1%. Cheng, et al. [68] developed a task-level activity analysis using 253 

the data fusion of Spatio-temporal and workers' posture data for productivity analysis. The 254 

accelerometer and gyroscope data were used to evaluate the construction workers' workload [19] 255 

and ergonomic risk [69] using an SVM classifier accuracy of 95.67% 92.7%, respectively.  256 

Previous studies have proved that the sensor placement on the body significantly affects the 257 

activity recognition performance because the sensor signal pattern for the same activity varies 258 

depending on the sensor's position [70]. For activity recognition using accelerometers, the sensor's 259 

location close to the waist represents the significant body motions [71]. However, waist-oriented 260 
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acceleration signals do not reflect hand and arm movement, challenging to differentiate actions, 261 

including the movements [72]. The studies [73,74] reported using a single accelerometer sensor 262 

on the dominant wrist to classify daily living activities with an accuracy of around 95%. Although 263 

these studies have proved that using a single accelerometer sensor on the upper body was sufficient 264 

for recognizing construction activities, the models' robustness needs to be improved to predict real-265 

time un-labeled data. There remains a gap in the area of construction workers' activity recognition 266 

and wearable sensors applications in the construction domain, such as sensor data fusion at various 267 

levels, robust and reliable model to recognize multiple complex construction activities, and 268 

generalization of activity recognition models to convert to the commercialized application [6,13]. 269 

2.4.Point of Departure 270 

In the construction domain, the worker activity recognition models are broadly classified into 271 

kinematic-based, vision-based, and audio-based methods. The latter two methods have technical 272 

and practical implementation challenges such as high initial cost, influence environmental factors, 273 

low accuracy, high computation cost, large storage size, and privacy concerns [13]. Whereas the 274 

kinematic-based approaches have gained increased attention for worker activity recognition due 275 

to ease of use, low cost, non-intrusive, suitable for any environment and trade, and high accuracy. 276 

Most previous studies have used smartphones as a cost-effective data collection system for 277 

recognizing workers' motion using acceleration and gyroscope signal data acquired from 278 

embedded sensors in the smartphone [49,75-78]. However, the use of smartphones for activity 279 

recognition has challenges for practical implementation. To overcome the challenges of 280 

smartphone sensors, other studies have proposed using accelerometer and gyroscope data to 281 

develop machine learning-based activity recognition models for various applications such as the 282 

activity analysis of workers, fall risk detection, ergonomic assessment, and equipment detection 283 
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[18,27,41,50,79,80]. The limitations of these studies are they can identify a fewer number of 284 

construction activities involving either stationary movements or traveling (e.g., bricklaying and 285 

walking) and were limited to the forearm or upper body movements (e.g., hammering, sawing, 286 

wrenching, power drilling, and hammering) [74,81-84]. Therefore, it is essential to develop an 287 

activity recognition system to recognize complex construction activities involving different body 288 

parts (wrist, forearm, upper body, lower body, and whole-body) and various motions (repetitive 289 

motion, impulsive motion, free motion, and idle) performed in a short time interval. None of the 290 

previous studies have used other than motion data for construction worker activity recognition. 291 

Since most construction activities involve muscle activity and dynamic motion in a short interval 292 

of time, muscle activity and motion data might improve activity recognition. So, it is essential to 293 

investigate the fusion of physiological and kinematic data to improve the worker activity 294 

classification performance and recognize activities that do not involve the movement of a human 295 

body part. Other technical challenges of previous studies include the necessity of large dataset to 296 

develop models, use of multiple sensors, need for domain knowledge for feature extraction, human 297 

variability, unable to generalize the model, Moreover, there is a necessity to explore various 298 

preprocessing techniques such as data augmentation, and hyperparameter optimization to develop 299 

robust and reliable models using an optimal number of sensors. 300 

 301 

3. Research Methodology 302 

As shown in Figure 1, the proposed research methodology starts with data acquisition from a 303 

wearable armband sensor that can collect EMG and IMU data. The collected raw multi-sensor data 304 

is then preprocessed and fused to obtain a dataset with EMG and IMU data features. The fused 305 

data is labeled with the actual activity class and further used to build and train an ANN model. The 306 



14 
 

proposed methodology's performance is evaluated through a series of the analysis, such as the 307 

performance on unlabeled new data, the performance of different sensor combinations, and 308 

comparison of performance with other classification algorithms. Each of these steps is further 309 

discussed in the following subsections. 310 

 311 

Figure 1. Framework for construction worker activity recognition using forearm-based EMG 312 

and IMU armband sensor 313 

3.1. Data Acquisition using Forearm-based Armband Sensor 314 

A forearm-based armband sensor (Myo Armband) developed by Thalmic Labs Inc. was used 315 

to collect forearm EMG and IMU data. This armband sensor is a non-intrusive wearable sensor 316 

that consists of eight EMG sensors (#1-#8) and one 9-axes IMU sensor (3 for acceleration, 3 for 317 
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gyroscope, 3 for magnetometer, and embedded within EMG sensor #4). The armband sensor 318 

weighs approximately 93grams and needs to be worn at the thickest part of the forearm with EMG 319 

sensor #4 in the line of the index finger and LED light towards the lower forearm, as shown in 320 

Figure 2. Moreover, Figure 2 shows the electrode locations and IMU axes directions. The data was 321 

transmitted in real-time to local or cloud storage via Bluetooth Low Energy (BLE) wireless 322 

connection. According to Thalmic Labs Inc., the Myo armband sensor has a built-in rechargeable 323 

lithium-ion battery that can last for one full day on a single charge. The armband sensor is also 324 

easy to use, comfortable to wear for long periods, do not obstruct ongoing work, and stable 325 

Bluetooth connectivity. The Myo armband has achieved an acceptable system usability score 326 

(SUS) when tested for usability in other domains such as medical [85] and entertainment [86]. The 327 

raw EMG and IMU data can be collected from a program that we developed using the Myo 328 

software development kit (SDK) 200 and 50 Hz. The EMG sensors capture the forearm muscle 329 

electrical impulses, which are stored as an 8-bit array with values ranging from -128 to 127, which 330 

is different from the data collected from conventional EMG sensor values are in a format of volts 331 

or millivolts. In comparison, the IMU sensors capture the acceleration, angular velocity, and 332 

orientation of the forearm along x, y, and z directions. 333 

 334 

Figure 2. (a) Myo armband electrode location and IMU axes directions; (b) Myo armband 335 

placement on the forearm 336 
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3.2.Data Preprocessing and Preparation 337 

Sensor data fusion can be performed at different levels, including signal level, feature level, 338 

and decision level. The signal level data fusion involves fusing the raw sensor data, the feature 339 

level involves fusing features extracted from the sensor data, and the decision level involves fusing 340 

the decisions from outputs from sensor data [6]. In this study, the signal level sensor data fusion is 341 

considered for processing collected EMG and IMU sensor data. The signal-level fusion of the data 342 

eliminates the necessity for feature extraction from the raw data, which requires domain 343 

knowledge. Since the EMG and IMU data are collected at different frequencies, the EMG data is 344 

first reshaped to match the IMU frequency, which is performed by transposing four rows of 8-bit 345 

EMG data to 32-bit data. The reshaped 32-bit EMG data is then fused with the IMU data of each 346 

activity using concatenation.  The fused data are manually annotated using the class label shown 347 

in Table 1. The manual annotation process involves assigning activity ID to each row of the dataset 348 

since the training data will be collected for each activity. Since the EMG and IMU data obtained 349 

using armband sensors are in different units, the data is normalized using the z-score 350 

standardization (feature scaling) technique. The z-score is calculated by subtracting each feature's 351 

mean from that feature's values and then dividing the corresponding value by the standard 352 

deviation of that feature, as shown in Equation 1. This transforms the data to have a mean value 353 

as zero and standard deviation as one. Feature scaling is essential for neural network models to 354 

handle data smoothly. Feature scaling is essential for a neural network to handle the data smoothly. 355 

If the input data has units in different scales, the features with high range values may get higher 356 

derivatives during backpropagation than the features with low range values. Hence, the weights in 357 

the connected layers will be updated abnormally, and there will be a bias added to the model. 358 

Standardizing makes the model update the weights effectively during forward and backward 359 
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propagation and avoid model weights and errors. Moreover, it helps in faster convergence of 360 

gradient descent to the global minima. After performing standardization, all features have been 361 

reduced to the same scale [87]. 362 

Z-score =
xi-x

σ
 (1) 

 A large amount of synthetic data can be generated using time series data augmentation 363 

techniques to improve the ANN model's performance and prevent overfitting the model 364 

parameters. Also, data augmentation helps in the model's generalization since it introduces 365 

variability in the data without altering the labels. To account for those factors, various 366 

augmentation techniques are available such as time-wrapping, pooling, drifting, and reversing. 367 

Time-warping has a spatial-temporal characteristic that can generate data with a different warping 368 

ratio for different activities and is controlled by a number of speed changes and the maximal ratio 369 

of max/min speed. Pooling makes the data reduce the temporal resolution without a change in 370 

length. In contrast, the drift changes the data randomly and smoothly and is controlled by 371 

parameters like several drift points and maximal drift. Finally, the reverse will help in reversing 372 

the timeline in a series of data. Each augmentation technique generates a 1-fold increase in training 373 

data, resulting in a 4-fold increase in the number of data points for each user [40,70].   374 

3.3.Model Building, Training, and Evaluation 375 

An ANN-based deep learning model is proposed for construction worker activity recognition. 376 

An ANN model can handle complex data by recognizing the hidden patterns in the data and sensing 377 

the linear and non-linear relationship between independent and dependent variables by reducing 378 

the noise in the data. In this study, the ANN model is built in Keras [88], a high-level neural 379 

networks application programming interface (API), written in Python and capable of running on 380 

top of TensorFlow. The model building and training module involve three essential steps, i.e., 381 
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hyperparameter optimization, model building and compiling, and model training. Each of these 382 

steps is discussed in this section. 383 

3.3.1. Hyperparameter Optimization 384 

ANN network is designed with significant hyperparameters to achieve desirable activity 385 

classification results. To obtain the best classification results, one needs to tune the model with 386 

different combinations of hyperparameters, where the manual tuning process is time-consuming 387 

and inefficient. To overcome the manual tuning process challenges, various automated 388 

hyperparameter optimization techniques were proposed, such as grid search, random search, and 389 

Bayesian optimization [89]. Each of these techniques has its advantages and disadvantages. A grid 390 

search method selects the grid of parameters and tries every combination to select the best 391 

parameters. However, this method is computationally expensive and takes a long time to complete. 392 

A random search does not select all the combinations but a random list of parameters and select 393 

the best parameters among those combinations. Even though it is computationally efficient, it can 394 

probably miss some of the crucial parameters during the evaluation, which is unreliable due to its 395 

random selection. In contrast, Bayesian optimization keeps track of the past evaluated results and 396 

builds a probabilistic model to map the hyperparameters to the objective function's probability 397 

score. They perform better based on a surrogate function, which can help identify the global 398 

minima. In this study, the tree-structured Parzen Estimator (TPE) based surrogate model has been 399 

used, a sequential model-based optimization (SMBO) approach [89]. TPE is represented as p(y|x), 400 

where y is the quality Score, and x represents hyperparameters, as shown in Equation 2. 401 

                                                               𝑝(𝑦|𝑥) =
𝑝(𝑥|𝑦)∗ 𝑝(𝑦)

𝑝(𝑥)
          (2)                                                  402 

p(x|y) is a probability of hyperparameters given the value of an objective function, as shown in 403 

Equation 3. 404 
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                                                          𝑝(𝑥|𝑦) = { 
𝑙(𝑥) 𝑖𝑓 𝑦 < 𝑦∗

𝑔(𝑥) 𝑖𝑓 𝑦 >=  𝑦∗           (3)          405 

l(x) and g(x) are two different distributions of hyperparameters with 𝑙(𝑥) used when the 406 

value of an objective function is less than the threshold, and 𝑔(𝑥) is used when the objective 407 

function's value is more significant than a threshold. Y* is the threshold value. TPE draws a sample 408 

of hyperparameters from 𝑙(𝑥) and returns the parameters which yielded the highest value with the 409 

ratio 𝑙(𝑥)/𝑔(𝑥). Overall, the algorithm selects a new set of hyperparameters, evaluates the model, 410 

and stores them as history. With every iteration and using the history, 𝑙(𝑥) 𝑎𝑛𝑑 𝑔(𝑥) is built by 411 

an algorithm to evaluate the objective function's probability model. Since the algorithm suggests 412 

better candidate hyperparameters for evaluation, the objective function score increases much faster 413 

than random or grid search results in less total evaluations of the objective function. Also, TPE 414 

can reduce the running time and get the best scores on test data. Sequential model-based 415 

optimization approaches vary like the surrogate, but all depend on the knowledge from previous 416 

studies to suggest better hyperparameters for the next evaluation. TPE is an algorithm that uses 417 

Bayesian reasoning to create a surrogate model and can use expected improvement to pick the next 418 

hyperparameter. 419 

3.3.2. Model Building and Compiling 420 

In a neural network architecture, many crucial parameters need to be considered to develop an 421 

efficient model. The most important features are the numbers of hidden layers, neurons in each 422 

layer, optimizers, activation functions, learning rate, batch size, epochs, and regularization. The 423 

number of layers and neurons in each layer depends on the data where the input and output layer 424 

nodes are equal to input features and the number of activity classes, respectively. The optimizers 425 

in neural networks change attributes such as weights and learning rate to reduce the losses. Adam 426 

optimizer is the most commonly used algorithm, an adaptive learning technique for each weight 427 
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in the neural network; it uses the estimates of both first and second moments of gradient and 428 

evaluates individual learning rates for different parameters. Adam optimizer is considered an 429 

improvised version of well-known optimizers such as RMSProp, AdaGrad, and SGD [90]. It uses 430 

the functional combination of RMSProp and SGD by using squared gradients and moving average 431 

of gradients for effective faster convergence to global minima.  432 

The ReLu activation function is used for input and hidden layers. Compared with other 433 

functions like sigmoid and tanh, ReLu can handle large layers and tackle the vanishing gradient 434 

issue.  For the output layer, the Softmax activation function is applied since it is useful for multi-435 

label classification. Also, Softmax best suits for output layer as it gives the probability values for 436 

predicting different classes. The choice of batch size decides the number of samples from the 437 

training data propagated through the network. Whereas the epoch decides the number of times, all 438 

the training samples are passed forward and backward through a neural network. If the class labels 439 

were mutually exclusive, the sparse categorical cross-entropy loss function should be applied to 440 

the model. Moreover, it is essential to convert target variables into integers for the ANN model. 441 

Regularization involves concepts such as L1 and L2 regularization, dropout, and early 442 

stopping.  Firstly, L1 and L2 are lasso and ridge regressions, which add a penalty to the loss 443 

function. The loss function is the ordinary least square technique that measures the sum of the 444 

squared errors. They are used for feature selection and removing multicollinearity during model 445 

training. Both are involved in the process of reducing the weights or coefficients of neural network 446 

function. L1 reduces the weights faster than L2 and finally makes the model more straightforward 447 

and reduces overfitting. Each has its advantages and disadvantages, but elastic net regularization 448 

has been used to optimize the model in the best possible way, combining L1 and L2 regularizations. 449 

Secondly, the dropout function reduces the number of neurons required for training in a selected 450 
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layer for each iteration to prevent overfitting. The dropout ratio increase eventually results in 451 

underfitting curves. Finally, early stopping is another regularization method that helps stop the 452 

model training when the validation loss is no longer decreasing or increasing after performing a 453 

certain number of epochs. Early stopping is considered one of the best solutions to tackle the 454 

overfitting problem.  455 

3.3.3. Model Training 456 

During model training, backpropagation involves the multiplication of gradients in every layer. 457 

If the gradient values are too small, the models suffer from vanishing gradient problems, but if the 458 

gradient values are too high, the model suffers from an exploding gradient problem. Selecting a 459 

set of optimized parameters plays a significant role in providing an accurate predictive model. 460 

Once the optimum parameters are selected through hyperparameter optimization, the model is 461 

diagnosed for the underfitting or overfitting issues using learning curves. The learning curves, such 462 

as model loss and accuracy, help understand the model's learning performance over time during 463 

training. Moreover, the model curves can be used to diagnose the problems of under and 464 

overfitting. Two metrics used to assess the performance of learning are loss (error) and accuracy. 465 

For a better learning performance, the model loss (error) should be decreasing, and the model 466 

accuracy should be increasing. The training learning curve measured on training data indicates 467 

how well the model is learning, whereas the validation learning curve calculated on validation 468 

data, which is not part of training data, represents how well the model is generalizing. The learning 469 

curves' shape and dynamics help diagnose the model's behavior and identify if the model has under 470 

fitted or a good fit or overfitted. The model's underfitting occurs when the model cannot learn the 471 

training dataset, whereas overfitting refers to a model that has leaned the training data too well, 472 

including random fluctuations and noise in the data. A good fit model exists between underfitting 473 
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and overfitting models, which can be identified from learning if the loss curve decreases to the 474 

point of stability and has a small gap between the training and validation curve. The learning curves 475 

are developed using the Keras callback history, which records the loss and accuracy of training 476 

and validation dataset for each epoch. The batch size and epochs are set to 100 and 150, 477 

respectively. To overcome overfitting or underfitting, the regularization concept has also been 478 

implemented during the model training. 479 

3.3.4. Model Evaluation Technique 480 

General evaluation of machine learning models can be done by splitting the collected 481 

experiment data into train and test data. However, the disadvantage with this technique is that the 482 

model's evaluation is done specifically on this split data where they can have data leakage between 483 

the train and test on the same subject, especially in human activity recognition and testing any new 484 

or unseen data on the trained model may not be reliable [36]. In order to avoid this and make a 485 

generalized model, the cross-validation technique has been used. Cross-validation is a technique 486 

that holds out test data from a given data in an experiment, trains the model on the remaining data, 487 

and tests it on the formerly reserved test data. This process is repeated for the K number of 488 

experiments for the entire training data. Splitting of the data depends on the number of splits we 489 

required and is represented by K, where K is the number of folds. Depending on the given input 490 

parameter K, the K number of experiments will be performed to evaluate the model performance. 491 

Popular cross-validation techniques are K-fold, Stratified K-fold, Repeated K-fold, Leave One 492 

Out, Leave One Subject Out, and Nested. The dataset consists of different construction activities 493 

performed by different subjects. So, in this study, Leave-One-Subject-Out (LOSO) cross-494 

validation technique has been chosen. LOSO is a K-fold cross-validation technique where the 495 

number of folds is chosen before the model evaluation. In LOSO, the number of folds is equal to 496 
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the number of subjects who performed their activities in our experiment, and LOSO evaluates each 497 

subject's accuracy in different folds or experiments. Hence, LOSO performance is robust. The 498 

LOSO's overall accuracy is determined by finding the average of all the folds in our experiment 499 

[91]. 500 

3.4.Performance Evaluation Metrics 501 

Once a good fit model is obtained through the training and validation process, the built ANN 502 

model's performance will be evaluated by the testing dataset using classification accuracy, 503 

confusion matrix, precision, recall, and F1 Score. The most general and first look evaluation for 504 

any deep learning techniques are done by classification accuracy. It is calculated as the number of 505 

correctly predicted outcomes to the total number of predictions. Higher classification accuracy is 506 

required to achieve the desired activity recognition results. However, the classification accuracy 507 

alone is not sufficient to decide the robustness and reliability of classification results. Therefore, 508 

other metrics such as precision, recall, and F1 Score of the proposed model are also analyzed. A 509 

confusion matrix is a matrix with an equal number of rows and columns. It represents the complete 510 

performance of the model considering each class. Each row and column of the matrix corresponds 511 

to true and predicted classes. The diagonal cells of the matric represent the percentage of correct 512 

prediction for each class, and the off-diagonal elements represent the misclassification percentage 513 

with respect to other classes. In order to understand the concept of precision and recall, firstly 514 

following terms are defined, True Positive (TP), True Negative (TN), False Positive (FP), and 515 

False Negative (FN) come into the picture. TP is the number of correct positive predictions done 516 

by a positive model. TN refers to the number of negative predictions done by a model that is 517 

negative. FP is the number of classes predicted incorrectly where the model thinks predicted 518 

classes are positive (true) but, it is not true. FN is the only misclassified metric where the model 519 



24 
 

thinks the predicted activity is not positive (true), but it is true. For the multi-classification model, 520 

the values of TP, TN, FP, and FN were calculated using the confusion matrix where TP – value in 521 

the diagonal cell, FN – for a class is the sum of values in the corresponding column excluding TP 522 

value, and FP – for a class is the sum of values in the corresponding rows excluding TP value. 523 

Using the TP, TN, and FN values, the metrics precision and recall were calculated using Equations 524 

2 and 3, respectively. The prediction value indicates how often the prediction is correct, which is 525 

defined as the ratio of the number of true positive predictions (TP) to all total number of positive 526 

predictions of the model (TP+FP) (Equation 4). In contrast, the recall indicates the correctly 527 

predicted rate of a class, which is the ratio of the number of true positive predictions (TP) to a total 528 

number of predictions (TP+FP) (Equation 5). 529 

Precision=
TP

TP+FP
= 

Value of the Diagonal Cell of the Class

Total Number of Predictions of the Class
  (4) 

Recall=
TP

TP+FN
= 

Value of the Diagonal Cell of the Class

Total Number of Instances of the Class
  (5) 

If the classes are imbalanced, the most useful and reliable metric to assess the model 530 

performance is the F1 Score, a harmonic mean of precision and recall, as shown in Equation 6. 531 

F1 Score=2*
Precision * Recall

Precision + Recall
  (6) 

The above formulas are used to calculate the performance metrics for individual classes, 532 

whereas the weighted precision, recall, and F1 Score following Equation 7 are applied to evaluate 533 

the overall model performance. The weighted average of a metric is the sum of the metric 534 

(precision, recall, and F1 Score) multiplied by the samples of each class (i), then divided by the 535 

samples of all the classes. 536 
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Weighted Metric= 
∑ (Metrici)*(Samples

i
)m

i=1

∑ Samples
i

m
i=1

  (7) 

Where m is the total number of classes, Metrici is the value of metric for class i (i = 1, 2, …, m), 537 

and Samplesi is the number of samples in each class i (i = 1, 2, …, m).  538 

 In addition to the performance evaluation of the proposed model, another analysis is 539 

conducted to evaluate the activity prediction accuracy on an entirely new dataset, i.e., an unknown 540 

dataset. We also compare the results with other classification algorithms to examine the robustness 541 

of the proposed model. The new dataset's prediction includes performing activity recognition using 542 

the proposed model on the dataset that is not used either in the training or testing process. 543 

Moreover, the data was collected from an individual who performed a whole sequence of activities 544 

at his own pace. The proposed model's performance is compared with the most common 545 

classification algorithms previously used in other construction activity recognition studies [13].  546 

 547 

4. System Feasibility Validation and Performance Evaluation 548 

4.1.Case Study of Scaffold Builder Activities 549 

To validate and evaluate the proposed construction worker activity recognition model's 550 

performance, a case study of scaffold builder activities was considered since it involves various 551 

body parts and different movements, which allows testing the proposed model on complex 552 

construction activities. According to OSHA, a scaffold is defined as an elevated, temporary 553 

structure [92]. Based on the construction work, the type of scaffold may vary. Two basic types of 554 

scaffolds are supported and suspended scaffolds. The supported scaffolds consist of one or more 555 

platforms supported by load-bearing or rigid supports, whereas the suspended scaffold is supported 556 

by an overhead structure using non-rigid support such as ropes [92]. The supported scaffolds are 557 

extensively used in industrial and commercial construction projects [93]. The scaffold building 558 
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requires scaffold erection skills, carpentry hand tools, and heavy labor-intensive tasks [94]. By 559 

reviewing various scaffolding activities onsite and online, we have recognized fifteen common 560 

activities in building a supported scaffold. The activities include carrying a metal 5 ft. x 5ft. 561 

scaffold frame (38 Lbs.) sideward, carrying a 6 ft. x 12 in. wooden plank (15 Lbs.), carrying a 7 562 

ft. x 4 ft. scaffold cross brace (10 Lbs.), carrying 24 in. leveling jacks (6.5 Lbs.), walking around, 563 

dragging wooden plank along the frame, lifting the plank from elbow to overhead, adjusting and 564 

inserting the leveling jacks, hammering, wrenching, climbing stairs with and without tool bag, and 565 

walking downstairs with and without tool bag to set up and fix scaffold pin. The fifteen scaffold 566 

builder activities and the activity ID used for the ANN model are summarized in Table 1. Some of 567 

the key scaffold builder activities are shown in Figure 3. All these activities require extensive 568 

manual efforts and involve different body parts (wrist, forearm, upper body, lower body, and 569 

whole-body) movements, and various motions (such as repetitive motion, impulsive motion, and 570 

free motion). Moreover, it involves manual material handling tasks such as carrying different 571 

weights, lifting at different heights, and pushing activities. 572 

Table 1. Scaffold builder activities and activity ID 573 

ID No. Activity Description Activity ID 

0 Adjusting Leveling Jacks AdjustJacks 

1 Carrying Crossbars CCrossbars 

2 Carrying Leveling Jacks CJacks 

3 Carrying Scaffold Plank CPlank 

4 Carrying Scaffold Frame CScaffold 

5 Dragging Scaffold Plank DragPlank 

6 Hammering Hammering 

7 Inserting Jacks into Scaffold Frame InsertJack 

8 Lifting Scaffold Plank from Elbow to Overhead LiftPlank 

9 Walking Walk 

10 Wrenching Wrenching 

11 Climb Climb 

12 Downstairs Downstairs 

13 Climb with Tool Bag ClimbW 

14 Downstairs with Tool Bag GDownstairsW 
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 574 

Figure 3. Shows few scaffold builder activities performed in outdoor environment (a) scaffold 575 

carrying, (b) plank carrying, (c) crossbars carrying, (d) leveling jacks carrying, (e) adjusting 576 

leveling jacks, and (f) insert leveling jacks into the scaffold   577 

4.2.Experiment Setup 578 

4.2.1. Data Collection and Augmentation 579 

To validate the feasibility and evaluate the proposed automated activity recognition model's 580 

performance using forearm EMG and IMU data, an experiment was performed, which involved 581 

participants performing scaffold builder activities in the outdoor environment. Seven male college 582 

students have voluntarily participated in the experiment. The participants' age ranged from 24 to 583 

28 years (mean ± SD: 26.43 ± 1.40 years), weight ranged from 62.60 to 100 kgs (mean ± SD: 80.98 584 

± 13.38 kg), and height ranged from 1.65 to 1.83 m (mean ± SD: 1.73 ± 0.06 m). All participants 585 

are right-handed, healthy, and have no musculoskeletal disorders record. None of the participants 586 

have prior scaffold building experience, but all the activities were demonstrated to all the 587 

participants before starting the experiment. The armband sensor was placed on the dominant hand 588 
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of each participant during the experiment. Each activity was clearly explained to the participants 589 

and asked to perform the activity for at least 30 seconds, with enough rest provided between the 590 

activities. EMG and IMU data collected from the participants' forearms were transmitted to the 591 

computer via Bluetooth, and the data were stored and labeled with the activity ID. The six 592 

participants' data were used for model building and evaluation, whereas the seventh participant 593 

(age = 26 years, weight = 76 kgs., and height = 1.65 m) was asked to perform all the activities in 594 

any sequence without any time constraint. The seventh participant's data (referred to as the new 595 

unlabeled data previously) was used to test the performance of the proposed ANN model. The 596 

whole experiment of the seventh participant was videotaped and later used for evaluating the model 597 

performance. The six participants' dataset was manually labeled, and it consists of 38 features 598 

(EMG – 32, Acc -3, and Gyro – 3) with 149,491 samples. Therefore, the input layer's size was 599 

defined as 38 nodes or neurons to hold the 38 raw data features, whereas the number of nodes in 600 

the output layer is equal to a number of activities (i.e., 15). Moreover, each activity's sample count 601 

is different since the participants performed each activity for a different duration.  The imbalanced 602 

classes represent a real scenario because not all construction activities are performed for the same 603 

duration. 604 

Once the field data was collected and labeled, data augmentation techniques such as time-605 

wrapping, pooling, drifting, and reversing were applied to each user data, which increases the data 606 

by 4-folds. The number of samples per participant before and after the data augmentation are 607 

22,000 and 88,000, respectively. Therefore, the total number of samples for all the participants 608 

after the data augmentation is 524,218. 609 

4.2.2. Hyperparameter Optimization and ANN Model 610 
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 The optimum hyperparameters were determined using the Bayesian TPE algorithm are set 611 

to a wide range to test different combinations, as shown in Table X. From the Bayesian TPE results, 612 

it can be observed that optimum performance was achieved for the ANN architecture shown in 613 

Figure 4. The parameters for the optimized model include four hidden layers, two dropout layers, 614 

no. of neurons for hidden layers as [2048, 2048, 512, 256], batch size = 256, epochs = 100, 615 

optimizer = Adam, and activation function = ReLu. Since the batch size of 256 is used during the 616 

model training, 256 samples from training data will be used and sent to the network in both forward 617 

and backward propagation. The number of epochs selected for model training is 100, which means 618 

the model will train 100 times for the selected batches. Since the proposed model uses the early 619 

stopping function, it stops the model training process once the model performance is stable. To 620 

overcome overfitting or underfitting, the regularization concept has also been implemented during 621 

the model training. 622 

Table X. Parameters used for Bayesian Tree-structure Parzen Estimator optimization 623 

Parameter # Values 

No. of Hidden Layers 7 1 to 7 

No. of Neurons 6 64, 128, 256, 512, 1024, 2048 

No. of Dropout Layers 5 0.1, 0.2, 0.3, 0.4 

Batch Sizes 3 128, 192, 256 

Epochs 3 50, 100, 150 

Optimizers 3 SGD, Adam, RMSprop 

Activation Functions 3 ReLu, Tanh, Sigmoid 

 624 
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 625 

Figure 4. Optimal artificial neural network architecture for scaffold builder activities 626 

prediction 627 

4.3.Model Learning Curves 628 

To assess the model performance and achieve the bias-variance trade-off, learning curves have 629 

been plotted. Learning curves show the relation between training instances and accuracy. These 630 

curves show the plot of training and cross-validation scores from a given model with different 631 

training sizes and using these curves can help understand how the training and cross-validation 632 

scores are moving as the number of training instances increase. These curves tell whether the 633 

model is suffering from bias or variance. Leave One Subject Out (LOSO) cross-validation has 634 

been used to generate these learning curves. Figure 5 shows the plots of training and cross-635 

validation scores between accuracy and different training sizes. Ten different training set sizes 636 

have been used. The model slightly shows underfitting for the initial training set, but as the training 637 
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size increases, the curves are so close and stable with low bias and low variance. Moreover, the 638 

graph shows the increase in model generalization with an increase in the training set. Average 639 

training and cross-validation scores generated from the learning curves are 94.90% and 93.29%. 640 

 641 

Figure 5. Learning curve of the proposed ANN model using EMG and IMU data 642 

4.4.Performance Evaluation on Testing Data 643 

After training the model, performance evaluation is required to understand the model's 644 

overall and class performance. Leave One Subject Out (LOSO) Cross-validation has been 645 

performed, and it splits the data into train and test based on the number of subjects. In each 646 

experiment or fold, one of the subjects is used as test data, and the remaining subjects are used as 647 

training data. As our data has six users, six experiments are performed by LOSO to evaluate the 648 

model performance using confusion matrix and classification report. Figure 6 shows the 649 
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normalized confusion matrix of the proposed ANN model generated after cross-validation on the 650 

six subjects where X and Y axes represent the predicted and true classes. The diagonal cells 651 

represent the percent of correctly classified instances, whereas the off-diagonal elements represent 652 

the percent of misclassified instances for each activity. From Figure 6, it can be observed that the 653 

"Downstairs" (0.13) activity was highly misclassified among all other classes, followed by 654 

"AdjustJacks" with values (0.03), "Climb" (0.03), and "GDownstairsW" (0.03). The highest 655 

misclassification of "Downstairs" was identified with "Walk." Whereas, the highest classification 656 

was observed in "Hammering" (0.99), "CJacks" (0.97), "CScaffold" (0.97) and "ClimbW" (0.97) 657 

followed by "LiftPlank" (0.96), and " GDownstairsW " (0.96). Table 2 presents the precision, 658 

recall, and F1 score values for all the activities. The "Hammering" (0.99), "CJacks" (0.97), and 659 

"ClimbW" (0.97) activities shows highest precision. Whereas the least precision value of 0.86 was 660 

observed in "Downstairs." The highest recall value of 0.98 was observed in "CJacks" followed by 661 

"Wrenching" (0.97), "GDownstairsW" (0.97), and "LiftPlank" (0.97), whereas the lowest recall 662 

value was observed in "Downstairs" (0.89). Similarly, the F1 score is highest for "Hammering" 663 

(0.97), "CJacks" (0.97), and " LiftPlank " (0.97) and lowest is for "Downstairs" (0.87). The overall 664 

prediction accuracy of 93.68% was obtained on the testing dataset with 0.94 weighted average 665 

precision, recall, and F1 Score.  666 
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 667 

Figure 6. Confusion matrix of the proposed ANN model using EMG and IMU data 668 

Table 2. Class report of the proposed ANN model using EMG and IMU data 669 

  Precision Recall F1 Score 

AdjustJacks 0.91 0.95 0.93 

CCrossbars 0.94 0.96 0.95 

CJacks 0.97 0.98 0.97 

CPlank 0.95 0.93 0.94 

CScaffold 0.96 0.95 0.96 

DragPlank 0.93 0.96 0.94 

Hammering 0.99 0.95 0.97 

InsertJack 0.94 0.94 0.94 

LiftPlank 0.96 0.97 0.97 

Walk 0.87 0.93 0.9 

Wrenching 0.95 0.97 0.96 

Climb 0.96 0.96 0.96 

Downstairs 0.86 0.89 0.87 

ClimbW 0.97 0.93 0.95 

GDownstairsW 0.96 0.97 0.96 

Accuracy     0.94 

Weighted Average 0.94 0.95 0.94 

 670 

4.5. Real-Time Evaluation 671 

The prediction was performed on the dataset collected from a new individual (seventh 672 

participant) to evaluate the model's robustness. The seventh participant's evaluation has been 673 
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performed using the trained weights of ANN generated from LOSO cross-validation. The data was 674 

not used either in training or testing the model. The dataset consists of 15,850 samples and fifteen 675 

activities. During the seventh participant experiment session, the video recorded was reviewed for 676 

activity sequence and actual class labeling to build the benchmark activities for performance 677 

evaluation by matching the time stamp in video and sensor data. Figure 7 shows the confusion 678 

matrix of the proposed ANN model on the new dataset. From the confusion matrix, it can be 679 

observed the "Downstairs" (0.27) activity was highly misclassified, followed by "GDownstairsW" 680 

(0.15), "CScaffold" (0.09), and "CJacks" (0.08). The highest misclassification of "Downstairs" was 681 

observed with the "Walk" activity. Whereas the highest classification was observed in 682 

"Wrenching" (0.98) followed by "Hammering" (0.94), "LiftPlank" (0.93), and "ClimbW" (0.91). 683 

Table 3 shows the precision, recall, and F1 score results of the ANN model on an unknown dataset. 684 

The highest precision of 0.96 was observed in the "CJacks," "Wrenching," and "Climb" activities, 685 

followed by "Hammering" (0.95), "CPlank" (0.91), and "CScaffold" (0.90). Whereas, the highest 686 

recall value of 0.98 was observed in "Wrenching" followed by "Hammering" (0.94) and 687 

"LiftPlank" (0.93). The lowest recall value was observed in "Downstairs" (0.64). The F1 score was 688 

highest in "Wrenching" (0.97) activity followed by "Hammering" (0.94), "Climb" (0.92), and 689 

"CJacks" (0.91). Overall, the prediction accuracy of the proposed ANN model on an unknown 690 

dataset is 86.87% with weighted average precision (0.86), recall (0.87), and F1 Score (0.86). 691 

Moreover, Figure 8 shows the predicted and actual sequence of activities performed by the seventh 692 

participant. The proposed model recognized the activities' sequence with the highest errors in 693 

"AdjustJacks" and "Walk" activities. Also, the time ratio difference between actual and predicted 694 

classes range between 1% to 2%, as shown in Figure 9. 695 
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 696 

Figure 7. Confusion matrix of the proposed ANN model on the unknown dataset 697 

Table 3. Class report of the proposed ANN model for the unknown dataset 698 

  Precision Recall F1 Score Support 

AdjustJacks 0.82 0.85 0.83 1000 

CCrossbars 0.78 0.88 0.83 450 

CJacks 0.96 0.87 0.91 1150 

CPlank 0.91 0.87 0.89 700 

CScaffold 0.90 0.88 0.89 900 

DragPlank 0.88 0.84 0.86 800 

Hammering 0.95 0.94 0.94 1600 

InsertJack 0.84 0.88 0.86 1100 

LiftPlank 0.80 0.93 0.86 600 

Walk 0.63 0.89 0.74 950 

Wrenching 0.96 0.98 0.97 900 

Climb 0.96 0.87 0.92 2400 

Downstairs 0.86 0.64 0.73 900 

ClimbW 0.80 0.91 0.85 1200 

GDownstairsW 0.88 0.80 0.84 1200 

Accuracy 0.87 0.87 0.87 0.87 

Macro Average 0.86 0.87 0.86 15850 

Weighted 

Average 
0.88 0.87 0.87 15850 
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 699 

Figure 8. Performance of proposed ANN model on the unknown dataset – A plot showing 700 

predicted and actual classes over the entire session 701 

 702 

 703 

Figure 9. Time ratio of actual and predicted activities 704 

4.6. Comparison of Activity Recognition Performance for Different Sensor Combination 705 

To understand the ANN model's performance for different sensor combinations, individual 706 

ANN models were built using various sensor combination data, namely, EMG+IMU, IMU, EMG, 707 

Acc, and Gyro. All these models were built using the framework proposed in this study, and all 708 
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the models were evaluated for performance and diagnosed for overfitting or underfit problems. 709 

The overall accuracy, weighted precision, weighted recall, and weighted F1 Score of each sensor 710 

combination's best performance model are presented in Figure 10. From Figure 11, it can be 711 

observed the EMG+IMU model achieved the highest accuracy of 93.68%, followed by EMG 712 

(75.12%), IMU (71.45%), Acc (48.00%), and Gyro (32.30%). From this analysis, it can be 713 

concluded that EMG+IMU data helps improve classification accuracy. Also, the sensor 714 

combination model performance was analyzed for different classes. As shown in Figure 11, the 715 

EMG+IMU model has outperformed other models in all classes. Between EMG and IMU models, 716 

EMG outperformed IMU in the majority of the activities. EMG models performed better for 717 

"CCrossbars", "CJacks", "CPlank", "CScaffold," "DragPlank", "Hammering", "InsertJack", 718 

"Walk", "Climb", "Downstairs", "ClimbW", and "GDownstairsW". Whereas, IMU models have 719 

better accuracy than EMG models for "AdjustJacks," "LiftPlank," and "Wrenching." For 720 

"Wrenching" activity, both EMG and IMU performed equally. The acceleration and gyroscope 721 

models have performed poorly compared to EMG+IMU, IMU, and EMG. Among acceleration 722 

and gyroscope, the acceleration models have better accuracy. From Figure 10 and Figure 11, it can 723 

be concluded that EMG+IMU features yield higher accuracy for all the classes compared to other 724 

sensor combinations. 725 
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 726 

Figure 10. Comparison of classification performance of the ANN model using different sensor 727 

combination 728 

 729 

Figure 11. Comparison of classification performance of the ANN model for all activities for 730 

different sensor data 731 
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4.7. Comparison of Proposed Model with other Classification Models 733 

It is essential to determine how well the proposed ANN model performs compared to other 734 

classification algorithms. Therefore, the EMG+IMU dataset was further used to test with other 735 

existing classification models such as Random Forest (RF), Decision Trees (DT), Gradient 736 

Boosting (XGB), Support Vector Machine (SVM), Naïve Bayes (NB), Logistic Regression (LR), 737 

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-nearest 738 

Neighbors (KNN), and Multilayer Perceptron (MLP). Leave One Subject Out cross-validation 739 

technique was used to evaluate all the classifiers' performance with six-folds. Figure 12 compares 740 

the cross-validation accuracy of all the classification algorithms on the EMG+IMU dataset. It can 741 

be observed that the highest accuracy was obtained using the proposed ANN (93.68%) model, 742 

followed by XGB (85.45%), RF (84.10%), and DT (79.11%). Whereas the least accuracy was 743 

obtained in the SVM classifier case with 0.26, 0.25, and 0.24 recall, precision, and F1 Score, 744 

respectively. 745 

 746 

Figure 12. Comparison of activity recognition performance using the ANN model for 747 

different sensor data 748 

 749 
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5. Discussion 750 

In this study, a case study of scaffold builder activities was conducted to evaluate the proposed 751 

worker activity recognition framework's performance using forearm EMG and IMU data from the 752 

dominant hand. The use of armband sensors on the dominant hand can recognize whole-body 753 

activities highly suitable for construction applications. The case study results show that the ANN 754 

model developed using EMG and IMU has achieved the highest average classification accuracy 755 

of 93.29% for all fifteen activities. Since the construction activities involve either muscle activity 756 

and body movement, the use of EMG and IMU helps in recognizing complex construction 757 

activities involving different motions and body parts. From the results of the current case study, 758 

the activities involving motion such as adjusting jacks, dragging plank, lifting plank, walking, 759 

wrenching, and hammering, IMU data model have shown better accuracy compared to EMG 760 

model. Whereas in the case of activities involving muscle activity or material handling such as 761 

carrying scaffold, carrying plank, carrying jack, and carrying tool bag, the EMG data model has 762 

higher accuracy than the IMU data model. These results conclude that the proposed framework 763 

can recognize activities that do not involve considerable body movement of human body parts or 764 

repetitive activities, which is one of the significant challenges of previous activity recognition 765 

models [13]. Besides, the proposed framework can recognize a more significant number of 766 

activities compared to previous models. The high precision, recall, and F1 Score of the proposed 767 

model on real-time predictions show that the model can be used for real-time worker activity 768 

monitoring for safety, productivity, and project controls applications. 769 

One of the common issues with deep learning models is the necessity of large datasets, and 770 

this issue is addressed by incorporating a data augmentation technique in the framework. The data 771 

augmentation trains better, as seen in learning curves, and helps model generalization and removes 772 
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human variabilities. As previous studies stated [6], the sensor data fusion at a lower-level (signal 773 

level) improved accuracy significantly by eliminating the redundancy and considering 774 

dependencies and correlation between different features. The signal-level data fusion improved 775 

the accuracy and eliminates the process of extracting features from the raw data, which requires 776 

domain knowledge. Besides, the hyperparameter optimization using Bayesian TPE automates 777 

network parameter selection, which helps in adopting the proposed framework for any construction 778 

activity recognition and prevents human errors. Since the proposed framework is fully automated 779 

and independent of activities, it can be extended to any trade or multiple trades by retraining the 780 

model with new activity data. 781 

6. Limitations and Future Work 782 

Test Subjects: As this study was initially designed to investigate the testbed before actual 783 

production on large-scale workers in a real-world environment, the experiment was performed 784 

with limited non-construction workers in a semi-construction environment. Since the proposed 785 

framework is independent of human variability and environment, retraining the model with data 786 

from construction workers enables producing large-scale and field-ready models. 787 

Future Work: We further expect to understand how the armband sensor position (slid or 788 

rotated) on the forearm influences the activity recognition results. Even though the signal-level 789 

sensor data fusion yielded high accuracies, we want to investigate how other data fusion levels 790 

(feature-level and decision-level) will affect the activity recognition performance. The authors plan 791 

to develop one generic model to recognize multiple construction trades' activities using the 792 

proposed framework. Future research investigates the performance of recurrent neural networks 793 

such as long short-term memory (LSTM) for construction activity recognition. 794 

 795 
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7. Conclusions 796 

This study proposes an automated construction worker activity recognition method using 797 

forearm EMG and IMU data. The proposed framework is fully automated and can be applied for 798 

any number of activities and different construction trades by retraining the model with additional 799 

training data. Moreover, data augmentation and hyperparameter optimization help achieve high 800 

accuracy with limited participant data. The proposed method was validated and evaluated through 801 

a case study on scaffold builder activities, including complex construction activities involving 802 

different body parts (wrist, forearm, upper body, lower body, and whole-body) and various 803 

motions (repetitive motion, impulsive motion, and free motion). The proposed ANN model was 804 

able to classify fifteen scaffold builder activities with an overall testing accuracy of 93.29% and 805 

real-time prediction accuracy of 87%. The sequences and time ratio plots showed that the model 806 

could successfully predict the sequence and time spent on each activity with minimal error. The 807 

performance evaluation of the ANN model on different sensor combinations showed that the 808 

classification accuracy was highest for EMG+IMU (93.29%), followed by EMG alone (75.1%) 809 

alone and IMU (71.4%) alone. The results also show that the EMG data alone performed better 810 

than IMU data alone and acceleration data alone for carrying scaffold, carrying plank, carrying 811 

crossbars, inserting jacks, and climbing stairs with weight. In contrast, the IMU data alone 812 

performed better than EMG data alone for the rest of the activities. Since most construction 813 

activities involve motion and muscle activity, EMG and IMU data have increased the accuracy of 814 

activity recognition. The proposed model was also compared with the other machine learning-815 

based classification algorithms, and the comparisons show that the proposed model outperformed 816 

all the other classifiers.  817 
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Compared to previous studies, the main advantages of the proposed worker activity recognition 818 

system are inexpensive equipment cost, fully automated framework, low computation cost, ability 819 

to recognize complex construction activities, and recognizing more activities. Since the proposed 820 

framework is fully automated, scalable, robust, and adaptable, the system be can be 821 

commercialized. As the future direction, we will further explore the feasibility of workload 822 

assessment, fatigue monitoring, and productivity assessment using the proposed system and 823 

methodology.  824 
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