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HIGHLIGHTS

e Acid rain discovered in North America in 1963.

e Increasing precipitation acidity in eastern North America from the 1950’s to the 1970’s, and decreasing thereafter.
o National maps clearly convey occurrence and trends of acid rain to the public and policy makers.

o Declines of 85%, 80% and 66% in H', SO, and NO3 in precipitation chemistry from 1981 to 2017 in NE U.S.

e Comparable declines in sulfur and nitrate dry deposition.

ARTICLE INFO ABSTRACT

Keywords: Continuous monitoring of precipitation chemistry began at the Hubbard Brook Experimental Forest, NH in June
Acid rain 1963, and it was there that acid rain was discovered in North America. Some independent monitoring of pre-
Trends in precipitation chemistry cipitation chemistry in central New York was done in 1970-1971. The MAP3S network (Charlottesville, VA,
Daily precipitation chemistry Ithaca, NY, Penn State, PA, Whiteface Mt., NY) began in 1976 and became part of the National Atmospheric
NADP/AIRMoN e . . . . . .
Dry deposition Deposition Program (NADP) in 1992. Using data from these long-term sites, and other published information, we
Hubbard Brook experimental forest show the status and temporal change of precipitation chemistry in the northeastern U.S. from 1963 to present.
Combining records from all stations and networks gave better insights into the status and temporal trends of
precipitation chemistry for the region particularly as detailed regional maps could be constructed from these
data. Early maps of predicted pH (1955-56 and 1965-66) and individually measured pH values (1975-76), as well
as cartoons provided important visual information about the occurrence and spread of acid rain in the north-
eastern U.S. These indicators of changing atmospheric chemistry were key in initiating federal policy necessary
for improving air quality and for reducing atmospheric pollutant loading, which had led to acid rain in this area,
starting in the 1950s. Analyzing combined records from Hubbard Brook and the 5 longest operating MAP3S/
AIRMOoN sites (IL11, NY67, DE02, PA15 and TNOO) with a random coefficient model showed overall declines in
annual concentrations of HY, SO3~ and NO3 from 1981 to 2017 of 85%, 80% and 66%, respectively. Calcium
concentration declined by 14% and NHj showed no change during this period. Dry deposition of sulfur, NO3 and
Ca?t measured at co-located Clean Air Status and Trends Network (CASTNET) sites showed declines of 87%, 64%
and <1%, respectively, during 2000-2017. As precipitation and air chemistry networks expanded to include the
entire US (and Canada), dramatic improvements in precipitation chemistry nationwide, brought about by fed-
eral, clean air legislation, have been clearly documented.
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1. Introduction

Truly long-term records from high-quality monitoring efforts are
rare, but they provide unique insights for evaluating environmental
change and condition (Table 1). Characteristics of successful long-term
monitoring are given in Table 2.

Continuous, comprehensive, long-term monitoring of precipitation
chemistry started at the Hubbard Brook Experimental Forest (HBEF) in
the White Mountains of NH in June 1963 as part of the Hubbard Brook
Ecosystem Study (Bormann and Likens 1967, Likens, 2013; Holmes and
Likens 2016). Starting in 1976, several other locations initiated
long-term monitoring in the eastern U.S. as part of the Multi-State At-
mospheric Power Production Pollution Study (MAP3S) network (Mac-
Cracken, 1978). In the United States, the National Atmospheric
Deposition Program (NADP) began weekly wet-only sampling in 1978.
This National Trends Network (NADP/NTN) now includes over 250
active sites (https://nadp.slh.wisc.edu/nadp/). In 1992, the MAP3S
event, wet-only network became the daily NADP Atmospheric Inte-
grated Research and Monitoring Network (NADP/AIRMoN) (https
://nadp.slh.wisc.edu/AIRMoN/). The NADP/AIRMoN ceased opera-
tion in September 2019. The Canadian Air and Precipitation Monitoring
Network (CAPMoN) began collecting wet-only daily precipitation sam-
ples in 1983, although two earlier Canadian networks began sampling
precipitation chemistry in 1978 (http://data.ec.gc.ca/data/air/moni
tor/networks-and-studies/canadian-air-and-precipitation-monitorin
g-network-capmon/). The CAPMoN precipitation chemistry network in
Canada now includes ~28 sites.

Acid rain was discovered at Hubbard Brook in 1963 (Likens et al.,
1972) and was confirmed as a major environmental problem by ongoing
monitoring at the Hubbard Brook site (e.g., Likens, 2013; Holmes and
Likens 2016), at early sites in Ithaca and Aurora, NY (Likens 1972), and
at various sites in the MAP3S network in the eastern U.S. Subsequent
decades of monitoring precipitation chemistry at numerous sites showed
the acidification and then recovery from acidification throughout
eastern North America. Here, we present long-term data relevant to
these significant changes in the atmospheric chemistry of the eastern U.
S. as inferred from precipitation chemistry measured at several of these
long-term sites (Fig. 1). Furthermore, long-term monitoring on a na-
tional scale has shown dramatic changes in precipitation chemistry, as
well as wet and dry deposition, throughout the U.S.

1.1. Sites

The Hubbard Brook Ecosystem Study at the HBEF, NH, has been
collecting and analyzing bulk precipitation chemistry continuously since
June 1963. In addition, the HBEF became a NADP/NTN weekly, wet-
only site (NHO02) in 1978. Hubbard Brook became a National Dry
Deposition Network (NDDN) site (WST 109) in 1988, which is now part
of the Clean Air Status and Trends Network (CASTNET) (https://www3.
epa.gov/castnet/site_pages/WST109.html). The NHO2 and WST 109
sites are operational at about 250-m MSL elevation in the Hubbard
Brook Valley, whereas the bulk precipitation sites are located at higher
elevations (~600-m MSL) adjacent to the south-facing, experimental
watersheds (Likens, 2013; Holmes and Likens 2016).

Starting in 1976, four sites (Whiteface Mt., NY — NY98, Ithaca, NY —
NY67, Penn State, PA - PA15, and Charlottesville, VA — VA0O) began

Table 1
Some values of long-term data.

Identify and Quantify Extreme Events and Long-term Trends

Evaluate Environmental Problems
Quantitatively Evaluate Experimental Manipulations

Establish Baselines for:

Restoration Targets Pristine Conditions Federal and State Regulations
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Table 2
What makes monitoring successful? (Adapted from Lindenmayer and Likens
2009, 2018).

Driven by good questions

Underpinned by a powerful and relevant conceptual model of system being
monitorited

Based on a thoughtful experimental design, including valid statistical models

Collection of high-quality data and frequent referral to these data

Scientific productivity (use these data!)

Management relevance

Responsible (safe) storage of data and methodology, and robust data management
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Fig. 1. Locations of major monitoring sites referred to in this study.

collecting event precipitation samples as part of the MAP3S network. In
November 1977, Illinois (IL11), in February 1978, Delaware (DE02) and
in January 1981, Oak Ridge (TNOO) were added to the network (Fig. 1;
Supplemental Material, Part A). In 1992, NY67, PA15, IL11, DEO2 and
TNOO became part of the NADP daily sampling, AIRMoN Network.
“Daily” samples were collected from the network when precipitation
had occurred in the last 24 h, and were collected even when it was still
precipitating. “Event” collection, which was the protocol for MAP3S,
was defined as precipitation that occurred with no 6-h interval without
precipitation. Previously, bulk precipitation chemistry was collected
from two sites near NY67, at the Cornell University Game Farm Road in
Ithaca, NY and the Cornell University Research Farm at Aurora, NY
(Fig. 1) during 1970-1971 (Likens 1972).

In addition, four of the MAP3S/AIRMOoN sites (PA15, NY67, IL11 and
TNOO) were co-located with the CASTNET (https://www.epa.gov/
castnet) air quality and dry deposition monitoring network sites (PSU
106, CTH 110, BVL 130 and ONL 102, respectively).

2. Methods
2.1. Hubbard Brook

Samples of rain and snow are collected with a continuously open,
acid-washed, polyethylene funnel/bottle for rain and a polyethylene
acid-washed, uncovered bucket for snow (bulk precipitation samples), at
weekly intervals (Likens et al., 1967; Buso et al., 2000, Likens, 2013).
Wet-only samplers are open to the atmosphere only when a precipitation
event is occurring.

Volume-weighted averages (e.g. annual) are calculated by summing
the amount of chemical from individual samples (e.g. weekly) and then
dividing this value by the total amount of water during the period. Mass
flux is calculated by multiplying the measured concentration of dis-
solved chemical in the accumulated composite sample of precipitation
by the daily amounts of precipitation during the interval. The daily



G.E. Likens et al.

values (g/ha-day) are summed to provide mass inputs by month or year
(e.g. kg/ha-year). Chemical analyses were done by standard analytical
procedures. Procedures were not changed during the long-term study
unless the two procedures were overlapped for a year or more (Buso
et al., 2000, Likens, 2013).

2.2. Ithaca, Aurora, NY67 and other MAP3S/AIRMoN long-term
monitoring sites

Bulk samples from the Cornell University Game Farm Road site in
Ithaca and the Cornell University Research Farm site in Aurora, NY,
were collected and chemically analyzed in the same way as those from
the Hubbard Brook bulk collectors. Protocols and quality control pro-
cedures for the MAP3S event samples are described in Dana (1988). The
NADP/AIRMoN and NADP/NTN Standard Operating Procedures and
Quality Assurance Reports are available at: (http://nadp.slh.wisc.ed
u/lib/).

Many of the long-term monitoring sites have additional research
related to atmospheric deposition, particularly dry deposition (CAST-
NET), which compliments the continuous wet deposition record, and are
co-located with many NADP sites. Sulfur species measured by CASTNET
include gaseous SO, and particulate SOF . Nitrogen species include
HNOs3, and particulate NO3 and NH{. In addition, NADP biweekly NH3
air concentrations have been monitored using passive samplers, at NY67
and IL11 since 2007 and a site near PA15 (PA96), which began in 2015
(http://nadp.slh.wisc.edu/data/sites/AMoN/?net=AMoN). These dry
deposition data provide more supporting evidence for the wet deposi-
tion results, and combined with modeled species not directly measured
(e.g. NOg, N3Os etc.) can be used to produce estimates of total deposition
(Schwede and Lear 2014; NADP 2019).

To establish overall multi-site trends, we used random coefficient
models (RCMs). When evaluating multiple sites, an RCM is a more
powerful statistical tool than a simple regression model because the
RCM can account for both within-site and between-site variability. Thus,
a trend from a group of sites can be aggregated and assessed simulta-
neously with more accuracy. This approach has been used in other
studies of atmospheric and precipitation chemical species trends. Chan
(2009) applied RCMs to assess trends in ground level ozone in Canada
and the eastern US, and Butler et al. (2011) used RCMs to investigate
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relationships between ground-level ozone and NOy emissions. The RCM
approach was also used to assess trends between NOy emissions and wet
and dry atmospheric nitrogen species (Butler et al., 2005), temporal
trends in precipitation mercury concentrations in the eastern US (Butler
et al., 2008) and temporal trends in ground-level NH3 concentrations
(Butler et al., 2016). More detailed discussions of the use of RCMs can be
found in Snijders and Bosker (1999), Raudenbush and Bryk (2002) and
Chan (2009).

The trend estimates in this study are obtained using data from all six
sites: HB, NY67, DE02, PA15, IL11, TNOO (Fig. 1). The RCMs include a
linear and quadratic fixed effect of year, a fixed effect of precipitation
amount, and a random intercept and linear slope of year. The SAS mixed
model procedure was used (Littell et al., 2006) to fit these models.

3. Results and discussion
3.1. SO, NOy and NH3 emissions

National emissions of SO;, NOy and NH3 from 1970 to 2017 are
shown in Fig. 2. The uptick in NOy emissions from 2001 to 2002 and the
decline in NH3 emissions from 2000 to 2001 are mainly due to a
methodological change in calculating emissions, rather than an actual
increase or decrease in emissions (EPA 2019). The marked downward
trend in SOz and NOy emissions during 1970-2017 is clear from these
long-term data, but the patterns of decline are different. The period from
1970 to 1990 shows a steady decline in SO emissions (largely as a result
of the Clean Air Act (CAA) of 1970 and CAA Amendments of 1977). One
aspect of the CAA Amendments of 1977 was the establishment of New
Source Review (NSR) which promoted installation of up-to-date air
pollution control technology on new and renovated industrial facilities
to improve air quality in non-attainment regions, and prevent any
further air quality degradation in attainment regions (Evans et al., 2008;
EPA 2020).

The NOy values show little or no decline until 1980. From 1980 to the
late 1990°’s NOy emissions showed a steady decline, but at a lower rate
than the decline in SO,. With the implementation of Phase I of the 1990
CAA Amendments in 1995 for SO and 1996 for NOy, larger declines for
emissions were mandated for SO, than for NOy. However, in efforts to
control ozone concentrations from stationary sources, the 1999 Ozone

NO,, SO,, NH; emissions (million metric tons)
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Fig. 2. Annual U.S. emissions of NOy, SO, and NHj3 in million metric tons from 1970 to 2017 (from EPA 2019). The uptick in NOy emissions from 2001 to 2002 and
the decline in NH3 emissions from 2000 to 2001 are mainly due to a methodological change in calculating emissions.
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Transport Commission, and in 2003 the NOy State Implementation Plan
(SIP) allowed for further declines in NOy (Sickels and Shadwick, 2015;
EPA 2017). The Cross State Air Pollution Rule (passed in 2011, but was
litigated in the courts until 2014) has also led to further declines in both
SO, and NOy emissions in order to help downwind states meet Ambient
Air Quality Standards and reduce ozone levels (EPA 2020). Declines in
SO, and NOy have also been driven by the closing of coal fired power
plants and the replacement of some of these with more cost-competitive
and lower emitting natural gas power plants (Pratson et al., 2013).
Replacement of coal as a power plant fuel, and a combination of these
federal regulations (and some state mandates) has led to a 40% and 34%
decline in SO and NOy, respectively, from 2002 to 2009, and a further
67% and 28% decline, respectively, from 2009 to 2017.

3.2. Hubbard Brook

The 50-calendar-year record of H concentration in bulk precipita-
tion (1964-2014), and the wet-only values (1980-2017) for the HBEF
are shown in Fig. 3. Based on these long-term, calendar-year data for
annual bulk precipitation, precipitation acidity declined by ~80%
during 1964-2014. During the period of overlap (1980-2014), there
was a strong convergence between the bulk and wet-only H" values
(Fig. 3). The long-term decline in SOF~ in precipitation at Hubbard
Brook has been linear and robust (Likens et al., 2001), but some 18 years
of continuous monitoring from the beginning of the Study were required
to show statistically that acidity of precipitation at Hubbard Brook had
been reduced significantly (Likens, 1989).

3.3. The MAP3S/AIRMON sites

Long-term data on precipitation chemistry from all the AIRMoN sites
are available at https://nadp.slh.wisc.edu/AIRMoN/, and previous to
1992 in the Supplemental Material (SM), Part E1, E2 and E3, which
includes the MAP3S data record extending back to 1977 as annual
volume-weighted values (SM E—1). The more detailed MAP3S event
record for all sites is available in SM E—2 and upon request from the
NADP Program Office at the Wisconsin State Laboratory of Hygiene,
Madison, WI (Larson, pers comm.), and is posted on the NADP website at
http://nadp.sth.wisc.edu/dl/map3s/. Environment and Climate Change
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Canada also has some of the MAP3S data (1977-1982) in http://donnee
s.ec.gc.ca/data/air/monitor/monitoring-of-atmospheric-precipitation
-chemistry/major-ions/LegacyUSANetworks/?lang=en.

The annual precipitation chemistry record for HBEF and the five
MAP3S/AIRMOoN sites are shown in Fig. 4.

The volume-weighted, annual concentrations for H', SO3~ and NO3,
during overlapping periods at all 6 sites are strongly correlated, with r-
values of 0.90-0.96, 0.91-0.96 and 0.69-0.91, respectively, and p-
values for all the correlations <0.0001. The Ca?* and NH{ correlations
between sites are much weaker, with only 4 of 30 and 6 of 30 correla-
tions, respectively, having p-values < 0.01. The multivariate correla-
tions (r-values and p-values of correlations) for H, SO7 ", and NO3,
Ca?* and NH{ are included in the Supplementary Material, Part F.

Fig. 4 does not include the years 1990 and 1991 for the MAP3S/
AIRMON sites, because this was a transition period from MAP3S to
NADP/AIRMoN and the yearly records for 1990 and 1991 are incom-
plete. The Ca?' concentrations at NY67 and PA15 for 1977 are not
included because there are no data for January to August (see Supple-
mentary Material, Part E—1 and E—2). Calcium values for the Ithaca and
Aurora sites for 1970-71 were not included in the trend analysis because
they appeared as possible outliers, probably because of the bulk sam-
pling. The trend analysis was done both by including and by omitting
Ca?* data for 1970-71; the results were not significantly different (%
change of —14%, in both cases, is the same from 1981 to 2017). Using
random coefficient mixed models, we calculated the overall changes in
concentrations for Hubbard Brook and the five long-term MAP3S/AIR-
MoN sites (NY67, PA15, DEO2, IL11 and TNOO) combined. For the
period 1981 to 2017, there were substantial declines of 85% for H', 80%
for SOF~ and 66% for NO3; Ca®" showed a 14% decline and NHZ had a
<1% decline (Table 4). The longer record at Hubbard Brook (Fig. 4 a)
shows a sharp decline in Ca®" (and Mg2+, Likens, 2013) concentration
between 1965 and ~1980; concentrations are relatively flat thereafter
in accordance with the results from the other long-term MAP3-
S/AIRMOoN sites (Fig. 4 b-f). The data are also presented by each ionic
species (e.g. HY, SO3~, NO3, NHiand Ca2") as opposed to by site as
shown in Fig. 4, in Supplementary Material, Part G. In addition to the
annual data, Part G includes the non-linear (quadratic) regression lines
for the overall six site trends, and the individual site trends.

The decline in Ca?* concentrations at Hubbard Brook between 1963

Hydrogen lon Concentration
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Fig. 3. A 50-year record of acid precipitation, measured in H' concentration (peq/1), at Hubbard Brook Experimental Forest, based on weekly bulk precipitation
chemistry from Watershed 6. Each solid dot is the annual, volume-weighted, calendar year concentration. These data, including the linear regression, are compared
with the annual wet-only NADP/NTN values (NH02) at Hubbard Brook from 1980 to 2017 (open circles).
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(b) NY67 Annual Data H*, SO,*, NO;, Ca?*
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Fig. 4. Annual, volume-weighted, mean concentrations of H", S0%~, NO3 and Ca®" for Hubbard Brook (HB), and the 5 long-term MAP3S/AIRMOoN sites (NY67,
DEO02, PA15, IL11 and TNOO). NY67 includes the average 1970-1971 data for the Ithaca Game Farm (GF) and Aurora Research Farm sites located near NY67 (see

section 3.2 for further details).

and ~1980 are associated with decreases in national emissions of par-
ticulate matter from major sources that occurred during this period
(Table 3; and EPA 1976, 1977, 1978, 1991). The IL11 station has
consistently higher concentrations of Ca?' than the other stations,
possibly because of washout from calcium-containing dust from nearby
agricultural areas.

The NO3 concentrations in precipitation peaked in the mid-1980s
and current values are quite low, about 25% of what they were in the

Table 3

Estimates of particulate matter emissions for the United States by source cate-
gory (mton x 10%/yr; data from EPA 1976, 1977, 1978 and 1991).

Source

1970 1987 % Change
Industrial Processes 10.5 2.5 -76
Fuel Combustion 4.6 1.8 -61
Solid Waste Incineration 1.1 0.3 -73
Miscellaneous” 1.1 1.0 -9
Transportation 1.2 1.4 +17
TOTAL 185 7.0 —-62

@ e.g. forest fires.

mid-1980s (Fig. 4). A steep decline in SO%’ concentrations has occurred
at all sites (~80%; Fig. 4 and Table 4).

Emissions of SO, and NOy peaked in late-1960s — early-1970s
(Fig. 2). Correlated with these high levels of emissions, acidification in
precipitation peaked in the late-1960s-early- 1970s in the northeastern
U.S. and then declined thereafter (Likens, 2013; Likens and Buso 2012;
Holmes and Likens 2016). Present national precipitation chemistry
networks were established after this peak, but fortunately, the Hubbard
Brook record started in 1963 and captured this early trend (Fig. 3).

Table 4

Changes in annual precipitation concentrations from 1981 to 2017 for combined
sites of Hubbard Brook and the five long-term MAP3S/AIRMOoN sites. Values in
parentheses are the standard errors of the estimated annual average, volume-
weighted means.

Ton Date - 1981 Date - 2017 % change
HY 57.41 (4.07) peq/1 8.72 (2.23) peq/1 —85%
S0%7 2.72(0.11) mg/1 0.53 (0.07) mg/1 —80%
NO3 1.51 (0.13) mg/1 0.51 (0.03) mg/1 —66%
Ca%* 0.14 (0.02) mg/1 0.12 (0.02) mg/1 —14%
NHi 0.268 (0.021) mg/1 0.267 (0.039) mg/1 <1%
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3.4. Long-term changes in precipitation amount

Annual precipitation amount changed relatively little at the long-
term MAP3S/AIRMoN sites during 1981-2017 (see Supplemental Ma-
terial, Part C). However, annual precipitation at Hubbard Brook
increased from ~1350 mm in 1895 to ~1600 mm in 2010 (Likens,
2013), increasing since the mid-1950s at a rate of ~5.3 cm/decade,
more during summer than winter (Holmes and Likens, 2016). Annual
variability in precipitation amount was much greater after about 1960.
The long-term trend at Hubbard Brook is possibly a signal of climate
change (Holmes and Likens 2016).

The temporal decrease in flux of chemicals in precipitation at the
MAP3S/AIRMoN sites is therefore mainly dependent on change in
concentration rather than a change in precipitation amount. Wet
deposition changes are thus proportionally quite similar to the changes
in concentrations (see Table 4 and Supplemental Material, Part B —
Table S1).

3.5. Dry deposition

The decline in dry deposition of NO3 and S (Supplemental Material,
Part D and Fig. 5) parallel that for emissions of SO and NOy (Fig. 2) and
wet deposition (Fig. 4). Declines from 2000 to 2017 for dry deposition of
SO, + SO‘Z;’(p), and NO3 (p) plus HNO3, are 87% and 64%, respectively
for the combined sites of HB, NY67, PA15, IL11 and TNOO (Table 5). The
Hubbard Brook values for dry deposition are lower than the other sites
(SM, Part D, Figures S 6-9), probably reflecting the more rural, more
forested, less agricultural nature of the Hubbard Brook site (Holmes and
Likens 2016).

The significant declines in H, SO3~ and NOj3 concentrations, and
related dry deposition species, are directly correlated with the declines
in emissions of SOz and NOx mainly due to clean air legislation, espe-
cially the Amendments of 1970 and 1990 (Fig. 2), (e.g. Butler et al.,
2001; 2005; 2011; Likens et al., 2005; Feng et al., 2019). The six-site
range in r-values for combined annual U.S. emissions of SOy plus NOx
vs annual wet H' concentrations, SO, emissions vs wet SO%’ concen-
trations, and NOy emissions vs wet NO3 are 0.89-0.96, 0.92 to 0.95, and
0.81 to 0.90, respectively. The five-site (there are no dry data for DE02)
range in r-values for SO, emissions vs dry S and NOy emissions vs dry
NO3 are 0.92-0.97 and 0.92 to 0.97, respectively. The p-values for all of
these relationships are <0.0001. See Supplemental Material, Part H, for
individual correlations.

In contrast, ammonia (NH3) emissions are unregulated and show
little change in emissions (Fig. 2) and an increase in air concentrations
since 2007 over large areas of the U.S. (Butler et al., 2016; Warner et al.,
2017). Declining SOy and NOy emissions have led to reduced atmo-
spheric acidity, offering less potential for reduced NH3 concentrations
from scavenging by acidic species (e.g. HoSO4 and HNO3). Warner et al.

1955 - 56
Heq/ liter

1965 - 66
Heq/ liter
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(2017) also includes higher soil temperatures as another factor
increasing the rate of NH3 emissions, and thus leading to higher NH3 air
concentrations. Ammonium concentrations in precipitation at these sites
have changed very little during this 40-year period (Table 4).

3.6. Acid rain

A prominent theme of these long-term data on precipitation chem-
istry describes the discovery of acid rain (1963), peaking of acidity in the
early 1970s, and then declining acidity to the present time. Sulfuric acid
is the dominant acid in precipitation, but nitric acid has been increasing
proportionally during recent years (Likens, 2013). The overall pattern of
acidification and recovery in stream water at the HBEF follows the form
of an hysteresis for the annual balance between acid anions (S0~ plus
NO3) and sum of base cations (Ca2", Mg?t, Na*, K*). The current
downward trajectory in precipitation concentrations of SO3~ and NO3 is
toward acidic values that could be even lower than pre-industrial rev-
olution values (Likens and Buso 2012; Likens, 2013; Holmes and Likens
2016). As such, this pattern represents a major environmental success
story where the U.S. CAA of 1963 and1970 and the CAA Amendments of
1977 and 1990 curbed acid-forming emissions from the combustion of
fossil fuels; the acidity of precipitation decreased markedly in concert (e.
g. Figs. 2-4; e.g., Likens 2010, Likens, 2013; Holmes and Likens 2016).
The 1970 CAA required comprehensive federal and state regulations for
both stationary and mobile sources of air pollution, which resulted in
reduction of emissions of sulfur-containing particles from smokestack
scrubbing and controls on vehicular emissions. The 1990 Amendments
were the first federal legislation in the U.S. to address directly and
explicitly the problems of acid rain by reducing emissions of SO, and
NOy, starting in the mid-1990s. The 1990 Amendments required a
reduction of 10 million tons (9.1 million metric tons) of SO, emissions
per year and reductions of 1.2 million tons (1.1 million metric tons) of
NOy emissions per year below 1980 levels by the year 2000 (Likens,

Table 5

Changes in dry deposition of sulfur (SO, + SO%’(p)), dry NO3 (HNO3 + NO3 )
and dry Ca*" from 2000 to 2017 based on the data from the combined sites of
Hubbard Brook (NHO2/WST109 = NADP/CASTNET) and the 4 co-located, long-
term MAP3S/AIRMoN sites (NY67/CTH 110, PA15/PSU 106, IL11/BVL 130 and
TNOO/ONL 102). Values in parentheses for dry NO3 are the standard errors of
the predicted annual values. The data for dry S and Ca®>" were log transformed to
meet the assumptions of the model (e.g. normality and constant variance of the
residuals). Back-transformed values and their 95% confidence intervals in pa-
rentheses are presented in the Table.

Ion Date - 2000 Date - 2017 % change
Dry S 8.05 (2.99-21.65) kg S/ha 1.06 (0.53-2.11) kg S/ha —87%
Dry NO;  3.93 (0.63) kg N/ha 1.41 (0.18) kg N/ha —64%
Ca 2t 1.21 (0.82-1.80) kg Ca/ha  1.21 (0.73-2.02) kg Ca/ha  <1%

1975-76
ueq / liter

Fig. 5. Early maps of changes in precipitation acidity, as peq H' /1, from the mid-1950’s to the mid-1970’s, before the establishment of NADP (modified from Likens

and Butler, 1981).
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Fig. 6. NADP maps showing the annual volume-weighted pH changes in precipitation chemistry from 1986 through 2016. Dots on the maps indicate locations of
NADP sites used to draw the maps. Source: https://nadp.slh.wisc.edu/NTN/maps.aspx.

2013).

Concentrations of HT, SO?{, and NOj3 in precipitation are trending
toward ~10 ueq/L at all sites shown in Fig. 4. Because of the large de-
clines in concentration of the major ions in precipitation, the overall
solute strength in precipitation has become surprisingly dilute, espe-
cially at the Hubbard Brook site (Likens and Buso 2012).

Early attempts to map the extent and intensity of acid precipitation
in eastern North America, even though available data were meager,
clearly showed the spread and intensification of acid rain in the
northeastern U.S. from the mid 1950’s to the mid 1970’s (Fig. 5). The
visualization provided by these early maps (Cogbill and Likens 1974;
Likens and Butler 1981) was important in bringing this complex
environmental problem to the attention of the public and to decision

makers. The role of cartoons was also probably important. The satire of
cartoons has been used effectively in numerous political/policy issues
to influence public opinion (see, www.un.org/apps/news/story.asp?
NewsID=20274&Cr=cartoon&Cr1). It is our opinion that they served
the same purpose in the acid rain debates (see Holmes and Likens
2016).

These early maps were limited in data, but the generalized iso-lines
of acidity that could be drawn provided an understandable picture of the
extent and intensity of precipitation chemistry, and more importantly
the temporal changes that were occurring in eastern North America. The
early maps for acidity during 1955-1956 and 1965-1966 were based on
predicted pH values (Cogbill and Likens 1974). The map for 1975-76
was based on measured pH values by many individuals. We had

1986-2016
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Sulfate ion concentration, 2006

L —

Fig. 7. NADP maps showing the annual volume-weighted SO~ concentration changes in precipitation chemistry from 1986 through 2016. Dots on the maps indicate
locations of NADP sites used to draw the maps. Source: https://nadp.slh.wisc.edu/NTN/maps.aspx.
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Fig. 8. NADP maps showing the annual volume-weighted NO3 concentration changes in precipitation chemistry from 1986 through 2016. Dots on the maps indicate
locations of NADP sites used to draw the maps. Source: https://nadp.slh.wisc.edu/NTN/maps.aspx.
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Fig. 9. NADP maps showing the annual volume-weighted Ca®* concentration changes in precipitation chemistry from 1986 through 2016. Dots on the maps indicate
locations of NADP sites used to draw the maps. Source: https://nadp.slh.wisc.edu/NTN/maps.aspx.

contacted everyone we knew in eastern North America that was
measuring precipitation chemistry and asked them to share their data so
that we could construct the 1975-76 map (Likens and Butler 1981).
There were limited regional networks, but no national networks in ex-
istence measuring precipitation chemistry prior to 1976. These early
maps were based on data from Junge and Werby (1958), Lodge et al.
(1968), Gambell and Fisher (1966), Pearson and Fisher (1971), Likens
et al. (1972), and Likens and Butler (1981). We recognize combining
data from different sources for a “secondary use” (e.g. establishing
long-term patterns in precipitation chemistry), which has been used in

this study, has challenges associated with it (e.g. different methodolo-
gies and methods of reporting the data). However, “secondary use” of
data is common and is a valuable and cost-effective approach (Sprague
et al., 2017).

Current maps developed from data generated by the widespread
NADP precipitation chemistry network now in place across the United
States are much more data-rich and accurate (Figs. 6, 7, 8 and 9 ). As
such, they are clearly not only informative, but also compelling in
describing the status and temporal change in precipitation chemistry
throughout the northeastern U.S., and elsewhere. Arguably, these maps
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Fig. 10. Total (wet + dry) sulfur and nitrogen, (in keq/ha) combined deposition for the years 2000 and 2017 (From NADP, 2019). Source: https://nadp.slh.wisc.

edu/committees/tdep/tdepmaps/.

are among the most important products of the national precipitation
chemistry networks.

3.7. Total atmospheric deposition

In recent years NADP in collaboration with CASTNET has developed
total deposition (wet + dry) maps. Deposition of unmeasured species,
such as HONO, N,Os, PAN, and organic nitrate are included from model
results (Schwede and Lear 2014) and provide an opportunity to estimate
total atmospheric deposition on a national scale (e.g. Fig. 10).
Nation-wide maps clearly reinforce the trend of drastic regional atmo-
spheric reductions in sulfur and nitrogen components since 2000 and
before (see Fig. 10 and Likens and Butler 2017). Given current, proposed
federal policy changes regarding controls on national emissions, these
maps, showing temporal change, will be critically important in the
future to document any further changes that might occur to precipita-
tion chemistry.

3.8. Some concluding thoughts

The National Atmospheric Deposition Program (NADP) now has had
over 40 years of successful operations. There are several key features
underpinning the success of such a large and complicated network,
including the talented and dedicated operators of the individual sites,
and that all chemical analyses were done at one Central Analytical
Laboratory. The Network has provided critically important, long-term
data characterizing the status, changes, and temporal trends for pre-
cipitation chemistry throughout the U.S., i.e. high-quality, spatial and
temporal data for a large area. This network has the characteristics of a
successful, long-term monitoring program (Table 2). Nevertheless, some
might say, “Isn’t 40 years enough?” Arguably, however, it has never
been more important to continue this network without interruption to
monitor changes in precipitation chemistry, given the potential impact
on air chemistry of both real changes that are occurring and will occur,
and changes from proposed new rules governing clean air regulations,
on emissions, on receiving ecosystems and on federal policy (see,
Table 1). Moreover, the Network now has value far beyond its original
aspirations and goals. For example, network data have become valuable
to climate research, e.g. in verifying climate models (Yahya et al., 2017),
and documenting climatic changes (Wetherbee and Mast (2016).

Hubbard Brook and NADP have played major roles in helping to
protect the chemistry of the atmosphere in the U.S. If NADP were to be
dismantled for some unforseen reason, it would be very difficult, if not
impossible, to restore the program to its current effective state. To re-
create the complicated nature of site administration, skilled operation
and coverage, the diversity of funding, including in-kind support, and
operator dedication that have developed over the decades, and the
professional leadership of a central analytical laboratory, would be
extremely difficult and expensive. This is the kind of hypothesis that
should not be tested.

4. Summary

Continuous, long-term monitoring of precipitation chemistry began
at the Hubbard Brook Experimental Forest in 1963, and was followed by
various large-scale monitoring networks (the MAP3S network (1976),
the NADP/NTN network (1978), the NADP/AIRMoN network (1992),
and the dry deposition, NDDN/CASTNET (1987) network). The tem-
poral and spatial changes in precipitation chemistry for the northeastern
U.S. from 1963 to the present are best shown by combining records from
all of these stations and networks. The discovery of acid rain in North
America occurred at Hubbard Brook in 1963. Indicators of changing
atmospheric chemistry were critical for initiating federal policy neces-
sary for improving air quality and for reducing atmospheric pollutant
loading, which had led to acid rain in this area, starting in the 1950s.
Marked declines in national emissions of SO, and NOy, major precursors
of acid rain, have occurred since 1970 and are driven by federal legis-
lation. Analyzing combined records from Hubbard Brook and the 5
longest operating MAP3S/AIRMOoN sites (IL11, NY67, DE02, PA15 and
TNO0O) with a random coefficient, mixed-model showed overall declines
in annual concentrations of H™, SO%’ and NO3 from 1981 to 2017 of
85%, 80% and 66%, respectively. Calcium concentration declined by
14% and NH{ showed no change during this period. Dry deposition of
sulfur, NO3 and Ca?" measured at co-located NDDN/CASTNET sites
showed declines of 87%, 64% and <1%, respectively, during
2000-2017, paralleling declines in atmospheric emissions and wet
deposition. Long-term records of precipitation amount at Hubbard
Brook show wetter conditions since about 1900, whereas no trends are
shown in the shorter records of precipitation amount from the 5 longest
operating MAP3S/AIRMON sites.
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