1782

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

Private Classical Communication Over Quantum
Multiple-Access Channels

Rémi A. Chou

Abstract— We study private classical communication over
quantum multiple-access channels. For an arbitrary number of
transmitters, we derive a regularized expression of the capacity
region. In the case of degradable channels, we establish a
single-letter expression for the best achievable sum-rate and
prove that this quantity also corresponds to the best achievable
sum-rate for quantum communication over degradable quantum
multiple-access channels. In our achievability result, we decouple
the reliability and privacy constraints, which are handled via
source coding with quantum side information and universal
hashing, respectively. Hence, we also establish that the multi-user
coding problem under consideration can be handled solely via
point-to-point coding techniques. As a by-product of independent
interest, we derive a distributed leftover hash lemma against
quantum side information that ensures privacy in our achiev-
ability result.

Index Terms— Private communication, multiple-access chan-
nels, wiretap channels, leftover hash lemma, source coding with
quantum side information.

I. INTRODUCTION

HE capacity of private classical communication over
point-to-point quantum channels has been characterized
in [2], [3]. While only a regularized expression of this capac-
ity is known, a single-letter expression has been obtained
in the case of degradable quantum channels [4], and coin-
cides with the coherent information of the channel. In this
paper, we define private classical communication over quan-
tum multiple-access channels, and determine a regularized
expression of the capacity region for an arbitrary number
of transmitters. As formally described in the next sections,
we consider message indistinguishability as privacy metric.
Our proposed setting can be seen as a quantum counterpart to
the classical multiple-access wiretap channel, first introduced
in [5] and further studied in [6]-[10]. Note that for the special
case of classical communication over multiple-access quantum
channels without privacy constraint, the capacity region has
already been characterized in [11].
Often, for simplicity and to facilitate the design of good
codes, coding for multiple-access channels is reduced to
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point-point coding techniques, for instance, with successive
decoding or rate-splitting [12], [13]. However, in the presence
of a privacy constraint these techniques are challenging to
apply. In a successive decoding approach, the transmitters’
messages are decoded one after another at the receiver. This
approach works well in the absence of privacy constraints [11]
because the capacity region is a polymatroid. Unfortunately,
in the presence of privacy constraints, this task is challenging,
even in the classical case and for only two transmitters [14],
because the capacity region is not known to be a polymatroid
in general. With a rate-splitting approach, again, the presence
of privacy constraints renders the technique challenging to
apply, even in the classical case and for only two transmitters,
because the rate-splitting procedure may result in negative
“rates” for some virtual users [15].

Instead of relying on successive decoding or rate-splitting,
we investigate another method (because of the challenges
described above) but will still only rely on point-to-point cod-
ing techniques. Specifically, our approach in this paper relies
on ideas from random binning techniques, first developed
in [16], which have demonstrated that three primitives are suf-
ficient to build good codes for classical point-to-point wiretap
channels. Namely, source coding with side information at the
decoder [17], privacy amplification [18] (which may or may
not be implemented with universal hashing), and distribution
approximation, i.e., the problem of creating from a random
variable that is uniformly distributed, another random variable
whose distribution is close (for instance with respect to relative
entropy or variational distance) to a fixed target distribution,
e.g. [19]. Random binning ideas has been successfully applied
to construct optimal coding schemes for point-to-point private
classical communication over quantum channels [20] from
universal hash functions (used to implement privacy amplifi-
cation and distribution approximation) and schemes for source
coding with quantum side information [21], [22]. Random
binning ideas have also been put forward in [23] as a means
to prove the existence of good codes for classical wiretap
channels, and have been applied in the context of polar coding
to provide efficient and optimal codes for several classical
point-to-point wiretap channel models [24]-[26]. Note that
a capacity-achieving approach that separately handles the
reliability constraint and the privacy constraint in the clas-
sical point-to-point wiretap channel and the classical-quantum
wiretap channel has also been developped in [27] and [28],
respectively. [27] and [28] handle the reliability constraint
via channel coding and the privacy constraint via universal
hashing. We remark that the approaches in [27] and [28] differ
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from a random binning approach in that [27] and [28] rely on
channel coding to handle the reliability constraint, whereas the
random binning approach relies on source coding. Despite this
difference, we believe that both approaches are interesting: The
approach based on channel coding seems more natural as the
wiretap channel model is a generalization of a channel coding
problem, whereas the approach based on source coding uses a
simpler building block, since source coding with quantum side
information can be used to obtain classical-quantum channel
coding, e.g., [20].

In this paper, following random binning ideas, we establish
the sufficiency of the three same primitives (source coding
with quantum side information, privacy amplification, and
distribution approximation) to achieve the capacity region of
private classical communication over quantum multiple-access
channels. Additionally, universal hashing will be sufficient to
handle privacy amplification and distribution approximation.
More specifically, in our coding scheme, the reliability and
privacy constraints are decoupled and handled via source
coding with quantum side information at the receiver, and
two-universal hash functions [29], respectively. The challenge
for the transmitters is to encode their private messages without
the knowledge of the other users messages, and still guarantee
privacy for all the messages jointly. We establish a distributed
version of the leftover hash lemma against quantum side
information as a tool for this task. While simultaneously
smoothing the min-entropies that appears in the distributed
leftover hash lemma is challenging [30], we are still able to
approximate these min-entropies by Von Neumann entropies
in the case of product states. Next, to ensure reliability of
the messages at the receivers we design and appropriately
combine with universal hashing a multiple-access channel
code designed from distributed source coding with quantum
side information at the decoder. The crux of our analysis is
to precisely control the joint state of the encoders output by
ensuring a close trace distance between this joint state and a
fixed target state in the different steps of the coding scheme,
as it not only affects the rates at which the users can transmit
but also the privacy guarantees. Finally, a non-trivial Fourier-
Motzkin elimination that leverages submodularity properties
associated with our achievable rates is performed to obtain
the final expression of our achievability region.

We summarize our main contributions as follows. (i) We
first derive a regularized expression for the private classical
capacity region of quantum multiple-access channels for an
arbitrary number of transmitters. (ii)) Then, we derive a
single-letter expression of the best achievable sum-rate for
degradable channels by leveraging properties of the polyma-
troidal structure of the regularized capacity region. (iii) We
establish that the latter quantity is also equal to the best
achievable sum-rate for quantum communication over degrad-
able quantum multiple-access channels. (iv) As a byproduct
of independent interest, we derive a distributed version of the
leftover hash lemma against quantum side information, that is
used in our analysis of distributed hashing to ensure privacy.
(v) Finally, our achievability scheme, which decouples relia-
bility and privacy via distributed source coding and distributed
hashing, establishes that the multi-user coding problem under
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consideration can be handled solely via point-to-point coding
techniques. Namely, source coding with quantum side infor-
mation between two parties and universal hashing. Even in
the classical case, i.e., the classical multiple-access wiretap
channel, the reduction of this multi-user coding problem to
point-to-point coding techniques was only established for two
transmitters but not an arbitrary number of transmitters.

Finally, we refer to the recent work [31] for the study of a
one-shot achievability scheme for the problem considered in
this paper in the case of two transmitters.

The remainder of the paper is organized as follows. We for-
mally define the problem in Section III and present our main
results in Section I'V. Before we prove our inner bound for the
capacity region in Section VI, we present in Section V pre-
liminary results that will be used in our achievability scheme.
Specifically, in Section V, we discuss (¢) distributed universal
hashing against quantum side information, (i7) distributed
source coding with quantum side information, and (7i¢) clas-
sical data transmission over classical-quantum multiple-access
channels from distributed source coding. We prove an outer
bound for the capacity region in Section VII. We prove our
results regarding the best achievable sum-rate in Section VIII.
Finally, we provide concluding remarks in Section IX.

II. NOTATION

For z € R, define [#] = [1,[z]] N N and [z]t =
max(0,x). For H, a finite-dimensional Hilbert space, let
P(H) be the set of positive semi-definite operators on H.
Then, let S_(H) £ {p € P(H) Trp = 1} and
S<(H) 2 {p € P(H) : 0 < Trp < 1} be the set of
normalized and subnormalized, respectively, quantum states.
Let also B(H) denote the space of bounded linear operators
on H. For any pxp € S<(Hx ® Hg) and o € S—(HEg),
the min-entropy of pxpg relative to o [32] is defined
as Hmin(pXE|UE) £ sup{)\ eR: PxE < 27)‘IX ®O’E},
where Ix denotes the identity operator on Hx, and the
max-entropy of pp [32] is defined as Hyax(pp) =
logrank(pg). For any papc € S=(Ha ® Hp ® Hc),
define the quantum entropy H(A), £ — Tr[palog, pal, the
conditional quantum entropy H(A|B), £ H(AB),— H(B),,
the quantum mutual information I(A4;B), £ H(A), +
H(B), — H(AB),, the quantum conditional mutual informa-
tion I(A; B|C), & H(A|C), + H(B|C), — H(AB|C),, and
the coherent information I(A)B), £ H(B), — H(AB),. For
two probability distributions p and ¢ defined over the same
finite alphabet X', define the variational distance between p
and ¢ as V(p,q) = >+ |p(x) — q(«)|. Finally, the power
set of a set S is denoted by 25.

III. PROBLEM STATEMENT

Let L € N* and define £ £ [L]. Consider a quantum
multiple-access channel N, .5 @ @, B(Ha;) — B(Hp)
with L transmitters, where A, £ (A))cc. Let UY, 5, be
an isometric extension of the channel N AL, —B such that the
complementary channel to the environment N'§, . satisfies

L

f\'LﬁE(P) =Trp [U%LﬁBE(P)] for p € Qe B(Hay)-
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Definition 1: An (n,(2"f%),c.) private classical
multiple-access code for the channel N, AL, B consists
of

o L message sets M; £ [2"U], [ € £;

e L encoding maps ¢; : M; — B(HA;n), leL;

o A decoding positive operator-valued measure (POVM)

(AmL)TYI,LEML» Where MC é >< lEL‘,Ml;
and operates as follows: Transmitter [ € £ selects a message
m; € M, and prepares the state p;”’;l" £ ¢1(my), which is
sent over Nam . pgn 2 (V. 4r.—p)®". The channel output
whE £ Nap . pn (pzlf) where p%Lﬁ £ Qier pZL{,L and mp
(my)1ec. The decoding POVM (A, )m e, 1 then used at
the receiver to detect the messages sent. The complementary
. me A m

channel .O.utput is denoted by wyr = jZL — B (p A’f) .

Definition 2: A rate-tuple (R;)er is achievable if
there exists a sequence of (n,(2"%),c.) private classical
multiple-access codes such that for some sequence of constant
states (opn ), we have

> &

lim max Tr[(I — An,)whs] =0, (Reliability) (1)
n—oomeEM,
lim max [|wgs — opn|l1 = 0. (Indistinguishability)
n—oompEMg
(2)

The private classical capacity region Cpvac of a quantum
multiple-access channel N, AL, —B is defined as the closure of
the set of achievable rate-tuples (R;);c.

IV. MAIN RESULTS

We first propose a regularized expression for the private
classical capacity region.

Theorem 1: The private classical capacity region Cp.pac of
a quantum multiple-access channel N, AL —B IS

Cp_MAc(N) =cl (D %'P(N(@n)) ,
n=1

where cl denotes the closure operator and P(N) is the set of
rate-tuples (R;);e. that satisfy

Rs £ R < [[(Xs; B|Xse), — I(Xs1E),] " VS C L,
les

for some classical-quantum state px, 4, of the form

pxca, 2 Q) (prl (z0)|z) (@ x, ®pi’;> ;

el Ty

and px,.pr = UI{A\CLHBE(/’XLA’L) with UA{LHBE an isometric
extension of NA’LHB, and the notation Xs 2 (X);es for any
SCL.
Proof: The achievability and converse are proved in
Sections VI and VII, respectively. [
In the next result, for the case of degradable channels,
we propose a single-letter expression for the best achievable
sum-rate in the private classical capacity region.
Theorem 2: Consider a degradable quantum multiple-access
channel N AL B> i.e., there exists a channel Dg_, g such that
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Dp—poNa,.p =N _ . Define Cyijjac as the supremum
L

of all achievable sum-rates in Cppac(N). Then, we have
CeiacNV) = Biac(NV),
with

Pac(N) £ max[I(Xz; B), — (X2 E),lY,  (3)

P
where the maximization is over classical-quantum states that
have the same form as in Theorem 1.
Proof: See Section VIII. [

We now propose another single-letter characterization
of Cppac for degradable channels. We first define the
quantity Q¥fac-

Definition 3: Consider a quantum multiple-access channel
N, . p. Define

Mac(N) £ max I(Ag)B),, (

¢ALA2

~
N

where the maximization is over states of the form ¢4, A7
Ricr ba,a; with da,a;, 1 € L, a pure state, and pa,p
Na,—p(da,ar).

Note that by [33], lim,—cc =~ QMAc(N®™) is a regularized
expression for the largest achievable sum-rate for quantum
communication over quantum multiple-access channels.

Theorem 3: Consider a degradable quantum multiple-access
channel V. A, —p- Then, we have

> >

sum

Ciq)l-lﬁAc (N ) = WMAC (N )

Proof: See Section VIII. [
Note that in the case of point-to-point channels Theorem 3
recovers the result in [4, Th. 2].

V. PRELIMINARY RESULTS

We establish in this section preliminary results that we will
use to show in Section VI the achievability part of Theorem 1.

A. Distributed Leftover Hash Lemma Against Quantum Side
Information

Define £ = [L]. Consider the random variables X, =
(X1)1ec, defined over the Cartesian product Xy £ X le[,Xl
with probability distribution px,., and a quantum system
E whose state depends on X, described by the following
classical-quantum state:

px.E 2 Y lec) (e @ pif,
T EXL

5)

where [o2)(ve] 2 @yep lni{ai] and pif 2 px, (0c)p3e
with p3© the state of the system E conditioned on the
realization .. Next, consider F; : A} — {0,1}" a hash
function chosen uniformly at random in a family F;, [ € L,
of two-universal hash functions [18], i.e.,

Va,x) € X, o # x; = PlEF(x) = F(z))] <27
For any S - ﬁ, define Xg £ xlESXl’ Fg £ (E)ZES»

Fs & Xles}—l’ As & XleS{O,l}”, and for as € As,
fs € Fs, fs'las) & {zs € Xs : filz)) = a;,Vl € S}.
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The hash functions outputs fz(xz) = (fi(z;))iec, the state
of the quantum system, and the choice of the functions f, are
described by the following operator

pFL(XL)EFL

Tl 2 2 lacdacl@ ek @)l ©

fL €Frac€Ac

where pg‘“ £ Erz:EfL (ae) P lac)ac] =

Qe lan)(ail, and [ fe)(fel £ Qyer | f)(fil-

Lemma 1 (Distributed leftover hash lemma): Let py be the
fully mixed state on Hp,(x,). Define for any SCL, rg 2
Y scsTs Forany op € S_(Hg), we have

§ 9rs—Hmin(pxgE|0E)

scr
S£0

lpF.(xc)EF: — PU @ pEF. (1 <

Proof: See Appendix A. [
Note that a similar lemma was known in the classical
case, e.g., [34], and had found applications to oblivious trans-
fer [34]-[36], secret generation [37]-[39], and multiple-access
channel resolvability [40]. We are now interested in deriving
a distributed leftover hash lemma for product states. We will
use the following result on product probability distributions,
which is a kind of asymptotic equipartition property (AEP)
that holds simultaneously for a set of min-entropies.

Lemma 2: Consider the random variables X 2 (X))iecs
Y™ defined over A} x Y™ with probability distribution
pxpyn £ [I, px,v. In this lemma, let H(-) denote the
Shannon entropy for random variables following px,.y or
its marginals. For any ¢ > 0, there exists a subnormalized
non-negative function ¢ Xpyn defined over X' x Y™ such that
V(pxnyn,anyn) <e and

VS C L, Hmm(qxnyn) >nH(XsY)—nds(n),
Hmux(qY”) < TZH( ) + né(n)a

where 65(n) = log(|Xs||V| + 3 \/% L+1+1log(1)), Vs C

L, §(n) £log(|Y| 4 3)4/2(1 + log(1)).

Proof: See Appendix B. [
From Lemmas 1 and 2, we then obtain the following result.
Lemma 3 (Distributed leftover hash lemma for product

states): Consider the product state pxngn = p}e};’ » Where
px .k 18 defined in (5). With the same notation as in Lemma 1,
we have

— pu ® pEnr. 1

loF.(xp)En e
< 2+ Z 27’57nH(X5\E)F,Jrn((ss(n)+6(n))7
SCL
S#0

where §s(n) & 1og(|xs|dE+3)\/ (L+1+1log(L)), 6(n) &

log(dg + 3)4/2(1 +1log(1)), with dg £ dim Hp.
Proof: See Appendix C. [

B. Distributed Classical Source Coding With Quantum Side
Information

Consider Xy 2 (X))ier, defined over X, 2 XleﬁXl
with probability distribution px,, and a quantum system B
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whose state depends on the random variable X, described
by the following classical-quantum state

pxes 2 Y lre)we| @ ol
rL€EXL

where p%f £ px,(xc)p5f with pjf the state of the system

B conditioned on the realization xg, and we have used the
same notation as in Section V-A.

Definition 4: A (2"f4),c, distributed source code for a
classical-quantum product state p?}z p consists of

o LsetsC = [2"U] [ €L

e L encoders g;: A" — Cj, | € L;
e One decoder h : S_(Hpn) x Cz — X2, where Cp £

X el
A rate-tuple (R;)er is said to be achievable
when the average error probability P.(n) =
szeXg pxp(z)P {h(ﬁ%ﬁ,gg@ﬁ)) + xﬂ satisfies

lim, oo P.(n) = 0, where for all z} € A7,
gc(x2) = (gi(x?))iec. Let C(px,.p) be the set of all
achievable rate-tuples.

Lemma 4 ( [41]): We have

{(Rl)leﬁ : Rs > H(X5|X5cB)p,VS - l:}

Note that the set {(R;)iex : Rs > H(Xs|XseB),,
VS C L} associated with the set function &
H(Xs|XseB), defines a contrapolymatroid. Using the fact
that its dominant face, i.e., {(Ri)icz € Clpx,.B) : Rc =
H(X.|B),} is the convex hull of its extreme points [42],
one can easily verify that the region C(px,p) is achievable
using source coding with quantum side information for two
parties [21] and time-sharing. This is exactly the coding
technique employed in [41] to prove Lemma 4.

C(pXLB) =

C. Multiple-Access Channel Coding From Distributed Source
Coding

Consider L finite sets U, | € L, such that || = oR/
for some R}’ € Ry and define U, 2 X le Ui Consider
a classical-quantum multiple-access channel, i.e., a map W :
Ur — S—(Hp), which maps ug € Up to the state piF €
S—_(Hg). Let py.p = % L‘ Y cu, lue)(ue| @ py° describe
the input and output of W when the input U, is uniformly
distributed over U,, and where we have used the notation
fu) (el 2 Qe lw)ful.

Lemma 5 (Multiple-access channel coding from distributed
source coding): Consider L uniformly distributed messages
(My)iec e Mz = X je oM, where M, & [27F4] for some

R; € Ry, € L.1f there exists a (Z”Rl )i distributed source
code (as defined in Definition 4) for the classical-quantum
product state p%”B, then there exist L encoders e; : M; —

Ur, le L, and one decoder d : S—(Hpn) — M, such

that one can choose R; = RZU — RPC asn — oo, l € L,
and lim, P[d(ﬁ%ﬁL(M‘l)) # Mg] = 0, where es(Mg) =
(er(My))iec-

Proof: See Appendix D. [

Note that this lemma recovers [20, Lemma 2], which treats
the case of point-to-point channels.
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V1. ACHIEVABILITY OF THEOREM 1

Consider a classical-quantum multiple-access wiretap chan-
nel, i.e, amap W : Xy — S_(Hp ® Hg), which maps
xp € Xp to piy € S=(Hp ® Hg). The achievability part
of Theorem 1 reduces to another achievability result (with a
slight adaptation of Definitions 1, 2) for this classical-quantum
multiple-access wiretap channel. Specifically, we show in this
section that, for any probability distribution px . £ Hl cr DX
the following region is achievable

R(vvvaL)
£{(Riec):Rs <[I(Xs; B|Xse),—1(Xs; E),]T,VS C L},

—Tr

where PX.BE £ ch PX, (J:L)|xg><xﬁ| X PBE- Note that,
compared to the setting of Section III, the signal states sent
by the transmitters are now part of the channel definition.
Hence, achievability of R(W, px,) and regularization lead to
the achievability part of Theorem 1.

A. Coding Scheme

The main idea of the coding scheme is to combine dis-
tributed source coding and distributed randomness extraction
to emulate a random binning-like proof. We proceed in
three steps.

Step 1: We create a stochastic channel that simulates the
inversion of multiple hash functions while approximating
the joint distribution of the inputs and outputs of the hash
functions. Approximating this joint distribution is crucial for
the message indistinguishability analysis. In the special case of
a single hash function, this operation is referred to as shaping
in [20] and distribution approximation in [25].

Consider X} distributed according to some arbitrary prod-
uct distribution px» £ Hle £ Pxp, and L two-universal hash
functions Fz uniformly distributed over F,, where we use
the same notation as in Section V-A. The output lengths of
the hash f}lllctions, denoted by (anU)le[;, will be defined
later. Let W, be the channel described by the conditional
probﬂ)ility distribution pxn|r.(xp)Fe = [Liccpxpimpxrr,
and W; be the channel described by the conditional probability
distribution pxr|m(xpF, | € L. For | € L, let U" be

uniformly distributed over U* £ [Q”R?], and define

~ A
PX2URF, = PDXp|Fe(X72)FePURDPF. (7

where pyz is the uniform distribution over ¢/ with the same
notation as in Section V-C. Hence, 5X2UZ r, denotes the
joint probability distribution of the input (U7, F¢) and output
)?2 £ W, (UR, Fr) of the channel W. To simplify notation
in the following, we write W, (U}) instead of W, (U7, Fr)
by redefining W, and including F in its definition.

Step 2: Using Lemma 5, we construct a multiple-access
channel code for jointly uniform input distributions (in_the
absence of any privacy constraint) for the channel W o W .

Let m € N. By Lemma 4, there exists a (2m”R?C)le£
distributed source code (as defined in Definition 4) for the
classical-quantum product state ﬁ‘?}?Bn, where

~ 1 W (un
puzsn G o ) up @ pps Y, (@)
upeUp
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and where (nRP)icc belongs to C(pyppn). Then,
by Lemma 5, there exist L encoders e; : M* — U"",l € L,
and one decoder d : S—(Hpmn) — M, where we have
defined for [ € £, M™ £ [2m"R1] such that R = RY — RP¢
as m — oo, and
lim P {d <p§® <e‘<M2"’”) # Mz”] =0, )

with e (M) 2 (er(M))iec.

Step 3: We combine Step 1 and Step 2 to define our encoders
and decoder for the classical-quantum multiple-access wiretap
channel. Specifically, the encoders are defined as

G M — WE™ (e)(M™)), 1 € L, (10)
and the decoder is defined as
b pn e d(pgin ), (11

where ¢z (M) £ (¢ (M™))iec.
Remark 1: In Step 2, Lemma 4 cannot be directly applied
to pyrpn as it is not a product state.

B. Coding Scheme Analysis
1) Average Reliability: We have

P b)) £ Mz

_WE™ (e (ME))

—P [d<p3m ) # Mz”}

where the equality holds by definition of ¢ and (¢;);e in (10),
(11), and the limit holds by (9).

2) Average Message Indistinguishability: Note that by a
random choice of the encoder in the proqfv of Lemma 35,
ec(MP) is uniformly distributed, hence, W™ (es (M)
follows a product distribution and p, . ( M) Emn R is a product
state, which one can write pe,(amypmnpn = ﬁ%;"E P
where

pugpnre £ Y Y Pxpupre (thulb fr)
Je wE T lumy | © pik @ | fo)(fel.
(13)

m— 00
— 0,

(12)

Next, define the following classical-quantum state

PFc(X2)EnF, 2 ZZZPXZFL(XZ)FL (@f,ug, fr)
o un an e am
CE T Jup)uzl © pigh ® [fe)(fel
(14)

Then, for py the fully mixed state on Hy» and py the fully
mixed state on H ., we have

||ﬁ]\42nEmnF2n — p%m ® ﬁEmnFEL 1

< HﬁGL(A mypmn e — ﬁ%m ® ﬁE’HLTLanr ‘1

= 1P0spnr, = 05" ® Ppr, Il
(a) N ~ _

< mllpurenr, — pu @ pEnFlh
n o

< m(|lpugErr. — pro(xmyEnF 1

—~
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+ lpre(xp)En e — PU @ pEnF. 1
+ [|pv ® pEnF, — pu @ pEnF. 1)
m@”ﬁU};E”Fa - pFL(XZ)E"FL| 1

+lprexpyEnr. — PU @ pEnEL 1)
(¢) ~
< m2V(pxpup e DX FL(X7)FL)

+ lprs(xpyEnF, — PU @ pEnF. 1)

@
= m(2V(puppre PR (xp)Fe )

+ HPFL(XZ)E”FL — pu ® pEnF.ll1)

< 3mlpry(xpyEn . — PU @ pEnF, 1

Q 3ml2. 274 Z on[RY—H(Xs|B)p+8s (n)+5(n)]
SCL,S#0D

(9)

<sm (2274 [ Y omm
SCL,5#0
=3m <2 9t V(2L —1)- 2nn>
==, (15)
where (a) and (b) hold by the triangle inequality, (¢) holds

by strong convexity of the trace distance and the definitions
of puppnr, and pr.(xm)pnr, in (13) and (14), (d) holds
by the definition of pxnunr. in (7), (e) holds because
Vpuppre:prexpre) < llprcxpype = pu @ prellis (f)
holds for ¢ €]0,1[ by Lemma 3 with the substitution ¢ «

2-7° such that o(n) = log(dg + 3) 2(%-1-”1—1_5), and

5s(n) £ log(|Xslde + 3)4/2(E2 + %), VS C L, (9)

holds provided that RY < H(Xs|E), — ds(n) — d(n) — 1,
VS CL,n>0.

3) Achievable Rate-Tuples: Consider the following exten-
sion of the state described in (8)

pU'anBnFL = E E E pX”U"FL xﬁau[mf[a)

u!L EU?L 7L X’IL f[, E‘F"F
Uz ) (uz] ® |22 ) (22| ® pi @ |fe){fel-

Define also the state

pU"X"B"FL = Z Z Z pXZUZFL (xZ)UZMfL‘r)

WL EUR R EX] freFF
IUZ><U’£| @ e ) (@} © prh @ | fe)(fel.
Then, we have
)

max <|5X£B" — pXZB" 1, glgz"(HﬁUan — PUgB'"

< llpupxperr. — pupxperre

(a)

< V(pXﬂUﬂFupX"FL(X VFe)

(®)

= V(pugpre, pre(xzre)

oo g (16)
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where (@) holds by strong convexity of the trace distance,
(b) holds by (7), and the limit holds by the proof of (15).

Next, by Step 2 in Section VI-A, (nRPC)le £ must belong
to C(p Uan) One can choose (nR )le[: e Cp X”B")
because, as proved next, we have C(pxnpn) C C(pUan)
For (nRP)icr in C(pxypn) and any S C L, we have

(a)
nRY > H(XEB"XE),

= H(X}B"), - H(B"X%.),
= H(B"|X}), — H(B"|X5), + H(XE),
H(B"|X}), — H(B"|U&), + H(XZ2),

H(B"|XZ), -

> H(B"|Us:), + H(Us),
> H(B"|XL)5 -

H(B"|Us:); + H(Us)5

— [H(B"[XZ)5 — H(B"|XZ),|
—|H(B"|Us:)5 — H(B"|Us:),|
—|H(US); — H{US),|

H(B"|Xz)5 = H(B"|Us:)5 + H(Ug)z — o(n)
H(B"|UZ) — H(B"|Ug:)5 + H(Ug)5 — o(n)

= H(Us|B"Ug:)5 — o(n),

where (a) holds because (nRP )i in C(pxzpn), (b) holds
by the quantum data processing inequality because, by defini-
tion of p, for any S C £, UZ is a function of XZ, (c) holds by
Lemma 3 because, by definition of p, for any S C £, Ug is
the output of hash functions when X2 is the input, (d) holds
by the Alicki-Fannes inequality and (16), (e) holds by the
quantum data processing inequality because, by definition of p,
X7 is a function of Up.

Hence, by having chosen (nRP)iez € C(pxypn) and the
choice of (R})ic. in (15), we have the system

R2¢ > H(Xs|BXs:),,¥S C L (17)
RY < H(Xs|E),,vScL )’
which we rewrite, by Step 3 in Section VI-A, as
R3* > H(Xs|BXs:),, VS C L (18)
Rs + R2° < H(Xs|E),,VSC L

Next, by Lemma 14, the set functions S —
—H(Xs|BXse), and S — H(Xs|E),— Rs are submodular.
Hence, by Lemma 15, the system (18) has a solution if and
only if

H(Xs|BXsc), < H(Xs|E), — Rs,VS C L, (19

which we rewrite as

Rs < H(Xs|E), -
= I(Xs; B|Xs:), — I(Xs;

H(Xs|BXse),
E),,¥S C L.

4) Expurgation: We write the average probability of error
and average message indistinguishability of the coding scheme
in Section VI-A as S,, = | Prr pon i — P @ pmn Folh

and P, 2 P |(paME)) # ME”]»

PRmn respectively. To simplify
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notation, we write mp = m? for m’%* € M'?. Then, we have
1
Sn = Z msn(m[;),
mpe L

P, = ; @Pn(ma)a
where for m, € M, we have defined
Sn(mg) £ HﬁEﬂfmF;;" - ﬁE”mF}:"Hh
Pome) £ B [p(pi") # MeMe = me].

Let « €]0, 1[. By Markov’s inequality and (12), (15), for at
least a fraction 1 — « of the codewords, P,(m;) < o 'P,
and for at least a fraction 1 — «v of the codewords, S,,(m,) <
a~'S,,. Hence, for a fraction of the codewords at least 1 — 2a,
P,(m;) < o 'P, == 0 and S,(m;) < a7 'S, ==
0. Finally, we expurgate the code to only retain this fraction
1 — 2 of messages, which has a negligible impact on the

asymptotic communication rates.

VII. CONVERSE OF THEOREM 1

Similar to the case of point-to-point channels, e.g., [43,
Sec. 23.4], it is sufficient to consider the task of exchanging
private randomness between the transmitters and the legitimate
receiver, which is a weaker task than private classical commu-
nication. Specifically, assume that Transmitter [ € £ prepares
a maximally correlated state pp,p7 and encodes M, | as p;”’;",
my; € M, such that the legitimate receiver can recover the
share M of the state PM .M, £ ®le£ PM, M/ with some
decoder Dpn_, pp, . The state resulting from this encoding and
n independent uses of the channel, i.e., NV, Alp—Bn, is

1

WMBnE™ £ ﬁ Z lmc)(mc]| ®u,{4\€?—>B”E”(pZL’§)7

meEMp

where 71 £ @ oy and [me)(me| £ @ye e ) (mul,
with mgs = (my)iec € M. Then, the decoder of the
legitimate receiver produces

A
wyeM,Er = Dpnny (W BrER),

and privacy with respect to the environment is assumed, i.e.,
there exists a constant state og» independent of pas, M.
such that

lwnreary mn = prreary, @ opnll1 < 6(n), (20)

where lim,, .o d(n) = 0. Next, for S C L, we have

nRs = Zlog|Ml|

=
= 1M M)),
=

()
= I(Ms; M5),

= H(Ms), — H(Ms|Ms),

b
© H(Ms|Ms.), — H(Ms|MS),

©
< H(Ms|Mse), — H(Ms|MsMs:),
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< H(Ms|Mse), — H(Ms|M5Mse).,
+ [H(Ms|Mse), — H(Ms|Ms:),|
+ |H(Ms|MgMs:),, — H(Ms|MgMs:),|

(d)
< H(Ms|Mse), — H(Ms|M§Mse),, + o(n)
=I(Ms; M§|Mse), + o(n)

(e)
< I(MS; Bn|M5c)w + o(n)

(f)
< I(Ms; B"[Mse)w — I(Ms; E™)o +o(n),  (21)

where (a) holds because PMs ML = Ries P M) (b) holds
because for any S,7 C L such that SN7 = (), we have
PMsMy = PMs ® Py, (¢) holds because conditioning does
not increase entropy, (d) holds by (20) and Alicki-Fannes
inequality, (e) holds by the quantum data processing inequal-
ity, (f) holds because I(Ms;E™), = H(Ms|E™)p00 —
H(Mg|E™),, is upper bounded by o(n) using Alicki-Fannes
inequality and (20). Finally, from (21) we conclude that
(Ri)iec belongs to cl (Jp~; LP(NVE™)).

VIII. PROOF OF THEOREMS 2 AND 3

We first prove the following lemma, which provides a
regularized expression of the best achievable sum-rate in
Cp.mac for degradable channels.

Lemma 6: Let N be a degradable quantum multiple-access
channel. We have

1
ChacW) = lim —PRe(V"), (22)
where Ifa¢ is defined in (3).
Proof: Note that by Theorem 1 the inequality

CoacN) - < limpoo 2 PRC(N®™) s trivial. It s
thus sufficient to show the achievability of the sum-
rate  limy, .o = PyAC(AN®™). Consider the set function
fo: S — I(Xs;B|Xsc), — I(Xs; E),y, where p is a state
as defined in Theorem 1. By Lemma 14 in Appendix F, f,
is submodular. Next, f, is also non-negative because for any

SCL
fp(S) = I(XS5B|XS“)p - I(XS5E)p

a)

—

I(Xs;BXse), —I(Xs; E),p

Ve

I(Xs;B)p - I(XS5E)p

S

0,

where (a) holds because for any S C £, we have pxgxg. =
Pxs @ pxge. (b) holds by the chain rule and positivity of
mutual information, (¢) holds by the quantum data processing
inequality because A is degradable.

Hence, f, is submodular and non-negative. However, f, is
not necessarily non-decreasing, which means that R(f,) =
{(Ri)iez : Rs < [,(S),¥S C L} associated with the
function f, does not describe a polymatroid in general —
see Definition 5 in Appendix F. To overcome this difficulty,

we define the set function f; with

S8 min fo(A).
st. ADS
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By Lemma 16 in Appendix F, the set function f; is
normalized, i.e., f/f((Z)) = 0, non-decreasing, and submodu-
lar because f, is normalized, non-negative, and submodular.
Hence, R(f) associated with the function f} describes a
polymatroid and by [42] its dominant face, i.e., {(R;)ier €
R(f;) + Rc = f;(£)} is non-empty. Consequently, there
exists a rate-tuple (R;)iec € R(f;) such that Ry =

[, (L£). Next, by inspecting R(f;;) and R(f,), we have that

( ) = R(f,) by the construction of f;. We also have
(L ) f»(L£) by the construction of f,. Hence, we conclude
that there exists a rate-tuple (R;)iez € R(f,) such that

= f,(L£). Finally, from Theorem 1, we conclude that
the sum-rate lim, .o L P55 (N®") is achievable, and thus
that (22) holds. [

Next, we prove the following equality.

Lemma 7: Let N be a degradable quantum multiple-access
channel. We have

Pfx}lxc(j\/’) = 3%0\/’)

Proof: See Appendix E. [
Finally, we have that QYjA- is additive for degradable
channels. The proof of Lemma 8 is similar to the proof of
additivity for the coherent information of degradable channels.
Note that Lemma 8 is also referenced in [33].
Lemma 8: Let N' and M be two degradable quantum
multiple-access channels. Then, we have

Mac(N @ M) = Quac(N) + Qyiac(M).
All in all, from Lemmas 6, 7, 8, we obtain

Theorems 2 and 3.
IX. CONCLUDING REMARKS

We introduced the notion of private capacity region for
quantum multiple-access channels. For an arbitrary number
of transmitters, we derived a regularized expression for this
private capacity region. In the case of degradable channels,
we also derived two single-letter expressions for the best
achievable sum-rate. One of these expressions coincides with
the best achievable sum-rate for quantum communication over
degradable quantum multiple-access channels.

Our proof technique for the achievability part relies on an
emulation of a proof based on random binning. Specifically,
our achievability result decouples the reliability and privacy
constraints, which are handled via distributed source coding
with quantum side information at the receiver and distributed
hashing, respectively. Consequently, we reduced a multiuser
coding problem into multiple single-user coding problems.
Indeed, distributed source coding with quantum side infor-
mation at the receiver can be reduced to single-user source
coding with quantum side information at the receiver, and dis-
tributed hashing is, by construction, performed independently
at each transmitter.

As part of our proof, we derived a distributed leftover hash
lemma in the presence of quantum side information, which
may be of independent interest. Note that in our setting the
seeds size needed to choose the hash functions is irrelevant.
However, for other applications, it may be desirable to reduce
the necessary seeds size. Specifically, it remains open to extend
our result to d-almost two-universal hash functions, which are

1789

known to enable a reduction of the necessary seed size for the
non-distributed setting, i.e., the special case L = 1, [44].

APPENDIX A
PROOF OF LEMMA 1

For any pxp € S<(Hx ® Hg) and o € S—(HEg), the
collision entropy of px g relative to og [32] is defined as

T (px(Ix ©07%))
Trpxe
Next, define Az = F;(X ). We then have

L

HQ(pXElaE) —10g (23)

lpacer, — pu @ pEr 11

@,

pALE PU @ pEHl

(b) 2
< Er V2 T (052 5 — pu @ pe)(Tae © 05"%)) ]

(c)
< Ve B, (0 — pu © pp) L ©057%) ]

@ gy <E I ( S Jachecl

ac€AL 27N 1/2
2705 ppoy')) )

1/4 gL a5071/4
7% (5, |l 0

ar€Ar _27,,50151/4/)]30;1/4)
1/2

_9re Tr{( Y ppagt) ])

(24)

where (a) holds with p/{¢ ; £ 57\ |a£><a£|®pF‘3 @2 (b)
holds by Lemma 9 in Appendlx F with p £ PA,;E U R pE
and 0 = [4, ® op for any og € S<(Hg), (c) holds by
Jensen’s inequality, (d) holds because

®(0E

@\/27<EFL S Tr[( e 51/4”

ar€AL

Tr[((piiE pu @ pe)(la, ® 0E1/2))2]

=Tr [((IAL ® UE1/4)

[ Z |a£ a£|®< Fr.ar

ar€AL

LPE)

(e) holds by expanding and simplifying the square inside the
trace. Next, we have

> (o oo ) ]

2
(IAL ®JE1/4)> ’

ar€EAL
—1/4 —1/2
> Trlog! PR K
ar€AL ILEFZl(aL)

’ —1/4
Z PE | on /

QZJLEFZI((IL)
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—1/4 ¢ —-1/2 =z —1/4
Z Z TI‘[O’E / pEL /pEL /]

ac€AL gy ol €Fy (ac)

Y Y Y% o

ar€Ar SCL g eF  (ag) 2, €F; Hag)
st xg#Ts
Tge=z5¢C

4 x Ty —1/4
x Trlog Y PE Og 12 PE OE /]

2. 2 2, 2 HeeeFr(an)}

ar€AL SCLyLEX, 2l eXx,

stxls#rs
Tse=Tsc

_ 1/2 —1/4
x 1{as € F5'(as)} Trloy/*pif o pF o]

® Z Z Z Z 1{zs,zs € F5'(as)}
SCLas€EAszLE€XL 2, €X,

stxs#rs
Tge=wsc

xTr[aEl/‘lp’]ff 1/2/%‘ —1/4]

O3NS Y 1 Fs(as) = Fs(als)}
SCLar€X,: 2l X,

7
st xgF#Ts
Tse=Tsc

x Tl pif ot piF o, (25)

where in (a) the notation z’s # xs means VI € S, x| # x;,
(b) holds because 3, 4. H{zse € Fot (Clgc)} =1,
and (c) holds because >, . . I{zs, 75 € Fg Yas)} =
1{Fs(zs) = Fs(zs)}. Then taking the expectation over F.
in (25), we obtain

Ep, Z Tr[( _1/4p§" £ ];1/4) ]

ar€AL
=> > > Epl{Fs(xs) = Fs(xs)}
SCLxreEX,: 2/ X, —1/4 —1/2 @/, —1/4
e X Mlog oo Cpfor ]
zfsczxsu

Z Z Z 9- rsTr 1/4pﬂéLU 1/2 IEL El/‘l]7

SCL‘, rreEX, xLGXz:

s.lalcfg;éxs

Tge=xgc
(26)
where the inequality holds because Ep.1{Fs(zs) =
Fs(zs)y = Epl{Fs(zs) = Fs(ah)) =
[LesBrl{Fi(z) = K@)y < Iles2™™ by

two-universality of the hash functions Fs. Note that we
also have

Tr[(ogl/4pEagl/4)2]

=2 X X Wl e Peiren ) @)

SCLaLEXL zleXx,
stxgFTs
Tse=Ts0C

Hence, by combining (24), (26), and (27), we have

lpa er: — pu @ pEF )L
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<VE(Y Y Y ee-a

SCLaLEXL 2l eX,

s.t IIS #xs
’
Tge=Tsc

x Trlog " pog

(ZY ¥ yero

SCLrsEXs vsc€EXsexls€Xs
St TgHETS

“1/4 (ws.wse) —1/2 (wls,wse) —1/47\1/2
XTF[UE/P%S S)UE/P%S g /])

OB IND S e

SCLxsEXNs x5cEXgC rs€Xs

4 —1/2 1747\ 1/2
Vi gte o ik o)

1/2
x Tr[o 1/4p(r5,xsr)o_gl/2p(r5 xsc)gg1/4])

(2 Z Z orse Tr 1/4 zSL 1/2p%suag1/4]
SCCISLEXSL
rge —1/2
® (pES / ) ]

) ¢ Sorem Y s s
) \/ > 2rse Trlpxg. pl2 20 xaerlon)

SCL rgcEXge
SCL

d
(é) \/Z orse 9~ Hmin(pxgcBl0E)

SCL

_ rs—Hmin(p o
= E ors (pxselos)

SCr
S#0D

where (a) holds because for any z, € A,
s € Xs, Trfo 1/4p(§s7xsr) —1/2p(ﬂ”s Tse) —1/4]

T (o 1/4 (xs,st)JE1/4 U;/zxpgs,xsqg;/z; | > o0
since the trace of the product of two non-negative operators
defined on the same Hilbert space is non-negative, (b)
holds with VS C L, Vas € Xs, pi° £ Dow cEXse P =

Pxs(T8) Xy g exse PXse|Xs (Tselzs)prfs  (c) holds by
definition of the collision entropy in (23), (d) holds by
Lemma 10 in Appendix F.

APPENDIX B
PROOF OF LEMMA 2

Define
AE (2%, y") € XP x Y VS C L,
— logpxnyn (xs,y") > H(X5Y")— nég(n)},
BE{y"eY": —logpyn(y") < H(Y") +nd(n)},
and for S C L,

As = {(25,y") € Xg x Y™

—logpxpyn(25,y") > H(X5Y™)-nds(n)} .
Next, define for (z7,y") € X7 x V",
axpyn(22,y")

= 1{(z},y") € AL{y" € Bypxpy» (2}, y"), (28)
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and for S C L, By Lemma 2, there exists a subnormalized non-negative
function ¢xn» g~ such that V(pxngn,gxngn) < € and
e @B 2 Y gyt (29) : (Pxper. dxpen) <

N VS C L, Hyin(gxzpn) = nH(XsE)—nds(n),  (30)
We first show that V(pxzyn,qxzyn) < e. We have Hyax(gen) < nH(E) +né(n). (31
V(p XgYMQXgY") Next, define the state
= Z Ipxpye(x2,y") — axpyn (22, y")] pxnEn = Z axpEn (T7,€")|Gan en ) (Pap enls (32)
z%ym Ty en
< Y pxpve (@b g ({0, y") ¢ A} + 1{y" ¢ B})  andfor SC L
zhy" ﬁXg’E" — Tan [ﬁann]
=P[X2,Y") ¢ A+ P[Y" ¢ B] -
—P[ES C £,(XE.Y") ¢ As] + B[Y" ¢ ] = 2 a0 el bl G
(a) n n n v
< Z P[(Xs,Y") ¢ As]+P[Y"™ ¢ B] where  for any  (z§,¢e"), gxppe(z§,e") =
ScL Zfs qxyEn (7, e"). Hence, we have
82 (n) ns2(n) ‘
< Z 9 Blor(XsIVIT8)? | 9 TTos(3[+5)7 lpxzmn — pxzmnlh
sccL
(c) I < Z |(IXZE" (xzven) — PXpEn (1’2,6””
= 22 €/2+¢€/2 x7 en
B €sgc =V(pxpen, axpen)

<e (34)
Where (a) hOIdS by the union boun(’i,. (b) holds by Lemma 11 Then, let py be the fully mixed state on Hp,(x»), and
in Appendix F, (¢) holds by definitions of ds(n) and J(n). define the operator jp, (xn.gep, as in (6) usingﬂﬁXiEn i
Next, for S C £, we have ) £ (XZ) c c
place of PX7E. We have

Hoin(Gxnyn

(xgve) - lpFe(xp)EnF: — PU @ pEF, |1
= T oy 108 15y (75,47 (a)
° ° < |lpre(xzyEnFe — Pre(x7)EnF 11

—

a

= _ max log (ngcech 1{(z,y") € A}

(I:ISL’y‘n)eXéL Xyn

=

+ |PFe(xp)En e — PU @ PEnF. 1

x I{y" € Bypxpyn (2}, y")) +llpv @ pErr, — pu @ pEnr. 1
(b)
(b) ) i
> T n)“aj(( v log(1{(7$,y") € As}pxzyn($,y")) < 26+ ||prp(xmyEnF, — PU @ PEr 11
e © —
(© n n < 2¢ + Z 2T’S*Hnm;(px§En logn)
> H(XgY")—nds(n), s
where (a) holds by (28) and (29), (b) holds because for any D 5, i Z o7s —Huin(px 3 )+ Hax (pm)
(anyn) € Xy x Yr, ]1{(.132,?;”) € Ast > ]l{(x27y") c s
A}1{y"™ € B} and by marginalization over XZ., (c) holds by
definition of As. Then, we also have ; Z 97§ +10g(Amax (px g pn)) +log(rank(ppn ))
Hnax(gyn) = log supp(gyn) SCL.5£0
(@) 7’5 Hiin( 11x'LE7L)+HmaX(qEn)
< log|B| SC;%@
(? H(Y 1) (9) —
S ( )+TL (n)v i 2¢ + Z 9rs—n(H(XsE)—H(E)—6és(n)—d(n))
where (a) holds by (28) and (29), and (b) holds because 1 > SCL.S£0

doynes Py (y") = |B|2~H(")=nd(n) by definition of B.

@ 4 Z 9rs—nH(Xs|E)y+n(ss(n)+3(n),

APPENDIX C SCL,S#0
PROOF OF LEMMA 3 where (a) holds by the triangle inequality, (b) holds by the
Consider a spectral decomposition of the product state data processing inequality, e.g., [32, Lemma A.2.1], and (34),
pxp e~ given by (c) holds by Lemma 1 where ogn is the fully mixed
L

state on the support of pgn, (d) holds by Lemma 12 in
pPxpEn = Z pxpEn (Tr, €")|Pan en) (Pun en. Appendix F, (e) follows from the definitions of Hy,, and
a7 en Hax, Where )\max(ﬁxg pn) is the maximum eigenvalue of
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pxzen, (f) holds by (32) and (33), (g) holds by (30), (31),
() holds because the von Neumann entropy of an operator
with eigenvalues (p;) is equal to the Shannon entropy of a
random variable distributed according to (p;).

APPENDIX D
PROOF OF LEMMA 5

Assume that a (Z”R?C)ZE ¢ distributed source code is given
and that the corresponding encoding and decoding functions
are (g)iec and h, respectively. We use the same notation as
in Definition 4. To simplify notation, we define u, £ uy,
for u € UPF. By definition, we have lim, .o P.(n) = 0
and

Pe(n)

& S Plug £ (o ge(ur))
ME i
1

Plus # h(pgs, g9c(ug))]

s !
(]
(]

cr€Cpr ULegZI(CL)

Z Z H Plus # h(pgn, 9c(ug))]
|CL|C£eC£LlLEg (CL leﬁ |U"|/|CZ|
@ 1 Plug # h (785, 9c(ug)))
=
Cel 2 2l RN
cc€Cruceg, (o) l€L
Z Z H ePlug # h( pB'mgC(uﬁ))]
|C£| cL€Clupeg; (ce) lEL lg, ( 1l
() € .
D Y Fpupopnn P luc £ b (35, 9c(uc))]
| Cl CLEC’L
(d) N 1
> EEPUL‘CL=CZP[UE # h(an,ga(ug))] Z @

CLEC’L

= ¢ P [uﬁ #*h (ﬁ%ﬁ;gﬁ(uﬁ))]

1 — n
> ——1{lg; )| = e/ (Gl Vi € £}
ICc|

cr€Cr

—ox
PUp|Cp=c}

Q)

c(1-e)"E Pluz # h(pgh, gc(ug))l,  (35)

L

—ox
PUp|Cp=c}

where in (a) we have defined C {ce € Cr :
9 (@)l = eUpl/ICil, YL € L}, (b) holds by def-
inition of Cj, in (c) we have defined py,c,—c, =
[licrPu,jci=e, and pu,jc,=, is the uniform distribution
over g, '(c), | € L, in (d) we have chosen ci €
argmincLEPUL\cL:cL]P[uﬁ#h(ﬁ%ﬁwgﬁ(uﬁ))]’ (6) holds

by Lemma 13 in Appendix F.

From (35), we conclude that
lim K Plug # h(pgh, 9c(ur))] = 0.

n—oo

For | € L, let M; be such that |M;| = [g; ' (c})], and let
the encoder ¢; be a bijection between M; and gf '(cy). Hence,
for any mp € M, we have gz (es(myg)) = ¢ Then, define

the decoder as d(pS ™)) £ ¢! (h(ﬁ%ﬁ(ML) c})) Hence,

by (36), we have lim,,_. P[d(ﬁ%‘i}M‘:)) # M) = 0. Finally,

(36)

PUp|Cp=c}
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for | € £, we have 2" = | M| > elU"|/|C| = e2n (B =R,
which yields R, > R — RPC as n — oc.

APPENDIX E
PROOF OF LEMMA 7

The arguments closely follow the proof for the special case
L = 1, e.g., [43, Th. 13.6.2]. We first prove Byfac(N) <

um.(A). Consider a state px.pp = U '\ —pe(Pxcay)
that achieves Pyi-(N), i.e., maximizes the right-hand side
in (3). For | € L, consider a spectral decomposition for
p‘X, >y Pyilar) z”y’, where each state wz’l’y is pure.
Next consider O'XLYLBE such that Try,[ox,v,.BE]
PX,:BE with

0X,.Y:.BE £ Z ZPXL (xﬁ)pYL\Xﬂ (y[;|x[;)

L o Yc

lze)(ze] @ lye)(yel ®uz{4\€;~BE(® wzz{yz),
el

Hlegp(xz)g pyveix. Welre)
a?z)za, ye = (Wiec, |rc) (x|
®l€£ |y1){yi|- Then, we have

where px, (c)
Hle[:p(yl|xl) xr
Qe ) (@i, and |yc)(yc| =

1> 1>

o

PyiacWV)

=1(Xz;B), — I(Xg; E),
=I1(Xg;B)o —I(X2; E)s
=I1(XcYr:B)o — I(X Y. E),

—1(Y; BIXz)o + I(Ye; E|X)o

(Xﬁyﬁv
(B)[, -

H(B)a -
9 H(B)y -
=1(A£)B)y

4 sum
< MAC (N)v

where (a) holds by the quantum data processing inequality
because N is degradable, (b) holds because o5Z"" is pure

by purity of @, ,¢%", in (¢), for I € L, we consider
1

G, a puriﬁAcaticj\Ifl of pa; and define ¢4, a1, = ®le[% ba,a;

and ¢a,.BE = uA/LHBE(QSALA’L) such that ¢4,.pg is pure

and Tra,.[0a,.BE] = per = oBg, (d) holds by definition

of QYAc(N).

Next, we show Pf,}‘X‘C(./\/ ) = Qurc(WN). Consider a
state pa.pr = U ’—>BE(¢ALA' ) that achieves Q- (N),
i.e., maximizes the” right-hand 51de of (4). Consider for
| € L a spectral decomposition of ¢4; such that ¢4, =
D, DX (xl)¢ff/, where each state ¢Z‘/ is pure. Then, define

OX Al —ZPXL (ze)|ze)( $c|®®¢Au

leL

)o’ - I(XEYEa E)a
H(E)o' + H(E|X[;Y[;)g - H(B|X[;Y[;)U
H(E),

H(ALB)g

where |zz)(wel £ Qcplenlml vz = (@)
N

and px,(xr) £ He[,pxz,(xl)' Define also ox,pg
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U{%_}BE(JXLA/L). Then, we have

WRC(N) = I(AL)B)g
@ H(B), ~ H(E),
= H(B), — H(E),
© I(Xz;B)s — (X B)s

)
< RiacW),
where (a) holds because H(A.B), = H(E), by purity of

DA,BE, (b) holds because H(E|X;), = H(B|X,), by
purity of 0%, (¢) holds by definition of Py (N).

APPENDIX F
SUPPORTING LEMMAS

Lemma 9 ([32, Lemma 5.1.3]): Let p be a Hermitian
operator and o be a nonnegative operator on the same Hilbert
space. Then, ||p||; < \/Tr[o] o~1/2)2],

Lemma 10 ([32, Lemma B.5.3]). For any pxg € S<(Hx ®
HE) and op € Sz(HE), we have HQ(pXE|UE) >
Huin(pxEloE).

Lemma 11 ([45, Theorem 2]): Consider a probability dis-
tribution px» £ [[;_, px, over X™. For any § € [0,log |X/],
we have

_ ns?
P[—logpx=(X") < H(X") —nd] <2 2los(x[+3)2
27210g(7\7/§+3>2 .

Pl—logpx~(X") > H(X") +nd] <

Lemma 12 ([32, Lemma 3.1.10]): For any pap € P(Ha ®
Hp) and op € P(Hp), the fully mixed state on the support
of PB, W€ have Hmin(pAB) = Hmin(pAB|UB) + Hmax(pB)-

Lemma 13 (120, Lemma  4]): Consider a
function f : X — Y and € > 0. We have
P[lf~Y(Y)| > €&|/|Y]] = 1 — ¢, where the probability
is taken over Y uniformly distributed in ).

We next review some definitions and results related to
submodular functions.

Definition 5 ( [42], [46]): Let f : 2¢ — R. P(f) £
{(Ri)icc € RE : Rs < f(S),¥S C L} associated with the
function f, is a polymatroid if

i) f is normalized, i.e., f(0) =0,

il) f is non-decreasing, i.e., VS, 7 C L,§ C T —

f(S) < f(T),
iii) f is submodular, i.e.,VS,7 C L, f(SUT)+f(SNT) <
f(8)+ f(T).

Lemma 14: Let px,pr be as defined in Theorem 1.

i) The set function h, : 2 — R, S — H(Xs|E), is

submodular.

ii) The set function g, :

is submodular.

iii) The set function f, : 2 — R, S + I[(Xs; B|Xs¢), —

I(Xs; E), is submodular.
Proof: We first prove (i). For S, 7 C L, we have

hy(SUT) +h,(SNT)
= H(Xsurl|E), + H(Xsn1|E),

2¢ - R,S — —H(Xs|BXse),

1793

= H(Xs|E), + HXn\s|XsE), + HXsnr|E),
< H(Xs|E), + H(X1\s|XsnTE), + H(XsnT|E),
= hp(S) + hp(T),

where the inequality holds because conditioning does not
increase entropy.

Next, we prove (ii). Remark that for any S C £, we have
6,(S) = —H(Xs|BXs.), = H(BXs.), - H(XcB), =
H(Xs¢|B),— H(X.|B),, and S — H(Xs:|B), is submod-
ular by (i) since S — f(S) submodular implies S — f(S°)
submodular. Hence, g, is submodular.

Finally, we prove (7ii). Remark that we have f, = g, +
h,. Hence, since the sum of two submodular functions is
submodular, f, is submodular. n

Lemma 15 ([47, Lemma 2]): Consider two submodular
functions f : 2 — R and g : 2 — R. Then, the following
system of equations for (z;);c. € R%

<Y w < f(S),

sES

VS C L,

has a solution if and only if —g(S) < f(S),VS C L.
Lemma 16 ([15, Lemma 9]): Let f : 2L S Rbea positive,
normalized, and submodular function. Then,

*. 28 LR i .
f — Ry, S~ min f(A)
st. ADS

is normalized, non-decreasing, and submodular.
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