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Abstract—Continuous fuzzing is an increasingly popular tech-
nique for automated quality and security assurance. Google
maintains OSS-Fuzz: a continuous fuzzing service for open
source software. We conduct the first empirical study of OSS-
Fuzz, analyzing 23,907 bugs found in 316 projects. We examine
the characteristics of fuzzer-found faults, the lifecycles of such
faults, and the evolution of fuzzing campaigns over time. We
find that OSS-Fuzz is often effective at quickly finding bugs,
and developers are often quick to patch them. However, flaky
bugs, timeouts, and out of memory errors are problematic,
people rarely file CVEs for security vulnerabilities, and fuzzing
campaigns often exhibit punctuated equilibria, where developers
might be surprised by large spikes in bugs found. Our findings
have implications on future fuzzing research and practice.

Index Terms—fuzzing, continuous fuzzing, OSS-Fuzz

I. INTRODUCTION

Fuzz testing is effective at finding bugs and security vul-

nerabilities such as crashes, memory violations, and undefined

behavior. Continuous fuzzing — using fuzz tests as part of a

continuous testing strategy — is increasingly popular in both

industry [1]–[5] and open-source software engineering [1], [3],

[6], [7]. To improve the quality and security of open-source,

Google maintains OSS-Fuzz [6], a continuous fuzzing service

supporting over 300 open-source projects.

We present the first empirical study of OSS-Fuzz, examining

over 4 years of data and 23,907 fuzzer-discovered bugs found

in 316 software projects. To our best knowledge, this is the

largest study of continuous fuzzing at the time of writing.

We expand the body of empirical research on fuzzing, which

the fuzzing community expressed a need for [8]. Our main

contributions are:

• We present the first empirical study of OSS-Fuzz and the

largest study of continuous fuzzing at the time of writing,

analyzing 23,907 bugs in 316 projects.

• We analyze the characteristics of fuzzer-found bugs. We

consider fault types, flakiness, fuzz blockers, unfixed

bugs, CVE entries, and relationships among these fea-

tures. We find that many fuzzer-found bugs harm avail-

ability without posing direct threats to confidentiality or

integrity, timeouts and out of memory errors are unusually

flaky, flaky bugs are mostly unfixed, and few bugs, mostly

memory corruption bugs, receive CVE entries.

• We probe OSS-Fuzz bugs’ lifecycles. We find that most

fuzzer-found bugs are detected and fixed quickly, albeit

lifecycles vary across fault types, flaky bugs are slower

to detect and fix, and fuzz blockers are slower to fix.

Algorithm 1 Coverage-guided fuzzing.

1: procedure FUZZ(program p, set of seed inputs I0)
2: Inputs ← I0
3: TotalCoverage ← coverage of p on Inputs
4: while within time budget do
5: i ← pick from Inputs
6: i′ ← mutate i

7: coverage, error ← execute p on i′

8: if ∃ error then
9: report error and faulty input i′

10: optionally, exit
11: else if coverage �⊆ TotalCoverage then
12: add i′ to Inputs
13: TotalCoverage ← TotalCoverage ∪ coverage

• We study the longitudinal evolution of fuzzing cam-

paigns. We find that bug discovery often show punctuated

equilibria, with occasional spikes in the number of bugs

found interspersed among relatively slow bug hunting.

Section II provides background to contextualize our work.

Section III overviews the bug reports under study. We analyze

fault characteristics, fault lifecycles, and longitudinal evolution

in Sections IV, V, and VI respectively. Section VII discusses

our findings’ implications for research and practice, Sec-

tion VIII overviews related work, and Section IX concludes.

II. BACKGROUND

To explain how OSS-Fuzz found the bugs under analysis, we

provide background on coverage-guided fuzzing (Section II-A)

and OSS-Fuzz (Section II-B). We also discuss the CIA triad of

information security (Section II-C), which we use to analyze

the security impact of bugs in our analysis.

A. Coverage-guided fuzzing

Coverage-guided fuzzing (CGF), implemented by tools such

as AFL [9], libFuzzer [10], and honggfuzz [11], is a popular

bug detection method. CGF uses genetic search to find inputs

that maximize code coverage. Algorithm 1 describes CGF at

a high level. The algorithm maintains a pool of Inputs and the

TotalCoverage of program p on Inputs. The user provides seed

inputs I0 to instantiate Inputs. The fuzzer repeatedly picks

an input i from the pool of Inputs and applies a mutation

(e.g., increment, bit flip, or user-defined mutations) to produce

i′. The fuzzer then executes program p on mutated input

i′ to gather the coverage of program p on i′ and detect

any error, such as crashes, assertion violations, timeouts,
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Fig. 1: OSS-Fuzz’s workflow

memory leaks or access violations (with ASan [12]), undefined

behavior (with UBSan [13]), uninitialized memory use (with

MSan [14]), or data races (with TSan [15]). If i′ does not

trigger an error and discovers new coverage that is not

previously seen in TotalCoverage, then add i′ to Inputs and

update TotalCoverage. By finding inputs that cover new code,

CGF aims to test as much of the program as possible.

Fuzzers need an entrypoint into the program to provide

test inputs; such an entrypoint is often called a fuzz target.

libFuzzer-style fuzz targets — which AFL and honggfuzz

also support and OSS-Fuzz uses — are functions that take

in fuzzer-generated arbitrary bytestream input, transform the

input to program-usable input data if needed, and execute the

program under test with the input.

B. Continuous Fuzzing and OSS-Fuzz

Continuous fuzzing uses fuzzing as part of a continuous

testing strategy to find regressions as software evolves. Several

organizations incorporate fuzzing as part of their quality

assurance strategy [1], [3], [16], [17] or offer tools that provide

continuous fuzzing as a service [2], [4]–[6].

OSS-Fuzz [6] is Google’s continuous fuzzing service for

open source software (OSS) projects that are widely used or

critical to global IT infrastructure. OSS-Fuzz uses Cluster-

Fuzz [1], Google’s continuous fuzzing framework. Figure 1

illustrates OSS-Fuzz’s workflow. Developers in a participat-

ing OSS project write fuzz targets and provide instructions

for building the software. OSS-Fuzz continuously builds the

software and uploads it to ClusterFuzz. ClusterFuzz finds

fuzz targets and uses the coverage-guided fuzzers AFL [9],

libFuzzer [10], and honggfuzz [11] to fuzz the software. Upon

detecting a bug, ClusterFuzz checks whether the bug is a

duplicate of any previously found bugs, minimizes the bug-

inducing input, and bisects the range of commits in which

the regression occurred. If the bug is not a duplicate, then

ClusterFuzz files a bug report on Monorail, an issue tracker.

ClusterFuzz periodically verifies whether any previously found

bugs are fixed; if so, OSS-Fuzz updates fixed bugs’ report.

Bug reports are initially available only to project members.

OSS-Fuzz uses Google’s standard 90-day public disclosure

policy [18], [19] for all found bugs. If a bug is patched, then

the disclosure date moves up to either 30 days post-patch or

stays at 90 days post-discovery, whichever is earlier. Bug dis-

closure deadlines are a standard practice in industry; deadlines

encourage prompt repair, while the delay in public disclosure

gives developers time to write and discreetly distribute patches.

C. CIA Triad

Since fuzzing is often used as part of a security testing

strategy, we analyze the potential security impacts of bugs

using the CIA triad [20]. CIA stands for confidentiality,

integrity, and availability; each is a desired security property.

Confidentiality entails that only authorized users can access

a resource. Data breaches are instances of violated confi-

dentiality. Dangerous memory reads, such as buffer overflow

reads or use of uninitialized values, can leak confidential data

residing in memory. For example, Heartbleed was a buffer

overflow read vulnerability in OpenSSL that jeopardized the

confidentiality of server data, such as private keys [21].

Integrity entails that only authorized users can modify

resources in an allowable manner. Unauthorized deletion or

tampering of resources are instances of violated integrity.

Tampering of memory — which may result from improper

memory management or dangerous functions that allow for

buffer overflow writes or unsafe heap operations — can corrupt

data or facilitate arbitrary code execution.

Availability entails that resources remain available to users.

Denial of service attacks harm availability. Attackers can lever-

age resource exhaustion bugs such as timeouts, out of memory

errors, or memory leaks to reduce system performance. Bugs

that result in abnormal process termination such as null

dereferences, stack overflows, or operating system signals can

deny service to anyone else using the same terminated process.

III. OSS-FUZZ BUG REPORTS

We extract data from OSS-Fuzz bug reports on Monorail.

Figure 2 shows OSS-Fuzz Issue #20000 as an example.

ClusterFuzz generates these reports in a standardized format.

The report indicates which software “Project” is affected, the

“Fuzzing Engine” and “Fuzz Target” that found the bug, the
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Issue 20000

Reported by ClusterFuzz
on Fri, Jan 10, 2020
7:15 AM EST

Status: Verified (Closed)
Modified: Feb 10, 2020

Labels:
Reproducible
7 others. . .

Project: binutils
Fuzzing Engine: libFuzzer
Fuzz Target: fuzz disassemble
Platform Id: linux

Crash Type: Unsigned-integer-overflow
Sanitizer: undefined (UBSAN)
Regressed: oss-fuzz.com/revisions?job=omitted

&range=201912170318:201912190318

Reproducer Testcase: oss-fuzz.com/download

?testcase id=omitted

Comment 1 by ClusterFuzz on Jan 11, 2020, 10:24 AM EST
ClusterFuzz testcase. . . is verified as fixed in link to fix code commit range.

Comment 2 by sheriffbot on Feb 10, 2020, 1:10 PM EST
This bug has been fixed for 30 days. It has been opened to the public.

Fig. 2: An OSS-Fuzz bug report. Some details are omitted or

edited for brevity. Original report at https://bit.ly/3oaLhCp

“Platform” used, and the “Crash Type” of the bug. To aid bug

reproduction, the report indicates which “Sanitizer” was used,

the range and time window of commits where the software

“Regressed,” and a “Reproducer Testcase” to trigger the bug.

After ClusterFuzz verifies that the bug is fixed, it posts a

comment indicating the commit range where the software

was fixed. Sheriffbot tracks disclosure deadlines and posts

comments to warn about approaching deadlines (if a bug is

still unfixed) or notify that a bug passed a disclosure deadline.

We use Selenium [22], a browser automation tool, with

Google Chrome to scrape OSS-Fuzz bug reports on Mono-

rail. We ethically scrape data in accordance with Monorail’s

robots.txt file [23]. We extract data fields from the bug reports’

text via pattern matching. We scrape 23,907 bug reports from

316 projects, with report dates spanning from May 2016 to

October 20201.

IV. FAULT CHARACTERISTICS

To gain a better sense of the landscape of OSS-Fuzz bugs,

we begin by examining the following fault characteristics:

Fault type A categorization of faults; e.g., timeout, out of

memory, null dereference.

Flakiness Whether a bug is reliably reproducible.

Fuzz blocker Whether a fuzzer encounters the same bug very

often, which blocks further fuzzing of downstream code.

Unfixedness Whether a bug is unfixed.

CVE Whether a bug has an associated record in the Common

Vulnerabilities and Exposures (CVE) system [24].

The remainder of the section motivates, describes, and

analyzes these characteristics individually, and examines re-

lationships between them.

A. Fault types

Fuzzing is often discussed in the context of software se-

curity as an effective tool for uncovering security vulnera-

bilities [2], [6], [25]–[32], particularly in finding buffer and

numeric overflows — two of the most common software

1due to OSS-Fuzz’s disclosure policy, not all bug reports from July–October
2020 were publicly available at the time of data collection.

Fig. 3: Numbers of bugs among the top 15 fault types.

security vulnerabilities [33]–[36]. Prior advances in fuzzing

research targeted specific fault types, such as timeouts [37]–

[39], out of memory errors [40], [41], integer overflows [42],

or buffer overflows [43]–[46]. The attention on fuzzing as a

security testing technique and prior work on targeting specific

fault types motivates the following question:

RQ-FT Which fault types do OSS-Fuzz’s coverage-guided

fuzzers frequently find?

a) Methodology: To determine fault type, we use the

“Crash Type” field in bug reports (e.g., in Figure 2, the

“Crash Type” is “Unsigned-integer-overflow”). We standardize

some text (e.g., group together “timeout” and “hang”, or

“null dereference” and “null reference”), and we consolidate

heap, stack, and global overflows and underflows into buffer

overflow. We group together “null dereference read” and

“null dereference write,” since reading or writing to a null

address usually have similar consequences. For the opposite

reasons, we distinguish between “buffer overflow read” and

“buffer overflow write,” since overreads primarily threaten

confidentiality, while overwrites also threaten integrity and can

lead to arbitrary code execution.

b) Results: Figure 3 shows the number of bugs among

the top 15 fault types. Six of the most common fault types

comprising 52% (12316/23907) of bugs — timeout, out of

memory, null dereference, stack overflow, memory leak, and

signal abrt — primarily harm availability by crashing. While

such crashes might facilitate other attacks that compromise

confidentiality or integrity by, for example, exposing poten-

tial vulnerabilities in the error-handling process, such crash-

inducing faults are likely less severe in their own capacity.✎

✍

☞

✌
The majority of fuzzer-found bugs primarily harm avail-

ability.

Four fault types comprising 23% (5613/23907) of bugs

— integer overflow, assertion violation, undefined shift, and

divide by zero — indicate unintended program logic. Such
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bugs can be exploited, for example, if an integer overflow

affects a buffer index and thus can facilitate a buffer overflow.

However, such unintended logic can also result in no more

than abnormal termination or bad output.

Three fault types comprising 14% (3232/23907) of bugs

— buffer overflow read, use of uninitialized value, and heap

use after free read — do primarily jeopardize memory confi-

dentiality. Buffer overflow writes (2%, 438/23907) jeopardize

memory integrity and can lead to arbitrary code execution.

B. Flakiness

Fuzzers can sometimes find flaky bugs, where a test input

cannot reliably reproduce a bug. ClusterFuzz — the continuous

fuzzing engine behind OSS-Fuzz — usually ignores unrepro-

ducible bugs; however, if a flaky bug appears very frequently,

then ClusterFuzz will file a bug report [47]. Such flakiness

motivates the following research questions:

RQ-FLK How prevalent are flaky bugs?

RQ-FLK-FT Which fault types are disproportionately flaky?

a) Methodology: To identify flaky bugs, we look for bugs

which ClusterFuzz deems insufficiently reproducible, or where

there appears a comment in the bug report including phrases

suggesting irreproducibility (e.g., “unreproducible,” “can’t re-

produce”). This produces a conservative count of flaky bugs,

since ClusterFuzz only reports a flaky bug if it appears very

often, and developers experiencing reproducibility problems

may stay silent, complain outside of the bug report’s comment

section on Monorail (e.g., they may use their project’s own

issue tracker), or use different phrasing to suggest flakiness.

b) Results: Out of 23907 studied bugs, we identify 3139

(13%) as flaky. Figure 3 breaks down the composition of flaky

and non-flaky among the top 15 fault types. We observe high

rates of flakiness in timeouts (30%, 1225/4054, p < 10
−272

via a χ2 test on the null hypothesis that timeouts and non-

timeouts are equally flaky) and out of memory errors (20%,

424/2112, p < 10
−22 via a χ2 test on the null hypothesis that

OOMs and non-OOMs are equally flaky). Since both timeouts

and OOMs are resource exhaustion bugs, the unpredictability

of resource availability and usage may hamper reproducibility.

☛
✡

✟
✠Timeouts and OOMs are disproportionately flaky.

C. Fuzz blockers

If a bug occurs very frequently, it can block subsequent

fuzzing, hurting fuzzer performance. ClusterFuzz reports these

frequently crashing bugs as fuzz blockers, and advises main-

tainers that fixing such bugs would lead to better fuzzing. The

fuzzing community expressed concern that while fuzz blockers

are important to fix from a fuzzing practitioner’s viewpoint,

developers may ascribe low priority to fuzz blockers [48]. We

thus ask the following research questions:

RQ-BLK How prevalent are fuzz blockers?

RQ-BLK-FC What relationships exist between fuzz blocker

prevalence and other fault characteristics?

Fig. 4: Numbers of fuzz blockers among the top 12 fault types.

a) Methodology: If ClusterFuzz detects that a bug ap-

pears very frequently, then ClusterFuzz adds a “Fuzz-Blocker”

label to the bug report. We use ClusterFuzz’s labeling. How-

ever, based on ClusterFuzz’s source code [49], we notice

that ClusterFuzz does not report fuzz blocking timeouts, out

of memory errors, or stack overflows. We speculate that

ClusterFuzz’s developers excluded these fault types since

they block fuzzing so often that distinguishing blockers from

non-blockers is uninteresting. Given the lack of data on the

excluded fault types, we do not count them as fuzz blockers.

b) Results: Out of 16211 bugs that ClusterFuzz ex-

amined for fuzz blockage, 1773 (11%) are fuzz blockers,

of which 10% (185/1773) are flaky. Figure 4 shows the

12 most prevalent fault types among ClusterFuzz-identified

fuzz blockers. Memory leaks are the most common fault

type among fuzz blockers (15%, 261 of 1773 fuzz blockers),

and fuzz blocking memory leaks comprise 19% (261/1376)

of all memory leaks. Leak detection is part of ASan [12],

but can be disabled to ignore memory leaks and continue

fuzzing code downstream of any leaks. Assertion violations

are the second most common fault type among fuzz blockers

(14%, 243 of 1773 fuzz blockers), and fuzz blocking assertion

violations comprise 14% (243/1693) of all assertion violations.

Recompiling code without the fuzz blocking assertion would

similarly unblock fuzzing downstream of the assertion failure.✗

✖

✔

✕

Memory leaks and assertion violations are the most com-

mon ClusterFuzz-identified fuzz blockers, both of which

can be disabled.

Although the top two fault types are relatively low-impact,

buffer overflow read, a high severity fault type, is the third

most common fault type among ClusterFuzz-identified fuzz

blockers (12%, 213 of 1773 fuzz blockers), and comprises 13%

(213/1590) of all buffer overflow reads. Since fuzz blockers

appear very often during fuzzing, an attacker may find a fuzz

blocking buffer overflow quickly (we confirm the intuition that
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fuzz blockers are quickly found in Sec. V-A: Time-to-detect).

D. Unfixed bugs

Developers may choose not to fix a bug for many reasons.

A bug might be too hard to repair (e.g., if a bug is hard to

replicate, or requires an expensive code overhaul). Maintainers

might also judge that a reported bug is not actually a bug or

is not important enough to warrant a fix (e.g., if developers

think a fuzzer-found error case is low-impact, obscure, or

will not manifest in practice). Fuzzers, in particular, can flood

software projects with many seemingly low-impact bugs [48],

[50]. Attackers, however, can use known bugs as a low-cost

starting point to craft attacks with existing vulnerabilities,

gather intelligence to eventually craft a more complex exploit,

or gauge the agility of a software team’s response to faults.

We thus ask:

RQ-NOFIX How many fuzzing-identified bugs are unfixed?

RQ-NOFIX-FC Which bugs are often unfixed?

a) Methodology and Results: We examine publicly vis-

ible bugs without a verified fix at the time of data collection.

Of the publicly visible bugs, 22% (5148/23907) are unfixed.

OSS-Fuzz does not normally publicize unfixed bugs until after

the 90-day disclosure deadline, except for 130 unfixed bugs

that were publicized early by developers and whose data we

collected prior to the default 90-day deadline. Bugs unfixed at

the time of data collection were left unfixed for a median of

437 days, with 95% of bugs unfixed for 90–1275 days.

Figure 3 breaks down the composition of fixed and unfixed

bugs according to flakiness and fault types. Flaky bugs,

even if appearing frequently, are overwhelmingly not fixed

(86%, 2684/3139). Non-flaky bugs are unfixed only 12%

(2464/20768) of the time. We postulate that some flaky bugs,

even though they appear frequently, are not actually faults

in the software itself; for example, software might timeout

due to a temporarily unavailable resource. Irreplicability also

hinders attempts to diagnose and understand the bug. Although

OSS-Fuzz encourages developers to write speculative patches

for irreplicable bugs based on the information in the bug

report, developers may hesitate to write speculative patches

with limited information for a fault that may not actually exist.☛
✡

✟
✠Flaky bugs are overwhelmingly unfixed.

Because flaky bugs are often unfixed, we exclude them when

comparing fix rates among different fault types to prevent

flakiness from acting as a confounding variable. Three fault

types have disproportionately many unfixed bugs compared to

other fault types: timeout (21%, 589 of 2829 non-flaky bugs

are unfixed, p < 10
−55 with a χ2 test on the null hypothesis

that timeouts and non-timeouts have the same frequency of

unfixed bugs), out of memory (21%, 353/1688, p < 10
−32),

and assertion violation (18%, 274/1530, p < 10
−13).

However, as discussed in Section IV-A, timeouts and out

of memory errors primarily hamper availability rather than

confidentiality or integrity, and assertion violations do not

necessarily pose an immediate threat to security or reliability.

Considering the generally lower security impact of such bugs,

the lower fix rate suggests greater developer apathy towards

such bugs. Timeouts and out of memory errors may also be

more annoying for developers to reproduce and fix, as repro-

ducing such bugs consume substantial time and/or hardware

resources, which slows the potentially repetitive process of

analyzing the bug and testing patches. The lower impact and

greater pain in fixing such bugs may explain the lower fix rate.✗

✖

✔

✕

Timeouts, out of memory errors, and assertion violations

are more frequently unfixed compared to other fault types,

even if not flaky.

E. CVEs

The Common Vulnerabilities and Exposures (CVE) list [24]

is a public reference for security vulnerabilities. Organizations

designated as CVE Numbering Authorities (e.g., MITRE,

Debian, Microsoft, PHP Group) can issue CVEs for vulner-

abilities discovered in-house or reported from third parties.

Various security tools, such as threat intelligence dashboards

and security scanning tools, use CVEs as a source of threat

information. The security community expressed concern that

very few of OSS-Fuzz’s security vulnerabilities were issued

CVEs [51], and thus most of OSS-Fuzz’s discovered vulner-

abilities are not visible to security tools that rely on CVEs.

This prompts the following research questions:

RQ-CVE How many OSS-Fuzz bugs have CVE records?

RQ-CVE-FT Which fault types often receive CVEs?

a) Methodology and Results: A CVE record usually ref-

erences bug reports or other documentation on a vulnerability.

We mine CVE records [52] to find URL references to OSS-

Fuzz bug reports. We produce a conservative list of OSS-Fuzz

bugs with CVEs, since a CVE’s list of references may be

incomplete and omit a reference to an OSS-Fuzz bug report.

We find 98 OSS-Fuzz issues with CVEs, a small number

relative to the over 20,000 bugs found by OSS-Fuzz. Table I

presents the fault types of bugs with CVEs. Most bugs with

CVEs are dangerous memory operations that threaten confi-

dentiality or integrity, although people have also filed CVEs

for bugs that primarily affect availability, such as timeouts, out

of memory errors, and null dereferences.✎

✍

☞

✌
Few OSS-Fuzz bugs result in CVEs, and most filed CVEs

are for memory corruption bugs.

b) Limitations: Outsiders might independently co-

discover and file CVEs for vulnerabilities found by OSS-Fuzz.

Thus, the actual number of CVEs filed by project members in

response to an OSS-Fuzz discovery is likely even lower.

2Buffer overflow write (40), heap use after free write (2), unknown write
(2), stack use after return write (1), container overflow write (1).

3Buffer overflow read (16), unknown read (8), heap use after free read (6),
use of uninitialized value (4).

4Divide by zero (1), signal abrt (1), negative size param (1), floating point
exception (1), assert (1), memory leak (1).
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Fault type OSS-Fuzz bugs with filed CVEs

dangerous memory write2 46

dangerous memory read3 34
null dereference 4
out of memory 4
heap double free 2
timeout 2

other4 6

TABLE I: Number of CVEs filed per fault type. Most CVEs

are filed for memory corruption bugs.

V. FAULT LIFECYCLE

Prior work [33] found that the median lifespan — the time

between fault introduction and repair — of vulnerabilities was

438 days. Numeric errors and buffer overflows specifically had

median lifespans of 659.5 and 781 days respectively. In that

time, an attacker may find and exploit such vulnerabilities.

Continuous fuzzing aims to shorten bug lifespans and help

developers stay ahead of attackers. We study the following

aspects of OSS-Fuzz bugs’ fault lifecycles:

Time-to-detect The time from fault introduction to detection.

Time-to-fix The time from fault detection to repair.

The remainder of the section examines these aspects and

their relationships to fault characteristics discussed in Sec. IV.

A. Time-to-detect

By continuously probing software for faults, continuous

fuzzing aims to shorten the time to detect regressions. Heart-

bleed, a buffer overflow read vulnerability in OpenSSL, was

unfixed for two years [21], but is now a demonstrative bug

for fuzzing [53]. Continuous testing techniques, such as con-

tinuous fuzzing, can shorten the lifespan of bugs and security

vulnerabilities through rapid fault detection. Such lengthy bug

lifespans, and the prospect of shortening such lifespans via

continuous fuzzing, motivate the following research question:

RQ-T2D How much time elapses between fault introduction

and detection (the time-to-detect)?

We also probe the relationship between fault characteristics

and time-to-detect to reveal, for example, whether bugs of

certain fault types take longer to detect.

RQ-T2D-FC What relationships exist between fault charac-

teristics and time-to-detect?

a) Methodology: ClusterFuzz, after finding a bug, identi-

fies the range of commits where the regression was introduced.

We use the right time boundary of the regression range as

the time of fault introduction. In the example presented in

Figure 2, the time of fault introduction (2019-12-19-03:18

UTC) is the second datetime (201912190318) of the “range”

value of URL in the “Regressed” field. We use the time of bug

reporting as the time of bug detection; in Figure 2, the time

of bug reporting is “Fri, Jan 10, 2020 7:15 AM EST.” The

time-to-detect is the time elapsed between these two times.

Fig. 5: Density of bugs with respect to time-to-detect. Bugs

are often detected quickly, with the time intervals following

an exponential distribution.

b) Results: Figure 5 shows the density of bugs over the

time-to-detect axis. The density of bugs in a histogram bin

is the number of bugs in the bin normalized by the width of

the bin and the total number of bugs shown in the histogram.

Such normalization makes the areas of the bars sum to one,

akin to how the area under a probability density function

sum to one (100% probability). The time-to-detect a bug is

exponentially distributed (p < 10
−308 via a Kolmogorov-

Smirnov goodness of fit test). OSS-Fuzz’s fuzzers find most

regressions quickly, with a median time-to-detect of 5 days.

Our findings complement, with in-the-wild data, prior findings

on the exponential cost of fuzzing [54]. Since coverage-guided

fuzzing is a guided search through a combinatorially large

search space of inputs, and fuzzer coverage plateaus over

time [31], the exponential distribution is expected. The short

time-to-detect provides further evidence that coverage-guided

fuzzing is well-suited for continuous testing.

✎

✍

☞

✌
OSS-Fuzz detects the majority of identified regressions

within a week.

Figure 6a compares the time-to-detect among various char-

acteristics. Flaky bugs take much longer to detect than non-

flaky bugs, with medians of 34 vs. 4 days to detect flaky vs.

non-flaky bugs (p < 10
−109 via a two-sided Mann-Whitney

U test on the null hypothesis that flaky and non-flaky bugs

have the same time-to-detect). On the other hand, ClusterFuzz-

identified fuzz blockers are found much earlier than non-

blockers (medians of 0.6 vs. 3.3 days, p < 10
−82, excluding

the fault types that ClusterFuzz do not report fuzz blockers

on). Since fuzz blockers appear very frequently by definition,

such bugs would appear more often in the search space, which

increases the probability of discovering a fuzz blocker early.
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(a) Times-to-detect among flaky bugs, fuzz blockers, and the 15
most common fault types. The dotted line is the median time
over all analyzed bugs. Flaky bugs and multiple fault types take
significantly longer to detect. Fuzz blockers and multiple fault types
take significantly shorter to detect.

(b) Comparison of times-to-detect of bugs that developers (do not) fix.
The lower (resp. upper) dotted line is the median time-to-detect over
all fixed (unfixed) non-flaky/blocker bugs. Unfixed bugs generally
have longer times-to-detect.

Fig. 6: Times-to-detect among bugs with various characteris-

tics. A † means flaky bugs and fuzz blockers are excluded.

✎

✍

☞

✌
OSS-Fuzz finds flaky bugs late, and ClusterFuzz-identified

fuzz blockers early.

The respectively long and short times-to-detect of flaky bugs

and fuzz blockers prompt us to exclude these bugs when

comparing fault types to prevent flakiness or fuzz blockers

from acting as confounding variables. For example, flaky bugs,

if not excluded, would skew timeout time-to-detect upwards

due to the high prevalence of flaky timeouts. The median time-

to-detect non-flaky, non-blocker bugs is 4.8 days.

Timeouts (median time-to-detect of 32 days, p < 10
−158 via

two-sided U test on the null hypothesis that timeouts and non-

timeouts have the same time-to-detect) and out of memory

errors (15 days, p < 10
−25) take significantly longer than

other bug types to detect. One possibility is that timeouts and

OOMs can result from runaway looping or recursion. Fuzzers’

coverage metrics often do not account for loop iterations or

recursion depth, which reduces the benefit of coverage in

guiding the input search towards inputs that consume a lot of

resources. Specialized fuzzers such as SlowFuzz [37], which

optimizes for path length, PerfFuzz [38], which optimizes for

basic block execution counts, or mem (in FuzzFactory [40]),

which optimizes for memory allocations, can guide the search

for such bugs more effectively and reduce the time-to-detect.☛
✡

✟
✠Timeouts and out of memory errors take longer to detect.

Integer overflows (12 days, p < 10
−13) and divide by zeroes

(10 days, p = 0.0007) also take longer to detect. Meanwhile,

memory leaks (1.8 days, p < 10
−20), signal abrt (2.1 days,

p < 10
−14), use of uninitialized values (2.1 days, p < 10

−13),

unknown reads (2.3 days, p < 10
−5), and null dereferences

(2.5 days, p < 10
−22) are faster to detect. Some of the

variance between fault types may be the result of ClusterFuzz’s

prioritization of ASan, which detects memory access violations

and leaks, and MSan, which detect use of uninitialized values,

over UBSan, which detects undefined behavior such as integer

overflow or divide by zero [55].

The three longest to detect fault types — timeout, OOM, and

integer overflow — are by no means sparse; they are the three

most prevalent fault types (Section IV-A). Despite the extra

time taken to find such bugs, they are plentifully discoverable.☛
✡

✟
✠Slower-to-detect fault types are not sparse.

Figure 6b compares times-to-detect among fixed and un-

fixed bugs. We again exclude flaky bugs or fuzz blockers to

avoid confoundment, especially since flaky bugs are largely

unfixed. Unfixed bugs often take longer for fuzzers to detect

(p < 10
−55 via a two-sided U test on the null hypothesis that

fixed and unfixed bugs have equal times-to-detect). Perhaps

the longer times-to-detect of unfixed bugs is indicative of fault

complexity that makes the bugs both harder for fuzzers to find

(hence the long time-to-detect) and harder for people to fix

(hence the bug is unfixed). Perhaps developers are also more

likely to forget about the details of an older code change and

neglect to fix an older bug.☛
✡

✟
✠Unfixed bugs take longer to detect.

Since timeouts and out of memory errors are dispropor-

tionately unfixed, and unfixed bugs take longer to detect, we

examine (un)fixed bugs among these two fault types to gauge

the influence of unfixed bugs on the long times-to-detect of

these two fault types. While unfixed bugs do take longer to

detect among bugs of both fault types (p < 10
−5 via a two-

sided U test for timeouts, p < 10
−6 for OOMs), fixed timeouts

take longer to detect than fixed non-timeouts (p < 10
−125),

and unfixed timeouts take longer to detect than unfixed non-

timeouts (p < 10
−16). The same pattern appears in OOMs

(p < 10
−17 comparing fixed OOMs vs. non-OOMs, p = 0.003

comparing unfixed OOMs vs. non-OOMs). Thus, timeouts and
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Fig. 7: Density of bugs with respect to time-to-fix. Bugs

are often fixed quickly, with the time intervals following an

exponential distribution.

OOMs’ long times-to-detect are likely also attributable to

factors other than those driving an increase in time-to-detect

among unfixed bugs.

B. Time-to-fix

Continuous fuzzing is most effective if developers promptly

fix bugs. Otherwise, an accumulation of bugs can leave open-

ings for attackers and hamper discovery of more bugs down-

stream of the unfixed faults. To promote prompt repair, OSS-

Fuzz applies a 90-day disclosure policy. The severity, ease of

repair, and developer attitudes toward bugs may affect the time

to fix bugs. Prior work found that developers fix severe bugs

almost twice as fast [56]. Moreover, fuzzing campaigns can

generate an overload of low-priority bug reports [48], [50],

suggesting a need to direct fuzzing efforts towards high-value

bugs that developers eagerly fix. We thus ask:

RQ-T2F How much time elapses between fault detection and

repair (the time-to-fix)?

RQ-T2F-FC What relationships exist between fault charac-

teristics and time-to-fix?

a) Methodology and Results: We compute time-to-fix as

the time from bug reporting to patch verification (Comment

1 in Figure 2). Figure 7 shows the density of bugs over the

time-to-fix axis. The time-to-fix is exponentially distributed

(p < 10
−308 via a Kolmogorov-Smirnov goodness of fit test).

Out of all fixed bugs, 90% (16952/18759) are fixed within the

90-day disclosure deadline; the median time-to-fix is 5.3 days.✎

✍

☞

✌
Most bugs are repaired well within the 90-day disclosure

period, and over half are fixed within a week.

Figure 8 compares the time-to-fix among various bug cat-

egories. Flaky bugs, the vast majority of which are already

unfixed, take an order of magnitude longer to repair, with a

median time-to-fix of 43 days, versus 5.1 days for non-flaky

Fig. 8: Times-to-fix. A † means flaky bugs and fuzz blockers

were excluded. The dotted line is the median time over all

analyzed bugs.

bugs (p < 10
−54 by a two-sided U test on the null hypothesis

that flaky and non-flaky bugs have the same time-to-fix). Given

the difficulty of attempting to patch a hard-to-reproduce bug,

the very long time-to-repair is unsurprising and supports prior

findings [57] on bugs with reproducibility issues.☛
✡

✟
✠Flaky bugs, if fixed at all, are fixed very slowly.

Since fuzz blockers impede fuzzing performance by block-

ing program exploration downstream from the bug, quickly

remedying blockers is important for a healthy fuzzing cam-

paign. We find, however, that developers fix ClusterFuzz-

identified fuzz blockers more slowly, with a median of 12 days

as opposed to 4 for non-blockers (p < 10
−63 via a two-sided

U test, excluding the fault types that ClusterFuzz do not report

fuzz blockers on). Our finding confirms prior concerns [48] on

developers’ low prioritization of fuzz blockers, suggesting a

need for greater awareness on the need to address blockers.☛
✡

✟
✠Fuzz blockers are fixed less, rather than more, urgently.

The long times-to-fix of flaky bugs and fuzz blockers prompt

us to once again exclude these bugs when comparing fault

types to prevent flakiness or fuzz blockers from acting as

confounding variables. Timeouts (median time-to-fix of 10

days, p < 10
−45 via two-sided U test on the null hypothesis

that timeouts and non-timeouts have the same time-to-fix),

stack overflows (7.5 days, p < 10
−5), and undefined shifts

(7 days, p < 10
−10) have longer times-to-fix, while memory

leaks (2.3 days, p < 10
−18) and divide by zeroes (2.8 days,

p < 10
−4) have shorter times-to-fix.

Although these aforementioned fault types can indicate

faulty logic or impact availability via abnormal termination,

they do not entail obvious consequences for confidentiality or

integrity. Yet timeouts and memory leaks have the longest and
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shortest times-to-fix respectively among the top 15 fault types.

Severity does not always correlate with the urgency of a patch.☛
✡

✟
✠Fault type severity does not always correlate with fix speed.

The short times-to-fix of memory leaks and divide by zeroes

may suggest that such bugs are easier to fix, and thus fixed

more quickly. Meanwhile, timeouts and stack overflows, even

if not flaky, can be more annoying to repeatedly reproduce in

the debugging process, and may be more difficult to localize

and repair, resulting in longer times-to-fix.

Buffer overflow writes (2.8 days, p < 10
−6) also have

shorter times-to-fix. Since such bugs are so severe — an

attacker might execute arbitrary and malicious code — we

are encouraged to see urgency in responding to such bugs.

✎

✍

☞

✌
Buffer overflow writes, which are very severe, are fixed

more urgently.

b) Limitations: Some bugs have very short times-to-

repair; 40 were fixed within one hour after the bug was

reported. While some of these bugs may be repaired very

quickly due to a rapid response to the bug report, we suspect

that some bugs were discovered and patched before OSS-Fuzz

had produced a bug report. We are not aware of an effective

method to distinguish between the two cases, but the small

number of such bugs poses only a marginal threat to validity.

VI. LONGITUDINAL EVOLUTION

A motivation behind continuous fuzzing, as opposed to one-

off fuzzing campaigns, is the benefit of continuously finding

new bugs as software evolves. The continuous nature of OSS-

Fuzz motivates the following research question:

RQ-L: How does the bug discovery rate change over time?

a) Results: Figure 9 show cumulative numbers of bugs

found in projects with >200 discovered bugs. Many projects’

cumulative distributions exhibit punctuated equilibria, with

periods of slow growth punctuated by bursts of rapid growth.

Punctuated equilibria [58] appear in genetic algorithms [59]

— which AFL, libFuzzer, and honggfuzz use as part of their

search strategy — and in software evolution [60]–[62]. Fuzzers

also exhibit punctuated equilibria in the long-term growth

in coverage [31], [63]–[75] and number of bugs found [64],

[67], [69], [70], [75]–[78]. We present evidence of punctuated

equilibria in multi-year continuous fuzzing campaigns.

ClusterFuzz prioritizes hardware resources towards fuzz

targets that are actively discovering new coverage [55]. Such a

selection strategy increases selection pressure, which steepens

peaks and flattens plateaus in the number of bugs found.

✗

✖

✔

✕

Bug discovery over time often exhibit punctuated equilib-

ria, with short bursts of rapid bug discovery, rather than a

consistent trickle of bugs.

VII. DISCUSSION AND IMPLICATIONS

We are encouraged to see that OSS-Fuzz quickly finds re-

gressions and developers quickly fix them. Our results provide

real-world evidence of continuous fuzzing’s effectiveness.

Flaky bugs, however, are problematic for developers, even if

the bug appears often. The most flaky fault types, timeout and

out of memory, may owe their flakiness from unpredictable

resource availability or usage. Flakiness is also a symptom of

a failure to control non-deterministic behavior during fuzzing,

and flaky bugs may point developers to non-deterministic code

that might require remediation for effective testing.

Timeouts and out of memory errors, respectively the first

and third most common fault types, stand out as problematic.

Even among non-flaky bugs, timeouts and OOMs are slower

to detect, more often unfixed, and slower to fix. Specialized

fuzzers [37], [38], [40] can find more such bugs in less

time (countering the slow time-to-detect); however, existing

widely-used fuzzers are already finding many such bugs. The

lower severity of resource exhaustion bugs, combined with the

potential human annoyance of reproducing such bugs, likely

contributes to developers ascribing lower priority to such bugs.

Memory leaks and assertion violations, two other low-

severity fault types, are common in fuzz blockers, which block

fuzzing downstream from the bug. To mitigate the blockage,

a continuous fuzzing system can temporarily disable leak

detection or assertions to fuzz past the blockers. Developers

fix fuzz blockers more slowly, and these automatic mitigations

offer stopgap solutions until someone fixes the blockers.

On the other end of the severity scale, despite OSS-Fuzz

finding thousands of severe bugs, such as memory corruption

vulnerabilities, very few bugs received CVEs. This is a weak-

ness in open-source security, as tools that rely on CVEs as a

source of threat intelligence are not aware of potential threats

in open-source software, which can percolate to computer

systems and other software that depend on compromised open-

source software. Developers without a security background

might not be aware of the impact of CVEs, or might not wish

to navigate through the process of requesting CVEs. More

awareness and guidance may help to alleviate the issue.

Since fuzzing campaigns often exhibit punctuated equilibria

with bursts of rapid bug discovery, developers may get an

unpleasant surprise due to an avalanche of bugs in a short

timeframe. A rapid dump of bugs can overwhelm developers

and elicit defensive behavior [48]. Alerting developers of this

phenomenon would mentally prepare them, avoiding surprises.

Fuzzing researchers expressed need for a fair time budget

when evaluating fuzzers [8]. We suggest five days, OSS-Fuzz’s

median time-to-detect, as an option. Short time budgets (e.g.,

one hour) can introduce bias towards certain fault types.

a) Limitations: OSS-Fuzz is a continuous fuzzing ser-

vice for open source software. Our findings might not extend

to one-off fuzzing, commercial software, continuous fuzzing

frameworks other than ClusterFuzz, or fuzzers other than the

coverage-guided fuzzers AFL, libFuzzer, and honggfuzz.

���

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 17,2022 at 22:08:21 UTC from IEEE Xplore.  Restrictions apply. 



(a) binutils (b) clamav (c) dlplibs (d) envoy (e) ffmpeg (f) firefox

(g) freetype2 (h) gdal (i) graphicsmagick (j) harfbuzz (k) imagemagick (l) keystone

(m) librawspeed (n) libreoffice (o) llvm (p) poppler (q) skia (r) wireshark

Fig. 9: Cumulative numbers of bugs found in projects with >200 bugs. The numbers of bugs found over time often exhibit

punctuated equilibria, a common phenomenon in genetic algorithms such as those used in coverage-guided fuzzers.

VIII. RELATED WORK

Our work joins the corpus of empirical studies of software

bugs, which have also examined fault types [33]–[35], [79]–

[83], flakiness or irreproducibility [57], [81], [84]–[86], un-

fixed bugs [81], [87], [88], CVEs [33]–[35], [89], [90], and

fault lifecycles [56], [81], [82], [85], [90]–[92]. In particular,

Miller et al. [83], an empirical study of the reliability of Unix

utilities, coined the term “fuzz” to denote a tool for randomly

generating test inputs; they examined fault types of fuzzer-

found bugs, similar to our empirical analysis of OSS-Fuzz.

MITRE’s 2020 CWE Top 25 [93] lists the most impactful

common software weaknesses observed in 2018–2020. Out-

of-bounds write (CWE-787), out-of-bounds read (CWE-125),

improper restrictions within memory buffer bounds (CWE-

119), use after free (CWE-416), integer overflow (CWE-

190), null dereference (CWE-476), and uncontrolled resource

consumption (CWE-400) rank among the top 25. OSS-Fuzz

found all of the above.

The 2019 Shonan Meeting on Fuzzing and Symbolic Ex-

ecution [8] identified a need for more empirical analysis on

fuzzing. They expressed interest in difficult or “deep” bugs,

fair time budgets for evaluating fuzzers, and human-fuzzer

interaction. Our empirical work sheds light on the current state

of fuzzing in practice, illuminating the baseline to improve on.

We grow the literature on how practitioners interact with

fuzzing. An industry report [94] found that writing fuzz targets

required training, blockers are obstacles, and dirty hacks (e.g.,

disabling error reporting) can hide bugs from fuzzers.

Prior work examined continuous fuzzing for OS kernels.

syzbot [7] is a continuous fuzzing system for kernels. A

study [76] examined 2269 syzbot-found bugs in Linux,

FreeBSD, NetBSD, and OpenBSD . The study analyzed the

time to fix bugs (median of 38 days for Linux, <20 days

for BSD) and fault types (debug checks, assertions, and use

after free were among the most common). A report [95] on

implementing continuous fuzzing for enterprise Linux kernels

identified fuzz blockers as obstacles and found 132 bugs, 41 of

which were reproducible. Lockups, deadlocks, and warnings

were common fault types. We augment the existing literature

on continuous fuzzing by analyzing a larger dataset of bugs

in a diverse set of open source software.

IX. CONCLUSION

We conduct the first empirical analysis of OSS-Fuzz bugs,

evaluating 23,907 fuzzer-found bugs spanning over 4 years and

316 software projects. We fill a need for empirical evaluations

of fuzzing, shine light on the state of the practice, and

unveil insights for research and practice. While we examine

bug reports, OSS-Fuzz and its participant projects contain

other artifacts, such as fuzz targets, configurations, and code

commits. We suggest an examination of these artifacts as part

of a deeper study of continuous fuzzing. We provide an open-

science package: https://doi.org/10.5281/zenodo.4625207
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