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Identification of patient subtypes from retrospective Electronic Health Record (EHR) data is fraught with
inherent modeling issues, such as missing data and variable length time intervals, and the results obtained are
highly dependent on data pre-processing strategies. As we move towards personalized medicine, assessing ac-
curate patient subtypes will be a key factor in creating patient specific treatment plans. Partitioning longitudinal
trajectories from irregularly spaced and variable length time intervals is a well-established, but open problem. In

this work, we present and compare k-means approaches for subtyping opioid use trajectories from EHR data. We
then interpret the resulting subtypes using decision trees, examining how each subtype is influenced by opioid
medication features and patient diagnoses, procedures, and demographics. Finally, we discuss how the subtypes
can be incorporated in static machine learning models as features in predicting opioid overdose and adverse
events. The proposed methods are general, and can be extended to other EHR prescription dosage trajectories.

1. Introduction

Electronic Health Records (EHRs) are recognized as a readily avail-
able data source for analyzing complex patient cohorts. The typical EHR
system contains a rich source of observational longitudinal data that
spans many patient attributes, making this data ideal for identification
of patient subtypes. Despite the ideality of the data source, clustering
longitudinal observational data into patient subtypes can be difficult due
to the inherent issues of missing data and varying length of observations
per patient [1,2]. Methods for clustering quantitative trajectories to
assess patient subpopulations have been applied to EHR data for vital
signs, laboratory values, and other calculated measures [3-6]. However,
use of prescription dosage information in longitudinal models necessi-
tates a large amount of pre-processing and standardization that is time
and cost intensive, requiring a deep knowledge in EHR data structure,
terminologies, and clinical expertise. Moreover, decisions made during
preprocessing can have a large impact on the choice of clustering
method and the extracted subtypes [7-9]. Prescription dosage data in an
EHR is often missing not at random, meaning that the probability of an
observation being missing depends on unobserved data [10]. For

instance, in chronic disease patients, gaps between observations can be
representative of medication non-adherence [9]. Therefore, typical
imputation methods, such as mean imputation, do not work. Prescrip-
tion dosage data also extends over a variable period of time: patients
that have an inciting incident (e.g. surgery) will receive a prescription
for a few days, whereas patients with a chronic disease will receive a
recurrent prescription over the course of multiple years.

Methods for clustering these types of trajectories are either data-
adaptive, using the data directly (e.g. k-means), or model-based,
assuming the data can be described by a probabilistic model (e.g.
mixture models) [3]. Model-based techniques are widely used and
provide high-quality subtypes for sparse data and short trajectories
[11-13]. However, they tend to involve computationally complex sta-
tistical inference, which is difficult to scale [3,6,11,14,15]. For instance,
gaussian processes suffer from cubic complexity in data size compared to
the quadratic complexity of k-means, a method that identifies a set of
centroids and groups patients to the nearest centroid [16]. While great
strides have been made to improve scalable gaussian processes and
mixture models in high-dimensionality, i.e. the number of patients,
these methods tend to lose efficiency when the number of time points
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exceeds a few dozen, which greatly reduces their feasibility [14-16].

Longitudinal k-means clustering offers a viable alternative to model-
based. In this study, we explore three different longitudinal k-means
methods, varying in how they deal with the outlined medication tra-
jectory issues, using a prescription opioid cohort. Prescription opioids
are used by a large heterogeneous population affected by acute and
chronic pain and addiction with irregular trajectory lengths across pa-
tient. Increases in opioid prescriptions over the last few decades has led
to opioid-related adverse effects, ranging from gastrointestinal prob-
lems, endocrine disorders, and opioid-induced hyperalgesia to de-
pendency, abuse and overdose [17,18]. Identification of opioid
prescription use subtypes may offer critical information to design
personalized treatment regimens for opioid patients [19-21]. For
instance, previous prospective research has shown that opioid use sub-
types can capture non-response to treatment at an early stage and offer
insights into effectiveness of drug prescription policies [22-24]. In the
context of opioid subtype identification and trajectory clustering, EHR
data use has been limited [25]. While previous research has identified
opioid use subtypes using group-based trajectory and mixed model ap-
proaches, to date, studies have not assessed the methodologies for
applying high-dimensional EHR prescription data to scalable k-means
algorithms [24-26].

Herein, we outline how to carefully pre-process, apply, and trans-
form medication EHR data to computationally tractable longitudinal k-
means methods to get both efficient and clinically meaningful clusters
[3]. First, we used traditional k-means for longitudinal data to create
subtypes using the raw morphine milligram equivalent (MME) pre-
scription dosage data with the assumption of no opioid use when missing
[27]. Second, we found subtypes using k-means with a B-spline trans-
formation on the raw non-imputed data and irregular sequences [6].
Finally, we used long short-term memory variational autoencoders to
map the trajectories to latent vector representations, followed by k-
means clustering [28]. Examining and visualizing the longitudinal
clusters using interpretable decision trees based on external and sum-
mary data, we found the three methods capture different aspects of the
trajectories with the B-spline transformation and the variational
autoencoder capturing more complex and clinically relevant subtypes.
In addition, we assessed the subtypes’ ability to be used as features in
machine learning models to predict opioid overdose and adverse events.
These exploratory analyses show the importance of prescription data
transformation and pre-processing to create patient subtypes.

2. Materials and methods
2.1. Sample

We analyzed an EHR database, approved by the University at Buffalo
Institutional Review Board, of individuals from an inpatient hospital
(Erie County Medical Center) and an outpatient practice (UBMD) in
Buffalo, NY. To identify patients across hospital and outpatient data, we
performed exact matching using social security number, birth date, last
name, and first three letters of the first name. We set the study period to
cover January 2013 to December 2017, with 2013 showing a significant
increase in opioid deaths involving synthetic opioids in the United States
[29]. We selected patients 12 to 90 years old, eliminating children and
infants who typically show different use patterns than the general
population. We excluded patients diagnosed with cancer, with the
exception of non-melanoma skin cancers (Table 1), due to the differing
guidelines for opioid use to treat cancer pain [30]. Furthermore, only
patients who were given an opioid prescription for seven or more days
during the study period were included. Our final cohort consisted of
3,997 individuals, where 306 patients overlapped both facilities and
3,691 patients only had prescription data from the outpatient practice
EHR.
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Table 1
Inclusions and exclusions.

Inclusion Prescription Medications

Opioids Indicated for
Pain Treatment

Codeine, Fentanyl, Hydromorphone, Butorphanol,
Dihydrocodeine, Hydrocodone, Levomethadyl,
Levorphanol, Meperidine, Morphine, Opium,
Oxycodone, Oxymorphone, Pentazocine,
Propoxyphene, Tapentadol, Tramadol
Opioids Indicated for Buprenorphine, Buprenorphine/Naloxone, Methadone
Abuse Treatment
Exclusion Codes
Cancer/Palliative Care ICD-10 C category cancers except C44, Z51.5, 172, 174,
140, 141, 152, 147, 142, 153, 148, 143, 154, 149, 144,
155, 150, 145, 156, 151, 146, 157, 164, 171, 158, 165,
225, 159,166,209.7, 160, 167, 230, 161, 168, 231, 162,
169, 232, 163, 170, 233, 234, 247, 238.7, V66.7,
209.36, 173.00, 173.09, 173.10, 173.19, 173.20,
173.29, 173.30, 173.39, 173.40, 173.49, 173.50,
173.59, 173.60, 173.69, 173.70, 173.79, 173.89,
173.80, 173.99, 173.90, 227.3, 227.4, 228.02, 228.1
237.5, 237.6, 237.9, 238.4, 239.6, 239.7

2.2. Non-prescription related clinical variables

For the downstream analysis tasks, we identified overdose and abuse
events based on available ICD codes (Table 2). For each patient, we
created a binary outcome variable of whether or not an overdose or
abuse event occurred within the 5-year study window. Since a single
patient may have multiple event encounters, we defined the first
recorded case of overdose or abuse as a patient’s endpoint. In total, we
found 3.7% of patients with a positive outcome variable (i.e., overdose
or abuse events). While the 5-year study window may allow some pa-
tients a longer time to develop an event, patients were only included if
they had 90 days of EHR data allowing for sufficient time to develop an
outcome. In fact, 49% of our patients had an event within 90 days.

We assessed other known opioid-related clinical variables defined by
structured EHR data including patient demographics, addictive behavior
and mental illness indicators, and other comorbid conditions [31].
These were selected by a team of clinicians and a literature review of
relevant features pertaining to opioid, substance abuse, and pain related
outcomes. We included patient socio-demographic variables: age of first
recorded prescription, race, gender, ethnicity, insurance category, and
marital status. We categorized race as White, Black, and Other. Ethnicity
was coded as Hispanic or Non-Hispanic. As a socio-demographic indica-
tor, we broke insurance into Commercial, Medicare, Medicaid, No Insur-
ance, and Other. Addictive behavior variables included other types of
substance abuse and dependence, opioid-related counseling, and a his-
tory of urine drug screens. Other health factors included history of
surgery, chronic pain diagnoses, injury, mental illness, and typical co-
morbid conditions. Comorbid conditions were calculated using the

Table 2
Diagnostic codes for selected outcomes and predictors.

Variable Codes

Opioid Adverse Event
(Outcome)

96500, 96501, 96502, 96509, 9701, E8500, E8501,
E8502, E9350, E9351, E9352, T400X1, T400X2,
T400X3, T400X4, T401, T402X1, T402X2, T402X3,
T402X4, T404X1, T404X2, T404X3, T404X4, T403X1,
T403X2, T403X3, T403X4, T40601, T40602, T40603,
T40604, T40691, T40692, T40693, T40694, 30550,
30551, 30552, F1110, F11120, F11121, F11122,
F11129, F1114, F11150, F11151, F11151, F11159,
F11181, F11182, F11188, F1119

30400, 30401, 30402, 30470, 30471, 30472, F1120,
F1122, F1123, F1124, F11250, F11241, F11259,
F11281, F11282, F11288, F1129, F11220

CPT: 10030 — 69990

V65.42, Z71.41, Z71.51, 271.6, 99406, 99407, 99408,
99409

Opioid Dependence

Surgeries
Counseling
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Agency for Healthcare Research and Quality’s Clinical Classification
Software and Elixhauser Comorbidity Software [32]. A list of variables
can be found in Supplementary Table S1. Our sample was majority fe-
male (64.3%) and had a median age of 52 (Table 3). The distribution of
race was 58.9 % White, 40.1% Black, and 1% Other. There were 3.67%
Hispanic or Latinos.

2.3. Prescription data

For each patient in the cohort, we obtained a list of opioid pre-
scriptions directly from the EHR record. To ensure that all opioid pre-
scriptions are captured, we mapped opioid-related National Drug Codes
(NDQC) in the EHR data to RxNorm codes. We queried the local pre-
scription labels when NDC codes were not present for both generic and
proprietary opioid drug names, mapping those to RxNorm codes. We
excluded prescriptions for which there was an error flag, or if it was
voided, unauthorized, or canceled. For outpatient prescriptions, we
observed that in some cases multiple prescriptions for the same generic
drug and in the same time frame were registered in the EHR, even
though only one of them was realized. In such cases, we retained only
the latest prescription. In certain instances, the quantity of a drug was
representative of a full packet or box as defined by their NDC. To handle
such cases, we adjusted the quantity to the number within the product
description, e.g., the number of pills in a packet, the number of patches
in a box, etc. Finally, we removed prescriptions with null or 0 quantity
dispensed or missing prescription starting and ending date. We used
12,387 outpatient prescriptions and 26,141 hospital administrations.
This led to a total of 875,906 days of prescribed opioids with a median of
25 days (IQR = 51) per patient and an average of 117 days (sd = 272.32)
of prescription per patient.

In addition to quantity and days supply for each prescription, we
extracted prescription variables including opioid treatment, indicated

Table 3
Demographic, clinical, and trajectory characteristics for a general opioid cohort
from two sites.

Variable Full Dataset (n = 3,997)
Demographic and Clinical Characteristics
Age (years) <30 442 (11.1%)

30-65 2754 (68.9%)
>65 801 (20.0%)

Opioid Adverse Event 149 (3.7%)

Female 2570 (64.3%)
Race Black 1555 (40.1%)
White 2283 (58.9%)
Other 39 (1%)
Insurance Commercial 1098 (27.5%)
Medicaid 1172 (29.4%)
Medicare 1636 (41%)
No Insurance 41 (1%)
Other 43 (1.1%)
Number of Surgeries Multiple 248 (6.2%)
One 260 (6.5%)
None 3489 (87.3%)
Injury 1022 (25.6%)
Buprenorphine 454 (11.4%)
Methadone 162 (4.1%)

Opioid Dependence

Mental Illness 1432 (35.8%)

Non-Opioid Substance Abuse 751 (18.8%)
MME Trajectories (Mean 7-day Measurements)

Mean (SD)

40.56 (47.80)

528 (13.2%)

Mean MME over entire trajectory

AMME 21.86 (43.82)

Observations 29.95 (50.53)
N (%)

Starting MME <20 1403 (35.1%)

20-49 1625 (40.7%)
50-89 383 (9.6%)
>90 585 (12.6%)
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by methadone, buprenorphine, or buprenorphine-naloxone, whether
first recorded prescription was a long or short-acting opioid, and the first
recorded prescription generic drug category, e.g., hydrocodone, meth-
adone, etc. For our sample, 11.4% were on buprenorphine within the 5-
year time window and 4.1% were on Methadone (Table 3).

2.4. Conversion to Morphine milligram equivalent (MME)

To render different opioid prescriptions comparable across patients
and timelines, we performed the Morphine Milligram Equivalent (MME)
conversion using guidelines provided in “CDC compilation of benzodi-
azepines, muscle relaxants, stimulants, zolpidem, and opioid analgesics
with oral morphine milligram equivalent conversion factors, 2018
version” [33].

Each prescription was converted into MME, which determines a
patient’s cumulative intake of any opioid drugs within a 24-hour in-
terval, and is defined as:

MME
day

NumberofUnits
DaysSupply

= (Strength per Unit)( )(MME conversion factor)

€8]

We obtained Strength per Unit and MME conversion factor from the
CDC specifications [24]. We derived Number of Units from the pre-
scription quantity in tablet, capsule, film, solution, or suspension. We
defined Days Supply as the total number of days between the prescription
start date and the prescription end date for outpatient prescriptions. For
inpatient administrations, each administration was calculated as a
separate prescription and then aggregated to find the total MME per day
[33].

We decided to include Buprenorphine, a semi-synthetic opioid
antagonist drug, in this analysis. Despite the hypothesis that buprenor-
phine, a partial agonist with strong affinity for the mu receptor, is not
expected to be associated with overdose risk in the same dose-dependent
manner as a full agonist opioid medication, patients on buprenorphine
still experience opioid related adverse effects and a potential for over-
dose [34-36]. Therefore, prescriptions with Buprenorphine film, tablet,
or patch extended-release were assigned corresponding MMEs from the
CDC’s 2016 file [37].

2.5. Creation of patient MME trajectories

For each patient in the cohort, we identified vector x; =

[x(il},xm), ey Xfing} } representing their MME trajectory. Here, n; is the
total number of weeks in the period between the first and the last opioid
prescription for patient i, and x;, represents MME exposure of patient i
in week j calculated as the weekly average. We decided to use weekly
average since current New York State policies limit acute pain pre-
scriptions to seven days. Moreover, weekly intervals are sufficiently long
to mitigate effects of a non-uniform distribution in time. In addition,
they are short enough to provide insights into the dynamics of long-term
opioid use as compared to using a longer time interval like a month,
since changes for even a few days of use can lead to addiction and
overdose [38]. Fig. 1 shows a random sample of patients’ weekly MME
trajectories. We had a mean of 29.95 (sd = 50.53) weekly observations
in our cohort and a mean of 40.56 (sd = 47.8) for weekly MME across
each patient’s trajectory (Table 3).

2.6. Clustering trajectories

We divided our trajectories into a 70% training set and a 30% vali-
dation set. We used a stratified sampling method to ensure that the
proportion of opioid overdose and abuse events in both subsets closely
matched the distribution across the entire cohort (Train: 3.79%, Test
3.56%). Stratified sampling was done using R 3.6.1 package caret ‘cre-
ateDatapartition.” The median starting MME of the initial prescription in
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Fig. 1. Raw patient morphine mmilligram equivalent (MME) trajectories for 50
randomly sampled patients, where each patient trajectory is denoted by a
different color.

the time frame was 27.7 (IQR = 30) for the training set, 30 (IQR =
42.97) for the testing set, and 28.6 (IQR = 30) for the entire dataset
(Table 3). The mean starting MME of the initial prescription was 45.6
(sd = 56.72) for the training set, 45.93 (sd = 51.78) for the testing set,
and 45.62 (sd = 55.34) for the entire cohort. Substance use disorder was
coded with ICD for 13.2% of the sample (13.6% of training, 13.2% of
testing). To perform clustering, we considered three types of longitudi-
nal k-means methods: raw data, transformation of data using splines,
and latent representation of data. All methods were run on a machine
with 24 CPUS, 128 GB of memory, and 4 Nvidia 2080Tis with 11 GB of
memory.

2.6.1. Longitudinal k-means with imputation (kml)

We used R package kml to cluster the training set trajectories [27].
Kml uses Euclidean distance with Gower adjustment as its distance
measure and the Calinski and Harabasz criterion for choosing optimal k
[27]. Kml, like most data-adaptive longitudinal clustering algorithms,
requires missing values to be filled. Due to the nature of prescription
data, unlike laboratory values and other measurements, we cannot rely
on typical imputation methods, such as mean imputation, especially
when there are long gaps in prescriptions or there is a surgical or acute
pain clinical indication. Therefore, we ran kml assuming that 0 MME
dosages were given when data was missing for the 7-day period. The
training time for the final model was 39 s when the ‘Fast’ procedure is
used.

2.6.2. Longitudinal k-means with B-splines (B-spline)

In [6], Luong and Chandola proposed a method to use B-spline basis
representations of the data to learn clusters of individual trajectories
with k-means clustering. This methodology allows for different vector
lengths and missing data without the need for imputation or assigning
zeros. It assumes that time series within a cluster can be approximated
using a weighted sum over a collection of splines or polynomial func-
tions [5,6,39,40]. The basis matrix for representing the family of splines
is evaluated with boundary points of 0, corresponding to the first 7-day
prescription, and 261 (maximum weeks in 5 years) with the specified
interior knots defined by quantiles. Each patient is then assigned to one
of k clusters, where each cluster represents the joint MME trajectory of
all patients belonging to the cluster with a curve fitted to all of the ob-
servations of the patients assigned. As recommended by the author, we
used BIC as our criterion for selecting the optimal k. To encourage
convergence towards the global maximum, we initialized the k-means
algorithm 10 times and trained on 500 iterations. The training time for
the final model was 157 s.
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2.6.3. K-means on Variational Recurrent Autoencoders (VRAE)

Variational recurrent autoencoders combine recurrent neural net-
works (RNNs) with stochastic gradient variational Bayes to map time
series data to a latent vector representation [28]. Since variational
autoencoders are generative unsupervised models, they attempt to learn
the underlying distribution so that trajectories not seen in the training
dataset can still be assessed with higher accuracy. We used long short-
term memory (LSTM) to mitigate the exploding gradient problem
encountered with traditional RNNs. We trained the variational recurrent
autoencoder using Python 3 and PyTorch. The architecture of the model
from [28] was maintained with one hidden layer using the Adam opti-
mizer, gradient normalized clipping, and a batch-size of 32. We trained
the model with 500 epochs and an LSTM hidden layer size of 90. A
dropout layer (0.2) is included to help prevent overfitting. With a small
sample space such as this one, we risked not being able to capture the
distribution; therefore, the maximized loss term is the summation of two
terms. The first term is the reconstruction loss (MSE) and the second
term is the KL-divergence, which is the amount of compression or in-
formation that is contained within the latent space. [41]. A set of
learning rates, [0.005, 0.0005, 0.00005], and a set of latent lengths
[5,10,20,30], were assessed minimizing reconstruction loss as the
objective with the final model having a learning rate of 0.0005 and
latent length of 20. The final average loss of our model was 163,591.49
(KL-divergence = 5.26), implying that even though the sample size was
small for deep learning methodology, the VRAE learned a latent pattern.
In order to model missing data, we padded vectors with zeros and
masked them by setting the loss generated by the pad tokens to zero. We
then employed non-longitudinal k-means with Euclidean distance on the
embedded representation. We used the silhouette score and elbow
method to decipher how many clusters should be used. The training time
for the final model was 7329 s.

2.7. Optimal number of clusters k and stability

The problem of choosing k for k-means cluster analysis has been well
studied and many methods have been proposed [27,41,42]. Given the
unsupervised nature of the problem, meaning that subtypes do not have
known labels, there is no standard way to use prediction ability to drive
model selection [42]. To select the number of clusters k for each method,
we approach the problem based on the idea of cluster ‘stability,”
meaning that if multiple independent samples from the population find
the same k, the clusters are meaningful [43-45]. Therefore, on our
training set of 70%, we select k by running 5-fold cross-validation. First,
we shuffled our training dataset, then we split our dataset into 5 folds for
cross-validation, where for each fold j = [1, 2, 3, 4, 51, j is the ‘testing’
set and the remaining folds become the ‘training’ set. For VRAE,
dimensionality reduction is applied on the ‘training’ set to create the
latent embedded representation of the trajectories with the hyper-
parameters fixed as described in Section 2.6.3. Then, clusters are
generated on the ‘training’ set. Finally, we predict each ‘testing’ obser-
vation’s ‘training’ set cluster membership as defined by each method.
We report the mean internal criterion measures that are suggested by
each package for each fold’s training set (i.e. the combination of the four
folds with one fold left out), such as BIC (B-spline) [6], Calinski-
Hararanski (kml) [27], and the silhouette score combined with the
elbow method (VRAE). The final k was chosen by majority vote deter-
mined by each method’s criterion across all folds. In addition, we pro-
vide profile analysis showing the comparison of the held-out testing set
verses the other folds training set across all five runs to illustrate the
robustness of the clusters regardless of fold and the ability of the found
clusters to be used to assign new, unseen, patient trajectories to a sub-
type. For kml, to predict the test set’s cluster assignment, a person is
assigned, based on Euclidean distance, to the training set’s cluster with
the closest center. For the test set in B-spline, patients are assigned to the
training set’s closest cluster that produces the smallest error given the
training set basis coefficients for each cluster. For the test set in VRAE,
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we obtained latent vectors by passing the vectors into the encoder and
obtaining the intermediate latent vector. We predicted the k-means
cluster estimating the vector closest to the cluster center [41].

After choosing the most appropriate value of k for each method using
cross-validation, we re-ran each method for the selected value of k on
the full 70% training set. In addition, we compared the profiles of the
training set and testing set clusters to see if individual training cluster
trajectories and predicted cluster trajectories form similar patterns. To
visually show the patterns for the large number of patient trajectories in
each cluster, we used the loess smoothing function and confidence in-
tervals to represent the trajectories in each cluster.

2.8. Cluster visualization and interpretation using decision trees

Since k-means is an unsupervised method, we would like to sum-
marize the key characteristics of each cluster. To do this quantitatively,
we used external clinical variables and drug prescription variables in a
decision tree analysis with cluster as the outcome variable [46]. These
variables can be found in Table 3 and Supplementary Table S1. Decision
trees can provide insight into the clusters by generating interpretable
rules and visualizations for how the cluster was formed. Inspired by
Leffondré et al. [47], we extracted various summary measures that
describe features of the trajectories, e.g., MME mean, MME standard
deviation, regressed linear slope, change in MME from first to last pre-
scription, maximum MME, and minimum MME. We then used those
extracted features, combined with additional clinical variables and
medication features, to produce a decision tree using R rpart for each of
the three methods on the entire training set. The decision trees, there-
fore, created interpretable rules and visualization for each method’s
resulting clusters on a per patient level. We used the Gini index to
determine splits in the decision tree and a minimum number of 20 ob-
servations in a node for a split to occur. The tree is described by the
number of nodes, which determine its complexity, and the accuracy of
the tree, i.e., the ratio of elements not correctly explained by the
resulting tree. We then pruned the trees to avoid overfitting to outliers in
the data and chose the complexity parameter following typical rpart
convention [48]. For kml, the complexity parameter with minimized
cross-validated error was selected to be 0.01. The B-spline and VRAE
decision trees had a higher complexity with the complexity parameters
associated with minimum error found to both be 0.0007.

2.9. Predictive validity

To assess the predictive validity of the clustered temporal data in
predicting the outcome measure opioid poisoning and abuse events, we
used the clusters as features in machine learning models. In addition,
clinical and demographic features in Supplementary Table S1 were
included as features in our models. Since our outcome is highly imbal-
anced, with only 3.7% in the minority class, we use modeling techniques
that are known to offer sufficient robustness. First, we employed tree-
based ensemble methods, random forest (RF) and XGBoost, since they
have been shown to have the highest accuracy for imbalanced class sizes
[42,49,50]. In addition, sampling methods are often used when class
imbalance occurs. These include over-sampling the minority class and
down-sampling the majority class. We applied Synthetic Minority Over-
Sampling Technique (SMOTE), which over-samples the minority class
using nearest neighbors and down-samples the majority class [51].
Without using SMOTE, our recall and precision measure values were
nearly 0. SMOTE was applied solely on the training set at each fold using
the R package caret. The testing set was left highly imbalanced to mirror
the true percentage of opioid overdoses in the population. Finally, we
used the area under the precision-recall curve as our accuracy metric.
We handled missing data for race, gender, and ethnicity by encoding the
missing data with the category ‘MISS’ and allowing the model to esti-
mate this pattern. We trained the models with R package caret using 5-
fold cross validation repeated 5 times with grid-search for
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hyperparameter optimization. Each model used the best hyper-
parameter combination. We set the random number seed for all models
to ensure that the algorithm gets the same data partitions and repeats,
allowing us to compare models using resampling techniques [52].
Comparison of the receiver operating characteristic curves was done
using a paired permutation test with 2,000 samples.

3. Results
3.1. Optimal choice of k using cross-validation

Since we allowed the number of clusters to be chosen by each
method’s criteria, the first difference between the methods lies here: kml
criterion selected 3 clusters as optimal, longitudinal k-means using B-
splines (B-spline) selected 7 clusters, and k-means variational autoen-
coder (VRAE) selected 7 clusters (Fig. 2). Plotting the sum of squared
errors for k-means also produced an elbow at 7 clusters. Since the
optimal choice of k will try to balance the maximum compression of the
data using a single cluster and the maximum accuracy by assigning each
data point to its own cluster, the differing number of clusters is repre-
sentative of how the data was pre-processed and transformed.

Assessing the smoothed trajectory subtypes for each fold with k = 3
subtypes for kml, k = 7 subtypes for B-spline and k = 7 subtypes for
VRAE, we see robust representations regardless of training set (Fig. 3).
The most volatile subtype, characterized by high MME in each graph,
changes shape across the folds. This could be representative of the small
number of patients (4.8%) in the entire cohort who have an overall mean
greater than 150.

3.2. Final subtype analysis

After re-running each method on the full 70% training set (n =
2,846) for the selected optimal value of k found by cross-validation, we
plotted the patient trajectory subtypes using a linear smoothing function
and confidence interval band (Fig. 4). Due to the way kml deals with
irregular sequences and the addition of zeros where missing values were
present, we only found a small number of subtypes that suffer from
highly unequally-sized clusters (Fig. 4(a), Fig. 7). The profile analysis of
the test cohort shows that prediction of the clusters is stable (Fig. 4(b)).
However, the majority of cases clustered into cluster 1 (89.6%), which
has a low starting MME and consists primarily of patients with less than
2 opioid prescriptions. Since this cluster contains approximately 90% of
the patients, this allows no clinically relevant discernment between the
trajectories. The remaining two clusters formed a trajectory that has a
higher starting MME which starts to taper off across time (8.3%) and a
trajectory which consists of high MME and continuous prescriptions
(2.1%).

Therefore, by pre-processing the data into this form, we may have
underestimated the number of true subtypes, forcing disjoint groups of
data into one larger cluster, namely cluster 1. The decision tree for kml
had a training misclassification error of 0.02, a macro-F1 of 0.91, and a
weighted-F1 of 0.98, implying that the chosen trajectory summary
variables can highly accurately predict the clusters. Additional explor-
atory analysis of how robust the method is at classifying new data to
clusters, shows that the error on the test set for the decision tree analysis
is only slightly higher (0.03) with a weighted-F1 score of 0.97 and a
macro-F1 score of 0.86. We see that 77.4% of the cohort has only two
primary splits: the number of observations is less than 82 and the mean
MME is less than 88.1 (Fig. 5(a)). Since CDC guidelines recommend
prescriptions less than 90 MME/day, and furthermore, caution
increasing dosages to greater than 50 MME per day, this cluster provides
very little insight that would be useful in clinical practice [53]. When
assessing association of the clusters to external clinical variables, the
only thing of note is that cluster 2 has a high proportion of buprenor-
phine and methadone users, but the majority of cases remained in
cluster 1 (Fig. 7(a)).
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for the highest, smallest, and most erratic clusters (represented by the top curves in all plots), the profile analysis shows stable clusters across all folds for

each method.

error (0.04) with a weighted-F1 score of 0.96 and a macro-F1 score of
0.89. Interestingly, cluster 6 is also associated with chronic pain, con-
taining 49% of patients with rheumatoid arthritics and chronic joint
pain, 60% of patients with other long-term chronic pain, and 54.7% of
patients with migraines and headaches. Cluster 2 (23.2%) is stagnant
across time with a higher baseline MME than cluster 6 and cluster 7
(8.4%) follows the same pattern with a higher baseline MME than both
cluster 6 and cluster 2. Cluster 3 (5.5%) and cluster 4 (3.8%) have
different baseline MME and increase initially and then decrease. The
decision tree shows cluster 3 having a high MME mean greater than 103,
which is characteristic of how MME for buprenorphine is calculated with

B-spline and VRAE on the other hand, do not require these same pre-
processing methods, and therefore, have found a higher number of
subtypes that appear informative and relevant to patient treatment. For
B-spline, the majority (50.3%, cluster 6) of cases clustered to a low
starting MME and static across time (Fig. 2(c)). We see that this co-
incides with our decision tree analysis with cluster 6 characterized by at
least 2 observations and a low MME (Fig. 5(b)). The decision tree
analysis for B-spline, which, like kml, has a low misclassification training
error of 0.02, a macro-F1 of 0.94, and a weighted-F1 of 0.98, meaning
these features represent the clusters well (Fig. 5(b)). Applying this de-
cision tree again to our test set gives a slightly higher misclassification
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Fig. 5. Decision tree analysis for kml and B-spline extracted k-means clusters.

an MME conversion factor of 30 for tablets, making it unsurprising that
31% of buprenorphine users are in this cluster. Cluster 5 (4.5%) also has
a high starting MME that tapers down and consists of the other bupre-
norphine users (29.5%). Cluster 1 (4.2%) has a very high baseline MME,
decreases initially, and then increases. Assessing the clinical profiles of
the clusters (Fig. 7(b)), clusters 2, 6, and 7 have a higher proportion of

injuries, and cluster 7 is also defined by multiple surgeries. All of the
clusters are stable when looking at the profile analysis of the test cohort

(Fig. 4(

d)).

For VRAE, the majority of patients (24.9%) were clustered to the
lowest MME trajectory similar to kml and B-spline transformation
(Cluster 1, Fig. 4(e)). The decision tree shows that these patients
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primarily (19%) also have only 4 to 6 observations and a negative slope,
meaning that the prescriptions have tapered off across time (Fig. 6).

For this cluster, the initial prescriptions in the time period were
short-acting (91.1%) and 81% of the cluster has as an initial prescription
of hydrocodone or tramadol. Interestingly, Fig. 7(c), shows that cluster 1
has a high proportion of patients under 30. Clusters 3, 4, and 5 had
differing starting MMEs with cluster 5 increasing and then tapering off
and clusters 3 and 4 initially decreasing (Fig. 4(e)). Examining the de-
cision tree, cluster 4 primarily has less than four observations. Cluster 5
is majority female (67.5%) and 74.6% are between the ages of 30 and
65, which is used as a primary node split in the decision tree (Fig. 7(c)).
Cluster 6 (9.4%) has a high starting MME and then decreasingly tapers.
Cluster 7 (9.6%) has the highest starting MME and is the most erratic of
the clusters. Like B-spline, the profile analysis for this erratic cluster is
also the only one that is not stable for the test set (Fig. 4(f)). For cluster 7,
72.5% of the initial prescriptions in the time frame were long-acting
opioids. Clusters 6 and 7 characterize dependence, containing 65.7%
of Buprenorphine users and 48% are recorded to have opioid use dis-
order (Fig. 7 ¢)). In addition, cluster 7 is also defined by no surgeries or
injuries and cluster 3 has a larger portion of one surgery and injuries
(Fig. 7(c).

Mapping time sequences of MME to one latent vector of engineered
features as compared to directly applying over timeseries vectors such as
with kml and B-spline, led to a much higher misclassification training
error (0.16), amacro-F1 of 0.83, and a weighted-F1 of 0.84 for the VRAE
clusters in the decision tree. This implementation has attempted to build
a latent structure of the time series, and therefore, summary statistics
and other patient features collected here are not fully able to explain the
clusters. Variable importance for the VRAE decision tree, unlike for B-
spline and kml which relied heavily on number of observations and mean
MME as features, was high for slope. In addition, the VRAE decision tree
found other patient features, ‘Other Drug Abuse’ and ‘Age,” important for
distinguishing between clusters (Fig. 6). Finally, our exploratory anal-
ysis of the test set shows a misclassification error rate of 0.28, with a
weighted-F1 score of 0.73, and a macro-F1 score of 0.71. This decrease
in accuracy is expected, since the trained decision tree had a higher
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misclassification error rate than the decision trees for B-spline and kml
3.3. Predictive validity

Using the clusters as features in a downstream prediction task to
assess risk of opioid poisoning and abuse, all three models had similar
area under the receiver-operating characteristic curve (AUC), with B-
spline having the highest (RF: 0.76, XGBoost: 0.75, all p-values >0.49,
Table 4). VRAE had the best area under the precision-recall curve
(RF:0.17, XGBoost:0.12), followed by B-spline. These performance
measures for area under the precision-recall curve (PrAUC) are in line
with current static machine learning algorithms using EHR data to
predict opioid overdose where the highest reported PrAUC was 0.036
[31]. In terms of scaled variable importance by model, VRAE cluster 7,
characteristic of the highest starting MME and a steep decline in MME
dosage, was the most important feature for predicting overdose
(XGBoost:100, RF: 73.3). On the contrary, the clusters that have the
most variable importance for B-spline and kml are the static, low starting
MME clusters. This could be due to the imbalanced nature of the clus-
ters, where the majority of patients have clustered to these two clusters.
However, for B-spline’s cluster 6, which is characteristic of chronic use of
opioids and chronic pain, this importance is much higher than kml’s
cluster 1 importance (XGBoost: 100 and RF:100 compared to
XGBoost:19.9 and RF: 24.2). This makes intuitive sense since approxi-
mately 20% of chronic pain patients have experienced a life-time
overdose [54]. Finally, while VRAE and B-spline clusters were highly
important features, the three kml clusters all had importance, regardless
of model, less than 25.

4. Discussion

Our ultimate goal was to assess longitudinal k-means methods for
varying and irregular medication trajectory subtypes. In addition, we
present ways to analyze and interpret the resulting subtypes. We have
explored visualization techniques like decision trees which can help to
further quantitatively analyze and interpret. Each of the three methods
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Fig. 6. Decision tree analysis for VRAE extracted k-means clusters.
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(89.6%), they also make up a large portion of the clinical features. For B-spline (b), clusters 3 and 5 contain a large portion of patients on buprenorphine. Clusters 2, 6,
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Table 4

Random Forest and XGBoost algorithms with SMOTE for predicting oopioid overdose and abuse. AUC refers to area under the receiver-operating characteristic curve.

PrAUC refers to area under the precision-recall curve.

Model Cluster Recall Precision F1-Score AUC PrAUC
Train Test Train Test Train Test Train Test Train Test
Random Forest KML 0.21 0.22 0.14 0.15 0.16 0.18 0.77 0.75 0.11 0.15
B-Spline 0.32 0.42 0.13 0.12 0.19 0.18 0.80 0.76 0.12 0.15
VRAE 0.30 0.32 0.13 0.13 0.18 0.18 0.78 0.75 0.12 0.17
XG Boost KML 0.31 0.39 0.11 0.12 0.17 0.19 0.75 0.73 0.10 0.10
B-Spline 0.33 0.44 0.11 0.13 0.17 0.20 0.79 0.75 0.10 0.10
VRAE 0.31 0.44 0.11 0.14 0.16 0.21 0.76 0.72 0.10 0.12

extracted certain information from the trajectories and used that to form
the subtypes. For kml, three easily observed clinical opioid trajectories
were found with the majority of patients having a low level of MME.
These subtypes mirror what was found in Elmer et al. [25], which
focused on prescribing patterns. Due to the highly imbalanced cluster
sizes and the use of zeroswhen no dosage information was present,
additional clinical attributes could not be extracted from the trajec-
tories. Even when we force the kml method to extract 7 clusters, like for
B-spline and VRAE, the majority (79.6%) are still clustered into one
cluster. Therefore, given the opportunity to stratify the largest cluster
further, the method chooses instead to stratify the smaller clusters with
the smallest cluster resulting in only 0.1% of the data.

However, the methods (B-spline and VRAE) that dealt with missing
time points by not electing to fill them with zeros, allowed for different
sequence lengths, and transformed the raw data, ultimately clustered
the trajectories into more clinically interpretable and useful subtypes.
Seen in the profile analysis and the high F1 scores associated with the
decision tree for B-spline, this method extracts more evenly distributed
clusters that can be primarily explained by extracted trajectory features,
such as number of MME observations, mean and standard deviation of
MME over the trajectory, and the change in MME from the first obser-
vation to the last. However, the deep latent representation derived from

the trajectories in VRAE could not fully be explained by extracted
descriptive statistics. While the lower trajectories for B-splines and kml in
Fig. 4 tend to be static, the lower trajectories for VRAE are dynamic,
picking up different nuanced potential global patterns. Breaking the low
and static MME cluster found in kml into multiple clusters with varying
MME levels, such as in VRAE and B-spline where the optimal number of
clusters was chosen to be k = 7 for both, is also highly relevant to clinical
practice, considering that it has been shown that incrementally higher
doses are associated with increased risk of overdose and abuse [53]. In
addition, both of these methods found clusters that were associated with
other clinical features, such as dependence and chronic pain. Finally, our
clusters for VRAE and B-spline provided meaningful temporal informa-
tion for predicting opioid overdose and abuse. The question of how to
handle temporality of medications in a standard risk prediction model is
an important one, and clustering temporal data for feature creation may
be a viable option.

The application of machine learning to find subgroups that may not
be inherently visible in a heterogenous general population is important
to furthering biomedical research. For our use case, finding good opioid
subtypes can have positive clinical implications. Very few people have
assessed opioid trajectories in a general population that includes all
payer types, even though arguably addiction and overdose can affect all
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people with initialized opioid use [16]. For instance, in the general
population, patients who are started on an opioid prescription with a
high MME and then are subsequently tapered off of opioids, based on the
VRAE clusters, tend to be highly predictive of opioid overdose or abuse.

Furthermore, integrating opioid trajectory subtype modeling into
clinical decision support tools would allow clinicians to more accurately
predict which patients are at an increased risk of adverse opioid events.
Risk stratification that incorporates an individual’s history of opioid use
pattern, diagnoses, procedures, and other prescription medications may
facilitate earlier interventions to prevent or detect abuse, or identify
patients who would benefit from having an opioid overdose reversal
agent such as naloxone readily available at home. This type of clinical
decision support may also serve to encourage safer prescribing patterns.
For example, in cluster 6, 65.5% of patients receiving opiates had a
corresponding diagnosis of migraines and headaches. Best practice
guidelines discourage opiates for the treatment of migraine and head-
ache [55,56]. In addition to the risk of dependency with long term use,
opiates commonly worsen headache symptoms and are not as effective
as other agents [57].

In addition to modeling MME dosages, temporal clustering pre-
processing strategies based on discrete EHR data, such as laboratory
values or medication dosages, may enhance individualized prognosti-
cation in other disease states such as diabetes or congestive heart failure.
Increasingly patients are using home monitoring systems which transmit
clinical data directly to the EHR for clinician interpretation. Quanti-
tating the influence of known clinical patterns in these and other disease
states may enhance clinical decision making and enhance individualized
medicine.

While we only explore three longitudinal k-means methods for
dealing with high-dimensional and irregular medication trajectories,
there are many alternative methods outside of these methods that should
be assessed. For instance, VADER also uses a variational autoencoder
with two LSTMs to cluster potentially sparse multivariate trajectories
with imputation for missing not at random data [4]. However, they
similarly have to estimate an optimal number of clusters and their model
requires equal-length time series [4]. A new method k-Gaps, originally
used in incomplete climatological trajectories, clusters varying and long
length time series using a method similar to k-means with vector masks
[58]. In addition, functional data analysis, such as functional PCA, is
especially good at dimensionality reduction when the number of ob-
servations is less than the number of time points [59]. These methods
have been used to model growth patterns and cognitive development
and could potentially be extended to medication trajectories [60].
Finally, while we chose to use variational recurrent autoencoders to
create our deep trajectory representations, there are other deep learning
methods that could be used.

4.1. Limitations

While this paper aims to model subtypes of opioid use, there are
several limitations to the data and modeling with k-means. The database
only contains EHR data from two outpatient clinic sites. Therefore, a
patient may have obtained an opioid prescription at a different practice
within WNY and this external information may not be reflected in a
practice’s EHR system. However, this is less likely since New York state
uses a prescription monitoring system to track prescriptions. Conversely,
this sample is likely representative of the type of data available to one
provider at the time of care. Currently, efforts are being made to inte-
grate state prescription drug monitoring programs (PDMP) data into
EHR systems with one in three hospital systems already doing so [37].
PDMPs give a patient’s history of opioids, calculates total MME/day, and
identifies patients who are obtaining opioids from multiple providers.
However, these systems do not currently incorporate clinical decision
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support or provide clinicians with proactive alerts [38]. As integration
becomes a reality, the methodology of these types of models can still be
applied, yielding more generalizable results. The presence of gaps in
medication usage data means that our time zero, or entry into the
cohort, could contain both patients being initiated on opioid therapy
and chronic opioid users with inconsistent use. Without a complete re-
cord detailing a patient’s opioid prescription history it is not possible to
accurately identify initial prescribing events. Despite this limitation, it is
often a reality in a clinical setting where clinicians lack access to concise
historical data from external sources about their patients. For the pre-
diction task, further analyses using left-censoring, such as survival
analysis, could be done to partially address this issue.

While k-means provides an efficient and computationally tractable
alternative to model-based clustering algorithms, it does have limita-
tions. K-means relies on a given set of initial parameters’ start values and
then attempts to converge towards the maximum; however, there is no
way to be sure whether this is a global maximum or one of the local
maxima. Therefore, as was done in this study, k-means should be run
multiple times with different starting points to encourage convergence
towards the global maximum. In addition, estimating the optimal
number of clusters remains an open problem for k-means, although
statistical heuristics exist and were employed [39].

5. Conclusion

Leveraging EHR data with machine learning has a tremendous po-
tential to enhance clinical decision making and provide more granular
risk stratification techniques. Temporal irregularities, including
sequence length and missing data, can make it challenging to statisti-
cally model subtypes. As shown here, missing values methods, feature
selection, scaling, transforming, and latent mappings can create very
different subtypes that extract disparate information from the trajec-
tories and create meaningful clinical clusters. If the clusters are repre-
sentative of the patients and their trajectories, they can be useful as
features in downstream prediction tasks, offering a way to incorporate
this temporal information into a standard static machine learning
model. Our B-spline and VRAE clusters were highly important variables
for predicting opioid overdose, compared to a method that did not ac-
count for the temporal irregularities well. In addition, with decision tree
visualization, we were able to characterize these clusters into clinically
meaningful opioid use subtypes, accounting for both the dynamics of
MME usage and relevant patient clinical features. While we applied
these methods to an opioid cohort, these methods are universal and can
be applied to any EHR laboratory or medication measure.
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