
1340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

CacheTree: Reducing Integrity Verification
Overhead of Secure Nonvolatile Memories

Zhengguo Chen , Youtao Zhang , Member, IEEE, and Nong Xiao, Member, IEEE

Abstract—Emerging nonvolatile memories (NVMs), while
exhibiting great potential to be DRAM alternatives, are vul-
nerable to security attacks. Secure NVM designs demand data
persistence on top of traditional confidentiality and integrity pro-
tection. A simple adaption of existing secure memory designs
would incur non-negligible overheads, including performance
degradation, NVM lifetime reduction, and energy consumption
increase. In this article, we propose CacheTree to address the
integrity verification overhead for secure NVMs. By constructing
extra Merkle trees (MTs) on top of metadata cache, CacheTree
helps to authenticate the volatile cache contents, which enables
the adoption of write-back policy and prevents frequent NVM
writes in persisting metadata. We then adopt CacheTree to
address the integrity verification in secure NVM, in particular,
the overheads in persisting message authentication codes (for
protecting the integrity of user data at memory line level) and
persisting the main MT (for protecting the integrity of the whole
memory space). Our experimental results show that CacheTree,
with less than 0.5% storage overhead, achieves up to 20.1%
performance improvement, 44.3% lifetime increase, and 43.7%
energy consumption reduction over the state-of-the-art solutions.

Index Terms—CacheTree, integrity, nonvolatile memories
(NVMs), security.

I. INTRODUCTION

EMERGING nonvolatile memories (NVMs), e.g., PCM
and ReRAM [15], [30], [36], [42], exhibit great poten-

tial to be DRAM alternatives in future computers. NVM-
based memory subsystems, in addition to having density and
scalability advantages, can effectively support data persis-
tence, allowing fast recovery from system crashes or power
failures. However, such memory systems are vulnerable to

Manuscript received March 19, 2020; revised June 7, 2020; accepted July
16, 2020. Date of publication August 11, 2020; date of current version
June 18, 2021. This work was supported in part by the National Key Research
and Development Program of China under Grant 2019YFB1804502; in part by
the National Natural Science Foundation of China under Grant 61832020 and
Grant 61802418; in part by the Natural Science Foundation of Guangdong
Province under Grant 2018B030312002; in part by the Major Program of
Guangdong Basic and Applied Research under Grant 2019B030302002;
in part by the Program for Guangdong Introducing Innovative and
Entrepreneurial Teams under Grant 2016ZT06D211; and in part by the Key-
Area Research and Development Program of Guangdong Province under
Grant 2019B010107001. This article was recommended by Associate Editor
S. Ghosh. (Corresponding authors: Youtao Zhang; Nong Xiao.)

Zhengguo Chen is with the State Key Laboratory of High Performance
Computing, College of Computer, National University of Defense Technology,
Changsha 410000, China (e-mail: zgchen.nudt@foxmail.com).

Youtao Zhang is with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260 USA (e-mail: zhangyt@cs.pitt.edu).

Nong Xiao is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510275, China (e-mail: xiaon6@sysu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2020.3015925

security attacks [33], including confidentiality attacks, such
as bus snooping and memory scanning attacks [5], [8], [40]
and integrity attacks, such as splicing, spoofing and replay
attacks [3], [23].

Traditional DRAM-based secure memory adopts
counter mode AES algorithms, e.g., Galois counter mode
(GCM) [19], [37], to achieve high-performance data encryp-
tion and authentication. The memory is partitioned to four
regions that hold ciphertext, counters, message authentication
codes (MACs), and Merkle tree (MT) nodes, respectively.
While the ciphertext region saves the encrypted data, the
counter region saves the cleartext counter values to support
GCM encryption. A cryptographic signature, referred to as
MAC, is generated for each cacheline to ensure the data
integrity at the block level, while an MT is then built for the
whole memory space to ensure the overall data integrity [12].
The data other than ciphertext are referred to as security
metadata.

Many optimization schemes have been proposed to reduce
integrity verification overhead. Rogers et al. proposed to adopt
Bonsai MT (BMT) [25] that builds the MT on counters instead
of MACs, leading to significant tree size and verification
overhead reduction. Rakshit and Mohanram [23] proposed to
create an extra small MT for the frequently accessed memory
data and keeps its root in on-chip secure register to reduce
authentication overhead.

Constructing secure NVM needs to enforce data persistence
over security protection. All the updates to security metadata
need to be persisted along with the updates to the cipher-
text [17], [24], [39], [45]. Given the nontrivial metadata cache,
it is impractical to install battery or super capacitors to flush
all buffered data at system crash time [4], [44]. A simple solu-
tion to implement secure NVM is to persist security metadata
to NVM at each write, which introduces tens of times NVM
writes and thus degrades both the system performance and
the NVM chip lifetime. Osiris [39] successfully integrates the
write back policy in persisting counters. Anubis [44] miti-
gates the recovery overhead but increases the number of NVM
writes as it records metacache update in NVM. In summary,
it remains challenging to achieve high-performance security
protection with data persistence.

In this article, we propose CacheTree for secure NVMs. By
constructing extra MTs for dirty entries in metadata caches,
Cachetree enables the adoption of the write-back policy
rather than the write-through policy for metadata caches, we
effectively address integrity verification overhead for secure
NVMs.

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9607-7368
https://orcid.org/0000-0001-8425-8743

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1341

(a)

(b)

Fig. 1. Counter mode encryption and authentication.

Our contributions are as follows.
1) By constructing extra MTs on top of metadata cache,

CacheTree helps to authenticate the volatile cache con-
tents, which enables the adoption of write-back pol-
icy and prevents frequent NVM writes in persisting
metadata.

2) We present two use case studies—MACTree and
HNodeTree. MacTree creates an extra MT on MAC
cache to effectively reduce the number of NVM writes
in persisting MACs; HNodeTree creates an extra MT
on dynamically chosen nodes of the main MT, which
reduces the number of MT nodes to be checked and
updated when authenticating memory accesses.

3) We evaluate the design and compare it with the state-
of-the-art solutions. Our experimental results show that
CacheTree, with less than 0.5% storage overhead,
achieves up to 20.1% performance improvement, 44.3%
lifetime increase, and 43.7% energy consumption reduc-
tion over the state-of-the-art solutions.

II. BACKGROUND

A. Attack Model

Before designing the secure NVM system, we first define
the trusted computing base (TCB) and the threat model.
Similar to that in traditional trusted computing, our TCB
includes the processor only, i.e., on-chip components are trust-
worthy while off-chip components, such as memory buses
and memory modules are vulnerable to security attacks. We
assume the OS is not trustworthy.

In this article, we are to defend against three types of secu-
rity attacks, similar to those defended in DRAM-based secure
memory schemes [12], [25], [28], [37]: 1) we are to encrypt
the user data to protect data confidentiality, i.e., to prevent
attackers from revealing the cleartext; 2) we are to authen-
ticate the user data to prevent attackers from compromising
the data; and 3) we are to check the overall data integrity to
prevent data splicing, spoofing, and replay attacks.

B. Counter-Mode Encryption

Existing secure memory designs widely adopt counter mode
AES encryption and authentication, in particular, GCM algo-
rithms [19]. Fig. 1(a) shows the procedure of counter mode
encryption. We assume the encryption is at the 64 B memory
line granularity. To encrypt, the system generates a one-time

Fig. 2. Overview of the BMT.

pad (OTP) by applying AES encryption on a seed that includes
the memory address, a counter value, and an encryption initial-
ization vector (EIV). The system then generates the ciphertext
(plaintext) by XORing the OTP with the plaintext (cipher-
text) for encryption (decryption). A 64-b counter is assigned to
each memory line so that every update increments the counter,
which avoids using the same OTP before and after each write.
A counter overflow incurs large overhead as we need to change
the EIV and re-encrypt all memory lines. To mitigate counter
space and overflow overheads, Yan et al. proposed the split-
counter design [37] to group 64 counters in one memory
line, which includes a 64-b shared major counter and 64
7-b minor counters, shown in Fig. 1(a). If a minor counter
overflows, the system increments the major counter, resets all
the minor counters, and re-encrypts all 64 memory lines in
the group.

C. Integrity Verification

To prevent malicious modification of memory content, the
system creates a MAC for each cacheline. As shown in
Fig. 1(b), the MAC is generated from the ciphertext together
with the data address, the counter, and an initialized vector
(AIV), using a hash function, e.g., AES-based GHASH func-
tion [19], [37]. A MAC is usually 128-b long [37]. For each
memory access, the system needs to recompute the MAC and
verify it with the stored MAC. Any malicious modification to
data, counter, or MAC shall lead to a MAC mismatch, hence
the detection.

To defend data replay attacks, the system builds an MT on
all MACs with cryptographic hash, and saves the root hash
in an on-chip secure register. A memory read access needs to
recompute the root hash and compare against the saved one to
verify integrity [3], [23]. Given that the verification overhead
is linear to the height of the tree, Rogers et al. proposed the
BMT design [25] that builds the tree on counters rather than
MACs.

Fig. 2 illustrates how a BMT works with the split-counter
scheme [6], [39], [44]. At the leaf node level, each memory
line contains 64 counters. With each memory line produc-
ing an 8 B HMAC (hash MAC), the 8-ary BMT saves eight
HMACs in each internal MT node. The root hash is kept
in a secure on-chip register. A BMT verification (or update)
involves checking (or updating) all nodes along a path. While
the verification can be done in parallel, the update needs to
be in serial from bottom to top, as the upper-level HMACs
depend on contents of the lower-level nodes.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Fig. 3. Overview of the SGX-style tree.

Fig. 4. Overview of secure NVM.

Another popular MT design, referred to as SGX-style tree
in this article, was designed to process the verification (and
the update) in parallel [9], [13]. As shown in Fig. 3, an SGX-
style tree keeps counters in both the leaf nodes and the internal
nodes. When incrementing a counter in the child node, we
increment its parent node accordingly and repeat the process
until the root. Each node also keeps an HMAC that is gen-
erated from the parent’s as well as the children’s counters.
While a memory write needs to increment all nodes along its
authentication path, these updates can be done in parallel. The
SGX-style MT was widely adopted in recent studies, such as
Synergy [28], VAULT [34], and Morphable Counters [27].

D. Secure NVM Access

Constructing secure NVM demands data persistence on top
of security protection, which significantly complicates the
design. As memory writes need to update both user data
and security metadata, a simple approach is to adopt write-
through policy for metadata caches, and persist everything to
NVM, including ciphertext, counter, MAC, and MT nodes,
as shown in Fig. 4. That is, a write operation may commit
only after updating ciphertext and metadata in both cache and
NVM. Clearly, such an approach introduces large performance
overhead and degrades NVM chip lifetime dramatically.

In Section II-C, we show that there are two types of MTs,
i.e., BMT and SGX-style trees. We next elaborate that the
persistence requirements are different for the two types.

Since a BMT tree is built on top of counters, its internal
nodes are generated hashes, and the root hash is kept in an on-
chip persistent register, it is unnecessary to persist its internal
nodes to NVM [39], [44]. That is, keeping some internal nodes
in MT node cache is just to speed up the verification process
for reads. As long as the counters are persisted in NVM, all
the internal nodes can be reconstructed after a system crash,
with the integrity being checked against the root hash [33].
However, an SGX-style tree needs to persist internal MT nodes
to support data persistence. This is because its internal nodes

keep derivative counters, which cannot be reconstructed if lost
during a system crash. As a result, we need to persist all the
nodes along the path, as shown in Fig. 4.

Servicing memory reads in secure NVM is similar to that
in secure DRAM-based memory, which includes fetching and
checking all nodes on the path from the leaf to the root. To
mitigate the overhead, the memory fetches happen in parallel
while secure hashes, e.g., MAC and HMAC, are processed
using a pipeline AES implementation [5], [39].

Recent studies mitigate the update overhead in secure
NVM [17], [38], [39], [45]. Given the counter mode encryp-
tion and decryption achieves high performance, the studies
focus mainly on mitigating the update of security meta-
data. Osiris [39] successfully integrates the write back policy
in persisting counters. Anubis [44] mitigates the recovery
overhead by recording the updates to metadata cache in
NVM. Unfortunately, it remains challenging to achieve high-
performance security protection with data persistence.

III. CACHETREE DESIGN PRINCIPLES

In this section, we present CacheTree, a mechanism that
builds an extra MT on security metadata cache. The design
goal is to enable the adoption of write-back cache replace-
ment policy for the metadata caches. We elaborate its design
principles in this section and employ it to address the design
challenges in secure NVM in the following section.

Fig. 5 shows how CacheTree works. Given a four-way set-
associative security metadata cache C, we assume one cache
set contains three cache blocks B0, B1, and B2 and one empty
cache entry. As we discussed, a simple approach to achieving
persistence in secure NVM is to adopt write-through cache
replacement policy—an update not only updates the copy in
the cache but also the copy in the NVM, as shown in Fig. 5(a).
When the system crashes, we do not need to recover the secu-
rity metacache as the NVM keeps the most up-to-date copy.
The limitation of such an approach is that it increases the
number of NVM writes.

As a comparison, adopting write-back policy cannot ensure
persistence. For example, assume at an update time, we only
update the copy in the metacache, e.g., blocks B0 and B1.
When the system crashes, since the cache is a security meta-
cache, we need to recover these blocks to authenticate the
ciphertext. We may find a mismatch of the stale copy of B0
and its associated ciphertext, however, we cannot distinguish
it from the mismatch that an attacker maliciously modifies B2.

In this article, we propose CacheTree to create extra MTs on
metacaches such that we can support persistence with write-
back policy. The extra MT is not an SGX-style MT. However,
it is similar to BMT, built by iteratively hashing from the leaf
nodes to Root. Similar as that in previous studies [39], [44],
their root hashes are kept in secure on-chip registers. However,
the most notable difference between CacheTree and the MTs in
existing schemes is that CacheTree is built on cache contents
while previous MTs are built on memory lines.

It is challenging to build an MT on cache contents as the
contents are lost during a system crash. For a set-associative
cache, a large number of memory lines may map to any

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1343

(a) (b) (c) (d)

Fig. 5. (a) Overview of write-through update. (b) Write-back update. (c) CacheTree update. (d) CacheTree recovery.

physical location in a cache set. To ensure the determinis-
tic regeneration of the MT root for authentication, we need
to determine not only the contents (i.e., the memory lines)
involved in generating the old root but also their orders. We
next discuss the three critical design issues in CacheTree.

1) Determine What Memory Lines/Cache Blocks Are
Involved: The first design issue is to determine what
memory lines are involved in generating the root hash.
Simple approaches includes tracking all addresses in
NVM and/or mapping the cache contents to NVM (as
that in Anubis [44]). However, these approaches would
introduce extra NVM writes that we are to avoid. In this
article, we devise to use the dirty cache entries only,
which enables the identification of involved memory
lines without tracking overhead. That is, since the secu-
rity metacache is to authenticate the ciphertext, a dirty
entry in the metacache indicates a mismatch of its
ciphertext and the stale copy of security metadata in
NVM.

2) Determine the Contents of the Involved Cache Blocks:
The next design issue is to track the cache contents
used in generating the root hash. Given persisting dirty
entries in NVM increases NVM writes, in this article,
we exploit the characteristic of security metacache, i.e.,
it is to authenticate the ciphertext while the ciphertext
in NVM is always up-to-date. We therefore regenerate
the metacache contents based on the ciphertext of the
identified memory lines.1

3) Determine the Order of Involved Cache Blocks: Given
a fixed set of cache blocks, we would generate differ-
ent MT roots if computing with different orders. Since a
memory line may stay in any entry in a cache set, and its
exact location information will be lost in a system crash,
we decide to choose a fixed order in computing the
root hash. This article uses the following rules to order:
A) dirty entries are ordered using their tag values and
B) clean and empty cache entries are placed as dummy
block (all 0 s) at the end of the set. In Fig. 5(c), assume
B0 and B1 are dirty entries, B2 is clean, and Tag(B2) =
0×010, Tag(B1) = 0×011,Tag(B0) = 0×100, we then

1For the two case studies in this article, the cache entry can be regener-
ated from ciphertext. In the case if not, we need additional mechanisms, i.e.,
keeping additional metadata, to exploit the CacheTree design.

have “B1, B0, 0, 0.” Note, B2 is converted to all 0 s as
it is a clean entry.

Next, we discuss how to exploit CacheTree to recover the
cached contents of metadata and detect attacks if there is any.
We focus on metadata as the ciphertext has been persisted.
When we adopt the write back cache replacement policy, there
exists five types of metadata: (D1) the clean metadata; (D2)
the memory locations of the dirty metadata in meta cache;
(D3) the contents of the dirty metadata in meta cache; (D4)
the HMACs of our CacheTree for (D3); and (D5) the root hash
for (D4). From above discussion, before committing a write
operation, CacheTree persists (D5) in secure register similar
as that in existing secure memory designs. (D2) is identified
through mismatched updated ciphertext and stale metadata. In
the case of a system crash, we may lose (D3) and/or (D4). We
first generate (D3) based on (D2), i.e., B0 and B1 would be
identified and regenerated in the example, and then generate
(D4) according to our ordering rules. This produces a new
root hash. A mismatch of the new root hash and the saved
(D5) would alarm a security attack. Otherwise, the metadata
is successfully recovered so that the system can resume. A
system crash cannot mess up (D2) as it is persisted before
committing any write. For a security attack that alters (D2),
(D3), or (D4) would lead to a mismatch of (D5).

In summary, CacheTree enables the adoption of write-
back policy in persisting security metadata, which leads to
improvements on both performance and chip lifetime.

IV. CASE STUDY 1: THE MACTREE DESIGN

CacheTree is a powerful authentication mechanism that has
many applications. In this article, we employ it to address the
authentication overhead in secure NVM.

In our baseline secure NVM design, we integrate BMT
with Osiris. Choosing Osiris enables the write-back policy for
the counter cache. Choosing BMT helps to avoid persisting the
internal nodes of the MT. We will elaborate this choice in
the next section. While this baseline design significantly opti-
mizes the naive approach that persists everything, it still faces
large performance degradation over the secure memory design,
i.e., the one with no data persistence demand.

A. Persisting MAC Is Expensive

Fig. 6 compares the numbers of NVM writes and the
performance, respectively, when adopting cache-back or

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

1344 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

(a)

(b)

Fig. 6. Persisting MACs is expensive. (a) NVM writes. (b) Performance.

write-through replacement policies. From the figure, adopting
a write-through policy introduces on average 80% more NVM
writes and 11.4% performance degradation, indicating that it
is important to mitigate the overhead in persisting MACs.

While it is possible to persist critical data (e.g., ciphertext
and MACs) in NV cache [43], an NV-cache-based design tends
to incur larger overheads, making it less preferrable for imme-
diate integration in modern computer systems. Compared to a
traditional SRAM cache, an NV cache has longer write latency
and larger energy consumption [41]. Given a user data update
for secure NVM results in multiple writes to update user
data and security metadata, respectively, an NV-cache-based
design shall incur large performance, lifetime, and energy
consumption overheads, as shown in the experiments section.
Another solution is to persist MACs in parallel with ciphertext
using extra memory channels [28] and/or ECC chip, e.g., Intel
Optane memory module consists of 11 chips [1]. However,
NVM tends to suffer from high soft- and hard- errors, mak-
ing it critical to adopt strong ECC that uses more ECC chips
for extended NVM chip lifetime. Exploiting extra memory
channels tends to degrade system throughput. To reduce MAC
overhead, Synergy [28] stores MACs in the ECC area, which
can be written together with ciphertext. While it helps to
improve read performance by fetching ciphertext and MAC
in one read, Synergy creates an extra parity to ensure error
correction capability. Thus, it still need two NVM writes to
persist ciphertext, ECC, and MAC.

B. High Level Overview of Our Designs

Fig. 7 presents an overview of our designs in this article.
The blue blocks are the traditional security enhancement com-
ponents, including AES pipeline engine, MAC cache, counter
cache, MT cache, and a secure nonvolatile register to save the
root hash R0 of the MT. The orange blocks are those we added
to enable CacheTree. All on-chip components are trustworthy.

For a memory read that misses in the last level cache, the
memory controller accesses its ciphertext from the NVM and

Fig. 7. Overview of CacheTree.

accesses its corresponding metadata (counter, MAC, and MT
nodes) from the three metadata caches, respectively. Any miss
results in additional NVM read to fetch the needed data. The
memory controller then verifies the integrity by computing
and matching MAC and HMAC, decrypts the ciphertext, and
returns the requested plaintext.

For a memory write, the memory controller first checks if
the data is in the LLC and, if not, completes the integrity ver-
ification and decryption in the same way as that in servicing
a read. It then updates the security metadata, and reencrypts
and updates the requested data. As shown in Fig. 7, it con-
sists of four updates as follows. For its associated NVM
writes, we adopt asynchronous DRAM self-refresh (ADR) and
write-pending-queue (WPQ) techniques such that the memory
controller has enough power to flush the contents of WPQ to
NVM and guarantee the atomic update [11], [26], [29], [44].
We create two extra CacheTrees—MACTree and HNodeTree,
as shown in the figure. Given the extra MTs are small, we
keep all their nodes on-chip.

1) Updating the counter cache using Osiris [39].
2) Updating the MAC cache using MACTree.
3) Persisting the ciphertext to the NVM.
4) Updating the main MT using HNodeTree.

C. Design of MACTree

The MACTree scheme is a direct application the CacheTree
design. We create an extra MT on dirty MAC cache entries
and save its root hash R1 in a secure on-chip register.

Regarding the three design issues of CacheTree, we choose
to: 1) only use dirty MAC cache entries; 2) sort the cache
entries before hashing; and 3) regenerating the MACs from
ciphertext in case of system crashes.

When inserting a new cacheline in the cache or updating a
clean entry, we sort all entries in the corresponding cache set.
Given this order is not changed when we update entry contents
only or read the contents for authentication, we keep an m-b
flag for each cacheline (of 2m-way set associative cache) to
record its sorted location. When updating the MAC cache, we
may need to evict a cacheline to place the new line. We need
to persist the evicted dirty line before committing the write
operation.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1345

While MACTree maintains an extra MT, the overhead is
usually small. For example, for a 32 KB 4-way set associative
MAC cache, we only need to build a 4-level 8-ary MT. We
adopt a pipeline implementation of AES engine such that we
generate one HMAC per cycle, and overlap the computation
of multiple HMAC hashes with existing HMAC computations
of the major BMT.

D. MAC Recovery

We next briefly discuss the recovery using MACTree. Since
we adopt write-back policy for the MAC cache, its contents
will be lost if the system crashes. To recover its contents, we
have the following steps.

Step 1©: CacheTree first utilizes Osiris to recover the
counters in NVM if there any mismatches [39].

Step 2©: It computes all MACs (MACcomp) based on the
ciphertext and the counters, and matches the computed ones
with the saved MAC copies (MACold) in NVM.

Step 3©: Assuming there is no malicious attack, a MAC
mismatch indicates that the MACcomp is the nonpersisted dirty
MAC in the MAC cache before crash. Therefore, at this step,
we collect all mismatched MAC lines (64 B) and placed them
to the MAC cache according to their memory addresses. We
place the computed MAC MACcomp in the MAC cache and
mark them as dirty.

If multiple lines are brought to one cache set, we place them
in sorted order (based on their memory addresses). The num-
ber of lines mapped to one cache set must not be bigger than
the number of cache ways. Otherwise, we stop the recovery
and alarm the attack.

Step 4©: We rebuild the extra MT using the contents in
the MAC cache. Empty cachelines are treated as dummy ones
(all 0 s).

Step 5©: We continuously compute the HMACs on MT
internal nodes till we compute the MACTree root hash Rcomp1.
If Rcomp1 matches the MACTree root (R1) stored in the secure
on-chip register, we successfully reconstruct the MAC cache
and the extra MT.

All nonempty cachelines in the MAC cache are marked as
dirty. They shall be persisted in NVM at a later eviction time.

Step 6©: We then reconstruct and authenticate the main
BMT MT. We elaborate the details in the next section.

E. Security Analysis

Given MACTree is built on top of BMT and Osiris,
their security protection mechanisms help to detect malicious
changes made to the counters and/or the main MT.

If there are malicious changes made to the ciphertext or
the MAC, we would detect MAC mismatches, which are in
addition to the mismatches on nonpersisted dirty MACs. Since
the latter are the only ones used to produce the saved root hash
R1, having the former mismatches involved in constructing the
extra MT would lead to mismatch of the root hash, i.e., the
detection of the attack.

If an attacker can make malicious changes without causing
MAC mismatch, the root hash R1 would be a match, i.e., there
is no detection. However, such an attack would also succeed

Fig. 8. Numbers of NVM writes in different MTs.

Fig. 9. Serial HMAC computation is expensive.

in the baseline secure memory design, i.e., the attacker can
generate two memory blocks that generate the same MAC.
The possibility is extremely low, as shown in [16] and [25].

V. CASE STUDY 2: THE HNODETREE DESIGN

In this section, we employ the CacheTree design to mitigate
the overhead in authenticating the main MT.

A. Selection of Merkle Tree for Secure NVM

Given there are two types of MTs, we first determine the
appropriate one for secure NVMs. Anubis [44] considers the
persistence and security of NVM systems and proposes AGIT
and ASIT schemes for BMT and SGX-style MTs, respectively.
During memory write, it shadows metadata cache information
in a shadow table (ST) residing in NVM, which helps to
recover system rapidly. For counter and MT nodes, AGIT
incurs small NVM write overhead since it only shadows the
addresses of dirty metadata cachelines. However, ASIT incurs
one extra NVM write per memory write because it needs to
shadow both addresses and the dirty content [44].

Fig. 8 compares the number of NVM writes when using a
BMT tree (BMT), a BMT enhanced by AGIT (AGIT), a SGX
tree (SGX), and a SGX tree enhanced by ASIT [44] (ASIT).
From the figure, we observe that AGIT increases about 8%
more NVM writes than BMT. While SGX has on average 3.2×
more NVM writes than BMT, ASIT greatly reduces the extra
NVM writes to 15.9% on average over BMT.

Given most NVMs have limited lifetime, it is beneficial
to adopt an MT that leads to fewer NVM writes. Adopting
Anubis helps to improve recovery time but suffers from more
NVM writes than the baseline. This is because Anubis needs
to record the extra metadata in NVM, which introduces more
NVM write. Therefore, we choose BMT in our baseline.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

1346 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

(a) (b) (c)

Fig. 10. Details of HNodeTree scheme. (a) Principle of HNodeTree scheme. (b) Extract new hot HMACs. (c) HNode Cache.

B. HMAC Computation and Update in BMT Is Expensive

We then study the authentication overhead in BMT-based
secure NVMs. Fig. 9 shows the latency breakdown when com-
mitting a write operation in secure NVM. From the figure, it
spends on average 11.2% time on fetching/writing tree nodes,
31.8% time on computing the HMACs, and 57.0% on other
memory and cryptographic operations. In this experiment, we
use the pipeline AES implementation so that the large HMAC
computation overhead is mainly due to the serial computation
and update of the tree nodes.

For a BMT tree, while the verification of the internal nodes
can be done in parallel, the update has to be done in serial as
the parent node depends on the hashes of the children nodes,
which creates a long dependency chain from the leaf all the
way to the root. A BMT tree tends to have more levels than
those of SGX-style trees [27], [34]. In summary, persisting the
MT in secure NVM leads to large performance degradation.

The HNodeTree scheme employs the CacheTree design to
reduce the long authentication chain at runtime.

C. Design of HNodeTree

Fig. 10(a) illustrates how HNodeTree works. The right tree
represents the main MT. At runtime, we dynamically choose a
subset of frequently accessed tree nodes, e.g., H0 and H7, and
place them in a newly added HNode cache. We then construct
an extra MT on the HNode cache and compute its root hash
R2. While R2 is saved in a secure on-chip register, other nodes
of the extra MT are saved in volatile SRAM buffer.

To service a write, assume we have persisted the ciphertext
and its counter, e.g., Ctr in counter block C0 (64 B). We then
need to update the main MT along the path from C0 to H0.
Next, instead of updating the nodes along the path from H0 to
the root hash R0, we update H0 in the HNode cache and update
the extra MT from H0 to its root hash R2. HNodeTree speeds
up the integrity verification and update because the path on
the extra MT (from H0 to its root hash R2) is much shorter
than the path on the main MT (from H0 to its root hash R0).

D. HNodeTree Management

Since this extra MT is built on a newly added HNode cache,
we next discuss how to manage this cache. We organize the
HNode cache as a 4-way set associative cache and adopt a
frequency-based replacement policy. Out of the four entries in
one cache set, we identify two as hot entries and the other two

as warm entries [Fig. 10(c)]. We keep a frequency counter F
for each warm entry and an HMAC for each hot entry.

Each entry is an HMAC chosen from the main MT. Assume
the main MT has L levels, and the root and the leaf nodes
(i.e., the counter blocks) are at level 0 and L-1, respectively.
We adopt a simple strategy that chooses candidate nodes from
level L-2. When an HMAC (8 B) is generated from a leaf
block, we treat the HMAC as a candidate entry and send the
HMAC’s address X to the HNode cache. In the computation,
we reserve a special HMAC, i.e., all 1 s for special use. If
a normal block generates such an HMAC, we increment the
corresponding counter in the leaf node to generate a different
one.

The HNode cache adopts frequency-based policy to identify
the hot nodes—1) if X is a miss to the HNode cache, we
replace the warm entry having the smallest F; 2) if X is a hit
to one warm entry, we increment F; and if F is now bigger than
a threshold T , we replace the oldest the hot entry. Replaced
hot entries become warm entries; and 3) if X is a hit to one hot
entry, or X just becomes hot as above, we access the extra MT,
either to update the tree (when servicing a write operation) or
to verify the integrity (when servicing a read operation).

Maintaining the Two Merkle Trees: The extra MT is built
using the hot entries of the HNode cache. Regarding the three
designs issues of CacheTree, we choose to 1) use the special
HMAC to indicate the involved HMAC nodes; 2) recompute
the HNode cache contents from in-NVM counter blocks; and
3) sort the multiple HMAC nodes that are mapped to one cache
size.

We need to update the extra MT when there is a change to
the hot entries. There are two possibilities: case#1: we update
the HMAC and it is a hit to the hot entry in the cache or
case#2: one hot entry is replaced with a new one. For both
cases, we update the extra MT and update the root hash R2 in
the secure on-chip register.

For (case#2), we also need to update the main MT, i.e.,
extract the new hot entry from the main MT, and place the
replaced hot entry back to the main MT. To extract the new
hot entry, we persist a special HMAC, i.e., an 8 B block with
all 1 s, to the NVM (the main memory) using its corresponding
address in the main MT, shown in Fig. 10(b). If a datablock
generates the all 1 s’ HMAC, we increment the leaf counter
and update the corresponding MT nodes. The replaced hot
entry is then sent back to the main MT, to ensure system
recovery, we persist its HMAC to the NVM, i.e., overwriting
the previously persisted special HMAC in NVM. For the main

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1347

MT, we place the special HMAC at the corresponding place
for the new hot node, and place the real HMAC at the corre-
sponding place for the replaced hot node. At last, we update
the extra MT using the new node to compute the new root
hash R2, and update the main MT to compute the new root
hash R0.

E. System Recovery

We next elaborate how the system may recover from a
system crash or power failure. The first five steps are the same
as in Section IV-D. They are to recover the counter, the counter
cache, the MAC, the MAC cache, and the MACTree.

Step 6©: We search the HMACs of the main MT in NVM.
An HMAC being all 1 s indicates the corresponding node
has been moved to the HNode cache before crash. We thus
compute its HMAC from its associated counter block and place
it in the hot entries in HNode cache.

The controller sorts the hot entries in each cache set and
then continuously build the extra MT till the root hash R2. We
compare R2 with the one saved in the on-chip secure register
and, if there is a mismatch, alarm the attack.

Step 7©: We then reconstruct the main MT. We compute the
hashes from the counters, replace the HMACs of all hot nodes
to 1 s, and iteratively construct the main MT till its root hash
R0. We then compare the computed R0 with the one in secure
register and, if there is a mismatch, alarm the attack.

F. Security Analysis

For BMT MT, the main MT nodes are saved in a reserved
NVM region. These nodes are to speed up the integrity ver-
ification in the baseline. If lost, they can be reconstructed
from the persisted counters. In HNodeTree, we use the spe-
cial HMAC, i.e., a block of being all 1 s, to indicate that the
corresponding main MT node has been moved to the HNode
cache. Such an HMAC is persisted before the node being used
to compute R2 (before crash). An attacker may attack either
the persisted special HMACs, or the other main MT node.

Since we avoid using this special HMAC in the main MT,
any change to the location or the number of the special
HMACs would result in constructing a different extra MT,
which produces a different R2 and thus leads to the detec-
tion of the attacks. An attack to other main MT nodes has no
impact—the system reconstructs these nodes from the coun-
ters. If a computed one is different from the stored one, the
system does not need to differentiate if it is because of an
attack or losing the most up-to-date data.

G. Comparison to Recent Art

Difference With Anubis: The most related work to ours is
Anubis [44], which shadows the metadata caches in NVM
and also builds a small tree for the ST to keep integrity. For
each memory write, it records the updated metadata in ST.
The ST helps to recover the metadata rapidly after system
crash. However, since ST resides in NVM, updating ST incurs
additional NVM writes so that Anubis introduces performance
and lifetime overhead.

CacheTree differs from Anubis in two aspects. First, Anubis
builds a small tree for ST that is in NVM. Anubis is a memory-
based tree such that a memory write operation updates MAC
in both metacache and ST (NVM). However, CacheTree builds
extra MTs on cache contents, which eliminate NVM writes at
memory write time. Second, their recovery schemes are differ-
ent. Anubis, e.g., AGIT scheme, records explicit addresses of
metadata in ST such that its metadata is kept in NVM-based
ST when system crashes. It can locate dirty metadata directly
during recovery. However, CacheTree loses all information in
metadata cache when system crashes. For CacheTree to work,
we need to satisfy the three design issues (as elaborated in
Section III). As an example, MACTree uses the mismatch
of ciphertext and MAC to identify the memory lines in the
MAC cache; and HNodeTree uses the special HMAC. Multiple
entries in cache set are sorted.

In conclusion, Anubis reduces the recovery time but intro-
duces more NVM writes over the baseline. CacheTree builds
small MTs on metadata caches such that it reduces NVM
writes over the baseline. We will compare the recovery time
of both schemes in the experiments.

Difference With DMMT: Another related scheme is dynamic
multiroot MT (DMMT) [23]. DMMT reduces integrity veri-
fication overhead by choosing a hot HMAC and store it in
secure on-chip register, as a subtree root. The integrity verifica-
tion and update can stop at this subtree root, hence improving
the performance. HNodeTree addresses the two limitations in
DMMT.

1) DMMT chooses one hot HMAC at a time. The nodes
close to the root node tend to become hot early.
However, choosing one such node leads to limited ben-
efit. Choosing a node close to the leaf covers only a
small memory region. Choosing more hot HMACs leads
to large on-chip register overhead. HNodeTree dynami-
cally covers a large number of nodes while using only
one extra secure on-chip register.

2) The hot HMAC selection is expensive, which tends to
stay unchanged for a long time. HNodeTree adopts a
low cost hot node selection mechanism, which achieves
good tradeoff between flexibility and performance
improvement.

VI. METHODOLOGY

To evaluate the effectiveness of CacheTree, we conduct
experiments to compare it to the stat-of-the-art using a trace-
driven in-house simulator. We use the PIN tool [2] to collect
traces of SPEC CPU2006 [14] (ast, bwa, bzi, cal, gcc, hmm,
lbm), CPU2017 [7] (lee_r, mcf_r) and the Persistence work-
load WHISPER [21] (echo). We utilize CACTI [20] to evaluate
the added security caches. We run all the benchmarks for 400
M instructions after skipping the warming up phase.

Table I shows the details of the settings. Similar to prior
work [5], [39], we assume the AES encryption latency to
be 24 cycles. In pipelined process, the AES engine com-
pletes one encryption on each cycle [39]. We use a 6 KB
CacheTree buffer for MACTree and an 8 KB HNode cache
for HNodeTree. HNodeTree selects candidate HMAC nodes

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

1348 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Fig. 11. Normalized speedup of different schemes.

Fig. 12. NVM Write number of different schemes.

TABLE I
ARCHITECTURAL CONFIGURATIONS [35]

at level 7, i.e., parent nodes of leaves, and the hotness thresh-
old is 20. We also study the sensitivity of these parameters in
our experiments. We adopt the performance metric speedup as

Speedup = CPIbase/CPItech

from [35] and [22], where CPIbase and CPItech are execution
cycles of baseline and different schemes. In this article, we
mainly compare the following six schemes.

1) Baseline: This is the baseline secure NVM design. It
adopts BMT and Osiris [39]. For Osiris, a counter value
needs to be persisted after four updates in the counter
cache.

2) Synergy: This scheme is built on the baseline. It adopts
Synergy [28] to reduce MAC access overhead. Synergy
has to use an extra parity.

3) Assure: This scheme enhances the baseline using
Assure [23] to reduce the verification overhead.

4) MACTree: This scheme enhances the baseline using our
proposed MACTree.

5) HNodeTree: This scheme enhances the baseline using
our proposed HNodeTree.

6) CacheTree: This scheme combines MACTree and
HNodeTree to reduce the integrity verification overhead.

VII. EVALUATION

A. Performance

We first compare the performance of different schemes and
summarize the results in Fig. 11. The numbers are normal-
ized to the baseline. Compared to baseline, on average,
Synergy and Assure reduce the execution time by 5.1%
and 6.5%, respectively. As a pair comparison, MACTree out-
performs Synergy by up to 11.9% (cal) while HNodeTree
outperforms Assure by up to 13.4% (ast). This is because,
while Synergy improves the performance of MAC reads,
it suffers from write-through parity update to NVM at MAC
update time. The hot subtree root selected in Assure tends
to be close to the root, which leads to limited benefits.

By enabling the write-back policy for the MAC cache,
MACTree reduces the number of MAC writes signifi-
cantly and achieves large system performance improve-
ments. HNodeTree selects hundreds of hot HMACs into
the HNode cache, which greatly reduces the number of
MT nodes to be verified and updated. By combining
MACTree and HNodeTree, CacheTree achieves on aver-
age 26.2%, 20.1%, and 18.5% performance improvements
over baseline, Synergy, and Assure, respectively. In
summary, CacheTree effectively mitigates the integrity ver-
ification and update overhead for secure NVMs.

B. Lifetime

We next study the NVM writes of different schemes and
summarize the results in Fig. 12. In the study, we add an

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1349

Fig. 13. Read and write energy consumption of different schemes.

(a) (b) (c) (d)

Fig. 14. Sensitivity evaluations. (a) MAC cache size. (b) HNode cache size. (c) Hot node level. (d) Hotness threshold.

ideal scheme WriteBack, which adopts the write-back pol-
icy for the MAC cache. As a reference scheme to evaluate the
effectiveness of CacheTree, WriteBack does not persist
any MAC data to help system recovery from system crashes.
Baseline and Synergy have the same numbers of

NVM writes because Synergy does not reduces the num-
bers of NVM writes. Compared to baseline, Assure, and
HNodeTree reduce the numbers slightly, i.e., 0.8% and 1.5%,
respectively, by accessing short paths in MT.

By adopting the write-back policy, WriteBack achieves
the large reduction, i.e., 44.2%, over the baseline. MACTree
needs slightly more NVM writes than WriteBack due to
metadata update. CacheTree reduces on average 44.3%
NVM writes over the baseline. CacheTree sometimes is
slightly better than WriteBack as it combines the ben-
efits from both MACTree and HNodeTree. In summary,
CacheTree is an effective mechanism to prolong NVM chip
lifetime for secure NVMs.

C. Energy Consumption

We next evaluate the energy consumption of different
schemes. For simplicity, we focus on read and write energy
consumption of NVM. Fig. 13 presents the results, with the
numbers normalized to the baseline. From the figure, we
observe that write energy consumption occupies the major por-
tion. This is because many reads hit the cache while many
writes are sent to NVM to ensure data persistence.

Compared to baseline, Synergy reduces 65.1% of read
energy consumption by avoiding reading MACs. However,
it only reduces the total energy consumption by 0.4%.
Assure and HNodeTree are slightly worse than Synergy,
which consume 0.2% and 0.3% less total energy, respec-
tively, than the baseline. Due to generating fewer NVM
writes, CacheTree consumes 44.0%, 43.7%, and 43.9% less
energy than baseline, Synergy, and Assure, respec-
tively. In summary, CacheTree significantly reduces the
energy consumption for secure NVMs.

D. Sensitivity to MAC Cache Size

We next study the sensitivity of CacheTree to different
parameters and summarize the results in Fig. 14. Since the
energy consumption correlates mainly to the NVM writes, the
figure only reports the performance and lifetime results.

Fig. 14(a) summarizes the results of the sensitivity study on
MAC cache size. The results are normalized to the setting with
the smallest MAC cache size (256 B). From the figure, a small
cache tends to evict dirty MAC cacheline more frequently
and thus introduces more NVM writes; a large cache con-
solidates more writes but incurs large storage overhead. With
increasing cache sizes, the number of NVM writes decreases
while the performance improves. Due to a jump of the num-
ber of MACTree levels at 8 KB and 64 KB, there are two
performance improvements dips. In this article, we choose the
MAC cache size to be 32 KB as it achieves a good tradeoff
among performance improvement, NVM writes, and storage
overhead.

E. Sensitivity to HNode Cache Size

Fig. 14(b) evaluates the sensitivity of the scheme to the
HNode cache size, with the results normalized to that of a
32 B HNode cache. A small cache can only keep a limited
number of hot HMACs and thus results in limited performance
improvement. A large cache leads to a large extra MT and thus
incurs large storage overhead.

From the figure, increasing HNode cache size leads to
a small fluctuation in the number of NVM writes while it
achieves steady performance improvement. The performance
improvement peaks at 8 KB size, which needs a full 8-ary
3-level extra MT. A larger cache results in more levels of the
extra MT, which leads to a slight performance decrease. In
this article, we choose an 8 KB HNode cache.

F. Sensitivity to Candidate Hot Node Levels

In HNodeTree, we choose nodes at a fixed level l from the
main MT and send them to the extra MT. The selection of l

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

1350 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

also impacts the system performance. Fig. 14(c) reports the
results with different l values.

From the figure, we observe that the level value has negli-
gible impact on NVM writes. When selecting HMACs from
the bottom levels of the main MT (i.e., toward to the leaf
nodes that have large ls), we tend to achieve large improve-
ments due to skipping more nodes on the main MT. However,
such a selection has low locality, which demands selecting
more nodes to cover a large user space. Choosing the HMACs
close to the root hash has better locality but tend to have little
performance improvement (as we have already gone through
the long verification path). In this article, we choose hot
HMAC candidates at level 7 with highest performance, which
is just next to the leaf nodes.

G. Sensitivity to Hotness Threshold

At last, we study the sensitivity of the scheme to the hotness
threshold. Fig. 14(d) summarizes the results when we range
from 2 to 64.

From the figure, choosing a small hotness threshold tends
to introduce a large number of hot nodes, which flushes the
hot entries in the HNode cache frequently. Given we need to
update the main MT when there is a change of the hot nodes,
the performance improvement is low when choosing a small
hotness threshold.

We also observe a performance jump with increasing hot-
ness threshold values and then a gradual decrease when the
values are bigger than 20. This is because not many hot nodes
can be selected if the threshold value is too big, which reduces
the opportunities to reduce the integrity verification and update
overhead. In this article, we set the threshold to 20, which
achieves a good tradeoff between performance and lifetime.

H. Overhead

CacheTree adds small storage overhead, including an 8 KB
HNode cache, a 6 KB CacheTree buffer to buffer the internal
nodes of the extra MTs, and two nonvolatile secure registers,
which is less than 0.5% of all cache capacity. CacheTree also
introduces additional computation and access overhead to the
extra MTs. Due to the adoption of AES pipeline engine, the
HMAC computation overhead is insignificant. Since we save
all the nodes of two extra MTs in on-chip buffers, the accesses
can overlap with other cryptographic operations, which result
in low access overhead.

I. Comparison With SGX-Style MT and Other Solutions

We compare CacheTree with the state-of-the-art SGX-
style MT designs, including the original SGX MT (SGX),
VAULT [34], and Morphable counters (MCtr) [27]. For 64
GB NVM, they uses 10-level, 7-level, and 4-level MTs, respec-
tively. AGIT and ASIT are two Anubis schemes for BMT and
SGX-style MTs, respectively. Based on Baseline, an NV cache
solution (NVcache) that utilizes NVMs e.g., STT-RAM [41],
to construct MAC and MT caches, so that persists updates in
caches. Similar to existing works [38], [45], the last solution
utilizes the 32-SRAM-entry Write-Pending-Queue (WPQ32)
and an enhanced 64-SRAM-entry one (WPQ64) to persist

Fig. 15. Performance comparison with existing solutions.

Fig. 16. NVM write comparison with existing solutions.

updates and coalesce related NVM writes due to locality prin-
ciple [29]. The number of entries of WPQ is limited due to
its limited power source.

Figs. 15 and 16 summarize the performance and NVM
writes of different schemes, normalized to the baseline.
Compared to baseline, SGX, VAULT, and MCtr have on
average 61.3%, 50.4%, and 28.1% performance degradation,
respectively; and 3.28×, 2.13×, and 1.06× more NVM writes,
respectively. Generally, VAULT has less NVM writes and
achieves better performance than SGX for most workloads.
This is because VAULT has fewer tree levels that need to be
persistent. Similarly, MCtr is better than VAULT due to fewest
tree levels. For Anubis, AGIT and ASIT have more NVM
writes than Baseline due to shadowing overhead. Compared
to Baseline, NVcache increases the performance by 14.2%
averagely while leads to 2.89× more NVM writes. Here, the
NVM writes of NVcache contain writes of NV caches and
NVM. It absorbs many original NVM writes in NV caches
and MT updates results in writes in NV caches. WPQ32 and
WPQ64 achieve both of performance and lifetime improve-
ment than Baseline since they coalesce many NVM writes
in memory controller.

For performance, CacheTree outperforms SGX, VAULT,
and MCtr by 2.27×, 1.54× and 0.76×, respectively. It is
0.39× and 0.21× better than AGIT and ASIT, respectively.
And it increases performance by 10.4%, 14.6%, and 12.9%
than NVcache, WPQ32, and WPQ64, respectively. All of
NVcache, WPQ32, and WPQ64 suffer from performance
overhead of MT updates.
CacheTree introduces the least amount of NVM writes

of all schemes, e.g., it achieves 48.9%, 52.5%, 12.7%, and
4.3% NVM writes reduction from AGIT, ASIT, WPQ32, and
WPQ64, respectively. Note that WPQ64 absorbs more NVM
writes than WPQ32, closer to lifetime of CacheTree. There
are three reasons: 1) BMT reduces NVM writes by integrating

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1351

Fig. 17. Recovery time with various NVM capacity.

Osiris while SGX-style MTs cannot; 2) a BMT-based scheme
does not save internal nodes of the main MT while SGX-
style MT-based schemes have to persist the MT updates; and
3) MACTree and HNodeTree reduce NVM writes for MAC
updates and shorten the MT access path, respectively.

J. Recovery Time Comparison

We then compare the recovery time of different schemes in
Fig. 17. From the figure, Baseline and CacheTree need
increasingly longer recovery time with increasing NVM capac-
ity. Since CacheTree needs to recover extra MACTree and
HNodeTree, it costs about 23.8% more time than Baseline.
However, for GB-level NVM system, e.g., 64 GB in this arti-
cle, CacheTree only takes about 139 s to recover, which
is acceptable. AGIT and ASIT need around 0.05 s recovery
time, and the time depends on the ST capacity [44].

For larger capacity NVM systems, e.g., TB-level NVM,
Baseline and CacheTree need much longer time to
recover. In this scenario, it is preferable to combine
CacheTree with AGIT to reduce recovery time. That is,
once CacheTree locates dirty MACs and hot HMACs
rapidly, CacheTree can realize a similar recovery time as
that of AGIT. Consequently, CacheTree+AGIT adopts a
ST in NVM to record addresses of dirty counter blocks, MT
blocks, and MAC blocks as well as hot HMACs. The ST
capacity (in NVM) is 184 KB (128 KB for counter, 16 KB
for MT, 32 KB for MAC, and 8 KB for hot HMAC). Note
that the combined scheme records the addresses of dirty MAC
blocks instead of MAC contents. Due to access locality, this
ST incurs limited NVM writes. During recovery, the ST helps
to locate dirty counters, dirty MT nodes, dirty MACs, and hot
HMACs. Thus, CacheTree+AGIT can recover the counters,
MT, MACTree, and HNodeTree rapidly. And the on-chip roots
R0, R1, and R2 can ensure the integrity of recovered data. As
shown in this figure, CacheTree+AGIT only needs about
0.08 s to recover regardless of the NVM capacity.

We then evaluate the overall effectiveness of the com-
bined scheme. Since ST introduces extra NVM writes,
CacheTree+AGIT incurs 8.9% performance and 15.4%
lifetime benefit losses over CacheTree. It still achieves
27.3% performance and 40.8% lifetime improvements
over AGIT.

TABLE II
AREA OVERHEAD OF DIFFERENT SOLUTIONS

K. Area Overhead

In this section, we evaluate the area overhead of all solu-
tions, as shown in Table II. Since some solutions introduce
extra on-chip components, we evaluate the area overhead at
the cache level. We utilize NVSim [10] to compute the area
overheads of the NV cache solution. Some solutions, i.e.,
Synergy, SGX, VAULT, and WPQ, do not incur area over-
head as they add no additional components. Anubis needs
an additional MT for ST, leading to 0.47% of area overhead.
NV cache replaces SRAM cache with STT-RAM, achieving a
smaller cache due to high density of STT-RAM. However, it
suffers from high manufacturing cost and large runtime energy
consumption and performance overhead. CacheTree adds two
small additional MTs and an HNode cache, resulting in 0.34%
of area overhead. In conclusion, CacheTree has negligible area
overhead.

VIII. RELATED WORK

In this section, we briefly summarize the related stud-
ies other than those discussed in preceding sections.
Swami et al. [32] proposed to integrate smart encryp-
tion with XOR-based energy masking to realize low write
energy/latency and improve the lifetime in secure MLC
and TLC NVMs. Young et al. [40] proposed to re-encrypt
only modified words when servicing a memory write.
Chhabra and Solihin [8] proposed i-NVMM to lower encryp-
tion/decryption overhead by keeping hot cachelines in unen-
crypted form in the memory. Swami and Mohanram [31]
proposed on-demand memory allocation to mitigate the
memory encryption frequency with negligible memory over-
head. Liu et al. [17] enforced selective counter atomic-
ity and relaxes persisting counters for nonpersistent data.
Liu et al. [18] proposed Janus to exploit memory parallelism
by memory operation decomposition and start suboperations
once the inputs are ready. It is orthogonal to the CacheTree
design.

The proposed CacheTree differs from existing schemes as
it enables the write-back policy for the MAC cache and
helps to reduce the integrity verification and update overhead.
In addition, CacheTree can combine with existing schemes,
e.g., with Osiris [39] to reduce counter persisting over-
head, and with AGIT [44] to reduce the system recovery
time.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

1352 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

IX. CONCLUSION

In this article, we proposed CacheTree to address the
challenges in developing a high-performance secure NVM
design. By creating extra MTs on security metacache contents,
CacheTree enables the adoption of write-back policy and thus
greatly reduces the number of NVM writes. Our experimental
results show that CacheTree, with less than 0.5% storage over-
head, achieves up to 20.1% performance improvement, 44.3%
lifetime increase, and 43.7% energy consumption reduction
over the state-of-the-art solutions.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their con-
structive comments.

REFERENCES

[1] Intel Optane Technology. Accessed: 2020. [Online]. Available: https:
//www.intel.com/Optane

[2] Pin Tool. Accessed: 2020. [Online]. Available: https:
//software.intel.com/en-us/articles/pintool

[3] S. Aga and S. Narayanasamy, “InvisiMem: Smart memory defenses
for memory bus side channel,” ACM SIGARCH Comput. Archit. News,
vol. 45, no. 2, pp. 94–106, 2017.

[4] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory con-
trollers,” in Proc. ACM 21st Int. Conf. Archit. Program. Lang. Oper.
Syst., 2016, pp. 263–276.

[5] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: A low-
overhead access obfuscation for trusted memories,” in Proc. ACM 44th
Annu. Int. Symp. Comput. Archit., 2017, pp. 107–119.

[6] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-
NVM: Persistency for integrity-protected and encrypted non-volatile
memories,” in Proc. ACM 46th Int. Symp. Comput. Archit., 2019,
pp. 104–115.

[7] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec CPU2017: Next-
generation compute benchmark,” in Proc. Companion ACM/SPEC Int.
Conf. Perform. Eng., 2018, pp. 41–42.

[8] S. Chhabra and Y. Solihin, “I-NVMM: A secure non-volatile main
memory system with incremental encryption,” in Proc. IEEE 38th Annu.
Int. Symp. Comput. Archit. (ISCA), 2011, pp. 177–188.

[9] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptol. ePrint
Archive, vol. 2016, no. 86, pp. 1–118, 2016.

[10] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

[11] S. J. Edirisooriya, S. R. Nagesh, B. R. Monson, and P. Kumar, “Method
and apparatus for completing pending write requests to volatile memory
prior to transitioning to self-refresh mode,” U.S. Patent App. 14 816 445,
Feb. 9, 2017.

[12] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in Proc. IEEE
9th Int. Symp. High Perform. Comput. Archit., 2003, pp. 295–306.

[13] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” in Proc. IACR, 2016, p. 204.

[14] J. L. Henning, “Spec CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proc. ACM 36th Annu. Int.
Symp. Comput. Archit., 2009, pp. 2–13.

[16] D. Lie et al., “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[17] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), 2018, pp. 310–323.

[18] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “JANUS:
Optimizing memory and storage support for non-volatile memory
systems,” in Proc. 46th Int. Symp. Comput. Archit., 2019, pp. 143–156.

[19] D. McGrew and J. Viega, “The Galois/counter mode of operation
(GCM),” in Proc. NIST, 2004, p. 20.

[20] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Lab., Palo Alto, CA, USA, 2009.

[21] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” ACM SIGPLAN
Notices, vol. 52, no. 4, pp. 135–148, 2017.

[22] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano,
“Improving read performance of phase change memories via write can-
cellation and write pausing,” in Proc. 16th Int. Symp. High Perform.
Comput. Archit., 2010, pp. 1–11.

[23] J. Rakshit and K. Mohanram, “ASSURE: Authentication scheme
for secure energy efficient non-volatile memories,” in Proc. 54th
ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2017, pp. 1–6.

[24] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “THYNVM:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proc. 48th Annu. IEEE/ACM Int. Symp. Microarchit.
(MICRO), 2015, pp. 672–685.

[25] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and Bonsai Merkle trees to make
secure processors OS-and performance-friendly,” in Proc. 40th Annu.
IEEE/ACM Int. Symp. Microarchit., 2007, pp. 183–196.

[26] A. Rudoff. (2016). Deprecating the Pcommit Instruction. [Online].
Available: http://intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-
instruction

[27] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees for
low-overhead secure memories,” in Proc. IEEE 51st Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO), 2018, pp. 416–427.

[28] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and
M. K. Qureshi, “SYNERGY: Rethinking secure-memory design for
error-correcting memories,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), 2018, pp. 454–465.

[29] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “PROTEUS:
A flexible and fast software supported hardware logging approach for
NVM,” in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017,
pp. 178–190.

[30] L. Shuo et al., “RC-NVM: Dual-addressing non-volatile memory archi-
tecture supporting both row and column memory accesses,” IEEE Trans.
Comput., vol. 68, no. 2, pp. 239–254, Feb. 2019.

[31] S. Swami and K. Mohanram, “COVERT: Counter overflow reduction
for efficient encryption of non-volatile memories,” in Proc. Conf. Design
Autom. Test Europe, 2017, pp. 906–909.

[32] S. Swami, J. Rakshit, and K. Mohanram, “SECRET: Smartly
encrypted energy efficient non-volatile memories,” in Proc. 53nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2016, pp. 1–6.

[33] S. Swami, J. Rakshit, and K. Mohanram, “STASH: Security architecture
for smart hybrid memories,” in Proc. 55th ACM/ESDA/IEEE Design
Autom. Conf. (DAC), 2018, pp. 1–6.

[34] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
paging overheads in SGX with efficient integrity verification structures,”
in Proc. ACM 23rd Int. Conf. Archit. Program. Lang. Oper. Syst., 2018,
pp. 665–678.

[35] R. Wang, L. Jiang, Y. Zhang, and J. Yang, “SD-PCM: Constructing
reliable super dense phase change memory under write disturbance,” in
Proc. ACM 20th Int. Conf. Archit. Support Program. Lang. Oper. Syst.,
2015, pp. 19–31.

[36] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie,
“Understanding the trade-offs in multi-level cell RERAM memory
design,” in Proc. 50th ACM/EDAC/IEEE Design Autom. Conf. (DAC),
2013, pp. 1–6.

[37] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption and
authentication,” ACM SIGARCH Comput. Archit. News, vol. 34, no. 2,
pp. 179–190, 2006.

[38] F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No compromises: Secure
NVM with crash consistency, write-efficiency and high-performance,”
in Proc. ACM 56th Annu. Design Autom. Conf., 2019, p. 31.

[39] M. Ye, C. Hughes, and A. Awad, “OSIRIS: A low-cost mechanism to
enable restoration of secure non-volatile memories.” in Proc. MICRO,
2018, pp. 403–415.

[40] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-efficient
encryption for non-volatile memories,” ACM SIGPLAN Notices, vol. 50,
no. 4, pp. 33–44, 2015.

[41] H. Zhang, X. Chen, N. Xiao, and F. Liu, “Architecting energy-efficient
STT-RAM based register file on GPGPUs via delta compression,” in
Proc. 53rd Annu. Design Autom. Conf., 2016, pp. 1–6.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CacheTree: REDUCING INTEGRITY VERIFICATION OVERHEAD OF SECURE NVMs 1353

[42] H. Zhang et al., “Shielding STT-RAM based register files on GPUs
against read disturbance,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 13, pp. 1–17, Nov. 2016.

[43] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and high-performance
memory control for persistent memory systems,” in Proc. 47th Annu.
IEEE/ACM Int. Symp. Microarchit., 2014, pp. 153–165.

[44] K. A. Zubair and A. Awad, “ANUBIS: Ultra-low overhead and recovery
time for secure non-volatile memories,” in Proc. ACM 46th Int. Symp.
Comput. Archit., 2019, pp. 157–168.

[45] P. Zuo, Y. Hua, and Y. Xie, “SuperMem: Enabling application-
transparent secure persistent memory with low overheads,” in Proc. ACM
52nd Annu. IEEE/ACM Int. Symp. Microarchit., 2019, pp. 479–492.

Zhengguo Chen received the B.S. and M.A. degrees
in computer science from the National University of
Defense Technology, Changsha, China, in 2009 and
2015, respectively, where he is currently pursuing
the Ph.D. degree in computer science.

His interests include computer architecture and
nonvolatile memory technology.

Youtao Zhang (Member, IEEE) received the B.S.
and M.E. degrees from Nanjing University, Nanjing,
China, in 1993 and 1996, respectively, and the Ph.D.
degree in computer science from the University of
Arizona, Tucson, AZ, USA, in 2002.

He is currently an Associate Professor of com-
puter science with the University of Pittsburgh,
Pittsburgh, PA, USA. His current research interests
include computer architecture, program analysis,
optimization, on-chip interconnection, architectural
support for security, new memory technologies, and

networks-on-chip.
Prof. Zhang was a recipient of the U.S. National Science Foundation Career

Award in 2005. He is a member of ACM.

Nong Xiao (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science from
the College of Computer, National University of
Defense Technology, Changsha, China, in 1990,
1992, and 1996, respectively.

He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen University,
Guangzhou, China. His current research interests
include large-scale storage system, network comput-
ing, and computer architecture.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 18,2022 at 05:38:40 UTC from IEEE Xplore. Restrictions apply.

