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Abstract—We consider a network of distributed underwater
sensors whose task is to monitor the movement of objects across
an area. The sensors measure the strength of signals emanated
by the objects and convey the measurements to the local fusion
centers. Multiple fusion centers are deployed to cover an arbitrar-
ily large area. The fusion centers communicate with each other
to achieve consensus on the estimated locations of the moving
objects. We introduce two efficient methods for data fusion of
distributed partial estimates when delay in communication is not
negligible. We concentrate on the minimum mean squared error
(MMSE) global estimator, and evaluate the performance of these
fusion methods in the context of multiple-object tracking via
extended Kalman filtering. Numerical results show the superior
performance compared to the case when delay is ignored.

Index Terms—data fusion, statistical inference, Kalman filter,
object tracking, sensor network, random access, underwater
acoustic communication, delay.

I. INTRODUCTION

We consider the problem of multiple object tracking within

the setting of an underwater sensor network, where multiple

distributed sensor nodes communicate their field measure-

ments acoustically to local fusion centers (FCs). The FCs are

in turn connected over a separate infrastructure, which does

not share the same communication bandwidth with the sensors.

In underwater acoustic scenarios, for instance, the FCs can be

connected by radio links (if close to shore) or by satellite

links (if remote). The FCs use this separate infrastructure to

exchange information and achieve large area coverage. The

specific problem we address within this framework is that of

communication delay between the FCs.

A mathematically equivalent problem is often found

in statistical signal processing, where models parameters

need to be inferred from a large data-set [1]. Performing

statistical inference in these situations imposes computa-

tional/memory/storage constraints that make global estimation

impractical [2]. A common solution is to divide the data among

multiple partial estimator (PE) and to combine their estimates

together to approximate the global one. The goal is to find

an optimal combination that achieves a performance as close

as possible to the global estimator that has access to all the

information.

Data fusion of PEs has been studied in many different

contexts including signal processing, digital communication,

control and sensor networks. A general procedure to combine
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estimators in the multiple parameter case has been proposed

in [3]. Time series forecasting [4], distributed estimation in

wireless sensor networks [5]–[7], optimal linear fusion for

multi-dimensional case [8], distributed fusion by adapting

methods for graphical models [9], as well as different con-

sensus, gossip or diffusion algorithms [10]–[12] are some of

the previous works in this area. In the consensus-oriented

distributed tracking in underwater acoustic sensor networks,

nodes are arranged in groups and each group has an FC

that runs an independent filter [13], [14], while exchanging

information with its neighbors iteratively. As a result, FCs

can reach a consensus [10], with the benefits of network

cooperation in terms of improved performance and better

robustness and resilience to failure.

These approaches have certain limitations. Firstly, in most

applications, FCs are either the cores in a multi-core worker

or machines in a multiple-machine setup. In either case,

communication happens over a wired platform and the delay

is considered negligible. This is not a reasonable assumption

in underwater networks where the delay can be significant.

Moreover, unlike regular distributed fusion, synchronization

is not easy to achieve in underwater situations. For these

reasons, regular distributed inference methods are in general

not suitable for underwater scenarios.

In this paper, we introduce two efficient data fusion meth-

ods for the fusion of distributed estimators, where delay in

communication is not negligible. We concentrate on the min-

imum mean squared error (MMSE) global estimator, but the

developed framework is general and can be used to combine

any type of unbiased partial estimates.

The rest of the paper is organized as follows. Sec. II presents

the system model. In Sec. III the proposed fusion methods are

introduced. Numerical results are presented in Sec. IV. Finally,

we provide concluding remarks in Sec. V.

II. SYSTEM MODEL

In [15] we addressed a scenario in which networked sensor

nodes measure the strength of the field generated by a number

of moving objects (less or equal to M ) and transmit their

measurements to an FC in a random access manner for final

reconstruction of the objects’ trajectories. To ensure scalability,

the total observation area is divided into design units, each

of which is assigned an FC that runs an extended Kalman

filter to produce its partial estimate. The neighboring FCs then

communicate with each other to exchange current status, thus
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allowing state fusion whereby the Kalman filters adjust their

local estimates at the end of each updating interval, yielding

a system design that is scalable across a large coverage

area without an increase in complexity. Fig. 1 illustrates the

concept. The proposed methods are specially useful in under-

water scenarios with limited bandwidth and power restrictions.

While [15] treated an ideal case in which communication

between FCs occurs with no delay, here we take into account

the fact that the information exchanged between the FCs may

be outdated.

In this paper we consider a similar scenario as in [15]. The

location and the velocity of the m-th object at time interval k
are denoted by

xk(m) = [xk(m), yk(m), ẋk(m), ẏk(m)]
�

(1)

The location of objects follows a stationary uniform process

with density ρo objects/m2. Each object emits a signal of

certain amplitude. The signal decays with distance d based

on a known signature function f(d). It is worth mentioning

that here we do not strive to discriminate the objects from one

another. The objects are not cooperating, i.e. they do not send

their IDs to the sensors, and the sole job of the system is to

track their location based on the signatures they emanate.

A number of sensor nodes are distributed uniformly across

the observation area with density ρs nodes/m2. Nodes are

divided into zones and an FC is assigned to each zone. At

time interval k the received signal at the n-th sensor node is

generically modeled as

vk (n) =
∑
m

f (dk (m,n)) + wk (n) (2)

where dk (m,n) is the distance between the m-th object and
the n-th sensor at time k, and wk(n) is the zero-mean Gaussian

noise.

After sensing the field, each node encodes its measurement

vk(n) into a digital data packet, adds its ID, and transmits the

packet to its FC. Each FC collects the packets transmitted in

one time interval of duration Tc, which is chosen short enough

that the objects’ locations can be considered fixed over it.

Some packets will be dropped because of collisions and noise.

After discarding the erroneous packets, the FC is left with
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Fig. 1: The entire area is divided into sensing cells, and an FC is assigned to
each cell. Sensor nodes are shown as circles, FCs as triangles, and moving
objects as stars [15].

useful packets. These intermittent observations are then used

as an input to the tracking algorithm to estimate the location

of the objects.

We define the state of the system at time kTc, as

xk = [x�
k (1), x�

k (2), . . . , x�
k (M)]� (3)

where Tc is the collection interval, k ∈ Z
+, M is the

maximum number of objects to be tracked by one FC and

xk(m) is defined in (1). We assume that the state vector

evolves linearly as

xk = Axk−1+qk (4)

where A is the state transition matrix, and qk is the process

noise, which is modeled as zero-mean Gaussian with covari-

ance Q. We assume that L FCs try to make estimates of

the state vector based on the set of observations they receive

during the k-th collection interval. These observations are used

as an input to the FCs to estimate the state of the system.

Given a general state-space model (4), we use the modified

lossy extended Kalman filter (MLEKF) introduced in [16] as

the estimation method for the locations of objects.

III. FUSION METHODS

The goal of data fusion is to combine the partial estimates

provided by a set of L FCs, along with the corresponding un-

certainty measures characterized by the estimated covariance

matrices, in a manner that provides performance as close as

possible to that of the global estimator that has access to all

the information.

The optimal linear MMSE (L-MMSE) fusion rule is given

by [1]

x̂
(L−MMSE)
k =

[
L∑

�=1

(
C

(�)
k

)−1
]−1 L∑

�=1

(
C

(�)
k

)−1

x̂�
k (5)

where x̂�
k and C

(�)
k are the partial estimate of the state vector

and covariance matrix of the �-th FC at time k, respectively.

Note that (5) holds regardless of the approach used to derive

the partial estimates.

The performance of the linear estimator can be improved by

overwriting the state vector of each FC with the final estimate

[15], [17]. In other words, the final estimate of the �-th FC is

determined as

x̂
(�,F )
k = x̂

(L−MMSE)
k , � = 1, . . . , L (6)

This state vector is then used to initialize the next round of

estimates in all FCs.

The results in [15] show that overwriting offers a substantial

improvement in performance in terms of the localization

mean squared error (MSE). However, the overwriting process

requires each FC to wait for the state vector of all other FCs

before running the next round of estimation. In other words,

the underlying assumption in the approaches proposed in [15]

is that the exchange of information between the FCs happens

instantaneously. In practice, however, there may be a delay

that is not negligible with respect to the collection interval,
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and thus proper adjustments need to be made to accommodate

for this effect.

Clearly, communication between the FCs adds to the overall

delay, affecting the way in which the system operates. To be

specific, let us distinguish between the collection interval Tc

during which the observations are collected and the delay Td

during which the information is exchanged between the FCs.

Without loss of generality, we assume that the processing times

needed to update the various FCs and perform the fusion

are negligible; if not, they can be subsumed into Tc and/or

Td. If Td is not negligible with respect to Tc, adjustments

need to be made to the way in which the information from

neighboring FCs is fused and the system is updated. In the

sequel, we introduce two delay-tolerant data fusion methods

that can address this issue.

A. Soft Fusion with Delay-and-Wait principle (SoftDW)

One way to address the issue of delay is to have the local

FC wait for the feedback from neighbors and then perform

fusion. In this approach, an FC collects the observations during

Tc, updates its local estimate using what existing final state

estimate it has, and sends that local estimate to the neighbors.

It then waits for Td. Let us say that Td = D × Tc, i.e. the

delay equals a certain number of collection intervals. Once

the neighbors’ partial estimates have arrived at the end of the

waiting interval, the local FC fuses them with its own. As the

local estimate is delayed by the same amount as the neighbors’

estimates, there is no timing discrepancy. The local FC thus

has an accurate information about the state of the system Td

seconds ago. This information constitutes its final estimate,

which will be used at the end of the next collection interval

that starts immediately upon fusion. The cycle then repeats:

observations are collected during the next Tc, local estimate

is updated and sent to the neighbors, feedback is received

after Td seconds and fusion is performed. Fig. 2 illustrates the

process of SoftDW, where communication between the �-th
FC and its neighbor is shown. The duration of the full cycle

is now Tc + Td, and hence the system is updated as often.

In other words, estimates are available only every Tc + Td

seconds. Therefore, the equivalent state-transition matrix is

A′ = AD+1. The updating rate is thus reduced compared

to the case of no delay (D = 0). However, the estimation

accuracy is not affected, other than by the fact that the system

is observed less frequently. One last thing to note is that in

order to implement the process, the communication between

FCs needs to be synchronous.

Time

Fig. 2: Soft Fusion with Delay-and-Wait principle.

B. Soft Fusion with Predict-and-Go principle (SoftPG)

While the above procedure may be well suited to many

applications, the question remains open as to whether it is

possible to avoid the waiting (during which information is

lost), to keep updating the estimates as often as possible, and to

produce an estimate of the current state, not the delayed state.

The answer is yes, but a more elaborate procedure has to be put

in place. Specifically, each FC will now continue to make the

partial estimates every Tc seconds, but at the time when fusion

is performed, the information available from the neighboring

FCs will be outdated. An intelligent fusion scheme will take

this fact into account by giving proportionately less importance

to the outdated estimates. Equivalently, the estimates available

from the neighbors will first be turned into D-step predictions,

and these predictions will then be used in fusion. The fusion

algorithms thus remain the same, except that they operate

with predictions made on the neighbors’ estimates and its

corresponding covariances. Once the fusion is complete, each

FC sends its new information out to the neighbors. The process

thus continues in cycles of duration Tc. The estimates now

reflect the current state of the system, and the only effect

of delay is through the prediction error. Fig. 3 illustrates the

process of SoftPG. Note also that communication between the

FCs no longer needs to be synchronized.

At the k-th updating interval, the �-th FC uses the mea-

surements received during this interval and generates a partial

estimate x̂�
k and covariance matrix C

(�)
k . The FCs then ex-

change the information. We assume that it takes Td = D×Tc

seconds (or D collection intervals) for the partial estimate to

reach the other FCs. The final estimate of the �-th FC at the

k-th updating interval is now defined as

(7)

x̂
(�,F)
k =

⎡⎣(C(�)
k

)−1

+

L∑
i=1,i �=�

(
Ĉ

(i)
k

)−1

⎤⎦−1

×
⎛⎝(

C
(�)
k

)−1

x̂�
k +

L∑
i=1,i �=�

(
Ĉ

(i)
k

)−1̂̂xi

k

⎞⎠
where ̂̂x�

k and Ĉ
(�)
k are the D-step prediction of the �-th partial

estimate and its covariance matrix at time k, respectively.

These are the results of the prediction process which is

described in Algorithm 1. As an alternative to the recursive

process, we can calculate the values directly from̂̂x�

k = ADx̂�
k−D (8)

Time

Fig. 3: Soft Fusion with Predict-and-Go principle.
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Ĉ
(�)
k = ADC

(�)
k−DAD�

+

D−1∑
i=0

AiQAi� (9)

IV. NUMERICAL RESULTS

The system parameters are chosen to reflect an underwa-

ter scenario with limited acoustic bandwidth. To illustrate

the results, we assume an acoustic path loss (see [18]) be-

tween objects and sensor nodes with f = 1kHz, k = 1.5,
dref = 100m.

The effect of waiting is quantified in Fig. 4. This figure

shows the system performance (localization MSE in the de-

layed estimate) as a function of normalized delay D.

When delay is small enough, SoftDW outperforms SoftPG.

In order to understand the reason behind this, we need to

specify the sources of error in each method. In SoftDW the

source of error is the increased process noise covariance,

estimation process as Q′ =
∑D

i=0 A
iQAi� � Q, where for

two square matrices A and B, we say that A � B if A−B
is positive definite. In other words, the variance of the process

noise increases with D. In SoftPG, on the other hand, the

source of error is the prediction process which yields the state

vectors and covariance matrices that deviate from the actual

values. Depending on which of these sources dominates, one

method would perform better than the other.

We note that the effect of delay is not detrimental even

for SoftDW for a considerable range of the values D. More-

over, the difference between the performance of the proposed

methods and what achieved with no fusion can be as large as

35dB. This proves the superior performance of the proposed

methods.

Fig. 5 shows the MSE as a function of ρo for various fusion

methods. Note that the SoftDW provides new estimates every

Tc + Td compared with SoftPG which generates estimates

every Tc seconds. SoftPG performance is almost independent

from the density of objects, while the MSE of SoftDW

increases slowly with ρo.

V. CONCLUSION

We addressed the issue of delay in acoustic sensor networks

for object tracking. Specifically, we introduced two data fusion

Algorithm 1 Prediction process at time k

1: Inputs: x̂�
k−D and C

(�)
k−D for all � = 1, . . . , L

2: for � = 1, . . . , L do
3: ̂̂x�

k ← x̂�
k−D

4: Ĉ
(�)
k ← C

(�)
k−D

5: j ← 0
6: while j < D do
7: ̂̂x�

k ← Â̂x�

k

8: Ĉ
(�)
k ← AĈ

(�)
k A� +Q

9: j ← j + 1

10: end
11: Outputs: ̂̂x�

k and Ĉ
(�)
k for all � = 1, ..., L
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methods for combining the partial estimates of local fusion

centers. In the method termed Delay-and-Wait, FCs exchange

their state vectors and covariance matrices and wait until they

receive all the information from neighboring FCs. They then

perform fusion and produce the final estimate. In the method

termed Predict-and-Go, FCs constantly update their estimate

based on the latest observations and fuse it with the most

current estimates available from the neighbors. Delay-and-

Wait requires synchronization between FCs and has better

performance at smaller values of delay. Predict-and-Go, on

the other hand, does not need synchronization and performs

better at larger delays. Both methods are able to provide good

performance even at delay values as large as ten seconds which

is well above the average latency of the geostationary satellite

communication (240−700ms) that could be a plausible choice

for connecting the FCs in practice.
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