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Abstract. Identifying the right dose is one of the most important decisions in drug develop-
ment. Adaptive designs are promoted to conduct dose-finding clinical trials as they are
more efficient and ethical compared with static designs. However, current techniques in
response-adaptive designs for dose allocation are complex and need significant computa-
tional effort, which is a major impediment for implementation in practice. This study pro-
poses a Bayesian nonparametric framework for estimating the dose-response curve, which
uses a piecewise linear approximation to the curve by consecutively connecting the ex-
pected mean response at each dose. Our extensive numerical results reveal that a first-order
Bayesian nonparametric model with a known correlation structure in prior for the expected
mean response performs competitively when compared with the standard approach and
other more complex models in terms of several relevant metrics and enjoys computational
efficiency. Furthermore, structural properties for the optimal learning problem, which seeks
to minimize the variance of the target dose, are established under this simple model.

Summary of Contribution: In this work, we propose a methodology to derive efficient pa-
tient allocation rules in response-adaptive dose-finding clinical trials, where computational
issues are the main concern. We show that our methodologies are competitive with the
state-of-the-art methodology in terms of solution quality, are significantly more computa-
tionally efficient, and are more robust in terms of the shape of the dose-response curve,
among other parameter changes. This research fits in “the intersection of computing and
operations research” as it adapts operations research techniques to produce computational-
ly attractive solutions to patient allocation problems in dose-finding clinical trials.
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1. Introduction

In Phase I1I, 300-3,000 volunteers are studied for a peri-

Clinical trials are medical studies in which participants
are assigned to one or more treatments to evaluate
their effects on health-related outcomes. The objective
is usually to determine whether new treatments are
safe and effective by measuring certain responses in
trial participants (National Institutes of Health 2014).
The U.S. Food and Drug Administration (FDA) classi-
fies the approval procedure of a medical product into
four phases. Phase I studies a small group of volun-
teers with the disease/condition for several months to
identify a safe dosage range and potential side effects.
Phase II increases the number of participants up to
several hundred, and extends the length of study up
to two years. These studies are not large enough to es-
tablish the efficacy of the treatment with certainty;
however, they provide safety evaluations and allow
researchers to refine their methods for the next phases.

od of one to four years in order to confirm the drug’s
efficacy and to monitor its adverse reactions, particu-
larly its long-term and rare side effects. Phase IV is car-
ried out once the medical product has been approved
by the FDA and involves several thousand volunteers
and postmarket safety monitoring (U.S. Food and
Drug Administration 2017). The average cost of invent-
ing, developing, and introducing a new drug to market
has exponentially increased in recent years and has sur-
passed $2.6 billion (Tufts 2014). The biggest drivers of
this rise are expensive clinical trials whose costs can
reach $300-$600 million for large trials (Griffin et al.
2010). Phase II clinical trials constitute about 18% of
pharmaceutical companies research and development
expenditures while their probability of success remains
almost half of that in Phase I (Hay et al. 2014). Identify-
ing the “right” dose in Phase Il is a critical step in drug
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development partly because of high attrition rates in
Phase III (the most costly phase), which may be due to
inadequate dose selection, that is, doses that are too
low to achieve a desired benefit (futility because of in-
significant positive effect) or doses that are too high
and result in adverse reactions (exposure to unneces-
sary risk) (Snapinn et al. 2006).

In a standard (static) clinical trial, patients are ran-
domly assigned to predetermined doses such that the
number of patients allocated to each dose is roughly
equal. Such a design may be inefficient. For example,
if the slope of a dose-response curve is observed at a
dose range not anticipated, equal assignment of pa-
tients to other dose ranges may lead to inefficient use
of resources. These allocations may expose patients to
toxic or ineffective doses, which raises ethical con-
cerns. In addition, observations in the trial may indi-
cate a larger variability in response to a particular
dose; thus, fixed sample sizes cannot compensate for
the unanticipated variability (Berry et al. 2002).

A better strategy is adaptive design, which accom-
modates modifications to the trial as information ac-
crues while the trial is still in progress. For example, the
experimenters may increase the number of doses under
consideration in the study, drop some doses from anal-
ysis, and change the patient randomization procedure
to avoid large sample sizes at doses where the shape of
the dose-response curve is reasonably well estimated
by the available data. Thus, adaptive designs tend to
generally reduce length, total sample size, and costs of
trials without compromising their integrity. Further-
more, such designs have an ethical motivation as they
randomize patients to doses currently thought to be the
best with greater probability (Rosenberger 1996).

In adaptive designs, dose allocation decisions are
based on the current estimate of the dose-response
curve. This estimate may be obtained via a parametric
or nonparametric adaptive design. A standard para-
metric approach assumes a particular shape for the
dose-response curve upfront and estimates its param-
eters as data accrues; see Model 1. A standard Bayes-
ian nonparametric approach uses a second-order
piecewise linear model where the curve is approxi-
mated by a pair of expected response and slope at
each dose. This modeling approach is called the
second-order normal dynamic linear model (NDLM),
and we refer to it as Model 2. The main motivation for
Model 2 is its modeling flexibility because, unlike
parametric models, it can be used for estimating any
dose-response curve. That is, it is immune to model
misspecification, which may cause severe consequen-
ces for patients. Conversely, although parametric
models have a fewer number of parameters to esti-
mate, they are susceptible to model misspecification.

In this study, we propose an alternative Bayesian non-
parametric framework for estimating the dose-response

curve. In particular, our proposal approximates the
curve using only the expected response at each dose
(0; for dose j) and consecutively connects (j,0;) pairs
to create a piecewise linear approximation. We pro-
pose three models based on different prior structure
on © =(04,...,0;) (assuming | doses), each with dif-
ferent design purposes, assuming a normally distrib-
uted patient response. Specifically, Model 3 assumes a
normal prior on ® with an unknown mean and
known correlation structure, which enjoys conjugacy.
Model 4 imposes a hierarchical normal-Wishart prior
on ©, which allows for unknown correlation structure,
but it loses conjugacy in our fully sequential setting.
Model 5 considers a hierarchical normal-Wishart prior
on ©, where the unknown observation variance is
proportional to the correlation on ©. Although this
proportionality may be limiting, Model 5 enjoys con-
jugacy approximately.

Although a dynamic programming (DP) formula-
tion can be written for all of the dose-response
approximation models, using Model 3 results in a for-
mulation that is amenable to analytical study. In par-
ticular, we study structural properties of the produced
optimal learning problem. A unique feature of the
learning problem lies in its objective, which is the min-
imization of the variance of the target dose. We apply
the one-step look-ahead framework into this class of
learning problems and show that it learns the true tar-
get dose when the number of patients becomes large.
This is in stark contrast with the standard Model 2
where the same one-step look-ahead framework
shows inconsistent behavior in our numerical results.
Our extensive numerical study, which includes real
data from a clinical trial, shows that Model 3 is com-
petitive in performance and significantly reduces the
computational time and efforts, which are major im-
pediments in applying Bayesian adaptive designs in
practice.

Section 2 reviews different streams of literature
related to our work. Section 3 describes the dose-
response relationship and introduces different para-
metric and nonparametric approaches to its modeling.
In Section 4, we present a DP formulation of the adap-
tive design of a Phase II clinical trial under Model 3.
Section 5 derives a couple of structural properties and
discusses an algorithmic way to find high-quality sol-
utions. Section 6 discusses numerical results of our
experiments with respect to various performance met-
rics and presents a case study using real-world clinical
trial data. Section 7 briefly explores practical consider-
ations and limitations of the proposed approaches.
Finally, Section 8 concludes the paper. A table of nota-
tion, proofs of the analytical results, DP formulation
for different dose-response approximation methods,
and additional numerical analyses are presented in
the online supplement (OS).
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2. Related Works

There are three streams of literature related to this
study: literature on (i) optimal design of dose-finding
trials in which finding a target dose is the objective,
(ii) adaptive design of dose-finding trials in which
sampling policies are adapted to observed responses
while the trial is in progress, and (iii) dynamic/opti-
mal learning which focuses on deriving adaptive
policies.

2.1. Optimal Design of Dose-Finding Trials

In this line of literature, researchers have investigated
efficient designs for estimating a target dose by, for
example, minimizing its asymptotic variance under a
particular dose-response model. For example, Dette
et al. (2008) proposed various optimal designs esti-
mating the dose-response curve but did not consider
response-adaptivity; thus, the designs are unable to
modify dose range, sample size, or allocation scheme
while the trial is in progress. These designs are also
dependent on prespecified dose-response models (i.e.,
parametric), which are susceptible to model misspeci-
fication. In contrast, we study a range of parametric
and nonparametric models to estimate the dose-
response curve; our policies are adaptive to data.

2.2. Response-Adaptive Clinical Trials
In response-adaptive designs, patient allocation, dose
range, and sample size are subject to modification
when a new response is observed. Multiarmed bandit
framework and Bayesian decision theory have been
two of the most active lines of literature in response-
adaptive designs. In the multiarmed bandit approach,
a decision maker (DM) selects a treatment based on
observed information to maximize an expected
(cumulative) reward. For example, Press (2009) devel-
oped response-adaptive two-armed bandits for
sequential experiments, such as clinical trials where
information acquired during the trial was used to
modify the allocation scheme and sampling size. Such
designs were applicable only when two treatments
are considered and their responses are binary (success
or failure). Villar and Rosenberger (2018) extended the
two-armed design to multiarmed bandits capable of
comparing multiple treatments with continuous re-
sponses. However, the bandit structure is designed to
identify the maximum reward when compared with a
control treatment; thus, the policies derived are appli-
cable for Phase III where the goal is to test the benefits
of new treatments versus a control treatment. For
more details on benefits and challenges of applying
multiarmed bandits in clinical trials, see Villar et al.
(2015).

Here, our focus is on response-adaptive dose-finding
clinical trials where Bayesian decision theory is utilized

to design response-adaptive sequential sampling poli-
cies to identify a target dose. For example, Berry et al.
(2002) and Miiller et al. (2006) used a second-order
NDLM to formulate an adaptive dose allocation
scheme (see details in OS 3). Weir et al. (2007) com-
pared the standard Markov chain Monte Carlo
(MCMC) simulation of NDLMs to estimate the dose-
response curve with that of an importance sampling
method. Furthermore, Krams et al. (2003) employed a
similar approach in Acute Stroke Therapy by Inhibi-
tion of Neutrophils (ASTIN) clinical trial and used a
fully Bayesian analysis for patient randomization,
which was approved by the regulatory authorities.
Lenz et al. (2015) implemented this approach in assess-
ing the efficacy of ABT-089 in Alzheimer disease. Simi-
lar to response-adaptive designs that employ NDLM
to approximate the unknown dose-response curve,
our proposed dose-response modeling choices also use
a piecewise linear approximation. However, in two of
our three proposed models, evaluating posterior distri-
bution parameters eliminates the required time-
consuming MCMC simulation. We also show that the
NDLM approach in approximating the unknown
dose-response relationship may fail to identify the tar-
get dose (OS 7) in some cases because of its sensitivity
to some prespecified parameters.

2.3. Dynamic Learning

Next, we briefly review the dynamic learning litera-
ture related to our work. For a comprehensive review
of optimal learning, see Powell and Ryzhov (2012)
and references therein.

Ranking and selection is a class of learning prob-
lems in which a risk-neutral DM seeks to find the best
population, in terms of its expected value given a
fixed budget to learn the unknown true distribution of
the population. Gupta and Miescke (1996) introduced
a special case of the one-step look-ahead policy for off-
line versions of ranking and selection problems where
the algorithm chooses its future measurements by op-
timizing the one-step expected value function with re-
spect to the posterior distributions. Frazier et al. (2008)
adapted this technique to ranking and selection prob-
lems by assuming an independent multivariate nor-
mal prior. The authors referred to this technique as
“knowledge gradient” (KG). Frazier et al. (2009) fur-
ther developed this method to accommodate correlat-
ed normal prior beliefs. Furthermore, Wang et al.
(2016) provided a KG policy for multiarmed bandits
with binary responses; Parizi and Ghate (2016) imple-
mented a KG algorithm in lot-sizing for gamma and
Dirichlet priors. The objective in these studies is to
maximize the expected total reward, where the re-
ward function is equivalent to the posterior mean of
the unknown parameter. In contrast, our approach
minimizes the variance of the target dose, a nonlinear
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function of the unknown parameter describing the
dose-response curve.

There are several recent studies employing dynamic
learning into clinical trials. Kotas and Ghate (2016,
2018) formulated a dynamic programming to optimal
dose finding and approximated the Bellman equation
by (semistochastic) certainty equivalent control tech-
niques. Ahuja and Birge (2016) and Chick et al. (2017)
considered adaptive two-armed bandits and imple-
mented dynamic learning techniques to identify the
most efficacious treatment in a variety of settings.
However, as elaborated earlier, the structure of such
designs are appropriate for reward-maximizing
frameworks or deriving probability of correct selec-
tion in two-armed settings.

3. Approximate Models to the Dose-

Response Relationship

A dose-response curve identifies the relationship
between treatment dose of a drug and the patient
response usually measured by a numerical score.
Figure 1 shows three typical dose-response relation-
ships. For example, the increase in fractional excretion
of sodium as the response to the amount of loop di-
uretic dose prescribed is shown for heart failure pa-
tients in Figure 1(a). Let f(z,®) denote the true mean
response at dose z parameterized by vector ®. We as-
sume that the patient response as a function of the
prescribed dose z is given by

y=f(z,0)+e, 1)

where € ~ N(0,0?) denotes the noise in observation of
patient responses (Berry et al. 2002).

3.1. Target Dose

The ultimate goal of a dose-finding study (Phase II
clinical trial) is to find the target dose. This is typically
achieved based on the approximation model to the
unknown dose-response curve, that is, f(z, ®). Existing
literature usually focuses on three definitions for the
target dose: (1) minimum effective dose defined as the
smallest dose producing a particularly relevant re-
sponse; (2) maximum tolerable dose defined as the

Figure 1. Typical Dose-Response Curves

(a)

highest dose producing a desired response without
unacceptable toxicity; (3) EDgs defined as the smallest
dose at which 95% of the maximal response is
achieved. In this study, we focus on estimating the
EDys formally represented as

EDss = min{z € Z:(z,0) 2 0.95f(zu, ©)},  (2)

for a given ©, where z,,, is a dose at which maximal
response is observed. If f(z,qx, ®) <0, we let EDgs5 be
the initial dose. Note that EDys is also motivated by
toxicity concerns: Higher responses usually corre-
spond to higher doses, which are more likely to cause
adverse effects. Therefore, minimizing the dosage lev-
el that achieves a desired response is a predominant
choice. For more discussion on this issue, see Berry
et al. (2002). Nonetheless, our proposed approach can
be used for other target dose definitions as well.

The next step in identifying the target dose is to
choose a model for f(z,®), which in turn determines
how patient responses are used to update its parame-
ters, that is, ®. As mentioned earlier, there are two
main modeling approaches, which we will discuss next.

3.2. Parametric Models

In some Phase II clinical trials, a reliable guess for the
shape of the dose-response curve may be available to
practitioners. In such a case, functional forms that as-
sume a fixed form for f(z,®) upfront and estimate the
parameter vector ® by observing patient responses
may be appropriate. Hill’s equation, the Michaelis-
Menten model, and E,,« models are typical examples
of functional forms that assume a sigmoid shape for
the underlying dose-response curve as in Figure 1(a).
Consider the following representation of the Hill’s
equation (Gadagkar and Call 2015)

02— 04

1+ (%)%

where © = (601,0,,03,04). Here, 0; denotes the ex-
pected response at placebo; 6, denotes the expected

response for an infinite dosage; 03 may be interpreted
as EDsp; and 0, is the slope at the steepest part of the

f(Z,@) =01+

Response

Concentration

Sigmoid

Note. (a) Sigmoid, (b) bell-shaped, (c) nonmonotone.

Bell-shaped

Non-monotone
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sigmoid curve. Given a prior on © (and o if it is un-
known), the observation setup in Equation (1), that is,
Y1®,0,z ~ N'(f(z,0),0%), does not result in a conjugate
setup and, thus, the need for MCMC simulation to
sample from the posterior of ® given a new observa-
tion y. There are two main approaches to infer about
parameters © and o: a single-level method that as-
sumes independent uniform distributions over these
parameters (Johnstone et al. 2016) and a hierarchical
approach in which the prior over ¢ is inverse-gamma
and 0,03, and 0, are distributed according to log-
normal distributions, the parameters of which are in
turn distributed according to multiple normal and
half-Cauchy distributions (Hennessey et al. 2010). Be-
cause hierarchical models result in overparameteriza-
tion, which defeats the main purpose of functional
forms, and Johnstone et al. (2016) reported little sensi-
tivity to prior distributions, we choose to implement
the single-level priors. Therefore, the choice of the

dose-response relationship is given by

0,-0

]/|Z/® NN(f(Z/®)102)/ f(zl®) = 61 +ﬁ/
z

03 ~U(03,03), 64~U(O4,04),

where U(-,-) denotes a uniform distribution. Hyper-
parameters 0 and 0 are used to denote the range of 03
and 0,. In our setup, 6, and 0, are assumed to be pre-
determined after an initial Phase I study. One main
drawback of parametric models is that if the true
shape of the dose-response curve is significantly dif-
ferent from the assumed one, the parameter estima-
tion may be poor resulting in poor patient assignment,
which may have severe consequences.

3.3. Nonparametric Models

In early stage clinical trials, the dose-response
relationship is usually not known in advance and
nonparametric methods are proposed to represent the
unknown dose-response curve in order to avoid mod-
el misspecification. Piecewise linear approximations
where a series of straight lines represent different
parts of the unknown curve are a predominant ap-
proach. We represent the standard model (Model 2),
propose three alternative models, and discuss their
pros and cons. In the following nonparametric mod-
els, Z:={Z;:j=1,...,]} refers to the set of allowable
doses, where Z; may denote the placebo. Hereafter,
we use index j to refer to dose Z; in order to ease
notation.

3.4. Standard Second-Order NDLM

One may approximate a dose-response curve at
doses close enough to dose j€ Z by fitting a line
passing through the expected response at dose j
and a slope at that dose. Therefore, for doses z

close enough to dose j, the patient response be-
comes the straight line 0;+(z—j)0;, where ©=
(61,...,0)) is a vector of expected responses and 6 =
(01,...,07) is a vector of slopes at each dose. Linear
extrapolation for consecutive doses in set Z results
in the relationship 6;=0;1+06;-1 assuming doses
are spaced equally and within one unit of each
other. This piecewise linear structure is used in a
second-order NDLM, which allows for random
normal deviations from this structure in the follow-
ing form

]/lZ/ €-‘)/ 6 ~ N(f(zl G‘)/ 6)/ 02)/
AR ——
(Model 2)

where V; and W; are known error terms and are set
equal to each other for simplification in our imple-
mentation. Assuming a multivariate normal prior
on the tuple W; results in a posterior in proportion
to a multivariate normal distribution under which
(0},0;) follows a bivariate normal whose parameters
are given by a set of recursive equations (West and
Harrison 1997); see OS 3. Therefore, sampling from
the joint posterior distribution is challenging and re-
quires special algorithms, such as “forward filtering
backward sampling” (Frihwirth-Schnatter 1994,
p- 183), or MCMC simulations, which are not com-
putationally efficient. In comparison with Model 1,
the NDLM approach is flexible in approximating
any shape for the dose-response curve and accom-
modates nontrivial correlation structure between
different doses.

3.5. Proposed Dose-Response Curve
Approximations

We propose first-order but possibly hierarchical piece-
wise linear approximations to the dose-response
curve. Similar to Model 2, the relationship between
the assigned dose and the expected response is identi-
fied by f(z=j,0) = 0;, where ® = (0,...,0;) denotes
the vector of expected responses at dose j. The straight
line approximating a part of the dose-response curve
is constructed by connecting points (j,0;) such that
the slope between consecutive doses becomes
041 — 0,. Figure 2 shows the second-order NDLM and
the proposed piecewise linear approximation. In fact,
instead of tracking two parameters, (0;,6;), per dose in
the second-order NDLM approach, we only keep
track of one parameter, 0, at each dose. Next, we pro-
pose three models based on the first-order approxima-
tion of the dose-response curve.

Setting a multivariate normal prior on the belief
about the dose-response curve, that is, ®, results in
conjugacy of prior and likelihood distribution for a
single observation assuming that the observation
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Figure 2. (Color online) Piecewise Linear Approximation to
Dose-Response Curve
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variance is known. Calculating the posterior distribu-
tion in this setup is instantaneous. The model is
given by

ylz,® ~ N(f(z,©), %),
O~ N(ALIO’ Z‘O)/

where 1%, a ] X 1 vector, and ¥ oaJx] positive semi-
definite matrix, are both known. Assuming a known
correlation structure, X, between different doses may
be interpreted as losing some flexibility in allowing
for unknown correlation structures when compared
with the second-order NDLM. Therefore, we secondly
propose a hierarchical normal-Wishart prior on O,
which allows for unknown and nontrivial correlation
structures according to the following model

Y12, ~ N (f(z,0),0%),
Ol ~ N (L, ;—02), =W, 8Y),

(Model 3)

(Model 4)

where W(-) denotes a Wishart distribution, p° is a
known | x 1 vector, qO and b° are known scalars, and
B° denotes a | x ] known positive definite matrix. In
Model 4, a single observation in a purely sequential
setting does not result in conjugacy; thus, the posteri-
or calculation requires time-consuming MCMC
simulations.

In summary, assuming an unknown true underlying
dose-response curve, a set of admissible doses, and
multiple response observations, Model 1 assumes a
sigmoid shape for the dose-response curve, whereas
posterior calculation requires MCMC simulations.
However, Model 1 only keeps track of two variables in
our implementation. The correlation structure between
responses of different doses is built in the functional
form, and the model is susceptible to misspecification
when the true dose-response curve is not sigmoid.
Model 2 is flexible in that its piecewise linear structure
is capable of approximating any dose-response shape
while allowing a nontrivial correlation relationship.
Posterior estimations of Model 2 require an

implementation of a forward filtering backward sam-
pling method, which can be time consuming, even
though it might be faster than the MCMC simulation.
However, the trade-off is that Model 2 updates 2] vari-
ables as opposed to two variables in Model 1. A first-
order piecewise linear approximation to the dose-
response curve reduces this number to | variables, one
variable per dose. Model 3 assumes a known correla-
tion structure between the mean responses of different
doses, which is its limitation. However, the resulting
conjugacy simplifies posterior calculation compared
with both Model 1 and Model 2. Finally, Model 4 re-
laxes the known correlation structure of Model 3 using
a hierarchical normal-Wishart prior setup. However, it
does not seem to enjoy conjugacy for single sequential
observations and thus requires MCMC simulations for
posterior estimation.

In presenting Models 1-4, the observation variance
is assumed to be known and similar for all doses.
However, a simple modification to Equation (1) will
allow for possibly different (known) observation
variances for each dose in Models 24, that is,
yj=f(z=j,0)+¢;, where € ~N(0,07). We next
propose a model that extends Model 3 for an
unknown observation variance

}/|Z/@ ~ N(f(Z,®), Z:zz)/

O ~ N1, %2), W@, gY), (Model 5)
which enjoys conjugacy for an observation vector of
size J. Also, an approximation to the posterior distri-
bution of the hyperparameters in Model 5 is devel-
oped for a single observation setting, which reduces
the posterior calculation computational time signifi-
cantly. However, a drawback of Model 5 is that the
variance of observation is proportional to that of ©®,
which might not be the case in practice. In reporting
the results of this study, our main focus is on present-
ing a comparison between Model 1 and Model 4.
Numerical experiments for Model 5 are presented in
0S77.

4. Dynamic Programming Formulation
Under Model 3

Assume that in the course of the trial, a total of N ho-
mogeneous patients are sequentially assigned to dif-
ferent doses and their responses are observed before
the assignment of the next patient. The DM starts with
a prior belief of the unknown dose-response curve
and chooses assignment doses to ultimately reduce
the uncertainty about EDgs. Once a patient observa-
tion becomes available, the current belief of the under-
lying dose-response curve is updated and the DM
chooses the dose assignment for the next patient. For
the underlying dose-response model, we choose
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Model 3 because its conjugate property results in a
formulation that is amenable to analytical investiga-
tion. The DP formulation assuming dose-response
Models 1, 2, 4, and 5 are presented in OS 2, 3, 4, and 5,

respectively.
Given Model 3, we have
yt =0+, j=1,..,], n=0.,N-1,
)

where y}”l denotes the response of patient n + 1 as-
signed to dose j and €]*! ~ N(0,0?). Let 2" denote the
dose assigned to patient n + 1. Note that conditional
on © and z", the sampled observation §/"*! has a nor-
mal distribution (§"*!|®,2") ~ N'(6.:,0?). Recall that in
Model 3, we assume a multivariate normal prior on
the belief about O, that is,

0~ N’ 29, (4)

where 1, a ] x 1 vector, can be thought of as the initial
belief of the mean response at each dose informed by
Phase I, whereas ©°, a | x | positive semidefinite ma-
trix, can reflect the DM’s belief about the initial corre-
lation between different doses. Define filtration " as
the sigma-algebra generated by prior information,
sampling doses, and corresponding responses by de-
cision epoch n, that is, 7" is a sigma-algebra generated
by °,x°%2%9",21,9%,2%,...,2""},§". Notice that z° de-
notes the assignment dose to the first patient before
observing any response.

4.1. State and Action Space

Set decision epochs at times when a dose is assigned
to a patient where n=0,...,N—1. No decision is
made at time N. The state of the system at decision ep-
och n is the current belief on the dose-response curve,
which is captured by the posterior distribution on ©
given F". Defining " = E[O|F"] and L" = Cov[@|F"]
in addition to the conjugacy of normal likelihoods
and priors will allow us to summarize the state of the
system at decision epoch n by the tuple (u",XT").
Therefore, the state space can be written in the follow-
ing form:

s"eS={(1,T):uek,zes},

where S/, denotes the set of ] X ] positive semidefinite
matrices. An action is described by the dose assigned
to patient n + 1, that is, z". Therefore, the action space
is equivalent to the set of admissible doses Z.

4.2. Transitions

Our prior belief on © is a multivariate normal distri-
bution. In addition, sample observations §/"*! are nor-
mally distributed. Therefore, the posterior distribution
on ®, which is specified by u"*! and "' is also a
multivariate normal distribution. The relationship

between the prior and posterior is characterized by
state s”, action z" and the random response ]A/””. As-
suming that the covariance matrix X" is nonsingular
for now, ™! and £"*! can be written as

lun+1 — Zn+1((2n)71un + (62)71}7“—162»:),
= (27 +e(0?) el) 7 (5)

Zn

where e, is a J-vector of zeroes and a single one at jt
index assuming z" =j. This formulation only holds
when Y is positive-definite and invertible; however,
notice that e..(62) 'e], only changes one element of
matrix (X")"". Using the Sherman-Morrison formula
to adjust the inverse of a matrix when only one ele-
ment has changed, formulation (5) can be written in
such a way that I" is positive semidefinite and no lon-
ger needs to be invertible, that is,

~n+1

—u”
[J"+1 — [Jn +y02+z‘l;] Zne}rl
77
ZrH—l > Zneje}rzn 6
BR=ES ©

where it is assumed that z" =j. Define ¢ as a vector-
ZB]‘

valued function 6(%,z" =j):= , and note that

Var[§™" — p"|F"] = Var[0.: + €™ F"] = 0 + £F.  De-
fine random variable X"*! := 0 by which
formulation (6) is equivalent to

un+1 — ‘un +5'(Zn Zn)XrH—l

Zn+1 =y _ 6(2”,2”)6T(Z",z”), (7)

where random variable X"*! is standard normal when
conditioned on F".

4.3. Objective Function

In response-adaptive dose-finding trials, identifying
the target dose, for example, EDgs is considered
amongst the ultimate goals. The DM must choose a
sequence of dose assignments such that learning the
target dose is achieved quickly and accurately. A com-
mon practice in dose-finding trials is to minimize the
variance of the target dose (see, e.g., Krams et al. 2003,
Berger and Wong 2009, Lenz et al. 2015, Holm Hansen
et al. 2017). In statistics literature, such an approach is
called D-optimal design, which is widely used in opti-
mal design of experiments (O’Quigley et al. 2017,
chapter 13). The reason for this choice of objective is
that reducing the variance of a random variable corre-
sponds to better estimation and confidence, which is
the primary factor in experimental design (Chow and
Pong 2016, chapter 10). More importantly, this ap-
proach in experiment design has support from regula-
tory authorities in both the United States and Europe.
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The European Medicines Agency (2014) qualifies vari-
ance minimization for model-based design of uncer-
tain Phase II dose-finding studies. In addition, the
U.S. Food and Drug Administration (2018) notes that
a pragmatic approach to adaptive randomization may
be based on the minimization of test statistics to im-
prove efficiency of the design.

Therefore, in order to learn the target dose, we set
the expected cost at the end of the trial to be
Var(EDgs|sN) where sN = (N, ZN) under Model 3. At
each time, the allocation dose z" is allowed to depend
on samples by time #n, that is, z" is F"-measurable.
Define IT:={(z°,...,z2N"1):2" € F"} to be the set of
measurement policies where 7t = (2°,...,zV"1) is an ele-
ment in IT. Let [(s") denote the expected variance of
EDys at the end of the trial when the initial prior on ©
is N'(u% x%. Choosing a policy that minimizes the
expected cost is achieved by solving V(s°)=
inf rerr1:(s°), where [(s°) = E™{Var"[EDgs]|s’ = (u°,
¥%)}, E™{-} indicates an expectation taken with respect
to probability distribution imposed by a fixed mea-
surement policy 7 and Var™(-) is the variance with re-
spect to F. Defining a sequence of value functions at
each decision epoch n <N -1 as V"(s"), the optimal
value function is the solution to the Bellman equation

Vn(sn) — 1’1}%1’1 {]E{Vn+1(sn+1) |Sn/Zn}},
VN(sN) = Var (EDgs | sM). (8)

One may also consider to maximize the probability of
correctly identifying EDgs at the end of the trial as an
objective. We consider minimizing the variance of
EDy5 at the end of the trial as our main objective and
report the probability of correct selection as another
performance measure. We also implement an adap-
tive randomization allocation as a benchmark in our
numerical analysis in Section 6, which is motivated by
the probability of correct selection.

5. Formulation Analysis and Proposed

Approximate Solution

Under Model 3, we show a few structural properties
of our learning problem. In this section, these proper-
ties are presented under Model 3; however, some can
be extended for Model 5 as well. Define Q"(s,z):=
E[V™ i (n(s", 2", X"H1))|s" =s,2" =z] for any s€S as a
function measuring the value of assigning dose z" =z
to patient #n + 1 when the trial is in state s”. Note that
n(-) is a transition function by which the next state is
determined via Equation (7), that is, g+l = n(s",z",
X™1). Denote V"!(s") as the value of making no
measurements while in state s”. The following theo-
rem states that the optimal policy always prefers to
make a measurement. In other words, measuring any
dose will result in a better estimate of EDgs.

Theorem 1. The optimal policy always prefers to measure
an alternative dose rather than to measure nothing at all,
that is, Q"(s,z) < V'"*1(s) for every s€ S,0<n<N and
ze{l,...,]J}

Theorem 1 shows that any extra measurement
would be beneficial (not worse) to the value function
at time 7. Proof of Theorem 1 is given in OS 6. The fol-
lowing corollary suggests that the extra measurement
should be made according to the optimal policy. The
proof is presented in OS 6.

Corollary 1. For all states s € S, V"(s) < V"*1(s).

Corollary 2 states that there is no value in measur-
ing a dose that is already known (its variance is zero).
Therefore, the optimal policy avoids measuring a
dose that does not provide information on the curve.
Proof of Corollary 2 is presented in OS 6.

Corollary 2. Let i and j denote any two doses where i # ,
n<N,ands = (u,X). If Ljy =0, then Q"(s,i) < Q"(s,]).

5.1. Approximate Solution

Solving formulation (8) to optimality is impractical be-
cause of the state space continuity. We propose a one-
step look-ahead framework (KG) in which the DM as-
sumes that the next decision epoch will be the last and
allocates a dose to the next patient in order to mini-
mize the expected value of a single period decision
process. This setup will remain similar in general for
all the dose-response approximation models in Sec-
tion 3; see OS 2, 3, 4, and 5 for details. Note that
Var"(EDys) is the value we would receive if we were
to stop the trial at decision epoch n. The KG policy
chooses a decision to minimize the expected variance
of the target dose with respect to the posterior state
variables, that is, maximize the information gained.
Define the KG policy 75¢ for every s € S formally ac-
cording to

A7 (s) e arg min IE,,{Var”Jr1 (EDgs)
V4

—Var"(EDys) ‘ s"=s,7" = z} for every n <N,

)

where A™° (s") is a decision function that returns the
dose selected in state s” under the KG policy <, that
is, X™°(s") := 2". In order to compute the KG policy,
one needs to evaluate

min E,{Var"*!(EDgs) |s" = 5,2" =z}
z

for every s" €S at each decision epoch n because
Var"(EDys) is constant with respect to F". To that end,
we apply Algorithm 1 at each decision epoch. Algo-
rithm 1 describes a measurement policy where the
next dose assignment is selected in such a way to
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minimize the variance of EDgs. In particular, given the
input information consisted of the state variable s" =
(u",Z") and the set of admissible doses Z at decision
epoch n, Algorithm 1 returns the single period optimal
assignment dose. Note that after each patient has been
assigned a dose at the end of the algorithm, its response
is observed before the next assignment; the observation
is used to update the approximate posterior parameters
according to Equation (7). Moreover, g,@, ﬁ,ﬁ,@, and
EDys are temporary and are discarded at the end of
each decision epoch in Algorithm 1.

Algorithm 1 (Knowledge Gradient Dose Selection Policy
Under Model 3)
Input: s, M, T; Output: z".
for each dose z € Z do
-Generate M samples of © from N/ (u",L").
for each sampled (:)(mzl:M) do 5
-Simulate future observation 7/,,, ~ N'(0, a?).
-Using 7,,,, update (u",X") by formulation (7)
to obtain (3" , %7 ). A
-Generate T posterior samples of ® by sam-
pling from NV (3" 27 )
for each sampled @(t:m) do
-Find g(©)) = min.{z € Z:(z,0) > 0.95f
(Zmaau ®(t))}
end for
-Estimate the observed variance U,,, = Var[g(@)|
F" U(z,7,,)] using sample variance. (%" Uo(z,7,,,)
denotes a sigma-algebra generated by u° x°,
29, L2y 20,
end for
-Calculate expected variance U, for each dose
by taking a Monte Carlo sample average

zm

m M *
end for
-Select the dose z* that minimizes U,.

5.2. Consistency

A measurement policy is “consistent” if it is able to
learn the truth perfectly in the limit. In a response-
adaptive dose-finding study, learning the true value
of EDys is achieved only if the true underlying dose-
response relationship is known in the limit. Consisten-
cy of some sampling policies has been studied in the
literature. For example, reinforcement learning algo-
rithms that force the measuring policy to explore all
alternatives infinitely many times are consistent.
However, in most response-adaptive designs, it is dif-
ficult to ensure that all alternatives are sampled fre-
quently often to prove consistency. Frazier et al. (2008,
2009) derived the consistency conditions for a class of
KG policies, with independent and correlated normal
prior beliefs in ranking and selection problems. Fur-
thermore, Frazier and Powell (2011) provided a gener-
al set of sufficient conditions for consistency for a

broad class of sequential sampling policies. These
methods do not directly apply to our setup because
our objective function is minimizing the variance of
EDgs. Proof of the following theorem is presented in
detail in OS 6.

Theorem 2. Under Model 3, and assuming independent
responses, the KG policy for response-adaptive dose-finding
clinical trials is consistent.

6. Numerical Results

This section presents the results of our numerical
experiments assuming that the underlying true but
unknown dose-response curve is of sigmoid shape.
Similar results for other dose-response curves are
presented in OS 7.1. One may interpret our numerical
setup as applying a Bayesian policy in frequentist set-
tings, where there is a true unknown dose-response
curve.

6.1. Benchmark Policy

The policy described by Equation (9) in Section 4 as-
signs a dose in order to reduce the uncertainty about
EDgs at the end of the trial, that is, reduce the estimate
of its variance at the end of the trial. In reporting the
results, this policy is considered to be the primary
dose allocation method implemented in all of our nu-
merical experiments; we call it “minVar.” For a bench-
mark policy, we implement another randomization
policy with a different objective. The adaptive ran-
domization policy described by Carlin et al. (2010),
chapter 4, attempts to maximize the probability of cor-
rectly identifying the target dose at the end of the trial
in order to reduce the uncertainty about it. In fact, the
adaptive randomization policy, hereafter “maxProb,”
applies the one-step look-ahead framework for the fol-
lowing Bellman equation

V'(s") = max {E{V"}(s")s",2"}}, n=0,1,...,N—-1
ZVZ
VN(sV) = max {P(EDgs = jIs")}.
]

The maxProb policy is implemented in a similar
fashion to Algorithm 1, that is, the same one-step
look-ahead framework is used to find the assignment
dose. However, instead of evaluating the variance of
EDygs, we estimate P(EDgs =j|s") for assigning each
dose j by Monte Carlo.

6.2. Simulation Initialization

Our underlying true dose-response curve is sigmoid
and is made up of 11 doses, which are placed equidis-
tant. Typically, this number in Phase II trials is be-
tween 4 and 12 doses (Berry et al. 2002). Aligned with
the literature (e.g., ASTIN trial of Krams et al. 2003),
the first dose is considered as a placebo with its
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response marking the baseline score for the treatment
in the trial. A simulation model is developed to assess
the performance of the dose-response approximation
Models 14 under two dose allocation policies minVar
and maxProb. At each decision epoch in the simulation,
a patient arrives at the trial and is given a dose. The
dose assignment is dependent on two factors: (i) the
posterior belief about the dose-response curve under
each of the four dose-response approximation models,
and (ii) the choice of the adaptive policy. The patient
response is then generated from the true dose-response
curve and is added to the data. This new observation
is used to update the posterior belief about the
dose-response curve according to the dose-response
approximation model. Algorithm 1 describes this
dose assignment procedure for Model 3 and minVar
policy in details. Similar algorithms implementing the
same logic for Models 1, 2, and 4 are presented in OS 2,
3, and 4, respectively.

In simulating each dose-response approximation
model and adaptive policy, sample size parameters M
and T (in Algorithm 1) are set to 500 and 1,000, and
a sequence of 300 patients is used in reporting the
results. A thinning factor of five is considered for
random variable generation in each run where ev-
ery fifth randomly generated number was used in
the simulation to avoid serial correlation in the se-
quence of random numbers. In reporting each per-
formance measure, 30 simulations with a different
sequence of random numbers are considered.
Confidence intervals in reporting the performance
metrics are calculated with respect to these 30 sim-
ulations for a significance level of 0.05. The simula-
tions are coded in R and are run on an Intel core i7
3.7 GHz processor with 16 GB of RAM. The codes
that include the input data (choice of hyperpara-
meter initial values) are available in the authors

GitHub repository at https://github.com/AmirAli-N/
DynamicProgramming-DoseFinding.

Each of the dose-response approximation models
introduced in Section 3 have their own set of
hyperparameters to be initialized at the start of the
simulation. Various choices of priors for these hyper-
parameters exist in the literature and for some, such
as Wishart distribution, the choice of prior is itself an
active area of research which is beyond the scope of
our analysis. Therefore, we use the clinical trial con-
text and assume that preliminary results are available
from Phase I. Assuming that a Phase I clinical trial is
run before Phase II and the information of 33 patients,
that is, three per each dose, is available, we initialize
the hyperparameters of Models 1-4. Here, we only
include hyperparameter initialization of Model 3
where 1’ is the sample average of Phase I responses
and XV is the sample covariance matrix. See OS 2, 3,
and 4 for details about the choice of hyperparameters
for Models 1, 2, and 4, respectively. The variance of
observation is fixed to 10 units for all doses.

6.3. Results

We first present the fraction of patients assigned to
each dose under different dose-response approxi-
mation models and allocation rules. In particular,
Figure 3(a) and (b) show the patient assignment pat-
tern for Models 1-4 under minVar and maxProb
adaptive policies, respectively. The horizontal axis
shows the dose indices, the left-hand side vertical
axis denotes the proportion of patients assigned to a
dose, while the solid line represents the true dose-
response curve, with response scores on the right-
hand side vertical axis. Figure 3 shows that Model 3
and Model 4 outperform other dose-response
approximation models in terms of the fraction of
assignments to the true EDgs. In fact, Model 3

Figure 3. (Color online) Patient Assignments to Dose-Response Curves
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Table 1. Number of Assignments to the True EDgs Dose

Allocation policy ~ Model1 ~ Model 2 Model 3~ Model 4
minVar 48 54 70 60
maxProb 53 54 69 64

Notes. Total number of patients is 300. Fractional numbers are round-
ed up.

which is the simplest approximation has the highest
fraction of patients assigned to EDgs. Also, the results are
consistent with respect to the dose allocation policies, that
is, for both minVar and maxProb we observe a similar
trend. Table 1 also confirms this result by reporting the
number of patients assigned to the true EDgs.

In Table 2, two measures of uncertainty about the
true EDgs at the end of the trial are reported. Variance
of the target dose at the end of trial for either minVar
or maxProb policies is given by X; where j = EDos.
The probability of correct selection shows the proba-
bility of correctly identifying the true EDqs at the end
of the trial for each dose-response approximation
model and allocation policy. To evaluate the probabil-
ity of correct selection after the responses of all 300 pa-
tients were observed, the final posterior evaluation of
the state variable is used to generate 1000 dose-
response curves. For each curve, EDgs is evaluated
and the fraction of curves whose EDgs matched the
true EDgs is reported. The confidence intervals re-
ported in Table 2 are calculated with respect to 1,000-
sample average. These results also confirm the insight
from Figure 3 and Table 1. The minVar policy
achieves a slightly better variance of the target dose
and the maxProb policy achieves a slightly better
probability of correct selection.

Although type I/II error analyses are constructed
for frequentist settings, some translation of them may
be applicable in Bayesian settings as well (Carlin et al.
2010). In evaluating type I/II errors, we assume that
the null hypothesis denotes a flat dose-response
curve, and the alternate hypothesis represent a curve
with at least one dose showing a clinically meaningful
advantage over placebo. This is also the approach tak-
en by Berry et al. (2002) and Smith et al. (2006) in their
Bayesian implementation. A clinical meaningful EDgs
is identified only when P(|0gp,; — 61| = A) > p, where p
and A are design parameters. These parameters may
be determined by expert opinion or can be thought of

Table 2. Uncertainty About the True EDgs at the End of Trial

as parameters to control for in order to achieve rea-
sonable type I/II error. Note that type I/II errors in
this case are evaluated with respect to two underlying
dose-response curve: a flat curve to evaluate type I er-
ror and the sigmoid curve in Figure 3 to assess the
power of the hypothesis test. We follow Yin et al.
(2012) in setting up a framework to control for a dif-
ference level A that achieves reasonable type I/1I error
rates. Table 3 shows type I error and power rates for
A =1 and p = 0.8 with respect to the minVar allocation
policy. For more details on calculating type I/1I errors
and selection of (A,p), see OS 7.5. These results sug-
gest that with careful selection of (A,p), adaptive
Bayesian approaches such as those presented in this
study can achieve acceptable levels of type I/Il error
rates which is a regulatory necessity for drug approval.

6.4. Computational Time

A motivating factor for this study is the development
of computationally efficient dose assignment frame-
works in adaptive dose-finding trials. As mentioned
earlier in Section 2, the difficulty in implementation
and significant computational requirements are major
impediments in applying the NDLM framework
(Model 2) in practice. For example, Holm Hansen et al.
(2017) reported that an implementation of Model 2 in
their case took approximately two months of process-
ing time for 10,000 MCMC runs to evaluate posterior
updates and 100 observation simulations per dose to
decide on the next dose assignment. In all of our nu-
merical experiments that need MCMC simulation, the
number of simulated observation is M = 1,000 and
that of the MCMC runs is 2,500 to evaluate posterior
distributions. Table 4 shows that Model 3 is signifi-
cantly more efficient because it does not require
the time-consuming MCMC simulation. Moreover,
Model 2 is slightly better than Model 1 and Model 4
because it uses the forward filtering backward sam-
pling method. Note that the results in Table 4 are re-
ported for simulating a single decision epoch along 30
sample paths for the minVar dose allocation policy.

6.5. Additional Numerical Results and

Sensitivity Analysis
OS 7.1 and 7.2 present similar results to Table 2 and
Figure 3 for other dose-response curves, which in-
clude a bell-shaped curve, a nonmonotonic curve, and

Probability of correct selection (%)

Variance of the target dose

Allocation policy Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
minVar 80 83.2 84.5 83.9 0.79 0.65 0.38 0.60
maxProb 82.0 85.3 88.0 84.9 0.80 0.65 0.45 0.65

Note. Probabilities and variances are within 0.5 and =0.1 for a 95% confidence interval, respectively.
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Table 3. Type I Error and Power Rates

Model1 Model 2 Model 3 Model 4
Type I (flat) 0.05 0.04 0.02 0.04
Power (sigmoid) 87.4 90.2 95.1 88.0

Note. Results are reported within +0.02 for a 95% confidence interval.

a flat one. OS 7.3 presents figures demonstrating the
trend in estimation of both allocation policies’ objec-
tive functions, that is, the variance of the target dose
and probability of correct selection, as the trial pro-
gresses. In OS 7.4, we assess the quality of solution
with respect to another performance metric that at-
tempts to measure the L distance between the esti-
mated dose-response curve and the true underlying
dose-response curve over the trial’s progression.
Finally, in OS 7.8, we show that Model 2 is very sen-
sitive to the parameter choice to the extent that it
may produce nonconsistent results under the minVar

policy.

6.6. A Clinical Trial Case Study

In this section, we repeat our numerical experiments
with a new underlying dose-response curve from a
real clinical trial by Eli Lilly and Company (2018) on
the effects of LY2951742 in participants with mild to
moderate osteoarthritis knee pain where four doses at
5 mg, 50 mg, 120 mg, and 300 mg were allocated to
patients in the following fashion: { were assigned to
placebo and the other four doses were equally as-
signed to participants. We use the credible intervals
reported in their study to retrospectively estimate
0., the true dose-response curve, and oﬁ, the true ob-
servation variance for dose z. Therefore, the true un-
derlying dose-response curve in this experiment is
estimated by the results of Eli Lilly and Company
(2018), and we do not mean that it is the “truth.” Fig-
ure 4 shows the assignment pattern of LY2951742 for
placebo and the four doses described. For a sense of
completion, we also report the actual patient assign-
ment pattern of the case study. In addition, Table 5 re-
ports the number of assignments to the true EDys, the
expected variance of EDys at the end of the trial, and
the probability of correct selection. In this dose-
response curve, the difference between the highest
and the lowest response is small; however, Model 3
still outperforms all other dose-response approxima-
tion models in terms of the number of patients assigned
to the true EDgs. We did not consider Model 1 because
its sigmoid functional form is far from the estimate of
the dose-response curve depicted in Figure 4. Because
the doses in this case study are not equidistant, Model 2
requires slight modifications for implementation; the
details of which are presented in OS 7.6.

Table 4. Computational Time for a Single Dose
Assignment and 30 Samples

Model 1 Model 2 Model 3 Model 4

Computational time 2.9 2.8 0.16 2.9

(in hours)

7. Practical Considerations and
Limiting Assumptions

Our results show that the first-order dose-response
approximation Model 3 is computationally appealing
for adaptive dose assignment decisions while being
competitive or even superior to the standard approach
in several metrics. However, these results are based
on some assumptions that may not hold true in a real-
world clinical trial. We discuss some important issues
in this section.

7.1. Known Observation Variance

This limiting assumption is embedded in Equation (1).
However, it may be partly justified because in most
Phase II clinical trials, some estimates of the observation
variance may be available from Phase I. In addition, we
perform a sensitivity analysis on the observation vari-
ance and show that the results remain consistent in
terms of the assignment pattern and variance of the tar-
get dose; see OS 7.7. Furthermore, we propose Model 5,
which considers an unknown observation variance and
enjoys properties that result in efficient computation of
its posterior distribution. We compare Model 5 with
Model 2 and Model 4, which can be easily extended to
unknown variance case, in terms of the assignment pat-
tern, probability of correct selection, and variance of the
target dose: see OS 7.7 for more details.

7.2. Batch Assignment

In some clinical trials, it might be necessary or desir-
able to assign multiple doses to multiple patients at
the same time. This extension can be accommodated
within our DP framework regardless of the dose-
response approximation model. One heuristic solution
is that instead of a one-step look-ahead policy, the ap-
proximate solution for multiple assignments at deci-
sion epoch n involves simulating the algorithms, for
example, Algorithm 1, several steps into the future to
select multiple doses. However, developing a sophisti-
cated policy for this setting is beyond the scope of this
study because of the unique feature of the objective.

7.3. Delays or Interim Responses

We assume that the response of a patient becomes
available before the arrival of the next patient. How-
ever, the response may become available with delay.
Although this feature does not impact the dose-
response model approximation, it poses a significant
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Figure 4. (Color online) Patient Assignments to the Dose-Response Curve
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Notes. The diamond identifies the true EDgs. The hashed area represents the credible intervals reported in the trial, and the solid black line shows

our estimate of the true dose-response curve.

challenge for updating and constructing the DP frame-
work, especially when the delays may change over
time. In addition, although the response of a patient
may be available after a delay, an interim response
(surrogates) might be observable. This is typically han-
dled by a longitudinal model where, given the interim
observation, a full observation is estimated and is used
to update the model. Furthermore, interim analysis
may be conducted to stop the trial because enough evi-
dence is gathered that the drug is not effective. For op-
timal stopping decisions for adaptive dose-finding tri-
als, see Nasrollahzadeh and Khademi (2020).

7.4. Patient Covariates

Recall that we assume a pool of homogeneous pa-
tients. However, in some dose-finding trials, patient
characteristics, such as age, gender, and preexisting
conditions, might be taken into account in both dose
allocation and dose-response approximation. Ad-
dressing this issue requires introducing a model to
capture the dependency between covariates and re-
sponse, which we leave for future studies.

7.5. Dosing Scenario

Some dose-finding Phase II trials are looking for a
dosing scenario instead of a single target dose where-
by each patient is treated with a particular dosing sce-
nario, for example, increasing or decreasing in dosage

Table 5. End of Trial Results

during the course of treatment. The structure of these
trials is completely different from the one we consider
in this study.

7.6. Normality of Response

The efficient solutions produced by Model 3 rely on
the conjugacy of the likelihood function and prior,
which only holds true when the response follows a
normal distribution. Although this is a reasonable as-
sumption for Phase II clinical trials with continuous
responses, relaxing it would take away the observed
numerical efficiency.

8. Conclusion

In this study, we developed a framework to identify
the target dose in sequential dose-finding clinical trials
that is capable of incorporating different dose-response
approximation models. In fact, we proposed several
dose-response approximation models and compared
the implications of using each of them via simulation
in terms of dose assignment patterns, probability of
correctly identifying the true target dose, and variance
of the target dose at the end of the trial. These dose-
response approximation models have different levels
of flexibility, design purposes, and limitation. We pre-
sented a formal DP formulation for the sequential dose
assignment problem and derived analytical results for
our novel learning problem under Model 3.

Outcomes Model 2 Model 3 Model 4
Probability of correct selection (%) 81.63 88.34 80.99
Variance of the target dose 0.87 0.51 1.35
Number of assignments to the true EDgs 46 52 43

Notes. Total number of patients is 187. The number of assignments are rounded up, and the rest of results are
reported within a =0.5 for a 95% confidence interval. The number of assignments to the true EDys in the trial
was 31, and the variance of EDgs was 7.68 at the end of the trial.
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Our results show that it might be beneficial to lose
some flexibility in nonparametric models in order to
gain efficiency in terms of the computational time re-
quired for selecting a dose assignment. In particular,
our results suggest that assuming a known correlation
structure between different doses (which might be
reasonable because of preliminary Phase I data) re-
sults in significant reduction in the required time for
dose assignment without compromising solution

quality.
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