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A B S T R A C T   

Identification of patient subtypes from retrospective Electronic Health Record (EHR) data is fraught with 
inherent modeling issues, such as missing data and variable length time intervals, and the results obtained are 
highly dependent on data pre-processing strategies. As we move towards personalized medicine, assessing ac-
curate patient subtypes will be a key factor in creating patient specific treatment plans. Partitioning longitudinal 
trajectories from irregularly spaced and variable length time intervals is a well-established, but open problem. In 
this work, we present and compare k-means approaches for subtyping opioid use trajectories from EHR data. We 
then interpret the resulting subtypes using decision trees, examining how each subtype is influenced by opioid 
medication features and patient diagnoses, procedures, and demographics. Finally, we discuss how the subtypes 
can be incorporated in static machine learning models as features in predicting opioid overdose and adverse 
events. The proposed methods are general, and can be extended to other EHR prescription dosage trajectories.   

1. Introduction 

Electronic Health Records (EHRs) are recognized as a readily avail-
able data source for analyzing complex patient cohorts. The typical EHR 
system contains a rich source of observational longitudinal data that 
spans many patient attributes, making this data ideal for identification 
of patient subtypes. Despite the ideality of the data source, clustering 
longitudinal observational data into patient subtypes can be difficult due 
to the inherent issues of missing data and varying length of observations 
per patient [1,2]. Methods for clustering quantitative trajectories to 
assess patient subpopulations have been applied to EHR data for vital 
signs, laboratory values, and other calculated measures [3–6]. However, 
use of prescription dosage information in longitudinal models necessi-
tates a large amount of pre-processing and standardization that is time 
and cost intensive, requiring a deep knowledge in EHR data structure, 
terminologies, and clinical expertise. Moreover, decisions made during 
preprocessing can have a large impact on the choice of clustering 
method and the extracted subtypes [7–9]. Prescription dosage data in an 
EHR is often missing not at random, meaning that the probability of an 
observation being missing depends on unobserved data [10]. For 

instance, in chronic disease patients, gaps between observations can be 
representative of medication non-adherence [9]. Therefore, typical 
imputation methods, such as mean imputation, do not work. Prescrip-
tion dosage data also extends over a variable period of time: patients 
that have an inciting incident (e.g. surgery) will receive a prescription 
for a few days, whereas patients with a chronic disease will receive a 
recurrent prescription over the course of multiple years. 

Methods for clustering these types of trajectories are either data- 
adaptive, using the data directly (e.g. k-means), or model-based, 
assuming the data can be described by a probabilistic model (e.g. 
mixture models) [3]. Model-based techniques are widely used and 
provide high-quality subtypes for sparse data and short trajectories 
[11–13]. However, they tend to involve computationally complex sta-
tistical inference, which is difficult to scale [3,6,11,14,15]. For instance, 
gaussian processes suffer from cubic complexity in data size compared to 
the quadratic complexity of k-means, a method that identifies a set of 
centroids and groups patients to the nearest centroid [16]. While great 
strides have been made to improve scalable gaussian processes and 
mixture models in high-dimensionality, i.e. the number of patients, 
these methods tend to lose efficiency when the number of time points 
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exceeds a few dozen, which greatly reduces their feasibility [14–16]. 
Longitudinal k-means clustering offers a viable alternative to model- 

based. In this study, we explore three different longitudinal k-means 
methods, varying in how they deal with the outlined medication tra-
jectory issues, using a prescription opioid cohort. Prescription opioids 
are used by a large heterogeneous population affected by acute and 
chronic pain and addiction with irregular trajectory lengths across pa-
tient. Increases in opioid prescriptions over the last few decades has led 
to opioid-related adverse effects, ranging from gastrointestinal prob-
lems, endocrine disorders, and opioid-induced hyperalgesia to de-
pendency, abuse and overdose [17,18]. Identification of opioid 
prescription use subtypes may offer critical information to design 
personalized treatment regimens for opioid patients [19–21]. For 
instance, previous prospective research has shown that opioid use sub-
types can capture non-response to treatment at an early stage and offer 
insights into effectiveness of drug prescription policies [22–24]. In the 
context of opioid subtype identification and trajectory clustering, EHR 
data use has been limited [25]. While previous research has identified 
opioid use subtypes using group-based trajectory and mixed model ap-
proaches, to date, studies have not assessed the methodologies for 
applying high-dimensional EHR prescription data to scalable k-means 
algorithms [24–26]. 

Herein, we outline how to carefully pre-process, apply, and trans-
form medication EHR data to computationally tractable longitudinal k- 
means methods to get both efficient and clinically meaningful clusters 
[3]. First, we used traditional k-means for longitudinal data to create 
subtypes using the raw morphine milligram equivalent (MME) pre-
scription dosage data with the assumption of no opioid use when missing 
[27]. Second, we found subtypes using k-means with a B-spline trans-
formation on the raw non-imputed data and irregular sequences [6]. 
Finally, we used long short-term memory variational autoencoders to 
map the trajectories to latent vector representations, followed by k- 
means clustering [28]. Examining and visualizing the longitudinal 
clusters using interpretable decision trees based on external and sum-
mary data, we found the three methods capture different aspects of the 
trajectories with the B-spline transformation and the variational 
autoencoder capturing more complex and clinically relevant subtypes. 
In addition, we assessed the subtypes’ ability to be used as features in 
machine learning models to predict opioid overdose and adverse events. 
These exploratory analyses show the importance of prescription data 
transformation and pre-processing to create patient subtypes. 

2. Materials and methods 

2.1. Sample 

We analyzed an EHR database, approved by the University at Buffalo 
Institutional Review Board, of individuals from an inpatient hospital 
(Erie County Medical Center) and an outpatient practice (UBMD) in 
Buffalo, NY. To identify patients across hospital and outpatient data, we 
performed exact matching using social security number, birth date, last 
name, and first three letters of the first name. We set the study period to 
cover January 2013 to December 2017, with 2013 showing a significant 
increase in opioid deaths involving synthetic opioids in the United States 
[29]. We selected patients 12 to 90 years old, eliminating children and 
infants who typically show different use patterns than the general 
population. We excluded patients diagnosed with cancer, with the 
exception of non-melanoma skin cancers (Table 1), due to the differing 
guidelines for opioid use to treat cancer pain [30]. Furthermore, only 
patients who were given an opioid prescription for seven or more days 
during the study period were included. Our final cohort consisted of 
3,997 individuals, where 306 patients overlapped both facilities and 
3,691 patients only had prescription data from the outpatient practice 
EHR. 

2.2. Non-prescription related clinical variables 

For the downstream analysis tasks, we identified overdose and abuse 
events based on available ICD codes (Table 2). For each patient, we 
created a binary outcome variable of whether or not an overdose or 
abuse event occurred within the 5-year study window. Since a single 
patient may have multiple event encounters, we defined the first 
recorded case of overdose or abuse as a patient’s endpoint. In total, we 
found 3.7% of patients with a positive outcome variable (i.e., overdose 
or abuse events). While the 5-year study window may allow some pa-
tients a longer time to develop an event, patients were only included if 
they had 90 days of EHR data allowing for sufficient time to develop an 
outcome. In fact, 49% of our patients had an event within 90 days. 

We assessed other known opioid-related clinical variables defined by 
structured EHR data including patient demographics, addictive behavior 
and mental illness indicators, and other comorbid conditions [31]. 
These were selected by a team of clinicians and a literature review of 
relevant features pertaining to opioid, substance abuse, and pain related 
outcomes. We included patient socio-demographic variables: age of first 
recorded prescription, race, gender, ethnicity, insurance category, and 
marital status. We categorized race as White, Black, and Other. Ethnicity 
was coded as Hispanic or Non-Hispanic. As a socio-demographic indica-
tor, we broke insurance into Commercial, Medicare, Medicaid, No Insur-
ance, and Other. Addictive behavior variables included other types of 
substance abuse and dependence, opioid-related counseling, and a his-
tory of urine drug screens. Other health factors included history of 
surgery, chronic pain diagnoses, injury, mental illness, and typical co-
morbid conditions. Comorbid conditions were calculated using the 

Table 1 
Inclusions and exclusions.  

Inclusion Prescription Medications 
Opioids Indicated for 

Pain Treatment 
Codeine, Fentanyl, Hydromorphone, Butorphanol, 
Dihydrocodeine, Hydrocodone, Levomethadyl, 
Levorphanol, Meperidine, Morphine, Opium, 
Oxycodone, Oxymorphone, Pentazocine, 
Propoxyphene, Tapentadol, Tramadol 

Opioids Indicated for 
Abuse Treatment 

Buprenorphine, Buprenorphine/Naloxone, Methadone 

Exclusion Codes 
Cancer/Palliative Care ICD-10 C category cancers except C44, Z51.5, 172, 174, 

140, 141, 152, 147, 142, 153, 148, 143, 154, 149, 144, 
155, 150, 145, 156, 151, 146, 157, 164, 171, 158, 165, 
225, 159,166,209.7, 160, 167, 230, 161, 168, 231, 162, 
169, 232, 163, 170, 233, 234, 247, 238.7, V66.7, 
209.36, 173.00, 173.09, 173.10, 173.19, 173.20, 
173.29, 173.30, 173.39, 173.40, 173.49, 173.50, 
173.59, 173.60, 173.69, 173.70, 173.79, 173.89, 
173.80, 173.99, 173.90, 227.3, 227.4, 228.02, 228.1 
237.5, 237.6, 237.9, 238.4, 239.6, 239.7  

Table 2 
Diagnostic codes for selected outcomes and predictors.  

Variable Codes 
Opioid Adverse Event 

(Outcome) 
96500, 96501, 96502, 96509, 9701, E8500, E8501, 
E8502, E9350, E9351, E9352, T400X1, T400X2, 
T400X3, T400X4, T401, T402X1, T402X2, T402X3, 
T402X4, T404X1, T404X2, T404X3, T404X4, T403X1, 
T403X2, T403X3, T403X4, T40601, T40602, T40603, 
T40604, T40691, T40692, T40693, T40694, 30550, 
30551, 30552, F1110, F11120, F11121, F11122, 
F11129, F1114, F11150, F11151, F11151, F11159, 
F11181, F11182, F11188, F1119 

Opioid Dependence 30400, 30401, 30402, 30470, 30471, 30472, F1120, 
F1122, F1123, F1124, F11250, F11241, F11259, 
F11281, F11282, F11288, F1129, F11220 

Surgeries CPT: 10030 – 69990 
Counseling V65.42, Z71.41, Z71.51, Z71.6, 99406, 99407, 99408, 

99409  
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Agency for Healthcare Research and Quality’s Clinical Classification 
Software and Elixhauser Comorbidity Software [32]. A list of variables 
can be found in Supplementary Table S1. Our sample was majority fe-
male (64.3%) and had a median age of 52 (Table 3). The distribution of 
race was 58.9 % White, 40.1% Black, and 1% Other. There were 3.67% 
Hispanic or Latinos. 

2.3. Prescription data 

For each patient in the cohort, we obtained a list of opioid pre-
scriptions directly from the EHR record. To ensure that all opioid pre-
scriptions are captured, we mapped opioid-related National Drug Codes 
(NDC) in the EHR data to RxNorm codes. We queried the local pre-
scription labels when NDC codes were not present for both generic and 
proprietary opioid drug names, mapping those to RxNorm codes. We 
excluded prescriptions for which there was an error flag, or if it was 
voided, unauthorized, or canceled. For outpatient prescriptions, we 
observed that in some cases multiple prescriptions for the same generic 
drug and in the same time frame were registered in the EHR, even 
though only one of them was realized. In such cases, we retained only 
the latest prescription. In certain instances, the quantity of a drug was 
representative of a full packet or box as defined by their NDC. To handle 
such cases, we adjusted the quantity to the number within the product 
description, e.g., the number of pills in a packet, the number of patches 
in a box, etc. Finally, we removed prescriptions with null or 0 quantity 
dispensed or missing prescription starting and ending date. We used 
12,387 outpatient prescriptions and 26,141 hospital administrations. 
This led to a total of 875,906 days of prescribed opioids with a median of 
25 days (IQR = 51) per patient and an average of 117 days (sd = 272.32) 
of prescription per patient. 

In addition to quantity and days supply for each prescription, we 
extracted prescription variables including opioid treatment, indicated 

by methadone, buprenorphine, or buprenorphine-naloxone, whether 
first recorded prescription was a long or short-acting opioid, and the first 
recorded prescription generic drug category, e.g., hydrocodone, meth-
adone, etc. For our sample, 11.4% were on buprenorphine within the 5- 
year time window and 4.1% were on Methadone (Table 3). 

2.4. Conversion to Morphine milligram equivalent (MME) 

To render different opioid prescriptions comparable across patients 
and timelines, we performed the Morphine Milligram Equivalent (MME) 
conversion using guidelines provided in “CDC compilation of benzodi-
azepines, muscle relaxants, stimulants, zolpidem, and opioid analgesics 
with oral morphine milligram equivalent conversion factors, 2018 
version” [33]. 

Each prescription was converted into MME, which determines a 
patient’s cumulative intake of any opioid drugs within a 24-hour in-
terval, and is defined as: 
MME

day
= (Strength per Unit)

(

NumberofUnits

DaysSupply

)

(MME conversion factor)

(1) 
We obtained Strength per Unit and MME conversion factor from the 

CDC specifications [24]. We derived Number of Units from the pre-
scription quantity in tablet, capsule, film, solution, or suspension. We 
defined Days Supply as the total number of days between the prescription 
start date and the prescription end date for outpatient prescriptions. For 
inpatient administrations, each administration was calculated as a 
separate prescription and then aggregated to find the total MME per day 
[33]. 

We decided to include Buprenorphine, a semi-synthetic opioid 
antagonist drug, in this analysis. Despite the hypothesis that buprenor-
phine, a partial agonist with strong affinity for the mu receptor, is not 
expected to be associated with overdose risk in the same dose-dependent 
manner as a full agonist opioid medication, patients on buprenorphine 
still experience opioid related adverse effects and a potential for over-
dose [34–36]. Therefore, prescriptions with Buprenorphine film, tablet, 
or patch extended-release were assigned corresponding MMEs from the 
CDC’s 2016 file [37]. 

2.5. Creation of patient MME trajectories 

For each patient in the cohort, we identified vector xi =
[x{i1}, x{i2}, ..., x{ini}

]

’ representing their MME trajectory. Here, ni is the 
total number of weeks in the period between the first and the last opioid 
prescription for patient i, and x{ij} represents MME exposure of patient i 
in week j calculated as the weekly average. We decided to use weekly 
average since current New York State policies limit acute pain pre-
scriptions to seven days. Moreover, weekly intervals are sufficiently long 
to mitigate effects of a non-uniform distribution in time. In addition, 
they are short enough to provide insights into the dynamics of long-term 
opioid use as compared to using a longer time interval like a month, 
since changes for even a few days of use can lead to addiction and 
overdose [38]. Fig. 1 shows a random sample of patients’ weekly MME 
trajectories. We had a mean of 29.95 (sd = 50.53) weekly observations 
in our cohort and a mean of 40.56 (sd = 47.8) for weekly MME across 
each patient’s trajectory (Table 3). 

2.6. Clustering trajectories 

We divided our trajectories into a 70% training set and a 30% vali-
dation set. We used a stratified sampling method to ensure that the 
proportion of opioid overdose and abuse events in both subsets closely 
matched the distribution across the entire cohort (Train: 3.79%, Test 
3.56%). Stratified sampling was done using R 3.6.1 package caret ‘cre-
ateDatapartition.’ The median starting MME of the initial prescription in 

Table 3 
Demographic, clinical, and trajectory characteristics for a general opioid cohort 
from two sites.  

Variable  Full Dataset (n = 3,997) 
Demographic and Clinical Characteristics 

Age (years) <30 442 (11.1%)  
30–65 2754 (68.9%)  
>65 801 (20.0%) 

Opioid Adverse Event  149 (3.7%) 
Female  2570 (64.3%) 
Race Black 1555 (40.1%)  

White 2283 (58.9%)  
Other 39 (1%) 

Insurance Commercial 1098 (27.5%)  
Medicaid 1172 (29.4%)  
Medicare 1636 (41%)  
No Insurance 41 (1%)  
Other 43 (1.1%) 

Number of Surgeries Multiple 248 (6.2%)  
One 260 (6.5%)  
None 3489 (87.3%) 

Injury  1022 (25.6%) 
Buprenorphine  454 (11.4%) 
Methadone  162 (4.1%) 
Opioid Dependence  528 (13.2%) 
Mental Illness  1432 (35.8%) 
Non-Opioid Substance Abuse  751 (18.8%) 

MME Trajectories (Mean 7-day Measurements)   
Mean (SD) 

Mean MME over entire trajectory  40.56 (47.80) 
ΔMME   21.86 (43.82) 
Observations  29.95 (50.53)   

N (%) 
Starting MME <20 1403 (35.1%)  

20–49 1625 (40.7%)  
50–89 383 (9.6%)  
≥90 585 (12.6%)  
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the time frame was 27.7 (IQR = 30) for the training set, 30 (IQR =
42.97) for the testing set, and 28.6 (IQR = 30) for the entire dataset 
(Table 3). The mean starting MME of the initial prescription was 45.6 
(sd = 56.72) for the training set, 45.93 (sd = 51.78) for the testing set, 
and 45.62 (sd = 55.34) for the entire cohort. Substance use disorder was 
coded with ICD for 13.2% of the sample (13.6% of training, 13.2% of 
testing). To perform clustering, we considered three types of longitudi-
nal k-means methods: raw data, transformation of data using splines, 
and latent representation of data. All methods were run on a machine 
with 24 CPUS, 128 GB of memory, and 4 Nvidia 2080Tis with 11 GB of 
memory. 

2.6.1. Longitudinal k-means with imputation (kml) 
We used R package kml to cluster the training set trajectories [27]. 

Kml uses Euclidean distance with Gower adjustment as its distance 
measure and the Calinski and Harabasz criterion for choosing optimal k 
[27]. Kml, like most data-adaptive longitudinal clustering algorithms, 
requires missing values to be filled. Due to the nature of prescription 
data, unlike laboratory values and other measurements, we cannot rely 
on typical imputation methods, such as mean imputation, especially 
when there are long gaps in prescriptions or there is a surgical or acute 
pain clinical indication. Therefore, we ran kml assuming that 0 MME 
dosages were given when data was missing for the 7-day period. The 
training time for the final model was 39 s when the ‘Fast’ procedure is 
used. 

2.6.2. Longitudinal k-means with B-splines (B-spline) 
In [6], Luong and Chandola proposed a method to use B-spline basis 

representations of the data to learn clusters of individual trajectories 
with k-means clustering. This methodology allows for different vector 
lengths and missing data without the need for imputation or assigning 
zeros. It assumes that time series within a cluster can be approximated 
using a weighted sum over a collection of splines or polynomial func-
tions [5,6,39,40]. The basis matrix for representing the family of splines 
is evaluated with boundary points of 0, corresponding to the first 7-day 
prescription, and 261 (maximum weeks in 5 years) with the specified 
interior knots defined by quantiles. Each patient is then assigned to one 
of k clusters, where each cluster represents the joint MME trajectory of 
all patients belonging to the cluster with a curve fitted to all of the ob-
servations of the patients assigned. As recommended by the author, we 
used BIC as our criterion for selecting the optimal k. To encourage 
convergence towards the global maximum, we initialized the k-means 
algorithm 10 times and trained on 500 iterations. The training time for 
the final model was 157 s. 

2.6.3. K-means on Variational Recurrent Autoencoders (VRAE) 
Variational recurrent autoencoders combine recurrent neural net-

works (RNNs) with stochastic gradient variational Bayes to map time 
series data to a latent vector representation [28]. Since variational 
autoencoders are generative unsupervised models, they attempt to learn 
the underlying distribution so that trajectories not seen in the training 
dataset can still be assessed with higher accuracy. We used long short- 
term memory (LSTM) to mitigate the exploding gradient problem 
encountered with traditional RNNs. We trained the variational recurrent 
autoencoder using Python 3 and PyTorch. The architecture of the model 
from [28] was maintained with one hidden layer using the Adam opti-
mizer, gradient normalized clipping, and a batch-size of 32. We trained 
the model with 500 epochs and an LSTM hidden layer size of 90. A 
dropout layer (0.2) is included to help prevent overfitting. With a small 
sample space such as this one, we risked not being able to capture the 
distribution; therefore, the maximized loss term is the summation of two 
terms. The first term is the reconstruction loss (MSE) and the second 
term is the KL-divergence, which is the amount of compression or in-
formation that is contained within the latent space. [41]. A set of 
learning rates, [0.005, 0.0005, 0.00005], and a set of latent lengths 
[5,10,20,30], were assessed minimizing reconstruction loss as the 
objective with the final model having a learning rate of 0.0005 and 
latent length of 20. The final average loss of our model was 163,591.49 
(KL-divergence = 5.26), implying that even though the sample size was 
small for deep learning methodology, the VRAE learned a latent pattern. 
In order to model missing data, we padded vectors with zeros and 
masked them by setting the loss generated by the pad tokens to zero. We 
then employed non-longitudinal k-means with Euclidean distance on the 
embedded representation. We used the silhouette score and elbow 
method to decipher how many clusters should be used. The training time 
for the final model was 7329 s. 

2.7. Optimal number of clusters k and stability 

The problem of choosing k for k-means cluster analysis has been well 
studied and many methods have been proposed [27,41,42]. Given the 
unsupervised nature of the problem, meaning that subtypes do not have 
known labels, there is no standard way to use prediction ability to drive 
model selection [42]. To select the number of clusters k for each method, 
we approach the problem based on the idea of cluster ‘stability,’ 
meaning that if multiple independent samples from the population find 
the same k, the clusters are meaningful [43–45]. Therefore, on our 
training set of 70%, we select k by running 5-fold cross-validation. First, 
we shuffled our training dataset, then we split our dataset into 5 folds for 
cross-validation, where for each fold j = [1, 2, 3, 4, 5] , j is the ‘testing’ 

set and the remaining folds become the ‘training’ set. For VRAE, 
dimensionality reduction is applied on the ‘training’ set to create the 
latent embedded representation of the trajectories with the hyper-
parameters fixed as described in Section 2.6.3. Then, clusters are 
generated on the ‘training’ set. Finally, we predict each ‘testing’ obser-
vation’s ‘training’ set cluster membership as defined by each method. 
We report the mean internal criterion measures that are suggested by 
each package for each fold’s training set (i.e. the combination of the four 
folds with one fold left out), such as BIC (B-spline) [6], Calinski- 
Hararanski (kml) [27], and the silhouette score combined with the 
elbow method (VRAE). The final k was chosen by majority vote deter-
mined by each method’s criterion across all folds. In addition, we pro-
vide profile analysis showing the comparison of the held-out testing set 
verses the other folds training set across all five runs to illustrate the 
robustness of the clusters regardless of fold and the ability of the found 
clusters to be used to assign new, unseen, patient trajectories to a sub-
type. For kml, to predict the test set’s cluster assignment, a person is 
assigned, based on Euclidean distance, to the training set’s cluster with 
the closest center. For the test set in B-spline, patients are assigned to the 
training set’s closest cluster that produces the smallest error given the 
training set basis coefficients for each cluster. For the test set in VRAE, 

Fig. 1. Raw patient morphine mmilligram equivalent (MME) trajectories for 50 
randomly sampled patients, where each patient trajectory is denoted by a 
different color. 
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we obtained latent vectors by passing the vectors into the encoder and 
obtaining the intermediate latent vector. We predicted the k-means 
cluster estimating the vector closest to the cluster center [41]. 

After choosing the most appropriate value of k for each method using 
cross-validation, we re-ran each method for the selected value of k on 
the full 70% training set. In addition, we compared the profiles of the 
training set and testing set clusters to see if individual training cluster 
trajectories and predicted cluster trajectories form similar patterns. To 
visually show the patterns for the large number of patient trajectories in 
each cluster, we used the loess smoothing function and confidence in-
tervals to represent the trajectories in each cluster. 

2.8. Cluster visualization and interpretation using decision trees 

Since k-means is an unsupervised method, we would like to sum-
marize the key characteristics of each cluster. To do this quantitatively, 
we used external clinical variables and drug prescription variables in a 
decision tree analysis with cluster as the outcome variable [46]. These 
variables can be found in Table 3 and Supplementary Table S1. Decision 
trees can provide insight into the clusters by generating interpretable 
rules and visualizations for how the cluster was formed. Inspired by 
Leffondré et al. [47], we extracted various summary measures that 
describe features of the trajectories, e.g., MME mean, MME standard 
deviation, regressed linear slope, change in MME from first to last pre-
scription, maximum MME, and minimum MME. We then used those 
extracted features, combined with additional clinical variables and 
medication features, to produce a decision tree using R rpart for each of 
the three methods on the entire training set. The decision trees, there-
fore, created interpretable rules and visualization for each method’s 
resulting clusters on a per patient level. We used the Gini index to 
determine splits in the decision tree and a minimum number of 20 ob-
servations in a node for a split to occur. The tree is described by the 
number of nodes, which determine its complexity, and the accuracy of 
the tree, i.e., the ratio of elements not correctly explained by the 
resulting tree. We then pruned the trees to avoid overfitting to outliers in 
the data and chose the complexity parameter following typical rpart 
convention [48]. For kml, the complexity parameter with minimized 
cross-validated error was selected to be 0.01. The B-spline and VRAE 
decision trees had a higher complexity with the complexity parameters 
associated with minimum error found to both be 0.0007. 

2.9. Predictive validity 

To assess the predictive validity of the clustered temporal data in 
predicting the outcome measure opioid poisoning and abuse events, we 
used the clusters as features in machine learning models. In addition, 
clinical and demographic features in Supplementary Table S1 were 
included as features in our models. Since our outcome is highly imbal-
anced, with only 3.7% in the minority class, we use modeling techniques 
that are known to offer sufficient robustness. First, we employed tree- 
based ensemble methods, random forest (RF) and XGBoost, since they 
have been shown to have the highest accuracy for imbalanced class sizes 
[42,49,50]. In addition, sampling methods are often used when class 
imbalance occurs. These include over-sampling the minority class and 
down-sampling the majority class. We applied Synthetic Minority Over- 
Sampling Technique (SMOTE), which over-samples the minority class 
using nearest neighbors and down-samples the majority class [51]. 
Without using SMOTE, our recall and precision measure values were 
nearly 0. SMOTE was applied solely on the training set at each fold using 
the R package caret. The testing set was left highly imbalanced to mirror 
the true percentage of opioid overdoses in the population. Finally, we 
used the area under the precision-recall curve as our accuracy metric. 
We handled missing data for race, gender, and ethnicity by encoding the 
missing data with the category ‘MISS’ and allowing the model to esti-
mate this pattern. We trained the models with R package caret using 5- 
fold cross validation repeated 5 times with grid-search for 

hyperparameter optimization. Each model used the best hyper-
parameter combination. We set the random number seed for all models 
to ensure that the algorithm gets the same data partitions and repeats, 
allowing us to compare models using resampling techniques [52]. 
Comparison of the receiver operating characteristic curves was done 
using a paired permutation test with 2,000 samples. 

3. Results 

3.1. Optimal choice of k using cross-validation 

Since we allowed the number of clusters to be chosen by each 
method’s criteria, the first difference between the methods lies here: kml 
criterion selected 3 clusters as optimal, longitudinal k-means using B- 
splines (B-spline) selected 7 clusters, and k-means variational autoen-
coder (VRAE) selected 7 clusters (Fig. 2). Plotting the sum of squared 
errors for k-means also produced an elbow at 7 clusters. Since the 
optimal choice of k will try to balance the maximum compression of the 
data using a single cluster and the maximum accuracy by assigning each 
data point to its own cluster, the differing number of clusters is repre-
sentative of how the data was pre-processed and transformed. 

Assessing the smoothed trajectory subtypes for each fold with k = 3 
subtypes for kml, k = 7 subtypes for B-spline and k = 7 subtypes for 
VRAE, we see robust representations regardless of training set (Fig. 3). 
The most volatile subtype, characterized by high MME in each graph, 
changes shape across the folds. This could be representative of the small 
number of patients (4.8%) in the entire cohort who have an overall mean 
greater than 150. 

3.2. Final subtype analysis 

After re-running each method on the full 70% training set (n =
2,846) for the selected optimal value of k found by cross-validation, we 
plotted the patient trajectory subtypes using a linear smoothing function 
and confidence interval band (Fig. 4). Due to the way kml deals with 
irregular sequences and the addition of zeros where missing values were 
present, we only found a small number of subtypes that suffer from 
highly unequally-sized clusters (Fig. 4(a), Fig. 7). The profile analysis of 
the test cohort shows that prediction of the clusters is stable (Fig. 4(b)). 
However, the majority of cases clustered into cluster 1 (89.6%), which 
has a low starting MME and consists primarily of patients with less than 
2 opioid prescriptions. Since this cluster contains approximately 90% of 
the patients, this allows no clinically relevant discernment between the 
trajectories. The remaining two clusters formed a trajectory that has a 
higher starting MME which starts to taper off across time (8.3%) and a 
trajectory which consists of high MME and continuous prescriptions 
(2.1%). 

Therefore, by pre-processing the data into this form, we may have 
underestimated the number of true subtypes, forcing disjoint groups of 
data into one larger cluster, namely cluster 1. The decision tree for kml 
had a training misclassification error of 0.02, a macro-F1 of 0.91, and a 
weighted-F1 of 0.98, implying that the chosen trajectory summary 
variables can highly accurately predict the clusters. Additional explor-
atory analysis of how robust the method is at classifying new data to 
clusters, shows that the error on the test set for the decision tree analysis 
is only slightly higher (0.03) with a weighted-F1 score of 0.97 and a 
macro-F1 score of 0.86. We see that 77.4% of the cohort has only two 
primary splits: the number of observations is less than 82 and the mean 
MME is less than 88.1 (Fig. 5(a)). Since CDC guidelines recommend 
prescriptions less than 90 MME/day, and furthermore, caution 
increasing dosages to greater than 50 MME per day, this cluster provides 
very little insight that would be useful in clinical practice [53]. When 
assessing association of the clusters to external clinical variables, the 
only thing of note is that cluster 2 has a high proportion of buprenor-
phine and methadone users, but the majority of cases remained in 
cluster 1 (Fig. 7(a)). 
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B-spline and VRAE on the other hand, do not require these same pre- 
processing methods, and therefore, have found a higher number of 
subtypes that appear informative and relevant to patient treatment. For 
B-spline, the majority (50.3%, cluster 6) of cases clustered to a low 
starting MME and static across time (Fig. 2(c)). We see that this co-
incides with our decision tree analysis with cluster 6 characterized by at 
least 2 observations and a low MME (Fig. 5(b)). The decision tree 
analysis for B-spline, which, like kml, has a low misclassification training 
error of 0.02, a macro-F1 of 0.94, and a weighted-F1 of 0.98, meaning 
these features represent the clusters well (Fig. 5(b)). Applying this de-
cision tree again to our test set gives a slightly higher misclassification 

error (0.04) with a weighted-F1 score of 0.96 and a macro-F1 score of 
0.89. Interestingly, cluster 6 is also associated with chronic pain, con-
taining 49% of patients with rheumatoid arthritics and chronic joint 
pain, 60% of patients with other long-term chronic pain, and 54.7% of 
patients with migraines and headaches. Cluster 2 (23.2%) is stagnant 
across time with a higher baseline MME than cluster 6 and cluster 7 
(8.4%) follows the same pattern with a higher baseline MME than both 
cluster 6 and cluster 2. Cluster 3 (5.5%) and cluster 4 (3.8%) have 
different baseline MME and increase initially and then decrease. The 
decision tree shows cluster 3 having a high MME mean greater than 103, 
which is characteristic of how MME for buprenorphine is calculated with 

Fig. 2. Selecting optimal k using 5-fold cross-validation and method suggested internal criterion. The plots show the mean criterion value with error bars across the 
five folds. In (a), the kml method shows all criterion (Calinski-Harabasz, Davies-Bouldin, and Ray and Turi) maximized for k = 3 clusters. For B-spline (b), the BIC is 
minimized for k = 7 clusters and AIC plateaus at k = 7 as well. Finally, (c) shows the silhouette score is highest for k = 7 clusters in VRAE. 

Fig. 3. Profile analysis using loess smoothing function and plotted confidence bands of 5-fold cross validation for clusters selected by method criterion. Other than 
for the highest, smallest, and most erratic clusters (represented by the top curves in all plots), the profile analysis shows stable clusters across all folds for 
each method. 
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an MME conversion factor of 30 for tablets, making it unsurprising that 
31% of buprenorphine users are in this cluster. Cluster 5 (4.5%) also has 
a high starting MME that tapers down and consists of the other bupre-
norphine users (29.5%). Cluster 1 (4.2%) has a very high baseline MME, 
decreases initially, and then increases. Assessing the clinical profiles of 
the clusters (Fig. 7(b)), clusters 2, 6, and 7 have a higher proportion of 

injuries, and cluster 7 is also defined by multiple surgeries. All of the 
clusters are stable when looking at the profile analysis of the test cohort 
(Fig. 4(d)). 

For VRAE, the majority of patients (24.9%) were clustered to the 
lowest MME trajectory similar to kml and B-spline transformation 
(Cluster 1, Fig. 4(e)). The decision tree shows that these patients 

Fig. 4. Profile analysis using loess smoothing function and plotted confidence bands for trajectories found using the three k-means methods on the full 70% training 
set (n = 2,846) compared to the 30% testing set (n = 1,151). 

Fig. 5. Decision tree analysis for kml and B-spline extracted k-means clusters.  
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primarily (19%) also have only 4 to 6 observations and a negative slope, 
meaning that the prescriptions have tapered off across time (Fig. 6). 

For this cluster, the initial prescriptions in the time period were 
short-acting (91.1%) and 81% of the cluster has as an initial prescription 
of hydrocodone or tramadol. Interestingly, Fig. 7(c), shows that cluster 1 
has a high proportion of patients under 30. Clusters 3, 4, and 5 had 
differing starting MMEs with cluster 5 increasing and then tapering off 
and clusters 3 and 4 initially decreasing (Fig. 4(e)). Examining the de-
cision tree, cluster 4 primarily has less than four observations. Cluster 5 
is majority female (67.5%) and 74.6% are between the ages of 30 and 
65, which is used as a primary node split in the decision tree (Fig. 7(c)). 
Cluster 6 (9.4%) has a high starting MME and then decreasingly tapers. 
Cluster 7 (9.6%) has the highest starting MME and is the most erratic of 
the clusters. Like B-spline, the profile analysis for this erratic cluster is 
also the only one that is not stable for the test set (Fig. 4(f)). For cluster 7, 
72.5% of the initial prescriptions in the time frame were long-acting 
opioids. Clusters 6 and 7 characterize dependence, containing 65.7% 
of Buprenorphine users and 48% are recorded to have opioid use dis-
order (Fig. 7 c)). In addition, cluster 7 is also defined by no surgeries or 
injuries and cluster 3 has a larger portion of one surgery and injuries 
(Fig. 7(c). 

Mapping time sequences of MME to one latent vector of engineered 
features as compared to directly applying over timeseries vectors such as 
with kml and B-spline, led to a much higher misclassification training 
error (0.16), a macro-F1 of 0.83, and a weighted-F1 of 0.84 for the VRAE 
clusters in the decision tree. This implementation has attempted to build 
a latent structure of the time series, and therefore, summary statistics 
and other patient features collected here are not fully able to explain the 
clusters. Variable importance for the VRAE decision tree, unlike for B- 
spline and kml which relied heavily on number of observations and mean 
MME as features, was high for slope. In addition, the VRAE decision tree 
found other patient features, ‘Other Drug Abuse’ and ‘Age,’ important for 
distinguishing between clusters (Fig. 6). Finally, our exploratory anal-
ysis of the test set shows a misclassification error rate of 0.28, with a 
weighted-F1 score of 0.73, and a macro-F1 score of 0.71. This decrease 
in accuracy is expected, since the trained decision tree had a higher 

misclassification error rate than the decision trees for B-spline and kml. 

3.3. Predictive validity 

Using the clusters as features in a downstream prediction task to 
assess risk of opioid poisoning and abuse, all three models had similar 
area under the receiver-operating characteristic curve (AUC), with B- 
spline having the highest (RF: 0.76, XGBoost: 0.75, all p-values >0.49, 
Table 4). VRAE had the best area under the precision-recall curve 
(RF:0.17, XGBoost:0.12), followed by B-spline. These performance 
measures for area under the precision-recall curve (PrAUC) are in line 
with current static machine learning algorithms using EHR data to 
predict opioid overdose where the highest reported PrAUC was 0.036 
[31]. In terms of scaled variable importance by model, VRAE cluster 7, 
characteristic of the highest starting MME and a steep decline in MME 
dosage, was the most important feature for predicting overdose 
(XGBoost:100, RF: 73.3). On the contrary, the clusters that have the 
most variable importance for B-spline and kml are the static, low starting 
MME clusters. This could be due to the imbalanced nature of the clus-
ters, where the majority of patients have clustered to these two clusters. 
However, for B-spline’s cluster 6, which is characteristic of chronic use of 
opioids and chronic pain, this importance is much higher than kml’s 
cluster 1 importance (XGBoost: 100 and RF:100 compared to 
XGBoost:19.9 and RF: 24.2). This makes intuitive sense since approxi-
mately 20% of chronic pain patients have experienced a life-time 
overdose [54]. Finally, while VRAE and B-spline clusters were highly 
important features, the three kml clusters all had importance, regardless 
of model, less than 25. 

4. Discussion 

Our ultimate goal was to assess longitudinal k-means methods for 
varying and irregular medication trajectory subtypes. In addition, we 
present ways to analyze and interpret the resulting subtypes. We have 
explored visualization techniques like decision trees which can help to 
further quantitatively analyze and interpret. Each of the three methods 

Fig. 6. Decision tree analysis for VRAE extracted k-means clusters.  
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extracted certain information from the trajectories and used that to form 
the subtypes. For kml, three easily observed clinical opioid trajectories 
were found with the majority of patients having a low level of MME. 
These subtypes mirror what was found in Elmer et al. [25], which 
focused on prescribing patterns. Due to the highly imbalanced cluster 
sizes and the use of zeroswhen no dosage information was present, 
additional clinical attributes could not be extracted from the trajec-
tories. Even when we force the kml method to extract 7 clusters, like for 
B-spline and VRAE, the majority (79.6%) are still clustered into one 
cluster. Therefore, given the opportunity to stratify the largest cluster 
further, the method chooses instead to stratify the smaller clusters with 
the smallest cluster resulting in only 0.1% of the data. 

However, the methods (B-spline and VRAE) that dealt with missing 
time points by not electing to fill them with zeros, allowed for different 
sequence lengths, and transformed the raw data, ultimately clustered 
the trajectories into more clinically interpretable and useful subtypes. 
Seen in the profile analysis and the high F1 scores associated with the 
decision tree for B-spline, this method extracts more evenly distributed 
clusters that can be primarily explained by extracted trajectory features, 
such as number of MME observations, mean and standard deviation of 
MME over the trajectory, and the change in MME from the first obser-
vation to the last. However, the deep latent representation derived from 

the trajectories in VRAE could not fully be explained by extracted 
descriptive statistics. While the lower trajectories for B-splines and kml in 
Fig. 4 tend to be static, the lower trajectories for VRAE are dynamic, 
picking up different nuanced potential global patterns. Breaking the low 
and static MME cluster found in kml into multiple clusters with varying 
MME levels, such as in VRAE and B-spline where the optimal number of 
clusters was chosen to be k = 7 for both, is also highly relevant to clinical 
practice, considering that it has been shown that incrementally higher 
doses are associated with increased risk of overdose and abuse [53]. In 
addition, both of these methods found clusters that were associated with 
other clinical features, such as dependence and chronic pain. Finally, our 
clusters for VRAE and B-spline provided meaningful temporal informa-
tion for predicting opioid overdose and abuse. The question of how to 
handle temporality of medications in a standard risk prediction model is 
an important one, and clustering temporal data for feature creation may 
be a viable option. 

The application of machine learning to find subgroups that may not 
be inherently visible in a heterogenous general population is important 
to furthering biomedical research. For our use case, finding good opioid 
subtypes can have positive clinical implications. Very few people have 
assessed opioid trajectories in a general population that includes all 
payer types, even though arguably addiction and overdose can affect all 

Fig. 7. Proportion of cases for clinical features by cluster and training set cluster membership. For kml (a), since the majority of patients have clustered to cluster 1 
(89.6%), they also make up a large portion of the clinical features. For B-spline (b), clusters 3 and 5 contain a large portion of patients on buprenorphine. Clusters 2, 6, 
and 7 have a higher proportion of injuries, and cluster 7 is also defined by multiple surgeries. For VRAE (c), the majority of buprenorphine patients come from 
clusters 6 and 7. Cluster 7 is also defined by no surgeries or injuries and cluster 3 has a larger portion of one surgery and injuries. The proportion of patients in the 
training set that have been clustered into each method’s respective cluster can be found under the headings Cluster (%). 

Table 4 
Random Forest and XGBoost algorithms with SMOTE for predicting oopioid overdose and abuse. AUC refers to area under the receiver-operating characteristic curve. 
PrAUC refers to area under the precision-recall curve.  

Model Cluster Recall Precision F1-Score AUC PrAUC   
Train Test Train Test Train Test Train Test Train Test 

Random Forest KML  0.21  0.22  0.14  0.15  0.16  0.18  0.77  0.75  0.11  0.15 
B-Spline  0.32  0.42  0.13  0.12  0.19  0.18  0.80  0.76  0.12  0.15 
VRAE  0.30  0.32  0.13  0.13  0.18  0.18  0.78  0.75  0.12  0.17 

XG Boost KML  0.31  0.39  0.11  0.12  0.17  0.19  0.75  0.73  0.10  0.10 
B-Spline  0.33  0.44  0.11  0.13  0.17  0.20  0.79  0.75  0.10  0.10 
VRAE  0.31  0.44  0.11  0.14  0.16  0.21  0.76  0.72  0.10  0.12  
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people with initialized opioid use [16]. For instance, in the general 
population, patients who are started on an opioid prescription with a 
high MME and then are subsequently tapered off of opioids, based on the 
VRAE clusters, tend to be highly predictive of opioid overdose or abuse. 

Furthermore, integrating opioid trajectory subtype modeling into 
clinical decision support tools would allow clinicians to more accurately 
predict which patients are at an increased risk of adverse opioid events. 
Risk stratification that incorporates an individual’s history of opioid use 
pattern, diagnoses, procedures, and other prescription medications may 
facilitate earlier interventions to prevent or detect abuse, or identify 
patients who would benefit from having an opioid overdose reversal 
agent such as naloxone readily available at home. This type of clinical 
decision support may also serve to encourage safer prescribing patterns. 
For example, in cluster 6, 65.5% of patients receiving opiates had a 
corresponding diagnosis of migraines and headaches. Best practice 
guidelines discourage opiates for the treatment of migraine and head-
ache [55,56]. In addition to the risk of dependency with long term use, 
opiates commonly worsen headache symptoms and are not as effective 
as other agents [57]. 

In addition to modeling MME dosages, temporal clustering pre- 
processing strategies based on discrete EHR data, such as laboratory 
values or medication dosages, may enhance individualized prognosti-
cation in other disease states such as diabetes or congestive heart failure. 
Increasingly patients are using home monitoring systems which transmit 
clinical data directly to the EHR for clinician interpretation. Quanti-
tating the influence of known clinical patterns in these and other disease 
states may enhance clinical decision making and enhance individualized 
medicine. 

While we only explore three longitudinal k-means methods for 
dealing with high-dimensional and irregular medication trajectories, 
there are many alternative methods outside of these methods that should 
be assessed. For instance, VADER also uses a variational autoencoder 
with two LSTMs to cluster potentially sparse multivariate trajectories 
with imputation for missing not at random data [4]. However, they 
similarly have to estimate an optimal number of clusters and their model 
requires equal-length time series [4]. A new method k-Gaps, originally 
used in incomplete climatological trajectories, clusters varying and long 
length time series using a method similar to k-means with vector masks 
[58]. In addition, functional data analysis, such as functional PCA, is 
especially good at dimensionality reduction when the number of ob-
servations is less than the number of time points [59]. These methods 
have been used to model growth patterns and cognitive development 
and could potentially be extended to medication trajectories [60]. 
Finally, while we chose to use variational recurrent autoencoders to 
create our deep trajectory representations, there are other deep learning 
methods that could be used. 

4.1. Limitations 

While this paper aims to model subtypes of opioid use, there are 
several limitations to the data and modeling with k-means. The database 
only contains EHR data from two outpatient clinic sites. Therefore, a 
patient may have obtained an opioid prescription at a different practice 
within WNY and this external information may not be reflected in a 
practice’s EHR system. However, this is less likely since New York state 
uses a prescription monitoring system to track prescriptions. Conversely, 
this sample is likely representative of the type of data available to one 
provider at the time of care. Currently, efforts are being made to inte-
grate state prescription drug monitoring programs (PDMP) data into 
EHR systems with one in three hospital systems already doing so [37]. 
PDMPs give a patient’s history of opioids, calculates total MME/day, and 
identifies patients who are obtaining opioids from multiple providers. 
However, these systems do not currently incorporate clinical decision 

support or provide clinicians with proactive alerts [38]. As integration 
becomes a reality, the methodology of these types of models can still be 
applied, yielding more generalizable results. The presence of gaps in 
medication usage data means that our time zero, or entry into the 
cohort, could contain both patients being initiated on opioid therapy 
and chronic opioid users with inconsistent use. Without a complete re-
cord detailing a patient’s opioid prescription history it is not possible to 
accurately identify initial prescribing events. Despite this limitation, it is 
often a reality in a clinical setting where clinicians lack access to concise 
historical data from external sources about their patients. For the pre-
diction task, further analyses using left-censoring, such as survival 
analysis, could be done to partially address this issue. 

While k-means provides an efficient and computationally tractable 
alternative to model-based clustering algorithms, it does have limita-
tions. K-means relies on a given set of initial parameters’ start values and 
then attempts to converge towards the maximum; however, there is no 
way to be sure whether this is a global maximum or one of the local 
maxima. Therefore, as was done in this study, k-means should be run 
multiple times with different starting points to encourage convergence 
towards the global maximum. In addition, estimating the optimal 
number of clusters remains an open problem for k-means, although 
statistical heuristics exist and were employed [39]. 

5. Conclusion 

Leveraging EHR data with machine learning has a tremendous po-
tential to enhance clinical decision making and provide more granular 
risk stratification techniques. Temporal irregularities, including 
sequence length and missing data, can make it challenging to statisti-
cally model subtypes. As shown here, missing values methods, feature 
selection, scaling, transforming, and latent mappings can create very 
different subtypes that extract disparate information from the trajec-
tories and create meaningful clinical clusters. If the clusters are repre-
sentative of the patients and their trajectories, they can be useful as 
features in downstream prediction tasks, offering a way to incorporate 
this temporal information into a standard static machine learning 
model. Our B-spline and VRAE clusters were highly important variables 
for predicting opioid overdose, compared to a method that did not ac-
count for the temporal irregularities well. In addition, with decision tree 
visualization, we were able to characterize these clusters into clinically 
meaningful opioid use subtypes, accounting for both the dynamics of 
MME usage and relevant patient clinical features. While we applied 
these methods to an opioid cohort, these methods are universal and can 
be applied to any EHR laboratory or medication measure. 
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