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Private Classical Communication Over Quantum
Multiple-Access Channels

Rémi A. Chou , Member, IEEE

Abstract— We study private classical communication over
quantum multiple-access channels. For an arbitrary number of
transmitters, we derive a regularized expression of the capacity
region. In the case of degradable channels, we establish a
single-letter expression for the best achievable sum-rate and
prove that this quantity also corresponds to the best achievable
sum-rate for quantum communication over degradable quantum
multiple-access channels. In our achievability result, we decouple
the reliability and privacy constraints, which are handled via
source coding with quantum side information and universal
hashing, respectively. Hence, we also establish that the multi-user
coding problem under consideration can be handled solely via
point-to-point coding techniques. As a by-product of independent
interest, we derive a distributed leftover hash lemma against
quantum side information that ensures privacy in our achiev-
ability result.

Index Terms— Private communication, multiple-access chan-
nels, wiretap channels, leftover hash lemma, source coding with
quantum side information.

I. INTRODUCTION

THE capacity of private classical communication over
point-to-point quantum channels has been characterized

in [2], [3]. While only a regularized expression of this capac-
ity is known, a single-letter expression has been obtained
in the case of degradable quantum channels [4], and coin-
cides with the coherent information of the channel. In this
paper, we define private classical communication over quan-
tum multiple-access channels, and determine a regularized
expression of the capacity region for an arbitrary number
of transmitters. As formally described in the next sections,
we consider message indistinguishability as privacy metric.
Our proposed setting can be seen as a quantum counterpart to
the classical multiple-access wiretap channel, first introduced
in [5] and further studied in [6]–[10]. Note that for the special
case of classical communication over multiple-access quantum
channels without privacy constraint, the capacity region has
already been characterized in [11].

Often, for simplicity and to facilitate the design of good
codes, coding for multiple-access channels is reduced to
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point-point coding techniques, for instance, with successive
decoding or rate-splitting [12], [13]. However, in the presence
of a privacy constraint these techniques are challenging to
apply. In a successive decoding approach, the transmitters’
messages are decoded one after another at the receiver. This
approach works well in the absence of privacy constraints [11]
because the capacity region is a polymatroid. Unfortunately,
in the presence of privacy constraints, this task is challenging,
even in the classical case and for only two transmitters [14],
because the capacity region is not known to be a polymatroid
in general. With a rate-splitting approach, again, the presence
of privacy constraints renders the technique challenging to
apply, even in the classical case and for only two transmitters,
because the rate-splitting procedure may result in negative
“rates” for some virtual users [15].

Instead of relying on successive decoding or rate-splitting,
we investigate another method (because of the challenges
described above) but will still only rely on point-to-point cod-
ing techniques. Specifically, our approach in this paper relies
on ideas from random binning techniques, first developed
in [16], which have demonstrated that three primitives are suf-
ficient to build good codes for classical point-to-point wiretap
channels. Namely, source coding with side information at the
decoder [17], privacy amplification [18] (which may or may
not be implemented with universal hashing), and distribution
approximation, i.e., the problem of creating from a random
variable that is uniformly distributed, another random variable
whose distribution is close (for instance with respect to relative
entropy or variational distance) to a fixed target distribution,
e.g. [19]. Random binning ideas has been successfully applied
to construct optimal coding schemes for point-to-point private
classical communication over quantum channels [20] from
universal hash functions (used to implement privacy amplifi-
cation and distribution approximation) and schemes for source
coding with quantum side information [21], [22]. Random
binning ideas have also been put forward in [23] as a means
to prove the existence of good codes for classical wiretap
channels, and have been applied in the context of polar coding
to provide efficient and optimal codes for several classical
point-to-point wiretap channel models [24]–[26]. Note that
a capacity-achieving approach that separately handles the
reliability constraint and the privacy constraint in the clas-
sical point-to-point wiretap channel and the classical-quantum
wiretap channel has also been developped in [27] and [28],
respectively. [27] and [28] handle the reliability constraint
via channel coding and the privacy constraint via universal
hashing. We remark that the approaches in [27] and [28] differ
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from a random binning approach in that [27] and [28] rely on
channel coding to handle the reliability constraint, whereas the
random binning approach relies on source coding. Despite this
difference, we believe that both approaches are interesting: The
approach based on channel coding seems more natural as the
wiretap channel model is a generalization of a channel coding
problem, whereas the approach based on source coding uses a
simpler building block, since source coding with quantum side
information can be used to obtain classical-quantum channel
coding, e.g., [20].

In this paper, following random binning ideas, we establish
the sufficiency of the three same primitives (source coding
with quantum side information, privacy amplification, and
distribution approximation) to achieve the capacity region of
private classical communication over quantum multiple-access
channels. Additionally, universal hashing will be sufficient to
handle privacy amplification and distribution approximation.
More specifically, in our coding scheme, the reliability and
privacy constraints are decoupled and handled via source
coding with quantum side information at the receiver, and
two-universal hash functions [29], respectively. The challenge
for the transmitters is to encode their private messages without
the knowledge of the other users messages, and still guarantee
privacy for all the messages jointly. We establish a distributed
version of the leftover hash lemma against quantum side
information as a tool for this task. While simultaneously
smoothing the min-entropies that appears in the distributed
leftover hash lemma is challenging [30], we are still able to
approximate these min-entropies by Von Neumann entropies
in the case of product states. Next, to ensure reliability of
the messages at the receivers we design and appropriately
combine with universal hashing a multiple-access channel
code designed from distributed source coding with quantum
side information at the decoder. The crux of our analysis is
to precisely control the joint state of the encoders output by
ensuring a close trace distance between this joint state and a
fixed target state in the different steps of the coding scheme,
as it not only affects the rates at which the users can transmit
but also the privacy guarantees. Finally, a non-trivial Fourier-
Motzkin elimination that leverages submodularity properties
associated with our achievable rates is performed to obtain
the final expression of our achievability region.

We summarize our main contributions as follows. (i) We
first derive a regularized expression for the private classical
capacity region of quantum multiple-access channels for an
arbitrary number of transmitters. (ii) Then, we derive a
single-letter expression of the best achievable sum-rate for
degradable channels by leveraging properties of the polyma-
troidal structure of the regularized capacity region. (iii) We
establish that the latter quantity is also equal to the best
achievable sum-rate for quantum communication over degrad-
able quantum multiple-access channels. (iv) As a byproduct
of independent interest, we derive a distributed version of the
leftover hash lemma against quantum side information, that is
used in our analysis of distributed hashing to ensure privacy.
(v) Finally, our achievability scheme, which decouples relia-
bility and privacy via distributed source coding and distributed
hashing, establishes that the multi-user coding problem under

consideration can be handled solely via point-to-point coding
techniques. Namely, source coding with quantum side infor-
mation between two parties and universal hashing. Even in
the classical case, i.e., the classical multiple-access wiretap
channel, the reduction of this multi-user coding problem to
point-to-point coding techniques was only established for two
transmitters but not an arbitrary number of transmitters.

Finally, we refer to the recent work [31] for the study of a
one-shot achievability scheme for the problem considered in
this paper in the case of two transmitters.

The remainder of the paper is organized as follows. We for-
mally define the problem in Section III and present our main
results in Section IV. Before we prove our inner bound for the
capacity region in Section VI, we present in Section V pre-
liminary results that will be used in our achievability scheme.
Specifically, in Section V, we discuss (i) distributed universal
hashing against quantum side information, (ii) distributed
source coding with quantum side information, and (iii) clas-
sical data transmission over classical-quantum multiple-access
channels from distributed source coding. We prove an outer
bound for the capacity region in Section VII. We prove our
results regarding the best achievable sum-rate in Section VIII.
Finally, we provide concluding remarks in Section IX.

II. NOTATION

For x ∈ R, define [x] � [1, �x�] ∩ N and [x]+ �
max(0, x). For H, a finite-dimensional Hilbert space, let
P(H) be the set of positive semi-definite operators on H.
Then, let S=(H) � {ρ ∈ P(H) : Tr ρ = 1} and
S�(H) � {ρ ∈ P(H) : 0 < Tr ρ � 1} be the set of
normalized and subnormalized, respectively, quantum states.
Let also B(H) denote the space of bounded linear operators
on H. For any ρXE ∈ S�(HX ⊗ HE) and σE ∈ S=(HE),
the min-entropy of ρXE relative to σE [32] is defined
as Hmin(ρXE |σE) � sup

{
λ ∈ R : ρXE � 2−λIX ⊗ σE

}
,

where IX denotes the identity operator on HX , and the
max-entropy of ρE [32] is defined as Hmax(ρE) �
log rank(ρE). For any ρABC ∈ S=(HA ⊗ HB ⊗ HC),
define the quantum entropy H(A)ρ � −Tr[ρA log2 ρA], the
conditional quantum entropy H(A|B)ρ � H(AB)ρ−H(B)ρ,
the quantum mutual information I(A;B)ρ � H(A)ρ +
H(B)ρ −H(AB)ρ, the quantum conditional mutual informa-
tion I(A;B|C)ρ � H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ, and
the coherent information I(A〉B)ρ � H(B)ρ −H(AB)ρ. For
two probability distributions p and q defined over the same
finite alphabet X , define the variational distance between p
and q as V(p, q) �

∑
x∈X |p(x) − q(x)|. Finally, the power

set of a set S is denoted by 2S .

III. PROBLEM STATEMENT

Let L ∈ N
∗ and define L � [L]. Consider a quantum

multiple-access channel NA′
L→B :

⊗
l∈L B(HA′

l
) → B(HB)

with L transmitters, where A′
L � (A′

l)l∈L. Let UN
A′

L→BE be
an isometric extension of the channel NA′

L→B such that the
complementary channel to the environment N c

A′
L→E satisfies

N c
A′

L→E(ρ) = TrB[UN
A′

L→BE(ρ)] for ρ ∈
⊗

l∈L B(HA′
l
).
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Definition 1: An (n, (2nRl)l∈L) private classical
multiple-access code for the channel NA′

L→B consists
of

• L message sets Ml � [2nRl ], l ∈ L;
• L encoding maps φl :Ml → B(HA′n

l
), l ∈ L;

• A decoding positive operator-valued measure (POVM)
(ΛmL)mL∈ML , where ML �×l∈LMl;

and operates as follows: Transmitter l ∈ L selects a message
ml ∈ Ml and prepares the state ρml

A′n
l

� φl(ml), which is

sent over NA′n
L →Bn � (NA′

L→B)⊗n. The channel output is
ωmL

Bn � NA′n
L →Bn(ρmL

A′n
L

) where ρmL
A′n

L
�
⊗

l∈L ρ
ml

A′n
l

andmL �
(ml)l∈L. The decoding POVM (ΛmL)mL∈ML is then used at
the receiver to detect the messages sent. The complementary
channel output is denoted by ωmL

En � N c
A′n

L →En(ρmL
A′n

L
).

Definition 2: A rate-tuple (Rl)l∈L is achievable if
there exists a sequence of (n, (2nRl)l∈L) private classical
multiple-access codes such that for some sequence of constant
states (σEn), we have

lim
n→∞

max
mL∈ML

Tr[(I − ΛmL)ωmL
Bn ] = 0, (Reliability) (1)

lim
n→∞

max
mL∈ML

‖ωmL
En − σEn‖1 = 0. (Indistinguishability)

(2)

The private classical capacity region CP-MAC of a quantum
multiple-access channel NA′

L→B is defined as the closure of
the set of achievable rate-tuples (Rl)l∈L.

IV. MAIN RESULTS

We first propose a regularized expression for the private
classical capacity region.

Theorem 1: The private classical capacity region CP-MAC of
a quantum multiple-access channel NA′

L→B is

CP-MAC(N ) = cl

( ∞⋃
n=1

1
n
P(N⊗n)

)
,

where cl denotes the closure operator and P(N ) is the set of
rate-tuples (Rl)l∈L that satisfy

RS �
∑
l∈S

Rl � [I(XS ;B|XSc)ρ − I(XS ;E)ρ]+, ∀S ⊆ L,

for some classical-quantum state ρXLA′
L

of the form

ρXLA′
L

�
⊗
l∈L

(∑
xl

pXl
(xl)|xl〉〈xl|Xl

⊗ ρxl

A′
l

)
,

and ρXLBE � UN
A′

L→BE(ρXLA′
L
) with UN

A′
L→BE an isometric

extension of NA′
L→B , and the notation XS � (Xl)l∈S for any

S ⊆ L.
Proof: The achievability and converse are proved in

Sections VI and VII, respectively. �

In the next result, for the case of degradable channels,
we propose a single-letter expression for the best achievable
sum-rate in the private classical capacity region.

Theorem 2: Consider a degradable quantum multiple-access
channel NA′

L→B , i.e., there exists a channel DB→E such that

DB→E ◦NA′
L→B = N c

A′
L→E . Define Csum

P-MAC as the supremum
of all achievable sum-rates in CP-MAC(N ). Then, we have

Csum
P-MAC(N ) = P sum

MAC(N ),

with

P sum
MAC(N ) � max

ρ
[I(XL;B)ρ − I(XL;E)ρ]+, (3)

where the maximization is over classical-quantum states that
have the same form as in Theorem 1.

Proof: See Section VIII. �

We now propose another single-letter characterization
of Csum

P-MAC for degradable channels. We first define the
quantity Qsum

MAC.
Definition 3: Consider a quantum multiple-access channel
NA′

L→B . Define

Qsum
MAC(N ) � max

φALA′
L

I(AL〉B)ρ, (4)

where the maximization is over states of the form φALA′
L

�⊗
l∈L φAlA′

l
with φAlA′

l
, l ∈ L, a pure state, and ρALB �

NA′
L→B(φALA′

L
).

Note that by [33], limn→∞
1
nQ

sum
MAC(N⊗n) is a regularized

expression for the largest achievable sum-rate for quantum
communication over quantum multiple-access channels.

Theorem 3: Consider a degradable quantum multiple-access
channel NA′

L→B . Then, we have

Csum
P-MAC(N ) = Qsum

MAC(N ).

Proof: See Section VIII. �

Note that in the case of point-to-point channels Theorem 3
recovers the result in [4, Th. 2].

V. PRELIMINARY RESULTS

We establish in this section preliminary results that we will
use to show in Section VI the achievability part of Theorem 1.

A. Distributed Leftover Hash Lemma Against Quantum Side
Information

Define L � [L]. Consider the random variables XL �
(Xl)l∈L, defined over the Cartesian product XL �×l∈LXl

with probability distribution pXL , and a quantum system
E whose state depends on XL, described by the following
classical-quantum state:

ρXLE �
∑

xL∈XL

|xL〉〈xL| ⊗ ρxL
E , (5)

where |xL〉〈xL| �
⊗

l∈L |xl〉〈xl| and ρxL
E � pXL(xL)ρ̄xL

E

with ρ̄xL
E the state of the system E conditioned on the

realization xL. Next, consider Fl : Xl → {0, 1}rl a hash
function chosen uniformly at random in a family Fl, l ∈ L,
of two-universal hash functions [18], i.e.,

∀xl, x
′
l ∈ Xl, xl �= x′l =⇒ P[Fl(xl) = Fl(x′l)] � 2−rl .

For any S ⊆ L, define XS �×l∈SXl, FS � (Fl)l∈S ,

FS �×l∈SFl, AS �×l∈S{0, 1}
rl, and for aS ∈ AS ,

fS ∈ FS , f−1
S (aS) � {xS ∈ XS : fl(xl) = al, ∀l ∈ S}.
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The hash functions outputs fL(xL) � (fl(xl))l∈L, the state
of the quantum system, and the choice of the functions fL are
described by the following operator
ρFL(XL)EFL

� 1
|FL|

∑
fL∈FL

∑
aL∈AL

|aL〉〈aL| ⊗ ρfL,aL
E ⊗ |fL〉〈fL|, (6)

where ρfL,aL
E �

∑
xL∈f−1

L (aL) ρ
xL
E , |aL〉〈aL| �⊗

l∈L |al〉〈al|, and |fL〉〈fL| �
⊗

l∈L |fl〉〈fl|.
Lemma 1 (Distributed leftover hash lemma): Let ρU be the

fully mixed state on HFL(XL). Define for any S ⊆ L, rS �∑
s∈S rs. For any σE ∈ S=(HE), we have

‖ρFL(XL)EFL − ρU ⊗ ρEFL‖1 �
√√√√∑

S⊆L
S	=∅

2rS−Hmin(ρXSE |σE).

Proof: See Appendix A. �

Note that a similar lemma was known in the classical
case, e.g., [34], and had found applications to oblivious trans-
fer [34]–[36], secret generation [37]–[39], and multiple-access
channel resolvability [40]. We are now interested in deriving
a distributed leftover hash lemma for product states. We will
use the following result on product probability distributions,
which is a kind of asymptotic equipartition property (AEP)
that holds simultaneously for a set of min-entropies.

Lemma 2: Consider the random variables Xn
L � (Xl)l∈L,

Y n defined over Xn
L × Yn with probability distribution

pXn
LY n �

∏n
i=1 pXLY . In this lemma, let H(·) denote the

Shannon entropy for random variables following pXLY or
its marginals. For any ε > 0, there exists a subnormalized
non-negative function qXn

LY n defined over Xn
L ×Yn such that

V(pXn
LY n , qXn

LY n) � ε and

∀S ⊆ L, Hmin(qXn
SY n) � nH(XSY )−nδS(n),

Hmax(qY n) � nH(Y ) + nδ(n),

where δS(n) � log(|XS ||Y|+ 3)
√

2
n (L+ 1 + log(1

ε )), ∀S ⊆

L, δ(n) � log(|Y| + 3)
√

2
n (1 + log(1

ε )).
Proof: See Appendix B. �

From Lemmas 1 and 2, we then obtain the following result.
Lemma 3 (Distributed leftover hash lemma for product

states): Consider the product state ρXn
LEn � ρ⊗n

XLE , where
ρXLE is defined in (5). With the same notation as in Lemma 1,
we have

‖ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL‖1

� 2ε+
√√√√∑

S⊆L
S	=∅

2rS−nH(XS |E)ρ+n(δS(n)+δ(n)),

where δS(n) � log(|XS |dE+3)
√

2
n (L+ 1 + log(1

ε )), δ(n) �

log(dE + 3)
√

2
n (1 + log(1

ε )), with dE � dimHE .
Proof: See Appendix C. �

B. Distributed Classical Source Coding With Quantum Side
Information

Consider XL � (Xl)l∈L, defined over XL � ×l∈LXl

with probability distribution pXL , and a quantum system B

whose state depends on the random variable XL, described
by the following classical-quantum state

ρXLB �
∑

xL∈XL

|xL〉〈xL| ⊗ ρxL
B ,

where ρxL
B � pXL(xL)ρ̄xL

B with ρ̄xL
B the state of the system

B conditioned on the realization xL, and we have used the
same notation as in Section V-A.

Definition 4: A (2nRl)l∈L distributed source code for a
classical-quantum product state ρ⊗n

XLB consists of

• L sets Cl � [2nRl ], l ∈ L;
• L encoders gl : Xn

l → Cl, l ∈ L;
• One decoder h : S=(HBn) × CL → Xn

L , where CL �×l∈LCl.
A rate-tuple (Rl)l∈L is said to be achievable
when the average error probability Pe(n) �∑

xn
L∈Xn

L
pXn

L
(xn

L)P
[
h(ρ̄xn

L
Bn , gL(xn

L)) �= xn
L

]
satisfies

limn→∞ Pe(n) = 0, where for all xn
L ∈ Xn

L ,
gL(xn

L) � (gl(xn
l ))l∈L. Let C(ρXLB) be the set of all

achievable rate-tuples.
Lemma 4 ( [41]): We have

C(ρXLB) = {(Rl)l∈L : RS � H(XS |XScB)ρ, ∀S ⊆ L}.

Note that the set {(Rl)l∈L : RS � H(XS |XScB)ρ,
∀S ⊆ L} associated with the set function S �→
H(XS |XScB)ρ defines a contrapolymatroid. Using the fact
that its dominant face, i.e., {(Rl)l∈L ∈ C(ρXLB) : RL =
H(XL|B)ρ} is the convex hull of its extreme points [42],
one can easily verify that the region C(ρXLB) is achievable
using source coding with quantum side information for two
parties [21] and time-sharing. This is exactly the coding
technique employed in [41] to prove Lemma 4.

C. Multiple-Access Channel Coding From Distributed Source
Coding

Consider L finite sets Ul, l ∈ L, such that |Ul| = 2RU
l

for some RU
l ∈ R+ and define UL � ×l∈LUl. Consider

a classical-quantum multiple-access channel, i.e., a map W :
UL → S=(HB), which maps uL ∈ UL to the state ρ̄uL

B ∈
S=(HB). Let ρULB � 1

|UL|
∑

uL∈UL
|uL〉〈uL| ⊗ ρ̄uL

B describe
the input and output of W when the input UL is uniformly
distributed over UL, and where we have used the notation
|uL〉〈uL| �

⊗
l∈L |ul〉〈ul|.

Lemma 5 (Multiple-access channel coding from distributed
source coding): Consider L uniformly distributed messages
(Ml)l∈L ∈ ML �×l∈LMl, where Ml � [2nRl ] for some

Rl ∈ R+, l ∈ L. If there exists a (2nRDC
l )l∈L distributed source

code (as defined in Definition 4) for the classical-quantum
product state ρ⊗n

ULB , then there exist L encoders el : Ml →
Un

l , l ∈ L, and one decoder d : S=(HBn) → ML such
that one can choose Rl = RU

l − RDC
l as n → ∞, l ∈ L,

and limn→∞ P[d(ρ̄eL(ML)
Bn ) �= ML] = 0, where eL(ML) �

(el(Ml))l∈L.
Proof: See Appendix D. �

Note that this lemma recovers [20, Lemma 2], which treats
the case of point-to-point channels.
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VI. ACHIEVABILITY OF THEOREM 1

Consider a classical-quantum multiple-access wiretap chan-
nel, i.e., a map W : XL → S=(HB ⊗ HE), which maps
xL ∈ XL to ρ̄xL

BE ∈ S=(HB ⊗ HE). The achievability part
of Theorem 1 reduces to another achievability result (with a
slight adaptation of Definitions 1, 2) for this classical-quantum
multiple-access wiretap channel. Specifically, we show in this
section that, for any probability distribution pXL �

∏
l∈L pXl

,
the following region is achievable

R(W, pXL )

�{(Rl∈L) :RS � [I(XS ;B|XSc)ρ−I(XS ;E)ρ]+, ∀S ⊆ L},

where ρXLBE �
∑

xL
pXL(xL)|xL〉〈xL| ⊗ ρ̄xL

BE . Note that,
compared to the setting of Section III, the signal states sent
by the transmitters are now part of the channel definition.
Hence, achievability of R(W, pXL) and regularization lead to
the achievability part of Theorem 1.

A. Coding Scheme

The main idea of the coding scheme is to combine dis-
tributed source coding and distributed randomness extraction
to emulate a random binning-like proof. We proceed in
three steps.

Step 1: We create a stochastic channel that simulates the
inversion of multiple hash functions while approximating
the joint distribution of the inputs and outputs of the hash
functions. Approximating this joint distribution is crucial for
the message indistinguishability analysis. In the special case of
a single hash function, this operation is referred to as shaping
in [20] and distribution approximation in [25].

Consider Xn
L distributed according to some arbitrary prod-

uct distribution pXn
L

�
∏

l∈L pXn
l

, and L two-universal hash
functions FL uniformly distributed over FL, where we use
the same notation as in Section V-A. The output lengths of
the hash functions, denoted by (nRU

l )l∈L, will be defined
later. Let W̃L be the channel described by the conditional
probability distribution pXn

L |FL(Xn
L)FL �

∏
l∈L pXn

l |Fl(Xn
l )Fl

and W̃l be the channel described by the conditional probability
distribution pXn

l |Fl(Xn
l )Fl

, l ∈ L. For l ∈ L, let Un
l be

uniformly distributed over Un
l � [2nRU

l ], and define

p̃Xn
LUn

LFL � pXn
L|FL(Xn

L)FLpUn
L
pFL , (7)

where pUn
L

is the uniform distribution over Un
L with the same

notation as in Section V-C. Hence, p̃Xn
LUn

LFL denotes the
joint probability distribution of the input (Un

L , FL) and output
X̃n

L � W̃L(Un
L , FL) of the channel W̃L. To simplify notation

in the following, we write W̃L(Un
L) instead of W̃L(Un

L , FL)
by redefining W̃L and including FL in its definition.

Step 2: Using Lemma 5, we construct a multiple-access
channel code for jointly uniform input distributions (in the
absence of any privacy constraint) for the channel W ◦ W̃L.

Let m ∈ N. By Lemma 4, there exists a (2mnRDC
l )l∈L

distributed source code (as defined in Definition 4) for the
classical-quantum product state ρ̃⊗m

Un
LBn , where

ρ̃Un
LBn � 1

|Un
L |

∑
un
L∈Un

L

|un
L〉〈un

L| ⊗ ρ̄
�WL(un

L)
Bn , (8)

and where (nRDC
l )l∈L belongs to C(ρ̃Un

LBn). Then,
by Lemma 5, there exist L encoders el :Mm

l → Umn
l , l ∈ L,

and one decoder d : S=(HBmn) → Mm
L , where we have

defined for l ∈ L, Mm
l � [2mnRl ] such that Rl = RU

l −RDC
l

as m→∞, and

lim
m→∞

P

[
d

(
ρ̄
�W⊗m

L (eL(Mm
L ))

Bmn

)
�= Mm

L

]
= 0, (9)

with eL(Mm
L ) � (el(Mm

l ))l∈L.
Step 3: We combine Step 1 and Step 2 to define our encoders

and decoder for the classical-quantum multiple-access wiretap
channel. Specifically, the encoders are defined as

φl : Mm
l �→ W̃⊗m

l (el(Mm
l )), l ∈ L, (10)

and the decoder is defined as

ψ : ρ̄φL(Mm
L )

Bmn �→ d(ρ̄φL(Mm
L )

Bmn ), (11)

where φL(Mm
L ) � (φl(Mm

l ))l∈L.
Remark 1: In Step 2, Lemma 4 cannot be directly applied

to ρ̃Un
LBn as it is not a product state.

B. Coding Scheme Analysis

1) Average Reliability: We have

P

[
ψ(ρ̄φL(Mm

L )
Bmn ) �= Mm

L

]
= P

[
d(ρ̄

�W⊗m
L (eL(Mm

L ))

Bmn ) �= Mm
L

]
m→∞−−−−→ 0, (12)

where the equality holds by definition of ψ and (φl)l∈L in (10),
(11), and the limit holds by (9).

2) Average Message Indistinguishability: Note that by a
random choice of the encoder in the proof of Lemma 5,
eL(Mm

L ) is uniformly distributed, hence, W̃⊗m
L (eL(Mm

L ))
follows a product distribution and ρ̃eL(Mm

L )EmnF m
L

is a product
state, which one can write ρ̃eL(Mm

L )EmnF m
L

= ρ̃⊗m
Un

LEnFL
,

where

ρ̃Un
LEnFL �

∑
fL

∑
un
L

∑
xn
L

p̃Xn
LUn

LFL(xn
L, u

n
L, fL)

|un
L〉〈un

L| ⊗ ρ̄
xn
L

En ⊗ |fL〉〈fL|.
(13)

Next, define the following classical-quantum state

ρFL(Xn
L)EnFL �

∑
fL

∑
un
L

∑
xn
L

pXn
LFL(Xn

L)FL(xn
L, u

n
L, fL)

|un
L〉〈un

L| ⊗ ρ̄
xn
L

En ⊗ |fL〉〈fL|.
(14)

Then, for ρ̄U the fully mixed state on HUn
L

and ρU the fully
mixed state on HML , we have

‖ρ̃Mm
L EmnF m

L
− ρ⊗m

U ⊗ ρ̃EmnF m
L
‖1

� ‖ρ̃eL(Mm
L )EmnF m

L
− ρ̄⊗m

U ⊗ ρ̃EmnF m
L
‖1

= ‖ρ̃⊗m
Un

LEnFL
− ρ̄⊗m

U ⊗ ρ̃⊗m
EnFL

‖1
(a)

� m‖ρ̃Un
LEnFL − ρ̄U ⊗ ρ̃EnFL‖1

(b)

� m(‖ρ̃Un
LEnFL − ρFL(Xn

L)EnFL‖1
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+ ‖ρFL(Xn
L)EnFL − ρ̄U ⊗ ρEnFL‖1

+ ‖ρ̄U ⊗ ρEnFL − ρ̄U ⊗ ρ̃EnFL‖1)
� m(2‖ρ̃Un

LEnFL − ρFL(Xn
L)EnFL‖1

+ ‖ρFL(Xn
L)EnFL − ρ̄U ⊗ ρEnFL‖1)

(c)

� m(2V(p̃Xn
LUn

LFL , pXn
LFL(Xn

L)FL)

+ ‖ρFL(Xn
L)EnFL − ρ̄U ⊗ ρEnFL‖1)

(d)
= m(2V(pUn

L
pFL , pFL(Xn

L)FL)

+ ‖ρFL(Xn
L)EnFL − ρ̄U ⊗ ρEnFL‖1)

(e)

� 3m‖ρFL(Xn
L)EnFL − ρ̄U ⊗ ρEnFL‖1

(f)

� 3m

⎛⎝2 · 2−nξ

+
√ ∑

S⊆L,S	=∅
2n[RU

S−H(XS |E)ρ+δS(n)+δ(n)]

⎞⎠
(g)

� 3m

⎛⎝2 · 2−nξ

+
√ ∑

S⊆L,S	=∅
2−nη

⎞⎠
= 3m

(
2 · 2−nξ

+
√

(2L − 1) · 2−nη

)
n→∞−−−−→ 0, (15)

where (a) and (b) hold by the triangle inequality, (c) holds
by strong convexity of the trace distance and the definitions
of ρ̃Un

LEnFL and ρFL(Xn
L)EnFL in (13) and (14), (d) holds

by the definition of p̃Xn
LUn

LFL in (7), (e) holds because
V(pUn

L
pFL , pFL(Xn

L)FL) � ‖ρFL(Xn
L)FL − ρ̄U ⊗ ρFL‖1, (f)

holds for ξ ∈]0, 1[ by Lemma 3 with the substitution ε ←
2−nξ

such that δ(n) = log(dE + 3)
√

2( 1
n + 1

n1−ξ ), and

δS(n) � log(|XS |dE + 3)
√

2(L+1
n + 1

n1−ξ ), ∀S ⊆ L, (g)
holds provided that RU

S � H(XS |E)ρ − δS(n) − δ(n) − η,
∀S ⊆ L, η > 0.

3) Achievable Rate-Tuples: Consider the following exten-
sion of the state described in (8)

ρ̃Un
LXn

LBnFL �
∑

un
L∈Un

L

∑
xn
L∈Xn

L

∑
fL∈FF

p̃Xn
LUn

LFL(xn
L, u

n
L, fL)

|un
L〉〈un

L| ⊗ |xn
L〉〈xn

L| ⊗ ρ̄
xn
L

Bn ⊗ |fL〉〈fL|.

Define also the state

ρUn
LXn

LBnFL �
∑

un
L∈Un

L

∑
xn
L∈Xn

L

∑
fL∈FF

pXn
LUn

LFL(xn
L, u

n
L, fL)

|un
L〉〈un

L| ⊗ |xn
L〉〈xn

L| ⊗ ρ̄
xn
L

Bn ⊗ |fL〉〈fL|.

Then, we have

max
(
‖ρ̃Xn

LBn − ρXn
LBn‖1,max

S⊆L
‖ρ̃Un

S Bn − ρUn
S Bn‖1

)
� ‖ρ̃Un

LXn
LBnFL − ρUn

LXn
LBnFL‖1

(a)

� V(p̃Xn
LUn

LFL , pXn
LFL(Xn

L)FL)
(b)
= V(pUn

L
pFL , pFL(Xn

L)FL)
n→∞−−−−→ 0 (16)

where (a) holds by strong convexity of the trace distance,
(b) holds by (7), and the limit holds by the proof of (15).

Next, by Step 2 in Section VI-A, (nRDC
l )l∈L must belong

to C(ρ̃Un
LBn). One can choose (nRDC

l )l∈L ∈ C(ρXn
LBn)

because, as proved next, we have C(ρXn
LBn) ⊆ C(ρ̃Un

LBn).
For (nRDC

l )l∈L in C(ρXn
LBn) and any S ⊆ L, we have

nRDC
S

(a)

� H(Xn
S |BnXn

Sc)ρ

= H(Xn
LB

n)ρ −H(BnXn
Sc)ρ

= H(Bn|Xn
L)ρ −H(Bn|Xn

Sc)ρ +H(Xn
S )ρ

(b)

� H(Bn|Xn
L)ρ −H(Bn|Un

Sc)ρ +H(Xn
S )ρ

(c)

� H(Bn|Xn
L)ρ −H(Bn|Un

Sc)ρ +H(Un
S )ρ

� H(Bn|Xn
L)
�ρ −H(Bn|Un

Sc)
�ρ +H(Un

S )
�ρ

− |H(Bn|Xn
L)
�ρ −H(Bn|Xn

L)ρ|
− |H(Bn|Un

Sc)
�ρ −H(Bn|Un

Sc)ρ|
− |H(Un

S )
�ρ −H(Un

S )ρ|
(d)

� H(Bn|Xn
L)
�ρ −H(Bn|Un

Sc)
�ρ +H(Un

S )
�ρ − o(n)

(e)

� H(Bn|Un
L)
�ρ −H(Bn|Un

Sc)
�ρ +H(Un

S )
�ρ − o(n)

= H(Un
S |BnUn

Sc)
�ρ − o(n),

where (a) holds because (nRDC
l )l∈L in C(ρXn

LBn), (b) holds
by the quantum data processing inequality because, by defini-
tion of ρ, for any S ⊆ L, Un

S is a function of Xn
S , (c) holds by

Lemma 3 because, by definition of ρ, for any S ⊆ L, Un
S is

the output of hash functions when Xn
S is the input, (d) holds

by the Alicki-Fannes inequality and (16), (e) holds by the
quantum data processing inequality because, by definition of ρ̃,
X̃n

L is a function of Un
L .

Hence, by having chosen (nRDC
l )l∈L ∈ C(ρXn

LBn) and the
choice of (RU

l )l∈L in (15), we have the system(
RDC

S � H(XS |BXSc)ρ, ∀S ⊆ L
RU

S � H(XS |E)ρ, ∀S ⊆ L

)
, (17)

which we rewrite, by Step 3 in Section VI-A, as(
RDC

S � H(XS |BXSc)ρ, ∀S ⊆ L
RS +RDC

S � H(XS |E)ρ, ∀S ⊆ L

)
. (18)

Next, by Lemma 14, the set functions S �→
−H(XS |BXSc)ρ and S �→ H(XS |E)ρ−RS are submodular.
Hence, by Lemma 15, the system (18) has a solution if and
only if

H(XS |BXSc)ρ � H(XS |E)ρ −RS , ∀S ⊆ L, (19)

which we rewrite as

RS � H(XS |E)ρ −H(XS |BXSc)ρ

= I(XS ;B|XSc)ρ − I(XS ;E)ρ, ∀S ⊆ L.

4) Expurgation: We write the average probability of error
and average message indistinguishability of the coding scheme
in Section VI-A as Sn � ‖ρ̃Mm

L EmnF m
L
− ρ⊗m

U ⊗ ρ̃EmnF m
L
‖1

and Pn � P

[
ψ(ρ̄φL(Mm

L )
Bmn ) �= Mm

L

]
, respectively. To simplify
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notation, we write mL � mm
L for mm

L ∈Mm
L . Then, we have

Sn =
∑
mL

1
|Mm

L |
Sn(mL),

Pn =
∑
mL

1
|Mm

L |
Pn(mL),

where for mL ∈Mm
L , we have defined

Sn(mL) � ‖ρ̃mL
EnmF m

L
− ρ̃EnmF m

L
‖1,

Pn(mL) � P

[
ψ(ρ̄φL(ML)

Bmn ) �= ML|ML = mL
]
.

Let α ∈]0, 1[. By Markov’s inequality and (12), (15), for at
least a fraction 1 − α of the codewords, Pn(mL) � α−1Pn

and for at least a fraction 1−α of the codewords, Sn(mL) �
α−1Sn. Hence, for a fraction of the codewords at least 1−2α,
Pn(mL) � α−1Pn

n→∞−−−−→ 0 and Sn(mL) � α−1Sn
n→∞−−−−→

0. Finally, we expurgate the code to only retain this fraction
1 − 2α of messages, which has a negligible impact on the
asymptotic communication rates.

VII. CONVERSE OF THEOREM 1

Similar to the case of point-to-point channels, e.g., [43,
Sec. 23.4], it is sufficient to consider the task of exchanging
private randomness between the transmitters and the legitimate
receiver, which is a weaker task than private classical commu-
nication. Specifically, assume that Transmitter l ∈ L prepares
a maximally correlated state ρMlM ′

l
and encodes M ′

l as ρml

A′n
l

,
ml ∈ Ml, such that the legitimate receiver can recover the
share M ′

L of the state ρMLM ′
L

�
⊗

l∈L ρMlM ′
l

with some
decoder DBn→M ′

L
. The state resulting from this encoding and

n independent uses of the channel, i.e., NA′n
L →Bn , is

ωMLBnEn � 1
|ML|

∑
mL∈ML

|mL〉〈mL| ⊗ UN
A′n

L →BnEn(ρmL
A′n

L
),

where ρmL
A′n

L
�
⊗

l∈L ρ
ml

A′n
l

and |mL〉〈mL| �
⊗

l∈L |ml〉〈ml|,
with mL = (ml)l∈L ∈ ML. Then, the decoder of the
legitimate receiver produces

ωMLM ′
LEn � DBn→M ′

L
(ωMLBnEn),

and privacy with respect to the environment is assumed, i.e.,
there exists a constant state σEn independent of ρMLM ′

L
such that

‖ωMLM ′
LEn − ρMLM ′

L
⊗ σEn‖1 � δ(n), (20)

where limn→∞ δ(n) = 0. Next, for S ⊆ L, we have

nRS =
∑
l∈S

log |Ml|

=
∑
l∈S

I(Ml;M ′
l )ρ

(a)
= I(MS ;M ′

S)ρ

= H(MS)ρ −H(MS |M ′
S)ρ

(b)
= H(MS |MSc)ρ −H(MS |M ′

S)ρ

(c)

� H(MS |MSc)ρ −H(MS |M ′
SMSc)ρ

� H(MS |MSc)ω −H(MS |M ′
SMSc)ω

+ |H(MS |MSc)ω −H(MS |MSc)ρ|
+ |H(MS |M ′

SMSc)ω −H(MS |M ′
SMSc)ρ|

(d)

� H(MS |MSc)ω −H(MS |M ′
SMSc)ω + o(n)

= I(MS ;M ′
S |MSc)ω + o(n)

(e)

� I(MS ;Bn|MSc)ω + o(n)
(f)

� I(MS ;Bn|MSc)ω − I(MS ;En)ω + o(n), (21)

where (a) holds because ρMSM ′
S

=
⊗

l∈S ρMlM ′
l
, (b) holds

because for any S, T ⊆ L such that S ∩ T = ∅, we have
ρMSMT = ρMS ⊗ ρMT , (c) holds because conditioning does
not increase entropy, (d) holds by (20) and Alicki-Fannes
inequality, (e) holds by the quantum data processing inequal-
ity, (f) holds because I(MS ;En)ω = H(MS |En)ρ⊗σ −
H(MS |En)ω is upper bounded by o(n) using Alicki-Fannes
inequality and (20). Finally, from (21) we conclude that
(Rl)l∈L belongs to cl

(⋃∞
n=1

1
nP(N⊗n)

)
.

VIII. PROOF OF THEOREMS 2 AND 3

We first prove the following lemma, which provides a
regularized expression of the best achievable sum-rate in
CP-MAC for degradable channels.

Lemma 6: Let N be a degradable quantum multiple-access
channel. We have

Csum
P-MAC(N ) = lim

n→∞

1
n
P sum

MAC(N⊗n), (22)

where P sum
MAC is defined in (3).

Proof: Note that by Theorem 1 the inequality
Csum

P-MAC(N ) � limn→∞
1
nP

sum
MAC(N⊗n) is trivial. It is

thus sufficient to show the achievability of the sum-
rate limn→∞

1
nP

sum
MAC(N⊗n). Consider the set function

fρ : S �→ I(XS ;B|XSc)ρ − I(XS ;E)ρ, where ρ is a state
as defined in Theorem 1. By Lemma 14 in Appendix F, fρ

is submodular. Next, fρ is also non-negative because for any
S ⊆ L

fρ(S) = I(XS ;B|XSc)ρ − I(XS ;E)ρ

(a)
= I(XS ;BXSc)ρ − I(XS ;E)ρ

(b)

� I(XS ;B)ρ − I(XS ;E)ρ

(c)

� 0,

where (a) holds because for any S ⊆ L, we have ρXSXSc =
ρXS ⊗ ρXSc , (b) holds by the chain rule and positivity of
mutual information, (c) holds by the quantum data processing
inequality because N is degradable.

Hence, fρ is submodular and non-negative. However, fρ is
not necessarily non-decreasing, which means that R(fρ) �
{(Rl)l∈L : RS � fρ(S), ∀S ⊆ L} associated with the
function fρ does not describe a polymatroid in general –
see Definition 5 in Appendix F. To overcome this difficulty,
we define the set function f∗

ρ with

f∗
ρ : S �→ min

A⊆L
s.t. A⊇S

fρ(A).
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By Lemma 16 in Appendix F, the set function f∗
ρ is

normalized, i.e., f∗
ρ (∅) = 0, non-decreasing, and submodu-

lar because fρ is normalized, non-negative, and submodular.
Hence, R(f∗

ρ ) associated with the function f∗
ρ describes a

polymatroid and by [42] its dominant face, i.e., {(Rl)l∈L ∈
R(f∗

ρ ) : RL = f∗
ρ (L)} is non-empty. Consequently, there

exists a rate-tuple (Rl)l∈L ∈ R(f∗
ρ ) such that RL =

f∗
ρ (L). Next, by inspecting R(f∗

ρ ) and R(fρ), we have that
R(f∗

ρ ) = R(fρ) by the construction of f∗
ρ . We also have

f∗
ρ (L) = fρ(L) by the construction of f∗

ρ . Hence, we conclude
that there exists a rate-tuple (Rl)l∈L ∈ R(fρ) such that
RL = fρ(L). Finally, from Theorem 1, we conclude that
the sum-rate limn→∞

1
nP

sum
MAC(N⊗n) is achievable, and thus

that (22) holds. �

Next, we prove the following equality.
Lemma 7: Let N be a degradable quantum multiple-access

channel. We have

P sum
MAC(N ) = Qsum

MAC(N ).

Proof: See Appendix E. �

Finally, we have that Qsum
MAC is additive for degradable

channels. The proof of Lemma 8 is similar to the proof of
additivity for the coherent information of degradable channels.
Note that Lemma 8 is also referenced in [33].

Lemma 8: Let N and M be two degradable quantum
multiple-access channels. Then, we have

Qsum
MAC(N ⊗M) = Qsum

MAC(N ) +Qsum
MAC(M).

All in all, from Lemmas 6, 7, 8, we obtain
Theorems 2 and 3.

IX. CONCLUDING REMARKS

We introduced the notion of private capacity region for
quantum multiple-access channels. For an arbitrary number
of transmitters, we derived a regularized expression for this
private capacity region. In the case of degradable channels,
we also derived two single-letter expressions for the best
achievable sum-rate. One of these expressions coincides with
the best achievable sum-rate for quantum communication over
degradable quantum multiple-access channels.

Our proof technique for the achievability part relies on an
emulation of a proof based on random binning. Specifically,
our achievability result decouples the reliability and privacy
constraints, which are handled via distributed source coding
with quantum side information at the receiver and distributed
hashing, respectively. Consequently, we reduced a multiuser
coding problem into multiple single-user coding problems.
Indeed, distributed source coding with quantum side infor-
mation at the receiver can be reduced to single-user source
coding with quantum side information at the receiver, and dis-
tributed hashing is, by construction, performed independently
at each transmitter.

As part of our proof, we derived a distributed leftover hash
lemma in the presence of quantum side information, which
may be of independent interest. Note that in our setting the
seeds size needed to choose the hash functions is irrelevant.
However, for other applications, it may be desirable to reduce
the necessary seeds size. Specifically, it remains open to extend
our result to δ-almost two-universal hash functions, which are

known to enable a reduction of the necessary seed size for the
non-distributed setting, i.e., the special case L = 1, [44].

APPENDIX A
PROOF OF LEMMA 1

For any ρXE ∈ S�(HX ⊗ HE) and σE ∈ S=(HE), the
collision entropy of ρXE relative to σE [32] is defined as

H2(ρXE |σE) � − log
Tr[

(
ρXE(IX ⊗ σ−1/2

E )
)2

]

Tr ρXE
. (23)

Next, define AL � FL(XL). We then have

‖ρALEFL − ρU ⊗ ρEFL‖1
(a)
= EFL

∥∥∥ρFL
ALE − ρU ⊗ ρE

∥∥∥
1

(b)

� EFL

√
2rL

√
Tr[

(
(ρFL

ALE − ρU ⊗ ρE)(IAL ⊗ σ
−1/2
E )

)2

]

(c)

�
√

2rL

√
EFL Tr[

(
(ρFL

ALE − ρU ⊗ ρE)(IAL ⊗ σ
−1/2
E )

)2

]

(d)
=
√

2rL

(
EFL Tr

[( ∑
aL∈AL

|aL〉〈aL|

⊗
(
σ
−1/4
E ρFL,aL

E σ
−1/4
E −2−rLσ

−1/4
E ρEσ

−1/4
E

))2
])1/2

=
√

2rL

(
EFL

∑
aL∈AL

Tr
[(
σ
−1/4
E ρFL,aL

E σ
−1/4
E

−2−rLσ
−1/4
E ρEσ

−1/4
E

)2
])1/2

(e)
=
√

2rL

(
EFL

∑
aL∈AL

Tr
[(
σ
−1/4
E ρFL,aL

E σ
−1/4
E

)2
]

−2−rL Tr
[(
σ
−1/4
E ρEσ

−1/4
E

)2
])1/2

,

(24)

where (a) holds with ρFL
ALE �

∑
aL∈AL

|aL〉〈aL|⊗ρFL,aL
E , (b)

holds by Lemma 9 in Appendix F with ρ � ρFL
ALE − ρU ⊗ ρE

and σ � IAL ⊗ σE for any σE ∈ S�(HE), (c) holds by
Jensen’s inequality, (d) holds because

Tr[
(
(ρFL

ALE − ρU ⊗ ρE)(IAL ⊗ σ
−1/2
E )

)2

]

= Tr
[(

(IAL ⊗ σ
−1/4
E )

·
[ ∑

aL∈AL

|aL〉〈aL| ⊗
(
ρFL,aL

E −2−rLρE

)]
(IAL⊗σ

−1/4
E )

)2
⎤⎦,

(e) holds by expanding and simplifying the square inside the
trace. Next, we have∑
aL∈AL

Tr[
(
σ
−1/4
E ρFL,aL

E σ
−1/4
E

)2

]

=
∑

aL∈AL

Tr

⎡⎣σ−1/4
E

⎛⎝ ∑
xL∈F−1

L (aL)

ρxL
E

⎞⎠ σ
−1/2
E

·

⎛⎝ ∑
x′
L∈F−1

L (aL)

ρ
x′
L

E

⎞⎠σ
−1/4
E

⎤⎦
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=
∑

aL∈AL

∑
xL,x′

L∈F−1
L (aL)

Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ]

(a)
=

∑
aL∈AL

∑
S⊆L

∑
xL∈F−1

L (aL)

∑
x′
L∈F−1

L (aL)

s.t x′
S 	=xS

x′
Sc=xSc

1

× Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ]

=
∑

aL∈AL

∑
S⊆L

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

1{xL ∈ F−1
L (aL)}

× 1{x′S ∈ F−1
S (aS)}Tr[σ−1/4

E ρxL
E σ

−1/2
E ρ

x′
L

E σ
−1/4
E ]

(b)
=

∑
S⊆L

∑
aS∈AS

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

1{xS , x′S ∈ F−1
S (aS)}

× Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ]

(c)
=

∑
S⊆L

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

1{FS(xS) = FS(x′S)}

× Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ], (25)

where in (a) the notation x′S �= xS means ∀l ∈ S, x′l �= xl,
(b) holds because

∑
aSc∈ASc

1{xSc ∈ F−1
L (aSc)} = 1,

and (c) holds because
∑

aS∈AS
1{xS , x′S ∈ F−1

S (aS)} =
1{FS(xS) = FS(x′S)}. Then, taking the expectation over FL
in (25), we obtain

EFL

∑
aL∈AL

Tr[
(
σ
−1/4
E ρFL,aL

E σ
−1/4
E

)2

]

=
∑
S⊆L

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

EFL1{FS(xS) = FS(x′S)}
× Tr[σ−1/4

E ρxL
E σ

−1/2
E ρ

x′
L

E σ
−1/4
E ]

�
∑
S⊆L

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

2−rS Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ],

(26)

where the inequality holds because EFL1{FS(xS) =
FS(x′S)} = EFS1{FS(xS) = FS(x′S)} =∏

l∈S EFl
1{Fl(xl) = Fl(x′l)} �

∏
l∈S 2−rl by

two-universality of the hash functions FS . Note that we
also have

Tr[
(
σ
−1/4
E ρEσ

−1/4
E

)2

]

=
∑
S⊆L

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ]. (27)

Hence, by combining (24), (26), and (27), we have

‖ρALEFL − ρU ⊗ ρEFL‖1

�
√

2rL

(∑
S⊆L

∑
xL∈XL

∑
x′
L∈XL

s.t x′
S 	=xS

x′
Sc=xSc

(2−rS − 2−rL)

× Tr[σ−1/4
E ρxL

E σ
−1/2
E ρ

x′
L

E σ
−1/4
E ]

)1/2

=
( ∑

S�L

∑
xS∈XS

∑
xSc∈XSc

∑
x′
S∈XS

s.t x′
S 	=xS

(2rSc − 1)

× Tr[σ−1/4
E ρ

(xS ,xSc)
E σ

−1/2
E ρ

(x′
S ,xSc )

E σ
−1/4
E ]

)1/2

(a)

�
( ∑

S�L

∑
xS∈XS

∑
xSc∈XSc

∑
x′
S∈XS

2rSc

× Tr[σ−1/4
E ρ

(xS ,xSc)
E σ

−1/2
E ρ

(x′
S ,xSc )

E σ
−1/4
E ]

)1/2

(b)
=
√∑

S�L

∑
xSc∈XSc

2rSc Tr[σ−1/4
E ρxSc

E σ
−1/2
E ρxSc

E σ
−1/4
E ]

=
√∑

S�L
2rSc Tr[

∑
xSc∈XSc

|xSc〉〈xSc | ⊗
(
ρxSc

E σ
−1/2
E

)2

]

(c)
=
√∑

S�L
2rSc Tr[ρXSc E ]2−H2(ρXSc E |σE)

(d)

�
√∑

S�L
2rSc 2−Hmin(ρXSc E |σE)

=
√√√√∑

S⊆L
S	=∅

2rS−Hmin(ρXSE |σE),

where (a) holds because for any xL ∈ XL,
x′S ∈ XS , Tr[σ−1/4

E ρ
(xS ,xSc)
E σ

−1/2
E ρ

(x′
S ,xSc )

E σ
−1/4
E ] =

Tr[
(
σ
−1/4
E ρ

(xS ,xSc )
E σ

−1/4
E

)(
σ
−1/4
E ρ

(x′
S ,xSc)

E σ
−1/4
E

)
] � 0

since the trace of the product of two non-negative operators
defined on the same Hilbert space is non-negative, (b)
holds with ∀S ⊆ L, ∀xS ∈ XS , ρxS

E �
∑

xSc∈XSc
ρxL

E =
pXS (xS)

∑
xSc∈XSc

pXSc |XS (xSc |xS)ρ̄xL
E , (c) holds by

definition of the collision entropy in (23), (d) holds by
Lemma 10 in Appendix F.

APPENDIX B
PROOF OF LEMMA 2

Define

A � {(xn
L, y

n) ∈ Xn
L × Yn : ∀S ⊆ L,

− log pXn
SY n(xn

S , y
n) � H(Xn

SY
n)−nδS(n)

}
,

B � {yn ∈ Yn : − log pY n(yn) � H(Y n) + nδ(n)} ,

and for S ⊆ L,

AS � {(xn
S , y

n) ∈ Xn
S × Yn :

− log pXn
SY n(xn

S , y
n) � H(Xn

SY
n)−nδS(n)

}
.

Next, define for (xn
L, y

n) ∈ Xn
L × Yn,

qXn
LY n(xn

L, y
n)

� 1{(xn
L, y

n) ∈ A}1{yn ∈ B}pXn
LY n(xn

L, y
n), (28)
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and for S ⊆ L,

qXn
SY n(xn

S , y
n) �

∑
xn
Sc∈Xn

Sc

qXn
LY n(xn

L, y
n). (29)

We first show that V(pXn
LY n , qXn

LY n) � ε. We have

V(pXn
LY n , qXn

LY n)

=
∑

xn
L,yn

|pXn
LY n(xn

L, y
n)− qXn

LY n(xn
L, y

n)|

�
∑

xn
L,yn

pXn
LY n(xn

L, y
n)(1{(xn

L, y
n) /∈ A}+ 1{yn /∈ B})

= P [(Xn
L, Y

n) /∈ A] + P [Y n /∈ B]
= P [∃S ⊆ L, (Xn

S , Y
n) /∈ AS ] + P [Y n /∈ B]

(a)

�
∑
S⊆L

P [(Xn
S , Y

n) /∈ AS ] + P [Y n /∈ B]

(b)

�
∑
S⊆L

2
− nδ2

S (n)

2 log(|XS ||Y|+3)2 + 2−
nδ2(n)

2 log(|Y|+3)2

(c)
=

∑
S⊆L

2−Lε/2 + ε/2

= ε,

where (a) holds by the union bound, (b) holds by Lemma 11
in Appendix F, (c) holds by definitions of δS(n) and δ(n).
Next, for S ⊆ L, we have

Hmin(qXn
SY n)

= − max
(xn

S ,yn)∈Xn
S ×Yn

log qXn
SY n(xn

S , y
n)

(a)
= − max

(xn
S ,yn)∈Xn

S ×Yn
log

(∑
xn
Sc∈Xn

Sc
1{(xn

L, y
n) ∈ A}

× 1{yn ∈ B}pXn
LY n(xn

L, y
n)
)

(b)

� − max
(xn

S ,yn)∈Xn
S×Yn

log(1{(xn
S , y

n) ∈ AS}pXn
SY n(xn

S , y
n))

(c)

� H(Xn
SY

n)−nδS(n),

where (a) holds by (28) and (29), (b) holds because for any
(xn

L, y
n) ∈ Xn

L × Yn, 1{(xn
S , y

n) ∈ AS} � 1{(xn
L, y

n) ∈
A}1{yn ∈ B} and by marginalization over Xn

Sc , (c) holds by
definition of AS . Then, we also have

Hmax(qY n) = log supp(qY n)
(a)

� log |B|
(b)

� nH(Y ) + nδ(n),

where (a) holds by (28) and (29), and (b) holds because 1 �∑
yn∈B pY n(yn) � |B|2−H(Y n)−nδ(n) by definition of B.

APPENDIX C
PROOF OF LEMMA 3

Consider a spectral decomposition of the product state
ρXn

LEn given by

ρXn
LEn =

∑
xn
L,en

pXn
LEn(xn

L, e
n)|φxn

L,en〉〈φxn
L,en |.

By Lemma 2, there exists a subnormalized non-negative
function qXn

LEn such that V(pXn
LEn , qXn

LEn) � ε and

∀S ⊆ L, Hmin(qXn
SEn) � nH(XSE)−nδS(n), (30)

Hmax(qEn) � nH(E) + nδ(n). (31)

Next, define the state

ρ̄Xn
LEn =

∑
xn
L,en

qXn
LEn(xn

L, e
n)|φxn

L,en〉〈φxn
L,en |, (32)

and for S ⊆ L

ρ̄Xn
SEn = TrXn

Sc
[ρ̄Xn

LEn ]

=
∑

xn
S ,en

qXn
SEn(xn

S , e
n)|φxn

S ,en〉〈φxn
S ,en |, (33)

where for any (xn
S , e

n), qXn
SEn(xn

S , e
n) �∑

xn
Sc
qXn

LEn(xn
L, e

n). Hence, we have

‖ρXn
LEn − ρ̄Xn

LEn‖1
�

∑
xn
L,en

|qXn
LEn(xn

L, e
n)− pXn

LEn(xn
L, e

n)|

= V(pXn
LEn , qXn

LEn)
� ε. (34)

Then, let ρU be the fully mixed state on HFL(Xn
L), and

define the operator ρ̄FL(Xn
L)EnFL as in (6) using ρ̄Xn

LEn in
place of ρXn

LEn . We have

‖ρFL(Xn
L)EnFL − ρU ⊗ ρEnFL‖1

(a)

� ‖ρFL(Xn
L)EnFL − ρ̄FL(Xn

L)EnFL‖1
+ ‖ρ̄FL(Xn

L)EnFL − ρU ⊗ ρ̄EnFL‖1
+ ‖ρU ⊗ ρ̄EnFL − ρU ⊗ ρEnFL‖1

(b)

� 2ε+ ‖ρ̄FL(Xn
L)EnFL − ρU ⊗ ρ̄EnFL‖1

(c)

� 2ε+
√ ∑

S⊆L,S	=∅
2rS−Hmin(ρ̄Xn

SEn |σEn )

(d)
= 2ε+

√ ∑
S⊆L,S	=∅

2rS−Hmin(ρ̄Xn
S En )+Hmax(ρ̄En )

(e)
= 2ε+

√ ∑
S⊆L,S	=∅

2rS+log(λmax(ρ̄Xn
S En ))+log(rank(ρ̄En ))

(f)
= 2ε+

√ ∑
S⊆L,S	=∅

2rS−Hmin(qXn
SEn )+Hmax(qEn )

(g)

� 2ε+
√ ∑

S⊆L,S	=∅
2rS−n(H(XSE)−H(E)−δS(n)−δ(n))

(i)
= 2ε+

√ ∑
S⊆L,S	=∅

2rS−nH(XS |E)ρ+n(δS(n)+δ(n)),

where (a) holds by the triangle inequality, (b) holds by the
data processing inequality, e.g., [32, Lemma A.2.1], and (34),
(c) holds by Lemma 1 where σEn is the fully mixed
state on the support of ρ̄En , (d) holds by Lemma 12 in
Appendix F, (e) follows from the definitions of Hmin and
Hmax, where λmax(ρ̄Xn

SEn) is the maximum eigenvalue of
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ρ̄Xn
SEn , (f) holds by (32) and (33), (g) holds by (30), (31),

(i) holds because the von Neumann entropy of an operator
with eigenvalues (pi) is equal to the Shannon entropy of a
random variable distributed according to (pi).

APPENDIX D
PROOF OF LEMMA 5

Assume that a (2nRDC
l )l∈L distributed source code is given

and that the corresponding encoding and decoding functions
are (gl)l∈L and h, respectively. We use the same notation as
in Definition 4. To simplify notation, we define uL � un

L,
for un

L ∈ Un
L . By definition, we have limn→∞ Pe(n) = 0

and

Pe(n)

� 1
|Un

L |
∑

uL∈Un
L

P [uL �= h (ρ̄uL
Bn , gL(uL))]

=
1
|Un

L |
∑

cL∈CL

∑
uL∈g−1

L (cL)

P [uL �= h (ρ̄uL
Bn , gL(uL))]

=
1
|CL|

∑
cL∈CL

∑
uL∈g−1

L (cL)

∏
l∈L

P [uL �= h (ρ̄uL
Bn , gL(uL))]

|Un
l |/|Cl|

(a)

� 1
|CL|

∑
cL∈C′

L

∑
uL∈g−1

L (cL)

∏
l∈L

P [uL �= h (ρ̄uL
Bn , gL(uL))]

|Un
l |/|Cl|

(b)

� 1
|CL|

∑
cL∈C′

L

∑
uL∈g−1

L (cL)

∏
l∈L

εP [uL �= h (ρ̄uL
Bn , gL(uL))]

|g−1
l (cl)|

(c)
=

ε

|CL|
∑

cL∈C′
L

EpUL|CL=cL
P [uL �= h (ρ̄uL

Bn , gL(uL))]

(d)

� εEpUL|CL=c∗L
P [uL �= h (ρ̄uL

Bn , gL(uL))]
∑

cL∈C′
L

1
|CL|

= εEpUL|CL=c∗L
P [uL �= h (ρ̄uL

Bn , gL(uL))]

×
∑

cL∈CL

1
|CL|

1{|g−1
l (cl)| � ε|Un

l |/|Cl|, ∀l ∈ L}

(e)

� ε(1− ε)L
EpUL|CL=c∗L

P [uL �= h (ρ̄uL
Bn , gL(uL))] , (35)

where in (a) we have defined C′L � {cL ∈ CL :
|g−1

l (cl)| � ε|Un
l |/|Cl|, ∀l ∈ L}, (b) holds by def-

inition of C′L, in (c) we have defined pUL|CL=cL �∏
l∈L pUl|Cl=cl

and pUl|Cl=cl
is the uniform distribution

over g−1
l (cl), l ∈ L, in (d) we have chosen c∗L ∈

arg mincL EpUL|CL=cL
P [uL �= h (ρ̄uL

Bn , gL(uL))], (e) holds
by Lemma 13 in Appendix F.

From (35), we conclude that

lim
n→∞

EpUL|CL=c∗L
P [uL �= h (ρ̄uL

Bn , gL(uL))] = 0. (36)

For l ∈ L, let Ml be such that |Ml| = |g−1
l (c∗l )|, and let

the encoder el be a bijection betweenMl and g−1
l (c∗l ). Hence,

for any mL ∈ ML, we have gL(eL(mL)) = c∗L. Then, define

the decoder as d(ρ̄eL(ML)
Bn ) � e−1

L

(
h(ρ̄eL(ML)

Bn , c∗L)
)

. Hence,

by (36), we have limn→∞ P[d(ρ̄eL(ML)
Bn ) �= ML] = 0. Finally,

for l ∈ L, we have 2nRl = |Ml| � ε|Un
l |/|Cl| = ε2n(RU

l −RDC
l ),

which yields Rl � RU
l −RDC

l as n→∞.

APPENDIX E
PROOF OF LEMMA 7

The arguments closely follow the proof for the special case
L = 1, e.g., [43, Th. 13.6.2]. We first prove P sum

MAC(N ) �
Qsum

MAC(N ). Consider a state ρXLEB � UN
A′

L→BE(ρXLA′
L
)

that achieves P sum
MAC(N ), i.e., maximizes the right-hand side

in (3). For l ∈ L, consider a spectral decomposition for
ρxl

A′
l

=
∑

yl
p(yl|xl)ψ

xl,yl

A′
l

, where each state ψxl,y
A′

l
is pure.

Next, consider σXLYLBE such that TrYL [σXLYLBE ] =
ρXLBE with

σXLYLBE �
∑
xL

∑
yL

pXL(xL)pYL|XL(yL|xL)

|xL〉〈xL| ⊗ |yL〉〈yL| ⊗ UN
A′

L→BE(
⊗
l∈L

ψxl,yl

A′
l

),

where pXL(xL) �
∏

l∈L p(xl), pYL|XL(yL|xL) �∏
l∈L p(yl|xl), xL � (xl)l∈L, yL � (yl)l∈L, |xL〉〈xL| �⊗
l∈L |xl〉〈xl|, and |yL〉〈yL| �

⊗
l∈L |yl〉〈yl|. Then, we have

P sum
MAC(N )

= I(XL;B)ρ − I(XL;E)ρ

= I(XL;B)σ − I(XL;E)σ

= I(XLYL;B)σ − I(XLYL;E)σ

− I(YL;B|XL)σ + I(YL;E|XL)σ

(a)

� I(XLYL;B)σ − I(XLYL;E)σ

= H(B)σ −H(E)σ +H(E|XLYL)σ −H(B|XLYL)σ

(b)
= H(B)σ −H(E)σ

(c)
= H(B)φ −H(ALB)φ

= I(AL〉B)φ

(d)

� Qsum
MAC(N ),

where (a) holds by the quantum data processing inequality
because N is degradable, (b) holds because σxL,yL

BE is pure
by purity of

⊗
l∈L ψ

xl,yl

A′
l

, in (c), for l ∈ L, we consider

φAlA′
l

a purification of ρA′
l

and define φALA′
L

�
⊗

l∈L φAlA′
l

and φALBE � UN
A′

L→BE(φALA′
L
) such that φALBE is pure

and TrAL [φALBE ] = ρBE = σBE , (d) holds by definition
of Qsum

MAC(N ).
Next, we show P sum

MAC(N ) � Qsum
MAC(N ). Consider a

state φALBE � UN
A′

L→BE(φALA′
L
) that achieves Qsum

MAC(N ),
i.e., maximizes the right-hand side of (4). Consider for
l ∈ L a spectral decomposition of φA′

l
such that φA′

l
=∑

xl
pXl

(xl)φxl

A′
l
, where each state φxl

A′
l

is pure. Then, define

σXLA′
L

�
∑
xL

pXL(xL)|xL〉〈xL| ⊗
⊗
l∈L

φxl

A′
l
,

where |xL〉〈xL| �
⊗

∈L |xl〉〈xl|, xL � (xl)l∈L,
and pXL(xL) �

∏
∈L pXl

(xl). Define also σXLBE �
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UN
A′

L→BE(σXLA′
L
). Then, we have

Qsum
MAC(N ) = I(AL〉B)φ

(a)
= H(B)φ −H(E)φ

= H(B)σ −H(E)σ

(b)
= I(XL;B)σ − I(XL;E)σ

(c)

� P sum
MAC(N ),

where (a) holds because H(ALB)ρ = H(E)ρ by purity of
φALBE , (b) holds because H(E|XL)σ = H(B|XL)σ by
purity of σxL

BE , (c) holds by definition of P sum
MAC(N ).

APPENDIX F
SUPPORTING LEMMAS

Lemma 9 ([32, Lemma 5.1.3]): Let ρ be a Hermitian
operator and σ be a nonnegative operator on the same Hilbert
space. Then, ‖ρ‖1 �

√
Tr[σ] Tr[(ρσ−1/2)2].

Lemma 10 ([32, Lemma B.5.3]): For any ρXE ∈ S�(HX⊗
HE) and σE ∈ S=(HE), we have H2(ρXE |σE) �
Hmin(ρXE |σE).

Lemma 11 ([45, Theorem 2]): Consider a probability dis-
tribution pXn �

∏n
i=1 pXi over Xn. For any δ ∈ [0, log |X |],

we have

P[− log pXn(Xn) � H(Xn)− nδ] � 2−
nδ2

2 log(|X|+3)2 ,

P[− log pXn(Xn) � H(Xn) + nδ] � 2−
nδ2

2 log(|X|+3)2 .

Lemma 12 ([32, Lemma 3.1.10]): For any ρAB ∈ P(HA⊗
HB) and σB ∈ P(HB), the fully mixed state on the support
of ρB , we have Hmin(ρAB) = Hmin(ρAB |σB) +Hmax(ρB).

Lemma 13 ([20, Lemma 4]): Consider a
function f : X → Y and ε > 0. We have
P[|f−1(Y )| � ε|X |/|Y|] � 1 − ε, where the probability
is taken over Y uniformly distributed in Y .

We next review some definitions and results related to
submodular functions.

Definition 5 ( [42], [46]): Let f : 2L → R. P(f) �{
(Rl)l∈L ∈ R

L
+ : RS � f(S), ∀S ⊂ L

}
associated with the

function f , is a polymatroid if

i) f is normalized, i.e., f(∅) = 0,
ii) f is non-decreasing, i.e., ∀S, T ⊂ L,S ⊂ T =⇒

f(S) � f(T ),
iii) f is submodular, i.e., ∀S, T ⊂ L, f(S∪T )+f(S∩T ) �

f(S) + f(T ).
Lemma 14: Let ρXLBE be as defined in Theorem 1.

i) The set function hρ : 2L → R,S �→ H(XS |E)ρ is
submodular.

ii) The set function gρ : 2L → R,S �→ −H(XS |BXSc)ρ

is submodular.
iii) The set function fρ : 2L → R,S �→ I(XS ;B|XSc)ρ −

I(XS ;E)ρ is submodular.

Proof: We first prove (i). For S, T ⊆ L, we have

hρ(S ∪ T ) + hρ(S ∩ T )
= H(XS∪T |E)ρ +H(XS∩T |E)ρ

= H(XS |E)ρ +H(XT \S |XSE)ρ +H(XS∩T |E)ρ

� H(XS |E)ρ +H(XT \S |XS∩T E)ρ +H(XS∩T |E)ρ

= hρ(S) + hρ(T ),

where the inequality holds because conditioning does not
increase entropy.

Next, we prove (ii). Remark that for any S ⊆ L, we have
gρ(S) = −H(XS |BXSc)ρ = H(BXSc)ρ − H(XLB)ρ =
H(XSc |B)ρ−H(XL|B)ρ, and S �→ H(XSc |B)ρ is submod-
ular by (i) since S �→ f(S) submodular implies S �→ f(Sc)
submodular. Hence, gρ is submodular.

Finally, we prove (iii). Remark that we have fρ = gρ +
hρ. Hence, since the sum of two submodular functions is
submodular, fρ is submodular. �

Lemma 15 ([47, Lemma 2]): Consider two submodular
functions f : 2L → R and g : 2L → R. Then, the following
system of equations for (xl)l∈L ∈ R

L
+

−g(S) �
∑
s∈S

xs � f(S), ∀S ⊆ L,

has a solution if and only if −g(S) � f(S), ∀S ⊆ L.
Lemma 16 ([15, Lemma 9]): Let f : 2L → R be a positive,

normalized, and submodular function. Then,

f∗ : 2L → R+,S �→ min
A⊆L

s.t. A⊇S

f(A).

is normalized, non-decreasing, and submodular.
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