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ARTICLE INFO ABSTRACT

Edited by Marie Weiss Synthetic Aperture Radar (SAR) backscatter observations are sensitive to hydrologic conditions and vegetation
characteristics of land cover. This study conducted a high spatial-resolution investigation (30-m) on the response
of dual-polarization C-band (5.6 cm wavelength) SAR backscatter coefficients (¢°) to temporal changes of surface
SAR water depth (dy) and spatial variations of vegetation characteristics in the south Florida Everglades wetlands. We
Bac}fscatter coefﬁdfenF investigated (1) linear relationships between ¢° and d, values, and (2) the effects of vegetation density and
Spatiotemporal variations o . . . . . s .

High spatial resolution mo'rphollogy on ¢ —'dW relationships. We dezveloped a new method to class'lfy pixels with s1gn1f.1cant linear re-
Wetland hydrology lationships of multi-temporal ¢° and d, (R® > 0.5 and p-value <0.04), which were termed “Reliable Scatterer”
Vegetation density (RS). RS included positive, negative, and a combination of both positive and negative relationships (corre-
Vegetation morphology sponding to RST, RS, RSi, respectively). Our analysis revealed spatially varying vegetation densities and
Co-polarization morphologies had a significant impact on RS types, where we found RS™ type pixels for woody vegetation, RS*
Cross-polarization for a mix of medium- and high-density herbaceous vegetation using C-band VV (C-VV) data, and RS~ for sparse
Scattering mechanisms herbaceous vegetation using C-VH data. Overall, our study indicates that C-band dual-polarization backscatter is
Ridge-and-slough landscape sensitive to water-depth variations for some vegetation types, and this sensitivity has the potential to serve as a
reliable indicator for monitoring water depth in wetland environments.
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Everglades

1. Introduction

Space-based synthetic aperture radar (SAR) observations have pro-
vided information for monitoring a variety of land cover types, including
wetlands (Kasischke and Bourgeau-Chavez, 1997), agriculture (Le Toan
et al., 1997), and polar ice sheets (Goldstein et al., 1993). Consistent
monitoring is achieved because the microwave energy employed by
SARs can be transmitted through clouds. In addition, SAR acquires ob-
servations at all weather and illumination conditions (day and night)
with a short revisit time depending on the sensor (e.g., 12 days for
Sentinel-1). For wetland ecosystems, such as the southern Florida Ev-
erglades, SAR backscatter observations are sensitive to water depths,
vegetation characteristics (density and morphology), and soil moisture
(especially for non-woody vegetation) (Kasischke et al., 2003, 2009;

Bourgeau-Chavez et al., 2005; J.-W. Kim et al., 2014). Spatiotemporal
variations of SAR observations are attributed to the interactions between
microwave energy, water surfaces, vegetation (Brisco, 2015), and the
SAR acquisition parameters (e.g., wavelength, polarization, and inci-
dence angle) (J.-W. Kim et al., 2014; Lang et al., 2008).

Because microwave energy can be transmitted through vegetation
canopies, in dense vegetation, the variations in SAR backscatter are
more sensitive to differences in wetland inundation than surface
reflection measured by optical remote sensing systems. Backscatter co-
efficients, or sigma nought (¢°), defined as the normalized measure of
the radar return (per unit area) from a target on the ground, have been
successfully used to detect and monitor inundation extent in wetlands
with both herbaceous and woody vegetation (Ramsey, 1995; Kasischke
and Bourgeau-Chavez, 1997; Pulvirenti et al., 2011, 2013; Brisco et al.,
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2013; Brisco, 2015; Tsyganskaya et al., 2018; Zhang et al., 2018; Gri-
maldi et al., 2020). Methods to detect inundation extent differ between
herbaceous and woody vegetation because of different microwave
energy-water-vegetation interactions (i.e., scattering mechanisms;
Brisco, 2015).

Previous studies showed that radar backscatter coefficients are
significantly correlated with changes in water depth (dy, the distance
between the water surface and ground level) with different types of
linear relationships according to vegetation types (see Section 2.2)
(Kasischke et al., 2003, 2009; Lang and Kasischke, 2008; Puri et al.,
2011; Yuan et al.,, 2015). However, all linear ¢°-dy, relationships in
previous SAR studies were based on co-polarized (VV: vertical transmit
and vertical receive or HH: horizontal transmit and horizontal receive)
observations. To our knowledge, no significant 6°-d, relationships have
been detected with cross-polarized (VH or HV) observations. For
example, previous use of SIR-C cross-polarized observations in marsh
sites did not explore backscatter in response to changes in water depths
because of the limitation in temporal coverage of the data (Pope et al.,
1997).

The interaction of microwave energy with wetlands characterized by
diverse and heterogeneous vegetation cover often results in significant
spatial variability in backscatter. As hydrological measurements in
wetlands were spatially limited to a finite number of stage stations or
narrow tracks along altimetry satellite orbits, the linear 6°-dy relation-
ships detected previously (Kasischke et al., 2003; Yuan et al., 2015)
reflected the microwave energy-water-vegetation interaction only at
hydrological measurement points. Expanding the investigation of 6°-d,
relationships according to vegetation types to the full spatial extent of a
wetland requires maps of vegetation cover and water depth at high
spatial resolutions compatible with the resolution of SAR data.

This study conducted a high spatial-resolution investigation of dual-
polarization, C-band SAR backscatter response to temporal changes of
water depth in wetlands with heterogeneous vegetation types. We
focused on two study areas located in the Florida Everglades, where
daily water-surface data, digital terrain models (DTMs), and high-
resolution (2 m) vegetation maps were available. The hydrologic and
vegetation data combined with 66 dual-polarized Sentinel-1 scenes that
were acquired nearly every 12 days over three years (2016-2019)
enabled us to investigate the relationships between multi-temporal ¢°
(C-VV and C-VH) and d,, values for each 30 m x 30 m pixel in the two
study areas. We also investigated the effects of vegetation density and
morphology on the backscatter’s sensitivity to water depth variations by
comparing the linear ¢°-d,, relationships for various vegetation types.
The linear 6°-d,y relationships were explained by changes in scattering
mechanisms in response to water depth changes relative to vegetation
characteristics. This study achieved a better understanding of micro-
wave energy-water-vegetation interactions in wetlands and demon-
strated that backscatter data combined with vegetation information has
great potential to monitor wetland hydrological conditions.

2. Background

This section provides basic knowledge of microwave scattering from
wetlands vegetation. Since this study only uses C-band wavelength SAR
data from the Sentinel-1 satellite, we emphasize C-band microwave
scattering. Section 2.1 provides the scattering sources from woody and
herbaceous vegetation, and Section 2.2 summarizes previous studies
that found significant 6°-d,, linear relationships in wetlands.

2.1. Microwave scattering characteristics of wetlands

The total SAR backscatter coefficient from wetland ecosystems can
be modeled by a summation of different scattering sources for woody
and herbaceous vegetation types (Kasischke and Bourgeau-Chavez,
1997). For wetlands with shrubs and trees, three layers in the vertical
dimension are considered: (1) canopy layer consisting of small branches
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and foliage; (2) trunk layer consisting of large branches and trunks or
boles; and (3) ground surface layer (Fig. 1). The total backscatter coef-
ficient from woody vegetation, 6°;_,,, can be expressed after Wang et al.
(1994, 1995); Dobson et al. (1995); and Kasischke and Bourgeau-Chavez
(1997) as:

0 0 2 .2 0 0 0 0
=0+ 77 (0% +6%0% +6%) @

where

69, is the backscatter coefficient of the crown layer of smaller woody
branches and foliage,

7. is the transmission coefficient of the canopy layer,

7, is the transmission coefficient of the trunk layer,

6%, is multiple-path scattering between the ground and canopy
layer,

69, is direct scattering from the tree trunks,

6% is direct scattering from the ground, and

6% is double-bounce scattering between the trunks and ground.

For herbaceous wetlands, the scattering sources only include the
canopy and ground surface layers (trunk layer is removed). The total
backscatter coefficient, 6°,_j, can be simplified to.

iy =0"+7c(c% +0%) 2

Total SAR backscatter is governed by the interaction between the
transmitted microwave energy and woody and herbaceous vegetation
layers. Canopy and trunk layers are direct sources of scattering of mi-
crowave energy (¢°. and ¢°,). However, they also absorb or attenuate
microwave energy (Kasischke and Bourgeau-Chavez, 1997), especially
for short-wavelength energy (e.g., X- or C-band), resulting in lower
transmission than longer wavelengths (e.g., L-band). When the micro-
wave energy employed by SARs is transmitted through the canopy and
trunk layers, diffuse scattering occurs from rough surfaces of the ground
substrate under the unflooded state (6%, Fig. 1). Diffuse scattering of the
energy results in multiple directions, with a portion returning to the SAR
(Fig. 1), and this backscatter is influenced by variations in soil moisture
(Kasischke and Bourgeau-Chavez, 1997; Kasischke et al., 2003, 2007,
2009). Under the flooded state without wind, ground surface scattering
is eliminated, and all of the microwave energy is forward scattered
(specular reflection) from water surfaces. As water depth increases, a
higher degree of microwave energy can be transmitted to water surfaces
because of less attenuation from woody trunk layers or herbaceous
canopy layers. For forests, enhanced ground-trunk (¢°;) and ground-
canopy (¢°,,) scattering occurs, whereas, for short herbaceous vegeta-
tion, canopy and ground-canopy scattering decrease (Kasischke and
Bourgeau-Chavez, 1997; Townsend, 2001, 2002; Kasischke et al., 2003;
Lang and Kasischke, 2008).

Double-bounce and multiple-path scattering contribute differently to
co- and cross-polarized SAR data. When forested wetlands are flooded,
double-bounce scattering increases (Lang and Kasischke, 2008), which
is assumed to only contribute to co-polarized backscatter because of
little or no depolarization (Fung and Ulaby, 1983; Brisco, 2015). How-
ever, Hong and Wdowinski (2014) found that the cross-polarized ob-
servations from flooded forests include a double-bounce component
induced by rotated ground-trunk dihedrals. Multiple-path scattering
involves two bounce scattering that increases both co- and cross-
polarized backscatter.

C-band microwave energy interaction with a woody or herbaceous
vegetation is associated with biophysical characteristics. For woody
vegetation, tree density and canopy closure (leaf-on or leaf-off) deter-
mine the degree of energy’s transmission through canopies and the
sensitivity of backscatter to subcanopy flooded states and soil moisture.
During leaf-off periods, more energy is transmitted through canopy
layers with higher sensitivity backscatter than leaf-on periods (Town-
send, 2001; Lang and Kasischke, 2008; Lang et al., 2008). In addition,
forests with larger basal areas and greater heights to the bottom of the
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Fig. 2. Schematic illustrations showing C-band microwave energy scattering from ground/water surfaces and linear relationships between co-polarized ¢° (HH or
VV) and d,, for three vegetation types: sparse woody, medium dense, and sparse herbaceous. The second, third, and fourth columns show scattering at different water
depths. Canopy and trunk scattering are not presented for simplicity. The last column shows the detected linear relationships between C-band ¢° and d,, based on
previous studies and references with information on wavelengths and polarizations. Red dots denote the maximum backscatter value. Plots (a) - (c) and (e) - (g) are
modified from Yuan et al. (2015) Fig. 12; (i) - (k) are modified from J.-W. Kim et al. (2014)Fig. 3(c). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Fig. 1. Schematic plot of scattering sources from a three-
layer model for woody (a) and a two-layer model for
herbaceous vegetation (b). ¢°,= direct trunk scattering;
o%= ground surface scattering; ¢°3= double-bounce
scattering from ground and trunk (or stem); o°,=
multiple-path scattering from ground and canopy; ¢°.=
canopy scattering. This figure was modified based on
CanOPY Fig. 1 in Kasischke and Bourgeau-Chavez (1997) where
6°4 was not included in the scattering model for herba-
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canopy lead to stronger double-bounce scattering under the flooded
state (Townsend, 2002).

Biophysical characteristics of herbaceous vegetation are also asso-
ciated with double-bounce scattering. Though the original scattering
model, i.e., Egs. (2), did not include double-bounce scattering, later
studies found that double-bounce scattering occurs in herbaceous wet-
lands depending on the height, density, and canopy covers (Pope et al.,
1997; Hong et al., 2009; Hong and Wdowinski, 2011; Brisco, 2015;
Wdowinski and Hong, 2015; Liao et al., 2020). A high percentage cover
of tall, dense vegetation shows a backscatter increase from unflooded to
flooded states due to double-bounce scattering, whereas short, sparse
vegetation shows a backscatter decrease due to specular reflection of the
energy (Pope et al., 1997).

2.2. Linear relationships between backscatter and water depth in wetlands

This section mainly summarizes previous studies that found linear
relationships between C-band ¢° and d, where water depth is a proxy
for the height of the vegetation above water surfaces. Significant linear
relationships were only detected using co-polarized data (HH or VV)
under three types of vegetation: sparse woody, medium dense, and
sparse herbaceous, corresponding to positive, combined positive and
negative, and negative 6°-d, relationships, respectively.

For woody wetlands, in the unflooded state, diffuse scattering occurs
from the soil surface (Fig. 2(a)). In the initial stages of flooding, the
fraction of water surface is low due to ground surface micro-topography
(Fig. 2(b)) (Lang and Kasischke, 2008). As water depth increases, the
fraction of water surface increases, which leads to an enhancement of
double-bounce scattering (Lang and Kasischke, 2008). Therefore, the
correlation between ¢° (C-HH and C-VV) and dy, is expected to be pos-
itive. In contrast, Kasischke et al. (2003) found negative ¢°-d, correla-
tions in sparsely forested wetlands using C-VV backscatter data, most
likely because the reduction in surface scattering from saturated soils
was greater than the increase in backscatter from ground-trunk in-
teractions. For the L-band wavelength studies, positive 6°-dy, correla-
tions were found using L-HH data (Yuan et al., 2015).

Backscatter from herbaceous vegetation depends on vegetation
density and water depth with respect to the plant height (Pope et al.,
1997; Yuan et al., 2015). When unflooded, diffuse scattering occurs from
the soil surface (Fig. 2(e) and (i)). For medium dense herbaceous
vegetation, significant ¢°-dy, correlations have not been discovered
using C-band data. However, L-HH data were correlated with water
depths in shallow and deep flooded states (Yuan et al., 2015). Under
shallow flooded states, backscatter increases with water depths because
of enhanced double-bounce scattering (Fig. 2(f)). However, after water
depth reaches a certain level with respect to the plant height, increasing
water depth reduces canopy scattering, resulting in lower backscatter
(Fig. 2(g)). Consequently, the ¢°-d,, relationship is a combined positive
and negative linear trend (Fig. 2(h), Yuan et al., 2015). Since C-band
microwave energy can be transmitted through the medium dense her-
baceous canopy (Hong et al., 2009; Hong and Wdowinski, 2011), though
with a lower degree of transmission than L-band energy, this combined
6°-d,y relationship can also occur with C-band data.

For sparse herbaceous vegetation, increasing water depth reduces
the canopy and ground-canopy scattering because more energy is for-
ward scattered away from the SAR (Fig. 2(j) and (k)), resulting in a
negative relationship between ¢° and dyy (Fig. 2(1)). Significant negative
relationships were detected with C-VV data (Kasischke et al., 2003,
2009). Negative 6°-dy, correlations have also been found using L-HH
data (J.-W. Kim et al., 2014; D. Kim et al., 2017a).

3. Study areas
The southern Florida Everglades wetlands are characterized by a flat

topography with a minimal gradient of 2 cm per kilometer (Bourgeau-
Chavez et al., 2005). The Everglades is subjected to a subtropical climate
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with seasonal rainfall, in which a wet season is from May to October and
a dry season from November to April. The Everglades consists of
managed hydrological units (white polygons in Fig. 3(a)), including
Water Conservation Areas (WCAs), Everglades National Park (ENP), and
Big Cypress National Preserve (BCNP). These units are compartmental-
ized by canals and levees and vary in composition and relative abun-
dance of wetland plant communities (Gunderson, 1994; Harvey et al.,
2011). ENP and WCAs have a vast extent of freshwater marshes, wet
prairies (herbaceous communities with a relatively short hydroperiod),
and deep-water sloughs. The marshes, dominated by sawgrass (Cladium
jamaicense Crantz), are interspersed with patches dominated by shrubs
and trees (David, 1996). BCNP is characterized by a large extent of cy-
press forests.

Our study focused on two areas of the Everglades: the northeast
Shark River Slough (NESRS) in the northeast corner of ENP and a sub-
area in southern WCA-3A (S3A), varying in vegetation patterns and
hydrological regimes (Fig. 3). NESRS is dominated by Cladium marsh,
interspersed with marsh communities that are dominated by shorter
graminoid species (Fig. S1). Cladium marsh occupies about 72% of
NESRS, nearly half of which is characterized by sparse culm density
(Gann et al., 2019). S3A is characterized by a ridge and slough land-
scape, where ridges are elevated surfaces predominantly covered with
tall stands of medium to high density Cladium (Table 1), and open water
sloughs are composed of floating and submerged vegetation with some
emergent graminoid and broadleaf species (Watts et al., 2010) (Fig. 3
(c)). Both NESRS and S3A are characterized by tree islands that are
patches of broadleaf forest embedded within a non-woody vegetation
matrix (Heffernan et al., 2009). The tree islands occur in slightly
elevated terrain and feature dense understory, including vines and ferns.
Hydrological conditions in both study areas are characterized by sea-
sonal water depth variations. Water surfaces in NESRS occasionally drop
below the ground level, and the maximum water depth is about 80 cm.
The majority of S3A is typically inundated throughout the year, with
maximum water depth reaching 160 cm.

4. Data and data preprocessing

To understand the relationships between backscatter, water depth,
and vegetation characteristics across wetland plant communities in a
spatiotemporal fashion, three categories of data products were used, (1)
SAR backscatter observations acquired by the Sentinel-1 platform, (2)
hydrological data in form of water surface maps and corresponding
DTMs, (3) two types of vegetation data products generated from optical
remote-sensing observations: vegetation maps derived from WorldView-
2 (WV2) data and the Normalized Difference Vegetation Index (NDVI)
derived from Landsat 8 data.

4.1. SAR data and preprocessing

We obtained multi-temporal C-band data acquired by the Sentinel-1
satellite constellation (consisting of two satellites: Sentinel-1A and 1B)
from the European Space Agency (ESA-https://scihub.copernicus.eu/).
We only used Sentinel-1A data because they were consistently acquired
almost every 12 days over the Everglades since early 2016. As our data
processing began in June 2019, we used 66 Sentinel-1A scenes from the
same ascending path 48, covering three full years, from April 2016 to
March 2019 (acquisition dates are listed in Table S1). We used Level-1
high-resolution Ground Range Detected (GRD) products in Interfero-
metric Wide (IW) mode, with a pixel spacing of 10 m x 10 m and a
spatial resolution of 20 m x 22 m in range and azimuth directions,
respectively. These products provided backscatter observations in two
polarizations: C-VV and C-VH.

We processed the SAR acquisitions using the Sentinel Application
Platform (SNAP) provided by the ESA. The processing included thermal
noise removal, radiometric calibration, speckle filtering, and terrain
correction using the 3-arcsecond Shuttle Radar Topography Mission
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Fig. 3. (a) Location map of the main hydrological units (polygons with white boundaries) in the Florida Everglades and two study areas (yellow and green rect-
angles). The first study area, NESRS (yellow rectangle, 14,576 ha), is located in the northeast section of ENP. The second study area, S3A (green rectangle, 5,414 ha),
is located in the southern portion of WCA-3A. The frame marked by the red line draws a footprint of the Sentinel-1A SAR scene used in this study. (b) and (c) show
vegetation maps of the two study areas with a UTM coordinate system in a meter unit and a 30-m spatial resolution. Vegetation class information is provided in
Table 1. The map background is a true-colour base map (Source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN,
and the GIS User Community). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(SRTM). The terrain correction step used the Range Doppler method to
geocode SAR scenes to the UTM coordinate system (Filipponi, 2019).
Backscatter values in the processed images were sigma nought (¢°) in
decibel (dB) units. We resampled the SAR images from the original pixel
spacing 10 m to 30 m by bilinear interpolation to reduce speckle effects
(Inglada et al., 2016), coregistered the images with the 30-m resolution
Landsat grid, and stacked them by polarization.

4.2. Hydrology and DTM data

We used the interpolated Everglades Depth Estimation Network
(EDEN) product of water level surface maps with 400 m x 400 m res-
olution (Johnston et al., 2004; Palaseanu and Pearlstine, 2008; Liu et al.,
2009) to calculate water depth maps (Fig. S2). The EDEN water surface
data represented daily median water levels with a vertical accuracy of
about 3.3 cm (Liu et al., 2009). We obtained daily median water-level
surface maps for the period of interest from April 2016 to March 2019.

We used the most accurate available ground elevation data to
generate water depths for each study area. For the NESRS study area, we
used the DTM derived from the Light Detection and Ranging (LiDAR)
data acquired by ENP in 2017 with a spatial resolution of 0.5 m and a
vertical accuracy of 34.8 cm (Dewberry, 2018). For the S3A study area,
we used the 400 m resolution DTM provided by EDEN (https://sofia.
usgs.gov/eden/models/groundelevmod.php). This coarser grid DTM

captured the general elevation but did not account for small-scale
topographic features. Uncertainty of the estimated ground elevations
in S3A was about 10 cm (Jones and Price, 2007a, 2007b). Both DTM
products had the same vertical datum (North American Vertical Datum
of 1988 or NAVD88) as the EDEN water surfaces. We resampled both
DTM products to the 30-m Landsat grid by upscaling the high-resolution
NESRS DTM using bilinear interpolation and extracting the low-
resolution grid value of the S3A DTM.

4.3. Vegetation and optical remote sensing data

Vegetation classes were mapped from 2-m spatial resolution WV2
data. The 2016 and 2017 vegetation map of NESRS had an overall ac-
curacy of 93.8 + 1.1% (Gann et al., 2019), and the 2011 and 2012 map
of S3A had an accuracy of 91.2 + 0.6% (Gann, 2018). The 2-m resolution
classes distinguished vegetation by predominant morphology, density,
and species (Table 1). For example, Cladium jamaicense, a tall graminoid
species, was recognized at the species level and was mapped at three
densities: sparse, medium dense, and dense (represented by “_S”, “ M”,
and “ D” in Table 1). Application of the multi-dimensional grid point
scaling algorithm (Gann, 2019) to the 2-m resolution vegetation maps
generated representative vegetation classes at the 30-m resolution of the
Landsat grid (Fig. 3(b) and (c)). Upscaled vegetation classes consisted of
either one original class when dominant beyond 75%, or a mix of two
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Table 1

Morphological growth classes (Morphology), upscaled vegetation classes (Class Name), and species lists for each class (Class Description) for the study areas NESRS
and S3A.

Morphology

Class Name

Class Description

NESRS

Short Graminoid &
Broadleaf Emergent

Graminoid (gM) & Boradleaf Marsh
(bIE)

Mix of patches of graminoid marsh (e.g., Rhynchospora spp., Eleocharis spp., Panicum spp.) and broadleaf
emergent marsh (e.g., Pontederia cordata, Sagittaria lancifolia, Crinum americanum, Thalia geniculata)

Short Graminoid

Graminoid Marsh Medium (gM_M)
Graminoid Marsh Sparse (gM_S)

Graminoid marsh (e.g., Rhynchospora spp., Eleocharis spp., Panicum spp.)
Sparse graminoid marsh

Tall Graminoid

Graminoid Marsh Sparse (gM_S) &
Cladium Sparse (CL_S)
Cladium Sparse (CL_S)

Cladium Medium (CI_M) & Sparse

(CLS)

Cladium Medium (Cl_M)
Cladium Dense (CI_D)
Cladium (Cl) & Typha (Ty)
Typha
Graminoid Prairie Sparse (gP_S)
Graminoid Prairie Medium (gP_M)

Mix of patches of sparse graminoid marsh and sparse Cladium jamaicense
Sparse C. jamaicense
Mix of patches of intermediate and sparse C. jamaicense

Intermediate density of C. jamaicense
Dense C. jamaicense
Mix of C. jamaicense and Typha spp.
Typha spp.
Sparse Graminoid Prairie
Graminoid Prairie (e.g., Muhlenbergia capillaris, Schizachyrium spp., Andropogon spp.)

Shrubs (s) Mix of swamp and bayhead shrub species
Woody Salix (sSa) Salix caroliniana
Trees (t) Mix of swamp, hammock and bayhead tree species
NA Water (wtr) Open Water (e.g., canals and deep airboat trails)

S3A

Floating Broadleaf &
Submerged

Floating (bIF) & Submerged (aS)

Floating (e.g., Nymphaea odorata, Chara, Utriciularia spp.) and submerged aquatic vegetation, including
floating periphyton mats

Floating/Submerged & Tall
Graminoid

Nymphaea (bIFNy) & Cladium (Cl)
Periphyton (aSPe) & Cladium (Cl)

Mix of patches of N. odorata and C. jamaicense
Mix of patches of Periphyton and C. jamaicense

Tall Graminoid

Cladium Medium & Dense (CI.M &
CLD)
Cladium (Cl) & Typha (Ty)

Intermediate to dense C. jamaicense

Mix of C. jamaicense and Typha spp.

Tall Graminoid &
Broadleaf Emergent

Cladium (Cl) & Broadleaf Emergent
(bIE)

Mix of patches of C. jamaicense and broadleaf emergent marsh (e.g., Peltandra virginica, P. cordata, S.
lancifolia, C. americanum)

Broadleaf Emergent

Broadleaf Emergent (blE) & Blechnum

(fern) Marsh (bIEBI)

Blechnum serrulatum (fern) and other broadleaf emergent marsh (e.g., P. virginica, P. cordata, S. lancifolia, C.
americanum)

Woody

Shrubs & Trees (s & t)
Salix (sSa)

Mix of hammock and bayhead shrub and tree species
S. caroliniana

classes for more diverse grid cells (e.g., “Medium & Sparse Cladium” in
NESRS, Table 1), with the additional requirement that each scaled class
covered at least 5% of the study area. The vegetation map was consid-
ered valid during our period of interest from April 2016 to March 2019
because most vegetation (e.g., the dominant Cladium) showed minimal
seasonal or annual structural variations (Steward and Ornes, 1975).
Only small areas in NESRS were impacted by fires in 2017 and 2018
(Malone, 2019) (Fig. S3), the main driver for rapid change in vegetation
cover. For the fire-impacted areas, the vegetation maps represent the
vegetation classes before the fire events.

We obtained Cladium height and biomass data in NESRS and S3A
from field surveys conducted from 2016 to 2019 (Ross et al., 2016; Kalla
and Scheidt, 2017; Sah et al., 2020). The height data were from sampling
plots within the two study areas, whereas the biomass data were from
Cladium samplings across the entire ENP and WCA-3A to represent the
NESRS and S3A biomass, respectively. Details of the vegetation char-
acteristics data are provided in Supplementary Note 1 and Fig. S4. These
data were used to compare with vegetation characteristics in previous
studies on wetland backscatter behavior.

NDVI derived from optical remote-sensing data is sensitive to vege-
tation density, which can potentially affect microwave scattering
behavior (Gitelson, 2004; Gasparri et al., 2010; Zhang et al., 2016).
NDVI combines the red (RED) and near-infrared (NIR) bands using the
equation NDVI = (NIR — RED)/(NIR + RED) and ranges from —1.0 to
1.0. Since NDVI values can be affected by surface water depths (Han and
Rundquist, 2003; Beget and Di Bella, 2007), we selected a Landsat NDVI
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Fig. 4. Flow chart of the two-stage methodology for investigating the roles of water depth (Stage 1) and vegetation characteristics (Stage 2) on dual-polarized

backscatter. Green boundaries denote Stage 1, and red boundaries denote Stage 2

procedures. Rectangles represent data, diamonds represent analyses, and blue

ellipses represent results. The results of the first stage, RS-type classification maps and slopes of ¢°-d, linear relationships, are the input for the second stage. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

image acquired on April 19, 2018, within the observation period of our
study when water depths were the lowest. The Landsat 8 Operational
Land Imager (OLI) satellite NDVI image obtained from the U.S.
Geological Survey Earth Resources Observation and Science Center
(Vermote et al., 2016) had minimal cloud or cloud shadow pixels in
either study area.

5. Methodology

Our main analysis of the Sentinel-1 data was a two-stage procedure
(Fig. 4). In the first stage (discussed in Section 5.1), we evaluated the
direction (positive or negative) and the strength (measured by R? and p-
value) of linear relationships between ¢° and d,, values over the three-
year period for each 30 m x 30 m pixel. Pixels showing a strong
linear correlation (R? larger than a threshold, R?%p, and p-value less than
a threshold, py) were termed reliable scatterers (RS). Based on the
described ¢°-dy, relationships according to vegetation types in Section
2.2, we defined three RS types: positive (RS™), positive-negative (RSi),
and negative (RS™). A fourth, non-RS type, indicated that the linear
relationships between ¢° and d,, were weak (R% < R?%y, or P > pw)- The
method for classifying RS and non-RS types was provided in Section 5.1.
In the second stage (discussed in Section 5.2), we investigated RS types
in relation to vegetation types.

5.1. Reliable Scatterer (RS) classification
The first stage of the methodology classified pixels as one of four

pixel types (RST, RS*, RS™, and non-RS) using multi-temporal 6° and d,,
values. The analyses of multi-temporal ¢° observations separately used

C-VV and C-VH data for RS-type classification. We subtracted 30-m re-
scaled DTM values from the 400-m resolution EDEN daily median
water level surfaces to get 30-m resolution multi-temporal water depth
maps (Fig. 4, Fig. S2). We removed all negative water depth values
(groundwater) and their corresponding ¢° observations (Fig. 5) because
our study mainly investigated the impact of surface water on back-
scatter. We excluded an outlier SAR scene acquired on September 10,
2017, during the passage of Hurricane Irma over South Florida because
the C-VH backscatter values significantly deviated from the ¢°-d,, linear
models, possibly due to additional microwave energy scattered from
water surface waves induced by wind. For the areas within NESRS
impacted by fires, a revised RS classification method is provided in
Supplementary Materials Note 2.

Then, we classified each pixel as an RS type following the decision
tree described in Fig. 5, which consisted of two steps. The first step pre-
classified a pixel into one of the three RS candidates using ¢° and d,,
values without considering the strength of correlation (R?). We first
identified d,, corresponding to the maximum observed ¢° (dy(6°max),
represented by the red dots in Fig. 2) for each pixel. Second, we counted
the numbers of d,, values higher and lower than dy(6°nax), which were
termed npjgy and njoyw, respectively. The number of values above (nygn)
and below (n)4y) reflected the relative position of dy,(6°max) in the 6°-dyy
diagrams (Fig. 2(d), (h), and (1)), and indicated possible RS types. For
example, when ny;g, equaled zero, dw(6°max) was the highest d,y value in
the time series, indicating the pixel can potentially be an RS (Fig. 2(d)).
We applied a tolerance threshold (nw), representing the minimum
number of data points indicative of a significant linear trend. We
initially set ng, as 7, representing ~10% of the total 66 SAR acquisitions
used in this study. The ng, was used to compare with npigh and new to
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Fig. 5. Decision tree for RS classification. The tree is composed of data (rectangles with green boundary), operations (rectangles with white background and black
boundary), conditions (diamonds), and endpoints (rectangles with colored background). Different background colors, i.e., pink, yellow, red, and blue, denote RS™,
RS*, RS~ (or the corresponding candidates), and non-RS, respectively. (a), (b), and (c) 6°-d, scatter plots examples for RS™, RS*, and RS~ candidates, respectively,
with the x-axis representing d,, and the y-axis representing 6°. A blue dot marks the 6°,,,x point for each scatter plot; red and cyan dots represent observations with d,,
less and greater than d,,(6° nax) and their count numbers, np;g, and ny,w, are to compare to ny, (7) to determine the RS candidate type. (a) shows nygh (1) is lower than
ny, and, therefore, the pixel is classified as an RS™ candidate, indicating the majority of the observations follow a positive trend. (b) is classified as an RS~ candidate
because njoy (3) is smaller than ny,, indicating that all observations follow a negative trend. (c) displays that both ny;g, and ny,,, are higher than ny, and, therefore, the
pixel is classified as an RS* candidate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pre-classify each pixel into an RSY, RS*, or RS~ candidate (the left
column in Fig. 5). When np;gh < nw, a pixel was pre-classified as an RST
candidate; when nj,y < ng,, a pixel was pre-classified as an RS~ candi-
date; when both npig and njw were larger than ng, a pixel was pre-
classified as an RST candidate (R2 values to be examined in the next
step for the RS™, RS*, or RS~ candidates). To illustrate this method of
classifying RS, RS*, and RS~ candidates, 6°-dy, correlation plots of
three pixel examples are presented in Fig. 5(a), (b), and (c).

The second step evaluated the strength of the correlation for RS
candidates using an R? and p-value threshold to classify each pixel as
either one of the four RS types (the right column in Fig. 5). An RS
candidate with an R? greater than the threshold thh and a p-value less
than the threshold py, (as mentioned in the RS definition) was classified
as the corresponding RS type; when the R? was smaller or the p-value
was larger, an RS candidate was classified as a non-RS. Note that for an
RS* candidate, two sets of values, thigh, Phigh, and Rzlow, Plow were
calculated for d, values higher and lower than dy(6°nax), respectively
(Fig. 5(c)). It required that both sets of parameter criteria (thigh, Phighs
and R%ow, Plow) Were satisfied to be an RS*. We set an initial value of
thh as 0.5 (equivalent to a correlation coefficient of 0.71) and py, as
0.04, based on the ¢°-d,, correlation values determined by a previous
study (Kasischke et al., 2009).

The second step also calculated slope values of 6°-d,, correlations for
RS, RS, and RS~ candidates using the linear least-squares method. For
an RS™ or RS~ candidate, only one slope value was estimated, whereas,

for an RST candidate, two slope values were estimated for the positive
and negative trends, respectively.

We applied the two-step RS-type classification to each 30 m x 30 m
pixel for C-VV and C-VH data separately, resulting in two RS-type
classification maps for each study area. The RS-type classification
relied on two critical thresholds: ng, and R%. We conducted a sensitivity
analysis for these two parameters by evaluating RS-type classifications
with different ng, and R%y, values (ng, of 2, 4, 10, and 20; R%, of 0.3 and
0.7) other than the initial values (ng, of 7 and R?s, of 0.5). The sensitivity
test used a constant py, value of 0.04. Another sensitivity test was con-
ducted to investigate the minimum number of SAR images needed to
accurately classify the RS type. We used one-year and two-year SAR data
to classify RS types and compared the results to the three-year ones. The
results of the sensitivity analysis are presented in Supplementary Ma-
terials Note 3, Table S2, and Table S3.

We also conducted a similar 6°-dy, correlation analysis using data
acquired during unflooded periods (dy, < 0), which only occurred in the
NESRS study area. According to J.-W. Kim et al. (2017b), positive cor-
relations between ¢° and groundwater levels are expected. Therefore,
we selected pixel locations with a significant number of SAR images (no
less than ny,) acquired during unflooded periods to detect positive 6°-d,
correlations (R2 > thh and p < peh)-
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Fig. 6. Four representative pixels (in row-major order) with distinct scattering behavior are presented according to C-VV (the first two columns) and C-VH (the last
two columns) ¢°. Row one represents a pixel from the “Shrubs & Trees” (s & t) class in S3A; row two “Cladium Medium & Dense” (Cl & C1.D) in S3A; row three
“Cladium Sparse” (C1_S) in NESRS; row four “Water” in NESRS. Column one (a, €, i, and m) displays time series of C-VV ¢° (including red and cyan dots with values
presented on the left y-axes) and daily median d,, (black dash-dot line with values shown on the right y-axes) measured from April 2016 to March 2019 (time
presented in decimal year format on the x-axes). Red dots indicate ¢° in phase with d; cyan dots indicate 6° out of phase with d. All negative d,, values are replaced
with zero. Column two (b, f, j, n) shows scatter plots of 6° versus d,,. Red and cyan dots are the same as (a, e, i, m); blue dots mark the 6°,.x observations. The lines
are the least-squares best-fit linear models. Column three (c, g, k, 0) and four (d, h, 1, p) show the time series of C-VH ¢° and d,,, and scatter plots of C-VH ¢° and dy,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Summary of the slope, R? and p-values for regression lines for four examples. "Medium & Dense Cladium’ class has two values for slope, R?, and p-value, corresponding
to the positive and negative trends of the combined ¢°-d, linear relationship.

Pixel Examples C-Vv C-VH

Slope (dB/cm) R2 p-value Slope (dB/cm) R2 p-value
Shrub & Tree 0.05 0.72 <0.01 0.02 0.35 <0.01
Medium & Dense Cladium 0.08 —0.07 0.78 0.56 <0.01 0.02 0.04 —-0.13 0.46 0.82 <0.01 0.02
Sparse Cladium -0.13 0.63 <0.01 -0.23 0.80 <0.01
Water 0.04 0 0.2 0.0 0.0 0.76 0.0 0.0 0.0 0.0 0.9 0.7

5.2. Analysis of RS types in relation to vegetation characteristics

The second stage of the methodology analyzed vegetation density
and morphology effects on the relationships between ¢° and dy, using
the RS-type classification maps, vegetation maps, and NDVI observa-
tions, all of which were co-registered at the Landsat 30-m grid. First, we
calculated RS-type distributions (relative occurrences in percentages of
four RS-types) by vegetation class and compared the RS-type distribu-
tions (1) between vegetation classes of the same morphology but
different densities, and (2) between vegetation classes of different
morphologies but similar densities.

Since the vegetation classes only provided classification labels on
vegetation density (e.g., sparse, medium dense), we also evaluated class-
specific NDVI observations to investigate the effect of relative density on
RS types. NDVI cannot be used to compare vegetation densities between
different vegetation types because NDVI is also associated with other
biophysical vegetation parameters, such as canopy structure and
chemical content (Gamon et al., 1995). Therefore, NDVI was used

conditionally for vegetation densities of Cladium vegetation only, which
had dominant spatial coverages in both study areas and was charac-
terized by a significant range of densities (Fig. 3(b) and (c)), allowing us
to understand the density effects on scattering behavior.

We used the Wilcoxon rank-sum statistical test to evaluate if the
median NDVI values were significantly different between RS types
(Fig. 8). The analysis was done for Cladium pixels in NESRS that included
the four density classes: “Sparse”, “Medium & Sparse”, “Medium”, and
“Dense”, and for the “Medium & Dense Cladium” class in S3A.

6. Results
6.1. Examples of four representative pixels
6.1.1. RS types of four pixels
Four pixels representing different vegetation/water covers illus-

trated the scattering behavior of RS™, RS*, RS™, and non-RS versus
water depth variations, respectively (Fig. 6).
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For the “Shrubs & Trees” class example, variations in both C-VV and
C-VH ¢° followed similar trends as water depth changes in the time
domain (Fig. 6(a) and (c)), resulting in positive linear relationships
between ¢° and d,y (Fig. 6(b) and (d)). However, the correlation in C-VV
o° was stronger than C-VH. Consequently, this pixel was classified as an
RS™ for C-VV ¢°, but as non-RS for C-VH according to the R? values
(Table 2).

For the “Medium & Dense Cladium” class example, the majority of
the C-VV ¢° were in the same phase with d,, variations, with some ex-
ceptions (i.e., in the middle part of the time series when water depth
values were high, and ¢° and d,, were out of phase (Fig. 6(e)). The
correlation plot of C-VV ¢° observations indicated a combined positive
and negative relationship with dy, both with high R%s (Fig. 6(f)).
However, the negative trend showed a weaker statistical significance (p-
value = 0.02) compared to the positive trend (p-value <0.01) because of
a fewer number of acquisitions. C-VH ¢° displayed a similar combination
pattern of positive and negative linear relationships (Fig. 6(h)) with a
weaker positive relationship but a stronger negative relationship with
d,, than G-VV. Consequently, this pixel was classified as an RS* for C-VV
6° but a non-RS for C-VH (an RS™ required both positive and negative
linear trends’ R%s higher than thh).

For the “Sparse Cladium” class pixel, the time series of both C-VV and
C-VH ¢° observations were out of phase with dy, (Fig. 6(i) and (k)).
Though strong negative ¢°-d,, relationships occurred for both C-VV and
C-VH 6°, C-VV ¢° had a weaker correlation (Fig. 6(j)) than C-VH (Fig. 6
(1)). Consequently, this pixel was classified as RS~ for both polarizations.

For the “Water” class pixel, as expected, there was no linear corre-
lation between ¢° and dy in areas covered by water but having no
vegetation (Fig. 6(n) and (p)), and the pixel was classified as a non-RS
for both polarizations because of low R? values and high p-values
(Table 2).

NESRS C-VV RS-types

0 2 4 8 Kilometers

4 4 |

S3A C-VV RS-types

I : 4 ! 4 4 |
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6.1.2. Slopes of regression lines for the four pixels

For the “Shrubs & Trees” example, the 6°-d,, regression lines showed
positive slope values of 0.05 and 0.02 db/cm for C-VV and C-VH ¢°,
respectively (Table 2). For the “Medium & Dense Cladium” example with
a combined ¢°-d,, relationship, the positive and negative slope values
were 0.08 and —0.07 dB/cm for C-VV ¢°, and 0.04 and —0.13 dB/cm for
C-VH o°. For the “Sparse Cladium” example, the negative slope values
were —0.13 and —0.23 dB/cm for C-VV and C-VH ¢°, respectively. The
“Water” pixel showed two slope values for each polarization because it
was classified as a RS candidate in the first RS classification step, and
all slope values were close to zero.

6.2. RS-type classification for the NESRS and S3A study areas

Fig. 7 presents the classification results based on RS type. NESRS was
dominated by RS~ and non-RS types, with negligible RS™ and RS* type
pixels. For C-VV ¢°, the non-RS type was dominant (76%), and the RS™
type (20%) was mainly located in areas with the “Sparse Cladium” class
(Fig. 3(b)). However, for C-VH ¢°, RS™ type was dominant (68%), and
non-RS type (32%) was mostly located in areas with woody vegetation,
including the northern and western edges and tree islands in the middle
of the study area (Fig. 7(b), Fig. 3(b)). More than 99% of RS™ type pixels
had p-values less than 0.001 for both C-VV and C-VH c°.

In S3A, RS™ and RS* types were frequent for C-VV and RS~ type for
C-VH o¢°, though the non-RS type was dominant for both polarizations.
For C-VV, RS™ type (5%) was located on tree islands, corresponding to
the “Shrubs & Trees” class (Fig. 3(c)), and RS* type (15%) was located
on ridges, corresponding to the “Medium & Dense Cladium” class. For C-
VH ¢°, the RS™ type pixels (2%) were also located on tree islands but
with a lower number than those for C-VV. RS~ type pixels (23%) were
located in slough vegetation. More than 99% of RS pixels (including

NESRS C-VH RS-types

S3A C-VH RS-types

Legend
RS™
o Rs*
® RS~
® Non-RS

Fig. 7. Spatial distribution of RS types in NESRS (a, b) and S3A (c, d). (a) and (c) show RS types for C-VV ¢°. (b) and (d) show RS types for C-VH ¢°.
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Table 3

Relative coverages (%) of main vegetation types in NESRS and S3A.
NESRS Vegetation Percentage S3A Vegetation Percentage
Cladium Sparse 27 Floating & Submerged 39
Cladium Medium 24 Cladium Medium & Dense 23
Cladium Medium & Sparse 19 Nymphaea & Cladium 15
Graminoid Marsh Sparse & Cladium Sparse 7 Periphyton & Cladium 7
Graminoid Prairie Medium 3 Cladium & Broadleaf Emergent 5
Cladium & Typha 3 Broadleaf & Blechnum 3
Cladium Dense 2 Shrubs & Trees 3
Graminoid Marsh Sparse 2 Salix 1
Graminoid Marsh Medium 2
Salix 2
Tree 1
Graminoid Prairie Sparse 1

RS*, RS*, RS7) had p-values less than 0.001 for both C-VV and C-VH ¢°,
except that 50% and 81% of RS™ type pixels had p-values of the negative
linear trends (piow) less than 0.001 for C-VV and C-VH o°, respectively.

Our RS-type classification method successfully classified the major-
ity of pixels in both study areas, but noisy ¢° observations or DTM errors
at times caused misclassification of RS or RS~ types as non-RS. For a
more detailed discussion and solution, see Supplementary Materials
Note 4 and Fig. S5.

The sensitivity test of R? showed that as thh increased from 0.3 to
0.7, the percentage of RS types (including RS*, RST, and RS™) decreased
significantly (Table S2). However, variations in ng, from 2 to 20 had a
limited impact on the percentage of RS (< 8%). Sensitivity tests for
different lengths of SAR time series (one and two years) indicated that
the difference of RS-type distribution between one-year and three-year
time series was more significant than the difference between two-year
and three-year time series (Table S3). In S3A, the percentages of
different RS-types between time series were larger than those for NESRS.

6.3. Analysis of RS types in relation to vegetation characteristics

This section presents RS-type distributions for the major vegetation
classes by study area (Section 6.3.1), and NDVI distributions by RS type
for Cladium dominated vegetation classes in both study areas (Section
6.3.2).

6.3.1. RS-type distributions based on vegetation classes
6.3.1.1. NESRS study area. Table 3 presents relative spatial coverages
of 12 major vegetation classes in NESRS, representing three morpho-

logical categories: tall graminoid, short graminoid, and woody

Table 4
RS-type distributions for Cladium vegetation classes in both NESRS and S3A.

vegetation according to Table 1. RS-type distributions varied with
density class within the same growth morphology. For Cladium, a tall
graminoid species with four density classes, RS-type distributions for C-
VV c° showed that only “Sparse Cladium” had a considerable RS~ type
percentage (Table 4), and the other three Cladium classes with higher
densities were dominated by the non-RS type. For C-VH ¢°, RS~ type
percentage decreased, and non-RS type percentage increased as vege-
tation density increased. The other two vegetation types, “Graminoid
Prairie” and “Graminoid Marsh”, showed similar behavior in their
sparse density classes displaying higher RS™ type percentages than the
corresponding medium density classes for both polarizations (Table S4).

RS-type distributions were different between tall and short growth
morphologies with similar densities (Table 5), with Cladium and “Gra-
minoid Prairie” representing tall growth morphology, and “Graminoid
Marsh” the short growth morphology. To avoid the density effect on RS-
type distributions, we only compared sparse density classes. Both tall
and short morphology groups included only two RS types: RS~ and non-
RS, but tall graminoids had higher RS™ type percentages than short
graminoids for both polarizations. The slope values of these major
herbaceous vegetation were summarized in Table 6. Finally, the woody
classes, “Salix” and “Tree”, were dominated by the non-RS type in both
polarizations (Table 7).

The slope values were generated from linear regression analysis for
seven major vegetation types characterized by significant RS™ type
percentages (Table 6 and S4). For each vegetation type, slopes for C-VV
o° were always shallower than those for C-VH. Cladium and “Graminoid
Marsh” vegetation types had shallower slopes compared to “Graminoid
Prairie”.

We also detected a significant number of RS™ type pixels using 6° and
dy, data during unflooded periods (dy, < 0) in NESRS (Table S5). To

Study area Morphology Vegetation Class RS-type percentages (%) C-VV RS-type percentages (%) C-VH
RST RS* RS~ Non-RS RS™ RS* RS~ Non-RS
Cladium Sparse 0 0 46 54 0 0 95 5
Cladium Medium & Sparse 0 1 11 88 0 0 83 17
NESRS Zarlalminoi d Cladium Medium 2 5 3 90 0 0 56 44
Cladium Dense 8 2 2 88 1 0 3 96
S3A Cladium Medium & Dense 1 46 2 51 0 1 7 92
Table 5
RS-type distributions for “Tall” and “Short Graminoid” morphologies in NESRS.
Morphology Vegetation Class RS type percentages (%) RS type percentages (%)
C-vv C-VH
RS* RS* RS~ Non-RS RS* RS* RS~ Non-RS
Tall Cladium Sparse 0 0 46 54 0 0 95 5
Graminoid Graminoid Prairie Sparse 0 0 64 36 0 0 86 14
Short Graminoid Graminoid Marsh Sparse 0 1 28 71 0 0 78 22
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Slope mean and standard deviation (dB/cm) values for major vegetation types in NESRS calculated using all RS~ type pixels for each vegetation type. (Values are

omitted if the RS~ type percentage is smaller than 15%.)

\A% VH

Vegetation Class Mean Std. Dev. Number of RS™ Pixels Mean Std. Dev. Number of RS™ Pixels
Cladium Sparse -0.13 0.03 20,037 -0.23 0.04 41,706
Cladium Medium * * * -0.17 0.05 21,560
Cladium Medium & Sparse * * * -0.20 0.05 25,912
Graminoid Prairie Sparse -0.18 0.05 1,068 -0.30 0.09 1,430
Graminoid Prairie Medium -0.22 0.08 1,349 -0.39 0.15 2,143
Graminoid Marshes Sparse -0.13 0.03 1,038 -0.18 0.04 2,940
Graminoid Marshes Medium * * * -0.16 0.06 1,817

distinguish these pixels from the RS™ type detected during the flooded
state, we termed them unflooded RS™. More unflooded RS™ type pixels
were detected using C-VV ¢° (38,128; 24% of the total number of pixels)
than C-VH (3,693; 2%). Unflooded RS" type was detected in all major
vegetation types in NESRS, and the majority of unflooded RS™ type
pixels were found in Cladium, the dominant vegetation type. Cladium
and Graminoid Prairie (each including multiple density levels) were
characterized by large percentages of the unflooded RS™ type for C-VV
data. Shrub and tree vegetation types also had unflooded RS™ type
pixels, but with a lower percentage (Table S5).

6.3.1.2. S3A study area. The RS-type distribution of three major vege-
tation classes in S3A: “Floating & Submerged”, “Nymphaea & Cladium”,
and “Periphyton & Cladium” were very similar (Table 8). Non-RS was
the most dominant pixel type for C-VV 6°, whereas both RS~ and non-RS
types were the most abundant for C-VH ¢°. C-VV ¢° results showed the
“Nymphaea & Cladium”, and “Periphyton & Cladium” classes had larger

Table 7
RS-type distributions of “Woody” and “Broadleaf Emergent” morphology.

RST type percentages than the “Floating & Submerged” class. Another
major class, “Medium & Dense Cladium” had considerable RS* type
percentages for C-VV ¢° and dominant non-RS type for C-VH o¢°
(Table 4).

Woody classes (“Shrubs & Trees” and “Salix”) had considerably
higher RS™ type percentages for C-VV than C-VH ¢° (Table 7). The
“Broadleaf Emergent & Blechnum (fern) Marsh” class resembled RS-type
distributions of woody vegetation for many RS type pixels in both
polarizations (Table 7).

Overall, RS-type distributions significantly varied with the three
major morphologies (Table S6). “Floating/Submerged & Tall Grami-
noid” morphology had many RS™ type pixels in C-VH, “Tall Graminoid”
morphology class “Medium & Dense Cladium” had many RS* type in C-
VV, and “Woody” and “Broadleaf Emergent” morphologies for RS™ type
in both polarizations.

For the RS™ type, linear model slopes (Table 9) showed similar mean
values (about 0.04 dB/cm) for vegetation types “Salix”, “Shrubs and

Study area Morphology Vegetation Class RS type percentages (%) C-VV RS type percentages (%) C-VH
RS* RS* RS~ Non-RS RS* RS* RS~ Non-RS
Salix 4 1 0 95 1 0 0 99
NESRS Woody Tree 0 0 3 97 0 0 4 96
Wood Shrubs & Trees 47 0 0 53 26 0 0 74
S3A Y Salix 43 4 2 51 5 0 0 95
Broadleaf Emergent Broadleaf Emergent & Blechnum (Fern) Marsh 58 0 0 42 21 0 0 79
Table 8
RS-type distributions of “Floating/Submerged & Tall Graminoid” morphology in S3A.
Morphology Vegetation Class RS type percentages (%) C-VV RS type percentages (%) C-VH
RS* RS* RS~ Non-RS RS* RS* RS~ Non-RS
Floating Broadleaf & Submerged Floating & Submerged 0 0 0 100 0 0 29 71
. - Nymphaea & Cladium 1 10 0 89 0 0 28 72
Floating/ Submerged & Tall Graminoid Periphyton & Cladium o 3 o 9 o 0 30 70

Table 9

Slope mean and standard deviation values (dB/cm) for major vegetation types in S3A for RS, RS*, and RS~ types. Standard deviation values are presented in brackets.
(Values are omitted if a RS type percentage is smaller than 15% or not applicable.)

\'A% VH

RS type Vegetation Class Positive Slope Negative Slope Number of RS Positive Slope Negative Slope Number of RS
Salix 0.04 (0.01) 280

RS* Shrubs & Trees 0.04 (0.01) 1,049 0.04 (0.00) 575

Broadleaf & Blechnum 0.04 (0.01) 868 0.04 (0.00) 315
RS* Cladium Medium & Dense 0.07 (0.01) -0.1 (0.03) 6,443
Cladium & Broadleaf 0.07 (0.01) -0.1 (0.03) 1,007

Floating & Submerged -0.07 (0.01) 3,422

RS Nymphaea & Cladium -0.07 (0.01) 2,610

Periphyton & Cladium -0.07 (0.01) 1,348

Cladium & Broadleaf -0.08 (0.02) 660
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Cladzum in NESRS Fig. 8. Histograms of NDVI values for (a, b) Cladium in
NESRS comprising all four density classes; (c, d) the
(a) C-VV (b) C-VH “Medium and Dense Cladium” class in S3A. RS types were
©2000 2000 - classified using C-VV ¢° (a, ¢) or C-VH ¢° (b, d). Four sub-
g-é g-é images share the same NDVI ranges for comparison, which
= = shows NDVI values of NESRS Cladium are less than S3A
“5 ﬁoa Cladium. NESRS Cladium RS~ type in C-VV ¢° (a) has an
— 1000 o 1000 NDVI value range from 0.25 to 0.35, narrower than that in
..8 ,_8 C-VH (0.25-0.45). Transparency is set for the front layers
§ g of each sub-images to reveal the non-RS type background
Z. 2 ok layer.
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Trees”, and “Broadleaf & Blechnum” for both C-VV and C-VH ¢°. For the Submerged”, “Nymphaea & Cladium”, “Periphyton and Cladium”, and
RS* type, “Cladium Medium and Dense” and “Cladium and Broadleaf” “Broadleaf and Cladium”. Slope standard deviations were no more than

showed similar positive (0.07 dB/cm) and negative (—0.1 dB/cm) slope 0.03 dB/cm for each vegetation type.
means in C-VV ¢°. For the RS™ type, four vegetation types shared similar
slope means (about —0.07 dB/cm) for C-VH ¢°, including “Floating and

C-band Microwave Energy Scattering on Ground/Water Surfaces and Linear Relationships

C-VV¢,-d, | C-VHo)-d,,
Vegetation Unflooded Shallow Water Deep Water Linear Linear
Relationship | Relationship
(d (e)
RS* non-RS
o? o?
Sparse
Woody
. Double-bounce and Enhanced double-bounce
Surface scattering multiple-path scattering | and multiple-path scattering
® (® (h)
Dense
herbaceous
Surface scattering Douple-bounce nd ; Specular reflection > >
multiple-path scattering dy d,
(k) ) (m) (n) (0)
o! RS- o! RS
Sparse
herbaceous \
Surface scattering Specular reflection Specular reflection > >
d,, d,

Fig. 9. Schematic illustrations of the suggested C-band microwave energy scattering from the ground or water surfaces and linear 6°-d,, relationships for both C-VV
and C-VH o° for the same vegetation types with Figure 2. The text in each grid presents the dominant scattering mechanism(s). Dashed lines in (e) and (j) denote
weaker linear relationships (less R?) and less sensitivity (shallower slope) to variations in water depths in C-VH observations than C-VV, and the bold lines in (j) and

(o) denote stronger linear relationships and greater sensitivity to variations in water depths than C-VV.
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6.3.2. NDVI analysis by RS type for Cladium

In NESRS, for the Cladium dominated pixels, including all four den-
sity classes, NDVI distributions varied with RS type (Fig. 8(a) and (b)).
Median NDVI values for the RS™ type were significantly lower than those
of the non-RS type (p < 0.001; Wilcoxon rank-sum test) for both C-VV
and C-VH c°. C-VH o° results showed a considerably larger number of
RS™ type pixels with a wider range of NDVI values than C-VV. NDVI
results were consistent with the RS-type distributions: for C-VV ¢°, only
the “Sparse” class had a high RS™ percentage, whereas, for C-VH ¢°, all
“Sparse”, “Sparse & Medium”, and “Medium” classes had high RS~ type
percentages (Table 4).

For the “Medium and Dense Cladium” class in S3A, the median NDVI
value of the RS* type in C-VV 6° was significantly lower than that of the
non-RS type (p < 0.001; Wilcoxon rank-sum) (Fig. 8(c)). The non-RS
type was dominant in C-VH ¢° results (Fig. 8(d)).

7. Discussion

This study investigated the role of water depth and vegetation den-
sity and morphology in spatiotemporal variations of Sentinel-1C-VV and
C-VH backscatter at a 30-m resolution. Previous studies that relied on
single-date SAR data needed to average several pixels to obtain the level
of uncertainty for assessing backscatter variability as a function of sur-
face characteristics. For example, the soil moisture monitoring study of
Bourgeau-Chavez et al. (2007) used 200 x 200 m area (8 x 8 of 25 m
pixels) to overcome uncertainties due to speckle noise. Our study clearly
showed that Sentinel-1 SAR time series data were sufficient for detecting
statistically significant 6°-d,, correlations at a 30 x 30 m resolution.

Here we interpret microwave scattering behavior in response to
water depth (as a proxy for the height of vegetation above water sur-
faces) and vegetation types. First, we provide physical explanations for
the temporal backscatter changes in the first three example pixels
(Fig. 6) (Section 7.1). Second, we interpret the role of vegetation density
and morphology in linear ¢°-d, relationships (Section 7.2). Third, we
compare the vegetation characteristics and scattering behavior between
this study and previous ones (Section 7.3). Fourth, we explain the pos-
itive correlations between backscatter and groundwater levels (Section
7.4). Finally, we discuss the limitations of this study (Section 7.5).

7.1. Changes in scattering mechanisms in response to water depth
variations

Our results (Section 6.1, Fig. 6) indicated that significant linear re-
lationships between C-band ¢° and d, which were only detected from
co-polarized observations in previous studies (Kasischke et al., 2003,
2009; Lang and Kasischke, 2008), also occurred in C-VH observations.
Overall, our C-VV results for the linear relationships (Fig. 6(b), (), and
(j)) were similar to the previous studies (Section 2.2). This section
provides physical explanations for the observed C-VV and C-VH ¢°-dy,
linear relationships based on changes in scattering mechanisms in
response to varying water depths, according to the three vegetation
types (Fig. 9).

The example of the “Shrubs & Trees” pixel in S3A showed a positive
linear relationship between ¢° and dy for both C-VV and C-VH data
(Fig. 6(b) and (d)). As water depth increases up to 125 cm (Fig. 6(a)), the
volume of understory canopy decreases, which results in a two-way
increase of microwave energy transmission because the incident mi-
crowave radiation has fewer obstacles in the canopy that absorb or
scatter the energy in diffuse directions. As a result, there is more mi-
crowave energy to reflect from the water surface to interact with trunks
and branches (enhanced double bounce and multiple-path scattering,
respectively) before returning to the SAR (Fig. 9(a) - (¢)). In addition, the
reduction in canopy volume also increases the scattered microwave
energy due to reduced canopy attenuation. The linear model for C-VH ¢°
and dy, had a shallower slope than C-VV, suggesting that C-VH ¢° is less
sensitive to changes in water depth because water depth rises mainly
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enhance double-bounce scattering with limited depolarization (return-
ing vertically polarized energy). A portion of double-bounce scattering
(due to rotated dihedral of ground-trunk) and multiple-path scattering
leads to the backscattered horizontally polarized energy (C-VH), but
with less intensity than C-VV backscatter (Hong and Wdowinski, 2014).
Stronger double-bounce components also result in higher C-VV ¢° values
than C-VH.

While the positive relationship is similar to the C-VV ¢°-d,, linear
relationship found by Lang and Kasischke (2008) in other forested
wetlands, they attributed it to increase of the fraction of the water sur-
face area as water depth rises due to micro-topography variations (Fig. 2
(a) - (c)). Though micro-topography could play an important role in
backscatter increase under low-level flooded states (Lang and Kasischke,
2008), it can only partially explain backscatter changes in the very early
stage of water depth increase. In our study area, micro-topography
variations occur when rock outcroppings and solution holes increase
the local variability of the ground surface. When soil fills in solution
holes and evens out the irregular surfaces, the micro-topography is
minimal. Micro-topography in herbaceous wetlands is very low because
of a thick layer of peat soils that covers the rock underneath it. Micro-
topography variations due to ground level variations are usually
within 10 cm for the “Shrubs and Trees” in the S3A study area and a lot
less than that in areas of “Medium and Dense Cladium” growing on thick
layers of peat. In addition, in densely vegetated marsh communities, soil
surfaces are rarely exposed because of alive and dead leaf matter and
periphyton cover.

For “Shrubs & Trees” (bayhead forests and shrubland), dense un-
derstory results in significant energy attenuations. As water depth rises,
the volume of the emergent understory vegetation decreases, reducing
the microwave energy attenuations and increasing energy transmission.
Therefore, we concluded that an increase in the degree of microwave
energy transmission in response to water depth increase is the main
reason for the observed backscatter increase, and the soil micro-
topography effect on backscatter is very limited.

The second example, a “Medium & Dense Cladium” pixel in S3A,
showed a combined positive and negative linear relationship between ¢°
and dy, for both C-VV and C-VH ¢° (Fig. 6(f) and (h)). Similar to the first
example, the increase of backscatter under shallow flooded states can
also be attributed to the enhanced double-bounce and multiple-path
scattering energy resulting from less canopy attenuation of the micro-
wave energy in both incident and returning directions. C-VH ¢° had less
sensitivity (a shallower slope) to variations in water depths because of a
weak double-bounce and multiple-path scattering component (Fig. 9
(g)). Under deep flooded states, the observed decrease of C-VV and C-VH
backscatter as water depth increases is because the volume of vegetation
available to interact with microwave energy decreases, resulting in
reduced canopy scattering, double-bounce scattering, and multiple-path
scattering (Fig. 9(h)). C-VH ¢° (with a steeper slope) is more sensitive to
water depth changes than C-VV ¢°.

The third example, a “Sparse Cladium” pixel in NESRS, displayed a
strong negative relationship between ¢° and d,, for both C-VV and C-VH
o° (Fig. 6(j) and (1)). Increasing water depth reduces canopy backscatter
and multiple-path scattering leading to the decrease of both C-VV and C-
VH o° (Fig. 9(k) - (m)). Similar to the second example under deep
flooded states, C-VH ¢° (with a steeper slope) is more sensitive to water
depth than C-VV (Fig. 9(n) and (0)). Also, C-VH ¢° had lower values than
C-VV because of the limited energy depolarization generated by
multiple-path and canopy scattering.

7.2. Vegetation characteristics effects on scattering behavior

We found considerable variations in RS-type distributions among the
20 major vegetation classes of varying densities and growth morphol-
ogies (Tables S4, S5). To understand the effect of vegetation density and
morphology separately on scattering behavior represented by the RS
types, we analyzed RS-type distributions within several selected
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Table 10
Comparison of Cladium vegetation characteristics and scattering behavior between studies. “***” indicates no available dataset.
Study Area Vegetation Class Height (cm) Biomass (g/m?) C-VV RS type C-VH RS type Literature
NESRS Sparse Cladium 165 246 + 40 RS™ RS™ Sah et al. (2020); Kalla and Scheidt (2017)
Sparse & Medium Cladium 175 246 + 40 non-RS RS~
Medium Cladium 189 246 + 40 non-RS RS~
Dense Cladium 216 246 + 40 non-RS non-RS
S3A Medium & Dense Cladium 202 352 + 37 RS* non-RS
BCNP Marl Prairie 44 330 RS~ ok Kasischke et al. (2003)
Alaskan wetlands Non-forested Sites 48-70 el RS~ el Kasischke et al. (2009)

vegetation classes. First, we investigated the effect of density of the tall
graminoid species Cladium jamaicense, which covered most of NESRS
and the ridges of S3A (Fig. 3(b) and (c)). Second, we investigated the
effect of vegetation morphology on scattering behavior for the five most
abundant plant morphologies (Table 5, 7, 8).

7.2.1. Vegetation density effects on scattering behavior of Cladium
RS-type distributions for the five Cladium density classes suggest that
density determines the ratio between RS~ and non-RS types’ percent-
ages for both polarizations (Table 4). Sparse classes had the highest RS™
type percentage in both polarizations, suggesting that backscatter from
sparse Cladium is primarily canopy scattering (with little double-bounce
scattering) that decreases as water depth increases (Fig. 9(k) - (m)), a
result consistent with that of Pope et al. (1997) and Kasischke et al.
(2003). Most of the pixels that were classified as RS~ type for both po-
larizations had steeper slopes in C-VH ¢° than C-VV (e.g., Fig. 6(j) and
(1), suggesting that C-VH ¢° is more sensitive to water depth changes.
With increasing Cladium density, RS~ type percentage decreased for
both polarizations because higher vegetation density results in less

(a) Cross- (b) Co-pol
pol RS RS*

Tree I“sld wit

transmission of microwave energy through the canopy and an increase
of double-bounce scattering, especially for C-VV ¢° (Supplementary
Materials Fig. S6). For C-VH ¢°, the slope became shallower as the
density increased from sparse to medium dense (Table 6), indicating
backscatter from sparse vegetation is the most sensitive to variations in
water depths. NDVI value distribution of the RS™ type is much wider for
C-VH o° than C-VV (Fig. 8(a) and (b)), indicating a wider range of
Cladium density is characterized by strong ¢°-d,, correlations for C-VH
o°. Overall, for sparse to medium dense Cladium, C-VH ¢° had greater
sensitivity to water depth changes than C-VV c°.

Cladium in S3A (“Medium & Dense Cladium” class) was denser than
that in NESRS, as evidenced by the differences in their NDVI values
(Fig. 8). The C-VV results indicated that nearly half of the pixels are RS*
type (Table 4), and the Wilcoxon rank-sum statistical test showed that
median NDVI for RSt was significantly lower than the non-RS type
(Fig. 8(c)). Non-RS type occurred mainly in very dense Cladium, most
likely because of low microwave energy transmission through the
canopy.

(c) Co- and cross-

Inundated Woody,
Vegetation

Nymphadea 5
Slough

Medium & Dense'Cladium
Ridge

Fig. 10. Aerial photograph of ridge and slough landscape with various scattering behavior. The ridges are covered with mixed medium and dense Cladium, and the
sloughs are characterized by floating broadleaf Nymphaea, submerged and floating periphyton, and Cladium marshes. (a, b, c) three vegetation types (indicated by the
text in white) as possible RS types in C-VV or C-VH ¢°. (a) “Floating/Submerged & Tall Graminoid” morphology as the RS~ type in C-VH ¢°. (b) “Medium & Dense”
Cladium in ridges and “Floating/Submerged & Tall Graminoid” morphology in sloughs as the RS* type in C-VV ¢°. (c) Inundated woody vegetation located on tree
islands as the RS™ type in both C-VV and C-VH ¢°. Note that the non-RS type is not shown here, which accounts for considerable areas in the ridge and

slough landscape.
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7.2.2. Vegetation morphology effects on scattering behavior

We analyzed RS-type distributions for five vegetation growth mor-
phologies: “Tall Graminoid”, “Short Graminoid”, “Floating/Submerged
& Tall Graminoid”, “Woody”, and “Broadleaf Emergent” vegetation.

Comparing the three sparse density graminoid classes in NESRS:
Cladium, “Graminoid Prairie” (including species such as Muhlenbergia
capillaris), and “Graminoid Marsh” (including species such as Eleocharis
spp., Rhynchospora spp., Panicum spp.) (Table 5), revealed that tall
graminoids had higher RS™ type percentages than short graminoids in
both polarizations. Considering short graminoid species, the median
pixel-based maxima of water depth was 61 cm, and the maximum was
95 cm, which submerged large portions of many short graminoids for
long periods resulting in backscatter insensitivity to water depth
changes. However, backscatter from the tall graminoid is constantly
sensitive to water depth changes because a significant volume of the
plants is above the water surface at all times (e.g., Cladium heights are
over 160 cm according to Table 10). Therefore, plant height indicates
the water depth range, to which SAR backscatter can be sensitive. Also,
“Graminoid Prairie” had the steepest slope values for both C-VV and C-
VH o°, indicating high sensitivity of backscatter in response to changes
in water depth.

S3A slough were characterized by three “Floating/Submerged & Tall
Graminoid” vegetation classes (Table 8). For the class “Broadleaf
Floating & Submerged”, the presence of the emergent species Cladium
among floating and submerged species in a slough environment was
much lower (~4% on average) than for the other two classes. The three
classes had different scattering behavior in C-VV ¢°, but similar behavior
in C-VH ¢°. For C-VV, RST did not exist in the “Broadleaf Floating &
Submerged” class, but it occurred in the “Nymphaea & Cladium” and
“Periphyton & Cladium” classes, because the emergent Cladium is dense
enough to induce double-bounce scattering within the floating vegeta-
tion matrix (Fig. 10(b)). However, for C-VH 6°, the RS™ type occurred for
all three classes with similar slope values (Table 9), indicating similar
backscatter sensitivity to water depth variations. The non-RS type was
dominant for both C-VV and C-VH o°. Overall, the ridge and slough
landscape can provide all three RS types (RST, RS*, RS™) in both C-VV
and C-VH data (Fig. 10).

Woody vegetation RS-type distributions differed between the two
study areas (Table 7). Woody vegetation in NESRS was dominated by the
non-RS type, most likely because they were either located at elevated
ground surfaces or tree islands that were rarely inundated. The halo-
shaped forests around culverts along Tamiami Trail (deep and light
green fringes at the northern edge of Fig. 3(b)) were classified into the
non-RS type (Fig. 7(a)), despite low elevation and long hydroperiods,
because dense tree canopies of Annona glabra and dense, tall understory
broadleaf vegetation (e.g., ferns) can reduce the transmission of mi-
crowave energy. In contrast, woody vegetation in S3A, mostly located
on lower elevation parts of the tree islands (tails) where bayhead forests
and shrubs dominate (Fig. 10(c)), had many RS™ type pixels in C-VV ¢°
and fewer RS™ type pixels in C-VH ¢°. RS type pixels are attributed to
deep water depths throughout the year, with remarkable water depth
variations greater than 1 m. However, the northern part of large tree
islands (heads) is elevated and rarely inundated, thus showing non-RS
type behavior (e.g., the southeastern corner tree island in Fig. 3(c),
Fig. 7(c)). Similarly, the broadleaf emergent species also showed
considerable RS™ type pixels for both C-VV and C-VH ¢° because their
tall emergent stems functioned as corner reflectors to induce double-
bounce scattering. The S3A woody and broadleaf emergent
morphology vegetation types were characterized by shallow slopes
(0.04 dB/cm) for both polarizations (Table 9), indicating that the
backscatter is less sensitive to water depth changes compared to the
herbaceous vegetation in NESRS.

In contrast to the positive 6°-d,, correlation for forested wetlands
found in this study, Kasischke et al. (2003) found negative correlations
for cypress/pines sites in the Everglades BCNP. Different types of cor-
relations could be attributed to biophysical parameters of trees, which
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play essential roles in C-band microwave energy interaction with forest
layers (Fig. 1). For our study, the positive 6°-d,, correlations in both C-
VV and C-VH are attributed to trees about 5-10 m high with some open
canopy that allows the double-bounce and multiple-path scattering to
return to the SAR. The cypress/pine vegetation in Kasischke et al. (2003)
has different physical characteristics from our bayhead swamp forest
and shrubland. More field surveys are required to understand this dif-
ference in scattering behavior for the different forest and shrubland
types. However, both studies are consistent in C-band backscatter being
more sensitive to variations in water depths for herbaceous than woody
vegetation.

7.3. Comparison of vegetation characteristics of key wetland types

We compared the NESRS and S3A Cladium jamaicense vegetation
height and biomass with the herbaceous vegetation characteristics from
another two studies that discovered RS~ type backscatter behavior using
ERS SAR C-VV data (Table 10, Kasischke et al., 2003, 2009). For the
Cladium vegetation in NESRS, as the density increases from “Sparse” to
“Dense” class, Cladium mean height increases from 165 to 216 cm.
Cladium in WCA-3A has higher vegetation biomass than those in ENP.
Sparse Cladium in NESRS is predominantly RS~ type, whereas medium
and dense Cladium in S3A is predominantly RS* type. In comparison,
according to Kasischke et al. (2003), marl prairies in BCNP, with shorter
stature but a higher level of biomass than the “Sparse Cladium” class in
NESRS, had significant negative ¢°-d,, relationships but weaker 6°-dy,
correlations (an average R? value of 0.18). The Alaskan marsh wetlands
with taller emergent vegetation than BCNP marl prairies also behaved as
the RS~ type with stronger °-d,, correlations (an average R? value of
0.67). This comparison analysis reveals that backscatter from taller and
less dense herbaceous vegetation is more sensitive to changes in water
depths with a negative correlation.

7.4. Backscatter variations during unflooded periods in NESRS

We detected many unflooded RS™ type pixels in NESRS with signif-
icant positive 6°-d,, correlations. Similar positive correlations were also
detected by J.-W. Kim et al. (2017b), who found three-way positive
correlations between backscatter (in both C- and L-band), groundwater
levels, and soil moisture. Bechtold et al. (2018) found positive correla-
tions between C-VV backscatter with groundwater levels in peatlands,
and they attributed it to backscatter’s sensitivity to variation in soil
moistures. Kasischke et al. (2003) found a strong, positive correlation
between C-VV backscatter and soil moisture in the Everglades. However,
for most NESRS, the soil surface is often covered by deposits of dead
plant matter, debris, and periphyton mats. We suggest that the detected
unflooded RS™ type can be attributed to variations in the moisture of
those ground-cover materials or the soil moisture, depending on the
degree of transmission of the C-band microwave energy. High ground-
water levels lead to high moisture and enhancement of backscatter.

Unflooded RS type occurred in both C-VV and C-VH ¢° for all
vegetation types in NESRS. C-VV ¢° results showed a much higher
unflooded RS™ type percentage (Table S5 and Fig. S7) than C-VH
because C-VV o¢° includes a stronger diffuse scattering component
(Fig. 1) that is related to soil moisture (Kasischke and Bourgeau-Chavez,
1997). Woody vegetation showed a low unflooded RS™ type percentage
in C-VV (less than 5%) and negligible percentages in C-VH ¢° because
canopy attenuates microwave energy. Herbaceous vegetation showed
high unflooded RS™ type percentages regardless of densities. For
example, all four density classes of Cladium displayed significant
unflooded RS™ type percentages. The results indicate that a significant
proportion of C-band microwave energy can be transmitted through
Cladium canopies to reach soil surfaces. A high level of soil/ground-
cover materials moisture leads to enhanced double-bounce and
multiple-path scattering and, therefore, higher backscatter (Fig. 1(b),
Kasischke and Bourgeau-Chavez (1997)).
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7.5. Limitations and future work

Our study’s main limitations arose from the low accuracy of the two
DTMs used to analyze the relationships between ¢° and d,,. NESRS used
a LiDAR DTM with high horizontal resolution (0.5 m) but only a mod-
erate vertical accuracy of 34.8 cm, which in most cases overestimated
ground elevations due to dense vegetation (Dewberry, 2018) and
consequently underestimated water depth. Thus, DTM errors affected
RS-type classification, which did not use negative water depth values.
The S3A DTM product was characterized by a coarser grid (400 m x 400
m), which did not account for small-scale topographic features and,
therefore, also affected the RS-type classification by smoothing across
varying water depths in heterogeneous vegetation types within a single
grid cell.

Other limitations arose from the spatial resolution of the 30-m grid.
The 30-m scale vegetation class indicating representative vegetation
type(s) enabled us to discover different scattering behavior for various
vegetation types. However, minor vegetation types existing within in-
dividual grid cells may affect scattering behavior and NDVI values that
were not resolved in this analysis. To increase confidence in the inter-
pretation of scattering patterns for different vegetation types requires
higher-resolution (meter level) SAR data or exclusion of more hetero-
geneous vegetation patches.

Sensitivity test on ny, values from 2 to 20 (representing 3% to 30% of
scenes in the SAR time series) had a limited impact on RS-type per-
centages (Table S2). We suggest that ny, of 7 (10%) best represents 6°-dyy
scatter plots and leads to accurate RS classification (discussion in Sup-
plementary Material Note 3). The time span of SAR data can also impact
RS-type classification results. The sensitivity study indicates that three
years is the minimum length to reflect the backscatter behavior versus
water depths. A shorter time span led to high variability in RS-type
classification (Table S3) because water depth ranges varied among
years. For example, S3A showed significant differences (44.8%) when
only using the first year (2016 April - 2017 April) of C-VV data because
many pixels were classified as the RS™ type, and most of these pixels
were reclassified as RS* type when using three-year data. Since the first
year was characterized by shallower water depths than the second year
(e.g., Fig. 6(e)), o° and dy, were positively correlated, and they were
reclassified as the RST type when involving more data under deeper
flooded states. However, for C-VH ¢°, the second-year results showed
the most significant difference (40.9%) because many pixels were clas-
sified as the RS™ type, whereas they were reclassified as the non-RS type
when involving more data under shallower flooded states. Conse-
quently, we suggest a three-year minimum time series to achieve sig-
nificant water depth variations and actual RS-type classification.

This study focused on C-band wavelength, whereas RS-type classi-
fication using L-band wavelength data could lead to different results for
the investigated vegetation types. For woody vegetation, RS™ type pixels
with more sensitive backscatter to water depth changes are expected
because L-band energy is characterized by a higher degree of trans-
mission through canopies than C-band. For dense herbaceous vegeta-
tion, some C-VV RS™ type pixels may be reclassified as RS~ in L-band
data because producing double-bounce scattering in L-band microwave
energy needs a higher vegetation density than in the C-band (Pope et al.,
1997). J.-W. Kim et al. (2014) correlated ALOS PALSAR L-HH obser-
vations and water level data measured in Everglades herbaceous sites
and found most of the sites with negative 6°-d,, correlations (RS~ type)
and no sites with a combination of positive and negative correlations
(RS* type). Their negative slope values of L-HH 6°-d,, correlations are
similar to our study (Table 6). Some C-band non-RS type pixels (e.g.,
Typha) may be reclassified as the RS* type because more L-band mi-
crowave energy can be transmitted through vegetation canopy. Sparse
herbaceous vegetation that was classified as RS~ type in C-VV and C-VH
6° may also have strong negative 6°-d, correlations for the L-band data
(both co- and cross-polarization) based on Pope et al. (1997).

Future studies could conduct similar studies in other wetlands under

17

Remote Sensing of Environment 270 (2022) 112864

the condition of available DTMs and accurate water surfaces interpo-
lated by measurements from a dense network of water gauges. Future
work can use SAR backscatter to estimate water depth changes in wet-
lands. J.-W. Kim et al. (2014) successfully used 6° to estimate changes in
water depth, whereas the estimation was limited to point locations of
water gauges, and no vegetation information was taken into account.
Our study demonstrates the possibility of water depth change mapping
by selecting the three RS types using vegetation density and growth
morphology as criteria. Future works can apply the slopes of 6°-d,, linear
relationships calculated in this study on different vegetation types to
estimate regional water depth changes. For wetlands with short hydro-
periods, future studies can investigate the relationship among SAR
backscatter, groundwater, and soil moisture data (e.g., Soil Moisture
Active Passive (SMAP)). Future studies could also use other wavelengths
of SAR data (e.g., L- and S-band from NISAR (NASA-ISRO SAR) Mission)
for a similar type of research.

8. Conclusions

Our study showed that C-VV and C-VH backscatter were sensitive to
water depth changes in large areas of the Everglades wetlands. Pixels
showing consistent linear relationships were termed reliable scatterers
(RS) and classified based on the 6°-d,, linear relationships as RS* (pos-
itive), RST (positive-negative), RS~ (negative), and non-RS (weak re-
lationships) types. To our knowledge, it is the first study that found a
strong correlation between C-VH ¢° and dy.

The observed o°-dy, linear relationships were interpreted with
changes in scattering mechanism in response to water depth changes
representing microwave energy-water-vegetation interactions. Such in-
teractions significantly varied with vegetation type, demonstrated by
woody vegetation, mixed medium and dense Cladium, and sparse Cla-
dium vegetation examples. C-VV and C-VH backscatter were similar in
linear relationship types but different in sensitivity and strength of
correlation to variations in water depths according to vegetation types.

Vegetation density and morphology had a significant impact on RS
types. Both C-VV and C-VH backscatter were the most sensitive to water
depth changes for sparse herbaceous vegetation, and this sensitivity
decreased as vegetation density increased. For sparse to medium dense
Cladium, RS~ was the dominant RS type for C-VH ¢°. However, for mixed
medium and dense Cladium, RS* was the dominant RS type for C-VV ¢°.
Ridge and slough landscape vegetation can serve as three RS types (RS™,
RS¥, RS") for C-VV or C-VH o°.

Large areas in NESRS were classified as the unflooded RS™ type using
C-VV data, indicating a strong positive correlation between groundwater
levels and backscatter. We suggest that groundwater level variations
could influence the moisture of soil or ground-cover materials, leading
to backscatter variations.

Overall, this comprehensive study provides insights into the role of
water depth (surface water and groundwater) and vegetation charac-
teristics in spatiotemporal variations of Sentinel-1 dual-polarization SAR
backscatter. This study serves as a conceptual basis for future studies on
monitoring wetlands’ hydrologic patterns and interpretations of SAR
backscatter observations.
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