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Robotic Tool Tracking Under Partially Visible
Kinematic Chain: A Unified Approach
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Abstract—Anytime a robot manipulator is controlled via visual
feedback, the transformation between the robot and camera frame
must be known. However, in the case where cameras can only
capture a portion of the robot manipulator in order to better
perceive the environment being interacted with, there is greater
sensitivity to errors in calibration of the base-to-camera trans-
form. A secondary source of uncertainty during robotic control
are inaccuracies in joint angle measurements which can be caused
by biases in positioning and complex transmission effects such as
backlash and cable stretch. In this work, we bring together these
two sets of unknown parameters into a unified problem formulation
when the kinematic chain is partially visible in the camera view.
We prove that these parameters are nonidentifiable implying that
explicit estimation of them is infeasible. To overcome this, we derive
a smaller set of parameters we call lumped error since it lumps
together the errors of calibration and joint angle measurements. A
particle filter method is presented and tested in simulation and on
two real world robots to estimate the lumped error and show the
efficiency of this parameter reduction.

Index Terms—Computer vision for automation, computer vision
for medical robotics, perception for grasping and manipulation,
visual tracking.

I. INTRODUCTION

NYTIME a robot manipulator is being controlled via
A visual feedback, an important coordinate transform must
be known: the orientation and translation between the robot and
the camera frame. This transforms positions and velocities of
the robot defined by its kinematics, such as its end-effector
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Fig. 1. Precise robotic manipulation utilizes visual information with the sensor
positioned to observe the environment and objects of interest rather than the
entire kinematic chain. As such, it is challenging to track the robotic tool due
to partially visible kinematic chain. In this work we derive and track a smaller
set of parameters called lumped error for effective robotic tool tracking in such
scenarios. The right two images show the reprojected, tracked robot tool and
its corresponding insertion shaft using the proposed lumped error parameter
reduction technique.

position, into the camera’s frame of reference where feedback
and trajectories are often defined. Typically this relative trans-
form is calibrated for by placing markers, such as ArUco [1],
on the robot, identifying them in the image frame, and solving
the homogeneous linear system for the base-to-camera trans-
form [2]. However, in the case where cameras can only observe
a portion of the robot manipulator, there is greater sensitivity to
errors in calibration of the base-to-camera transform due to the
limited range of motions the robot can take on when collecting
data [3]. This situation arises when the camera is positioned to
perceive the robotic tool (e.g., gripper) and the environment or
objects being manipulated with rather than the entire kinematic
chain. An example scenario is shown in Fig. 1. This comes up
frequently in object grasping and manipulation tasks [4], [5] and
small-scale manipulations such as robotic surgery with the da
Vinci Surgical System.

A secondary source of uncertainty that can occur during
robotic control is the inaccuracies in joint angle measurements.
Errors in joint angle measurements are caused by biases in
positioning, drifting in readings, and complex transmission
effects such as cable stretch and backlash. Similar to finding
the base-to-camera transform, this is typically solved through
calibration where a separate sensor, such as a camera, collects
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ground truth measurements and compares against the joint angle
readings [6]. For nonconstant errors, such as cable stretch, ex-
plicit dynamic modeling has been conducted [7] and data-driven
approaches with neural networks [8]. These methods, however,
are challenging to apply outside of a lab setting due to the need
for additional sensors or calibration steps. Furthermore, the cal-
ibration parameters can degrade over time through irreversible
effects from transmission wear-and-tear and mechanical creep.

A strong motivational example for scenarios with challenging
base-to-camera calibration and errors in joint angle measure-
ments are surgical robotic-endoscopic platforms [9],[10] such
as Titan Medical’s SPORT surgical system. The endoscopes
are designed to only capture a small working space for higher
operational precision. Surgical robotic platforms also typically
use cable-drives to enable low-profile robotic tools hence result-
ing in joint angle measurement error. Furthermore, the bases of
the surgical manipulators are adjusted regularly depending on
the type of procedure and to fit each patients anatomy. There
is a significant amount of previous literature from the surgical
robotics community tackling these two problems separately, and
we unify these two problems and present a solution which also
generalizes to other robot manipulators.

A. Contributions

In this work, we demonstrate the ability to track robotic tools
from visual observations that only show part of the kinematic
chain under the conditions of uncertainty in base-to-camera
transform and joint angle measurements. To this end, we present
the following novel contributions.

1) A novel problem formulation which proves direct estima-
tion of all the described parameters is infeasible since they
are nonidentifiable.

2) The first approach to unify these uncertainties into a
smaller set of parameters which are identifiable and com-
pensates for all the uncertainties.

3) An extension of tracking under simultaneously moving
robotic tools and cameras.

We coin the reduced set of parameters as lumped error. To
track the lumped error, a tracking algorithm based on a particle
filter is presented. The particle filter uses visual features from
the tracked robotic tool to continuously update the belief of the
lumped error. The visual features used in our implementation are
detected using markers, edge detectors for geometric primitives
such as cylinders, and learned point features. For experimenta-
tion, the presented particle filter was evaluated both in simulation
and on real world robotic data using the da Vinci Research Kit
(dVRK) [12], a widely used surgical robotics research platform
with a total of 10 degrees-of-freedom (DoF) and a gripper across
both the endoscopic (i.e., surgical robotic camera arm) and
robotic manipulator kinematic chains, and the 7-DoF arm on
Rethink Robotic’s Baxter robot. From this set of experiments, the
joint angle disturbances include simulated noise, cable stretch
from the dVRK, and backlash from the Baxter arm. Lastly, we
summarized our previous work and their results which tracked
the lumped error for applications in control of surgical robotics,
such as autonomous suction and suture needle manipulation,
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highlighting the impact this method already has in the surgical
robotic community. This summary is written in Appendix A.
Overall, these results show that estimation of the lumped error
is efficient and yields precise and accurate robotic tool tracking.

B. Related Work

Integration of visual observations with robotic manipulators
and handling inaccurate joint angle measurements is not a new
concept. Therefore, this related work section is split into differ-
ent categories to cover the wide-range of solutions presented by
previous groups for robotic tracking. A special focus is given to
surgical robotics as the challenge of surgical robotic tool tracking
would be a direct application of the presented work.

1) Base-to-Camera Estimation: A common approach to cal-
ibrating the base-to-camera transform is rigidly attaching a
marker whose pose can be directly estimated from visual data
(e.g.,ArUco[1], ARTag[13], AprilTag [14],and STag[15]), col-
lect multiple images of the marker, and solve the homogeneous
linear system [2], [16]. To relieve the heavy reliance on 3-D pose
reconstruction, which can often be inaccurate from 2-D images,
markers have been attached to robot manipulators to collect 2-D
keypoints and the camera-to-base transform is estimated with
Solve-PnP [17]. Deep learning approaches have been applied
to detect 2-D keypoints on robotic manipulators to remove the
need for markers [18]-[21]. However, these calibration methods
do not consider errors in joint angle measurements and instead
make the assumption that the robot kinematic chain is located
exactly at the joint angle readings.

Zhong et al. [22] proposed an interactive method to maximize
the accuracy in calibration for remote center of motion (RCM)
robots which are typical for laparoscopic robots. Similarly, Zhao
et al. [23] defined a kinematic remote-center coordinate system
(KCS) which absorbs all the error in the transform from the
camera frame to the base of an RCM robot. Tracking the KCS
is a common technique in surgical robotics where the updates
come from markers [24], learned features [25]-[27], silhouette
matching [28], or online template matching [29]. All of these
estimation methods do not explicitly consider the effects of
joint angle errors. In fact, we show that the Lumped Error is
mathematically equivalent to tracking the KCS implying that
these methods are compensating for both the base-to-camera
transform and joint angle errors. Furthermore, in this work
we generalize Lumped Error to other robotic manipulators. In
Appendix A, we summarize our previous work in control of
surgical robotics which utilized tracking KCS, or equivalently
lumped error, to highlight the impact this method already has on
the surgical robotics community.

2) Joint Measurement Error Estimation: Using fiducial
markers to collect data, Pastor et al. [30] applied a data-driven
approach to estimating the joint angle error. Meanwhile Wang
et al. [31] used markers to estimate the joint angle offsets in
real-time via inverse kinematics. From the perspective of surgi-
cal robotics, errors of joint angle readings due to transmissions
effects has largely been studied in the context of cable drives.
Miyasaka et al. [ 7] explicitly modeled the physical effects of ca-
ble transmissions such as friction and hysteresis. Learning-based
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approaches have been applied in the form of neural networks
for direct estimation of cable stretch [8], [32] and Gaussian
processes for compensation [33]. From visual data, unscented
Kalman filter [34] and neural networks [35] were applied to
estimate the effects of cable stretch. These techniques however
are impractical to apply outside of a lab setting due to the need for
additional sensors or calibration steps. In addition, calibration
parameters can degrade over time due to mechanical effects such
as cable creep which is when cable stretch varies irreversibly
through usage.

3) Combined Base-to-Camera and Joint Estimation: Joint
calibration techniques have been proposed which optimize for
both joint angle offsets and base-to-camera transformations [6],
[36]. To handle dynamic uncertainties, such as nonconstant
joint angle errors, real-time estimation by combining iterative
closest point from depth sensing and Kalman Filtering have
been proposed [37]. A probabilistic approach has also been
proposed where the observation models are grounded in physical
parameters hence making it easier to tune the hyper parame-
ters [38]. These works largely focus on integration of sensors
into real-time estimation. Instead of this, we look into parameter
reductions for the case of partially visible kinematic chains.
Therefore, the proposed lumped error parameter reduction can
aid these efforts by reducing the total number of parameters that
need to be estimated in the case of a partially visible kinematic
chain. Nonetheless, we propose a particle filter to estimate the
lumped error which relies only on image data; meanwhile, the
efforts above rely on depth sensing which is not as readily
available on all robotic platforms such as the da Vinci Surgical
System.

A separate and popular approach to controlling a robot from
visual feedback without the base-to-camera transform is through
online jacobian estimation [39]. These visual servoing tech-
niques can even compensate for kinematic inaccuracies and
joint angle measurement errors [40]. While these techniques are
sufficient to control the end-effector in the camera frame, they
do not describe the rest of the kinematic chain in the camera
frame.

4) Eye-in-Hand Configuration: Another consideration in the
case of a robotic camera arm is the problem of eye-in-hand
calibration [41]. This particular visual-robotic challenge is not
considered here but included for the sake of completeness. Zhang
et al. [42] developed a computationally efficient methods using
dual quaternions. Adjoint transformations from twist motions
have also been applied to converge to solutions with high ac-
curacy [43], [44]. In the case of RCM robots, reduction of the
computational complexity has been found [45], [46]. Similar to
the previously described visual servoing techniques, the robot
camera arm can also be controlled through online jacobian
estimation [47], [48].

II. METHODS

The problem formulation for base-to-camera and joint angle
measurement errors with camera interaction is first explained
in this section. To overcome the described challenges for a
partially observed robot from visual observations, alumped error

is derived and then extended to the eye-in-hand case. Finally, our
proposed method for tracking the lumped error with a particle
filter approach is described.

A. Problem Formulation

The 3-D geometry of a robotic tool can be fully described in
the stationary camera frame through a base-to-camera transform
and forward kinematics. A single point, o/ € R3, on the jthlink
of a robotic tool can be transformed to the stationary camera
frame by

J
o =Ty [[T) " (g)o (1)
i=1

at time ¢ where Tj € SE(3) is the base-to-camera transform
and T !(q}) € SE(3) is the ith joint transform with joint angle
qi. The overline operator (*) defines the homogeneous represen-
tation of a 3-D point (e.g © = [o 1]T). Therefore, all that is
necessary to describe a robotic manipulator in the camera frame
is the base-to-camera transform and joint angles. Typically, the
base-to-camera transform can be calibrated for, and the joint
angles can be found from encoder readings. The issue with
applying this approach directly to scenarios where the camera
only captures images with a portion of the kinematic chain is that
small errors in calibration or joint angles will be exacerbated in
the image frame.

Therefore, let G}, ...,q,~ be the joint angle measurements

ande}, ..., e,” are the measurement errors, such that
i = q; + € @)
forall i = 1,...,n;. No distribution is assumed for the errors,

ei. For example, the error could be constant bias from absolute
position error or nonconstant with hysteresis effects from cable
stretch. Combining with (1), the robotic tool can be described
in the camera frame by

J
o = 5Ty [[Ti (g +e)o 3)
i=1

where the true base-to-camera transform is broken into Tj_ €
SE(3) and T)~ € SE(3) which are measured from an ini-
tial calibration and the error in the calibration respectively.
Therefore, in order to correctly describe the robotic tool in the
camera frame, both the joint angle errors, e, and the error in
base-to-camera transform, TZ’ , need to be estimated. Let n; be
the total number of joint angles and the S E/(3) error transform,
Tlg’, be estimated with an axis-angle and a translation vector,
resulting a total of n; + 6 parameters to estimate.

Explicit estimation for the joint angles and base-to-camera
transform is not possible when only a portion of the kinematic
chain is visible in the camera frame. This is since one cannot
distinguish where the source of error is coming from, joint
angles or the base-to-camera transform calibration. For example,
a surgical tool is considered partially visible with regards to the
endoscopic camera. The endoscopes narrow field only has visual
information of the tool-tip and not the base nor joints preceding
the articulated wrist resulting in multiple viable solutions to
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" Ta(a',a')T:(w,0)T, (o', ') T (o', a') To () (5)
T (w) T () ©)
where T;(w) = T, (a?,a®)T,(w,0)T, (a, a’). Likewise for
T 2B a prismatic joint transform

T, (a',a")T.(0",w + 1) (7

\ * ) o o o )
NG T, (o, a')T.(0,w)T; (o, a') T, (o, a')TL (6, 4)  (8)
T;(w)T; (1) ©)
i — : where T;(w) = T, (a?,a")T.(0,w)T,(a?,a’). Note that the
\ . same notation, T;(w), is used for rotational and prismatic joints

for simplified notation in the coming equations.
= Using these expansions, we will show using induction that
portions of the joint angle errors can be expanded out as follows:

Fig.2. Given an image of the robot tool, as shown in blue, and not the whole ny ny
kinematic chain, multiple solutions exist for joint angles and base-to-camera H T (5 4+ ¢f) = T™ H Ti-1(5 el 10
transform errors. Examples of these solutions are shown with the transparent - v (qt + t) - v (qt + B t) (10
kinematic chains. This implies that it is infeasible to estimate these unknowns =1 =1
directly when the kinematic chain is partially visible. where
estimating Tg’ and e!. An example of this is shown in Fig. 2 ne o kol ) .

-~ - . T — H H T NG + Biel) | Tr((1 = 8;)ek)
where the joints part of the RCM are not visible to the endoscopic i t vt [

k=1 \i=1

camera, but the joints on the gripper are.

This relates to the concept of identifiability [49]. Identifiability k-1 -1
is concerned with the existence of a unique inverse association (H T (G + ﬁmi)) (11)
with regard to the parameters estimated from observations. i=1

Fig. 2 shows examples of there not being a unique association  and 8, € R fori = 1, ..., ny is an arbitrary portion of the joint

from the image of the surgical tool from an endoscope 10  apgle error not to be lumped into T™. For the base case of
the base-to-camera transform and errors in joint angles. These ' — 1 in (10), the error of the joint angle can be pulled out

instances are denoted as observationally equivalent. Parameters 0 i ) a0 i )
are only considered identifiable if there are no observational T3(G; +ep) = Ti((1 = Br)ey) Ty (gt + Prer)  (12)
equivalences. using (4)—(9).

Claim 1: When only using the camera data for observations, Assuming (10) holds true for n, = m, then for n, = m + 1
then the error in base-to-camera transform, Tlg’, and errors in the left-hand-expression from (10) can be rewritten as

the first n, joint angles, e} ,...,ep?, arenot identifiable if all the .
kinematic links preceding joint n;, are out of the camera frame. m i1/~ i ~mel m+1
T T; i 13
Proof. Letmodified Denavit—Hartenberg parameters be used 1:[1 i (@t Bie) T (@ +e) (13)
to define each forward kinematic joint transform. Therefore, ) B
Tﬁfl(qi) = T, (o, a’)T, (0, d') where which expands to
1 0 0 ' LR . ,
P T [T @+ Bie) Tana (1= i)™
T, (ol a) = 0 cos(a') —sin(a*) 0 i
0 sin(af cos(a’ 0 s em m
0 (() ) (() ) 1 m+1(qt i + Bmy1e} +1) (14)
: _ using (4)—(9). Expanding the expression one more time
cos(0") —sin(6") 0 O
i i sin(¢')  cos(6') 0 0 o T it~ i m
B I R R T TP+ Bl T (1 Brs)el™)
i=1
| O 0 0 1 . 1,
. , . i—1( i i i—1 i i
and ¢; is plugged into 6* or d* for a revolute and prismatic joint, (H T (a + 51‘%)) H T (q; + Biet)
respectively. A revolute joint transform with a joint angle of =1 =1
w+ 1 € R, T (w + 1), can be expanded using the modified o (@ + Brgae) ™) (15)

Denavit-Hartenberg parameters L .
which is equivalent to (10). Therefore (10) holds for n, =

T,(a',a)T,(w + 1, d") (4) 1,2,... by mathematical induction.
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Let P(y:|T?", e},...,e;7) be a proper probability distribu-
tion and the observation model of some feature y from the surgi-
cal tool in the camera frame parameterized by all the unknowns
in the kinematic chain described in (3). Since P(y:|-) cannot
describe a feature from the kinematic links preceding joint ny,
the observation model for some feature y can be reparameterized
to

ny
PlydTy Ty [T G +eh), et e (16)
=1

The equality in (10) implies that the observation is not a one-
to-one mapping from the parameter space (Tg’, er,..,e’)
to the camera observation (output of P(y¢|-)). In fact, for each
observation generated by P(y;|), there are an infinite solutions
for the inverse mapping which are spanned by 31, . . ., 8y, . Since
there are infinite observational equivalencies, the parameters are
not identifiable. |

The equality in (10), which causes the lack of identifiability,
can be interpreted as moving the joint errors from the kinematic
chain to the base transform of the robot. Lack of identifiability
implies undesirable properties for parameter estimation such as
rank deficiency in the Fischer information matrix [49]. Further-
more, it shows the inability to estimate both errors in joint angles
and base-to-camera transform.

B. Lumped Error Transform for Estimation

Due to Claim 1, it is infeasible to estimate all of the error
parameters described in (3) when only using camera data. There-
fore, we propose a parameter reduction technique where all the
errors of the first n;, joints are lumped together with the error
in base-to-camera transform. Hence, we call it the lumped error
transform.

Using (10), (3) can be rewritten as

ney J
o = T; T, (w.b) [[Ti @) [[ Ti'@ +e)o
i=1 i=np+1

a7)
where T% (wy, by) € SE(3) is the lumped error transform of
all the first n; joint errors and the base-to-camera transform
calibration error Tg’ and it is parameterized by an orientation
w; € R3 and translation b; € R3. The lumped error analytical
solution from the joint angle errors and error in base-to-camera
transform is T4, (w¢, by) = T T™ where T™ is defined in
(1) with g; = 0fori =1,...,ny.

Intuitively, the lumped error transform is virtually adjusting
the base of the kinematic chain for the robot in the camera frame.
The virtual adjustments are done to fit the error of the first n;, joint
angles and any error in base-to-camera transform. The lumped
error transform removes the many to one mapping shown in (16).
Furthermore, it is a significant reduction of the parameters that
need to be estimated for robotic tool tracking. With a total of n;
joints and the SE(3) error transforms, Tj_ and T% (wy, by),
being estimated using axis-angle and a translation vector, then
(3)hasn; + 6 parameters to estimate while (17) hasn; — ny + 6
parameters.

Even with this parameter reduction, it can still be challenging
to constrain all of the parameters with image observations. For
example, from a single image frame, 4 pixel point detections
are required to constrain the lumped error transform [50] and
additional point detections would be needed for the joint errors
ef”“, ...,e,7. Therefore, we propose the following simplifi-
cation to (17) if there is not an abundance of features:

ef ~0fori=mn,+1,...,n;. (18)

With this simplification, only the lumped error transform needs
to be estimated. This simplification can be done in situations
where the error from joints ny, + 1,...,n; does not propagate
through the kinematic chain dramatically. In cases where the
camera focuses on an articulated wrist or gripper as shown in
Fig. 2, this is an acceptable assumption as their link lengths are
short hence reducing their sensitivity to error.

The resulting expression when combining the simplification
in (18) with (17) is equivalent to what previous literature in
robotic surgical tool tracking described as the KCS which was
developed for RCM based robots [23]. Therefore, the KCS track-
ing formulation not only corrects for the error in base-to-camera
transform, but also joint angle errors.

The lumped error can also be moved to the right hand-side
of the first n; joint transforms in (17) giving the following
expression:

5
=T; [T @y (web) [ TG +e)o?
i=1 i=ny+1
19)
where the right hand-side lumped error is
To0Y) (Wi, by)
ngy . . -1 ny ) ]
= ([l '@ ) T, web) [T @ @0
i=1 1=1

which is equivalent to the tracking method proposed by Hao et
al. [28] and shows their method compensates for both errors in
base-to-camera transform and joint angle errors.

C. Extension to Robotic Camera Arm

In the case of eye-in-hand, the constant true base-to-camera
transform, T¢ = Tngz’, described in (3) is replaced with a
kinematic chain as follows:

n 1 J
of =T¢, ([[Te)) TP [[TH@ +eh)o’ @b
i=1 i=1

where T¢ € SE(3) s the static transform from the final joint to
the camera frame, T/ * (¢;*) € SE/(3) is the ith joint transform
of the camera arm with joint angle ¢;*, and T}* € SE(3) is
the base-to-base transform (i.e., transform from the base of the
robotic tool to the base of the robotic camera arm).

Calibration of the base-to-base transform is even more chal-
lenging than calibrating the base-to-camera transform since
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the kinematic chain is extended by the camera arm. Joint
angle errors are also still assumed. Let ¢;* and e’ be the joint
angle measurement and measurement error respectively for joint
angle ¢; on the camera arm. The base to base transform T" is
split into the calibrated base to base transform T;* and the error

in calibration TZ’. Therefore, (21) is rewritten as

n -1
—«—T;<Ir¢r@?+@ﬂ> Tj2 T}

i=1
j .
H TTl (Qt + et)oj
i=1

(22)

The kinematic links from the camera arm are typically not visible
in the camera frame. Therefore, the same nonidentifiability issue
from Claim 1 extends to joint angle errors e;* fori = 1,...¢p.
To solve this issue, the lumped error from (17) is applied to the
camera arm’s kinematic chain. This results in

n -1
o; =T¢, (H T?T(&?)) Tg (wy, bf)~'Ty"
i=1

T (wy, by) HTZ 1
1=1

i +ehe’ (23)

HTzl

1=np+1

where T¢ (wf, bf) analytical expression from joint angles is
described in (10) with 5; = 0 fori = 1, ..., n. Continuing fur-
ther, (23) can be reduced to a single unknown pose parameterized
by orientation and translation vectors w!, bl € R?, respectively,
and unknown joint errors e for i = ny + 1,..., n;. The new
expression is

-1
OF“%>WMMM

I_ITZ @) H T (g +e)o’ (24)
1=np+1
where
C & -1 c c c\— C —
T,{;(wi,bi) = (Tbi) chn(wtvbt) 1Tbllezb (we, by).
(25)
The lumped error that would be estimated in this case,

T¢» (wi, b}), holds similar properties to the previous case of
the stationary camera lumped error. The base of the robotic
manipulator relative to the camera arm base is virtually adjusted
to compensate for the error in the first n;, joint readings in it and
all the joint readings in the robotic camera arm. This lumped
error also reduces the number of parameters that need to be
estimated to n; — n, + 6 while in (22) there are n; +n + 6
unknown parameters. For even fewer parameters to estimate,
the simplification in (18) can be applied resulting in only six

parameters.
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Algorithm 1: Particle Filter to Track Lumped Error.
Input : Initial base-to-camera transform T _
Output: Estimated Lumped Error and Observable Joint
Errors wy, Bt, en
1 Initialize particle list Py = {a

() &P p@) g N
00> Wolo» Pojo> €ojo S p=1
// Initialize particle distribution

2 for particle p € Pgm do
3 [A é’fg,bg’l’g ~N(0,2wb0)
o | el o ([w50] Bumo)
5 é(()zl?) NZ/{(—aé,aé)
6 {a(()%}pﬂ < normalizeW cights ({aé’l)a}szl)
// Main Loop
7 while image and joint readings, (1, q:), arrive do
// Predict

8 Initialize new particle list Py,
9 for particle p € P, do

N
10 q ~ Pi_qj¢—1 weights {O‘t 1t—10"" "> i—ih&—l}
" [wp) ) }T
Wilt—10 Pejt—1
-~ (q) (q) T
N [ W1 1’bt 1t— 1] » w,b,t
T
(p) (p) (p)
12 af|pf—1 <_g<[ tﬁ& l’btﬁ 1} 72W7b7t>
&P (2)
13 tz\gt 1 NN( tq 1\t71’2é,t)
(p) (p) A (P)
w || el alf) o () 1 Ze)
// Update

15 m; + detectRobot PointFeatures(I;)
16 Py, P, < detect Robot EdgeFeatures(1;)
17 for particle p € P;;_; do

18 my + projPoints(Ww (ﬁ) l’b(lf 1,A§ﬁ) 1)
19 Ay, C™ + associate Points(my, my)

20 §|pr) L agﬁ? | - pointObsModel(A,,, C™)
2 pis &y < projEdges(Vyl) | byl |, Eﬁ) 1 Q)
2 Ay, C! « associateEdges([p;, ¢4, [Py, b))

23 iﬁ) L aill?_l - edgeObsModel(A;, C')

24 Py < Pyy1

25 {aif’t)},]c\;l « normalizeWeights ({agf’t)}kNﬂ)
26 | if numEf fectiveParticles(Py;) > Nys then
27 |_ Py stratifyResampling(Pt|t)

N T R .
5 | [webna] = Z off) [win). b2 <p>]

f|f’ tlt f\f
p=1

D. Farticle Filter for Tracking of Lumped Error

The result in (17) reduced the number of parameters that

are required to be estimated to the Lumped Error transform,
T

. By
these reductions, one can use previously developed methods of
parameter estimation to track it such as the extended Kalman

T. (Wy, by), and joint errors: &, := [é?“’l é?f]
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filter, unscented Kalman filter, or a particle filter with updates
from camera images. For our approach, we utilized a particle
filter because of its flexibility to model the posterior probability
density function with a finite-number of samples [51] rather than
using parametric model such as a Kalman filter. It also has found
recent success in estimating poses [52] which is needed here
for the lumped error transform. The coming sections describe
tracking of the parameters by defining the motion models and ob-
servation models. The last section covers the few modifications
necessary for the eye-in-hand case. An outline of the proposed
particle filter is shown in Algorithm 1 and specific parameter
values used in the experiments are described in Appendix B.

1) Motion Model: The joint angle errors are initialized from
a uniform distribution and have a motion model of additive zero
mean Gaussian noise

€y ~ U(—ag, ag) €41 ~ N (€, X641) (26)

where ag € R™ 7" describes the bounds of constant joint angle
error and g 41 € R(mi—m)x(nj=m) i g covariance matrix.
The initialization is done to capture joint angle biases, and a
Weiner process is chosen for the motion model due to its ability
to generalize over a large number of random processes.

Let the tracked lumped error, T% (W, b, ), be represented by

an axis angle vector, w; € R?, and translation vector, b, ¢ R3.
Their initialization and motions are defined as

{vAvo, BO] s N(0, 2w bo)
(27)

R T 1T
[VAVt—&-l; bt+1] ~ N( [VAVt, bt] 72w,b,t+1)

where 3y, 1, € R6%6 is a covariance matrix. A Weiner process
is once again chosen for the same reason as the joint angle error
motion model. Integration of the initial distribution and motion
model in the particle filter is shown in lines 1 to 6 and 8 to 9,
respectively, in Algorithm 1.

2) Observation Model: To update the lumped error from
images, features need to be detected and a corresponding obser-
vation model for them must be defined. The coming observation
models will generalize for any point or edge features. Let m,
be a list of detected point features in the image frame from the
projected robot tool. By following the standard camera pin-hole
model combined with (17), the camera projection equation for
the kth point is

~ ~ oA 1 c — [ N o i—1/~t
1y (Wi, b, &) = ;Kbesz (Wt7bt)HTi 1(%)
=1
II T'@+e)p @8

i=np+1

where %K is the camera projection operator with intrinsic matrix
K and known location p’* on joint link j.

Similarly, let the paired lists p,, ¢, be the parameters describ-
ing the detected edges in the image from the projected robot tool.
The parameters describe an edge in the image frame using the
Hough Transform [53], so the kth pair, p¥ and ¢¥ parameterize

the kth detected edge with the following:

pf =u cos((bf) +v sin(qﬁf)

where (u, v) are pixel coordinates. Let the projection equations
for the ith edge be (p(Wy, by, &), ¢ (W, by, &)). These pro-
jection equations will need to be defined based on the geometry
of the robot. An example of a cylindrical shape is shown in
Appendix C. Furthermore, Chaumette [54] derived the projec-
tion equations for a multitude of geometric primitives and can be
referred to for additional shapes. The point and edge projections
are computed on lines 18 and 21, respectively, in Algorithm 1.

From the lists of detected features, there may be false de-
tections, and they need to be associated with the correct point
position (p’i) or edge on the robot. To accomplish this, a cost
matrix C™ is generated between the detected and projected
features. For the kth detected point feature and ith projected
point, the cost is

(29)

CF, = | lmf — 1ia; (W, by, &) |2 (30)

where 7, is a tuned parameter. Likewise a cost matrix C!
is computed for the edges, and the kth detected edge and ith
projected edge the cost is

Chi = YolpF — pi(We, by, &)| + V5| 0F — di(We, by, &)
(31
where 7y, and vy, are tuned parameters.

A greedy matching technique is used to make associations
between the detected and projected features because of the
computational efficiency. The costs are sorted from lowest to
highest, and the first (k, 7) pair is matched and added to the set
A,,, or A; for points and edges, respectively. All subsequent costs
associated with either detection k or projection ¢ are removed
from the sorted list. This is repeated until a maximum cost of
cm orC! isreached for points and edges, respectively. By
limiting the maximum cost for association, false detections can
be filtered out. This association technique is conducted on lines
19 and 22 in Algorithm 1 for points and edges, respectively.

The observation model wraps the associations and their costs
into a probability function dependent on the state, so the filter
can update the states properly. For the list of point features, the
probability is

P(my|Wy, by, &) o (N — |Ap|)e Cras + Z e Ok
ki€ A,
(32)
where there are a total of n,, detectable point features on the
robot. Similarly, the probability of the list of detected edges is

P(pt7¢t|wt76t7ét) X (nl - |Al|)eic}%am + Z eic}c’i
k€A

(33)
where there are a total of n; detectable edge features on the robot.
The probability distributions can be viewed as a summation of
Gaussian centered about the projected features. The individual
Gaussian probabilities are bounded and clipped by the maximum
cost for association. Clipping the Gaussian is preferred since in
the cases of missed feature detections, the posterior probability
from the filter does not go to zero. An additional advantage

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on February 18,2022 at 23:32:18 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

of using a particle filter for tracking the lumped error is that
these observation models do not need to be normalized. In this
case, finding the normalization factor would be challenging due
to the matching complexity and clipping of Gaussians. These
observation models update the particle filter on lines 20 and 23
in Algorithm 1 for points and edges, respectively.

3) Modifications for Eye-in-Hand Configuration: The ex-
plicitly tracked joint errors, €;, remains the same since they
are still the only joints visible in the camera frame. However,
the tracked pose is now T¢ (Wi, b!), described in (24). The
tracked parameters W', ‘tA)f5 € R3 represent the lumped error as
axis-angle and translation vectors, respectively, and have the
same additive zero mean Gaussian noise as described in (27).
The feature detection, association, and observation models all
remain the same. The only change required is modifying the
camera projection equations. The camera projection equation
for the ith marker is changed from (28) to

n -1

A PN NN 1 c ¢ ~C; c
myp (Wiv bfﬂ et) = EKTCH H Tcz,l (Qtz) Tbb—
1=1
o _ Jk _ _ o
T (wib) [T @) [I 1@ +eéps ¢4
i=1 i=np+1

by combining (24) with the camera pin-hole model. A
similarly simple modification is required for the projected
edges (9 (W, by, &;), o' (Wy, by, &;)). The example shown in
Appendix C for cylindrical shapes includes the modifications
necessary.

III. EXPERIMENTS AND RESULTS

Since surgical robotic tool tracking is a direct application
of this work, the proposed particle filter was used to track the
lumped error in a simulated scene of a da Vinci Surgical System
and on a real world dVRK [12]. The uncertainties of joint angles
on the dVRK system are so prevalent that results relying only
on base-to-camera calibration and not accounting for joint angle
error were intentionally omitted in previous work due to such
poor results [35]. Furthermore, in our own previously equivalent
work, we experimented using either calibrated base-to-camera
transform or active tracking to grasp chicken tissue detected
in the camera frame [24]. Using the calibrated base-to-camera
transform, the surgical tool was unable to grasp the chicken
tissue. Meanwhile with active tracking, the surgical tool was
able to repeatedly grasp the chicken tissue. The last experiment
is tracking a partially visible Baxter robot arm which has signif-
icant backlash transmission effects. These set of tests show the
effectiveness of the proposed parameter reduction technique by
comparing against different parameter sets.

A. Da Vinci Simulated Scene Setup

A simulated scene in V-REP [55] was developed based on
the da Vinci robot model constructed in Fontanelli et al. [56].
The robotic tool and camera arm simulated were a patient side
manipulator (PSM) with a large needle driver and an endoscopic
camera manipulator (ECM), respectively, from the da Vinci

IEEE TRANSACTIONS ON ROBOTICS

Fig. 3. Simulated scene in V-REP [56] of a patient side manipulator (PSM)
and endoscopic camera manipulator (ECM) from a da Vinci Surgical System.
Blue markers are placed on PSM’s gripper and detected for the particle filter
as shown in red in the endoscopic view. Similarly, the detected edges of the
insertion shaft are highlighted with red lines and are also used by the particle
filter.

Surgical System. The PSM has 6 DoF and an additional gripper
joint. The ECM is stereoscopic and has 4 DoF. The first joint link
visible in the endoscopic camera frame was after the n;, = 4 joint
as expected when operating with a da Vinci Surgical System.

Small blue spheres were placed as markers along the kine-
matic links near the gripper to be used as point features to
update the particle filter. The blue markers were detected using
standard color segmentation from OpenCV [57]. Each camera
image was first converted to the hue, saturation, and value
(HSV) color space. Hand-tuned lower and upper bounds for
each HSV channel was then applied to the image resulting in a
segmented binary image. The segmented binary image was then
clustered into distinct contours from which the centroids are
estimated. The list of centroids m; were considered detected
pixel coordinate features potentially from projected points on
the surgical tool. The edges of the projected cylindrical insertion
shaft of the PSM tool were also used to update the particle filter
and detected using standard OpenCV functionality [57]. Each
pixel potentially associated with the edges were detected using
Canny edge detector [58]. The pixels were further classified into
distinct edges using the Hough Transform [53] with parameters
pF and ¢F to fit (29). The simulated scene and a corresponding
camera image with the detected features is shown in Fig. 3.

The error in calibration, Tg’ was done by sampling from
zero mean Gaussian in its axis angle and translation vector
representations

[wa, bb,] N3, (35)

Therefore, the initial calibration given to the filter was set to
T) = Tj (T} (W', b))

T = T (TO (wh™, b))~ (36)
for the stationary camera and eye-in-hand cases, respectively,
where T and T;” were given by the simulator.

The joint error for the PSM was simulated as a summation
between a uniformly sampled bias at the start of each trial and
linear cable stretch. Written explicitly, the error for joint angle
© was defined as

e} =ej + eLq; (37)
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Fig. 4. Mean end-effector pose error in the camera frame over time under various tracking configurations from simulated da Vinci scene. The top and bottom

row of plots are measured from the stationary and eye-in-hand cases, respectively. These mean error trends are calculated with 50 trials and shows that tracking the
lumped error results in a lower end-effector orientation error compared to tracking all unknowns.

where ¢} ~ U(—a’?, a’?), ¢l is the linear cable stretch coeffi-
cient, and g; is the correct joint angle from the PSM. Similarly,

joint error ¢; for the ECM was defined as

e = eyt (38)
where e’ ~ U(—a%?, a’) was sampled once at the start of
each trial and ¢}, ~ N'(0,02, ;) sampled at every time step to
simulate the uncertainties in the robotic endoscopes joint angles.
The PSM arms configuration was set via V-REP’s inverse
kinematics. Its position moved along a preset cyclical trajectory
added with a small, random sample from a zero mean Gaussian
with standard deviation of 1 mm. The gripper joint opened and
closed at a similar cyclical rate. Likewise, the four joint angles of
the ECM were set to move in a cyclical pattern in the eye-in-hand
case. The orientation of PSM end-effector instead takes arandom
walk starting at a preset value by rotating an additional uniformly
sampled rotation at every time step. Note that this represents the
most complex scenario where every part of the robot (manipu-
lator, gripper, camera) are continuously moving on independent
paths hence testing the proposed tracking method in a larger
variety of scenarios including occlusions of features. Additional
details and parameter values are described in Appendix D.

B. Tracking Lumped Error in Da Vinci Simulated Scene

The particle filter configurations evaluated were the

following.

1) All unknowns: tracking all joint angle errors and base-
to-camera transform or base-to-base in the stationary and
eye-in-hand case, respectively. Done by setting n; = 0 in
the particle filter.

16 6
T T
14 T ; 51 |
12 I : . |
€1 ! 1 241 I
e | L8
T 8 1 31
o o —
= 6 = 1
(i &2 - -
i = T
0 | + 0 J— e . -
bint 3 TS bint 1 bint2  bint 4 TS
Fig. 5. Distribution of first 4 joint angle errors, whose preceding kinematic

links are never in the camera frame, and the stationary camera to base transform
T, error when explicitly estimating them in the simulated da Vinci scene. Errors
up to 14 mm and 5° highlight the inability to estimate these unknown values
explicitly due to the parameters being nonidentifiable as shown in Claim 1.

2) Lumped error: applying (18) to the particle filter.

3) Lumped error and observable joints: no modifications to

the described particle filter.

Both stationary camera and moving camera arm scenarios
were tested. Each configuration was repeated 50 times to test
for consistent performance.

To evaluate the effectiveness of pose or transform estimation,
the error was calculated at time ¢ as

€b = [[b; — byl ew = [|wi]l (39)
where w/ is the axis angle representation of Ry (R;) !, b, € R?
and R; € SO(3) are the ground truth translation vector and
rotation matrix, respectively, and b; € R3and R, € S O(3) are
the tracked translation vector and rotation matrix, respectively.
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tool transform T';? error when explicitly estimating all unknowns in the simulated da Vinci scene. Errors up to 14 mm and 7° highlight the inability to estimate
these unknown values explicitly due to the parameters being nonidentifiable as shown in Claim 1.
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All Unknowns
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(e)

Lumped Error and All Unknowns

Observable bints

(d

Box plots of converged tracking performance under various configurations for the particle filter in simulated da Vinci for stationary camera.

As is evident from the box plots, the lumped error results in better converged end-effector pose error compared to tracking all unknowns. Meanwhile, no significant
difference in observable joint angle error is seen. (a) End-effector position error. (b) End-effector orientation error. (c) Joint 5 error. (d) Joint 6 error. (e) Joint 7

€rror.

The ith joint angle error was computed as

g = 1d; — a;lJ. (40)

The mean end-effector pose error plots are shown in Fig. 4 for
both stationary camera and eye-in-hand cases. Fig. 5 shows the
distributions of errors for the nonidentifiable joint angles and
base-to-camera transform in the stationary camera case when
explicitly tracking all unknown parameters. Fig. 6 shows the
distributions of errors in the eye-in-hand configuration for the
nonidentifiable joint angles and base-to-base transform when
explicitly tracking all unknown parameters. These values were
calculated across 40 time steps from all 50 trials after 100 time
steps to give time for the particle filter to converge. These errors
have a large spread even though the particle filter is still able

to sufficiently track the end-effector as seen in the mean end-
effector pose error plots in Fig. 4. This supports Claim 1 by
showing that it is infeasible to explicitly track all the unknown
parameters from partially visible robotic tools since they do not
converge to their true values.

The distribution of end-effector tracking errors after giving the
particle filter time to converge in the same manner as previously
described are shown in Figs. 7 and 8 for stationary camera and
moving camera arm, respectively. The converged distributions
of error show little difference in end-effector positional error.
However, end-effector orientation error was clearly improved by
using the lumped error estimation for both the stationary camera
and robotic camera arm cases. For the observable joints, joints
5,6, 7, the lumped error tracking method showed no significant
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Box plots of converged tracking performance under various configurations for the particle filter in simulated da Vinci scene for eye-in-hand configuration.

As is evident from the box plots, the lumped error results in better converged end-effector orientation error and observable joint angle errors. (a) End-effector
position error. (b) End-effector orientation error. (c) Joint 5 error. (d) Joint 6 error. (e) Joint 7 error.

difference in error between the stationary camera and eye-in-
hand cases. Meanwhile, when explicitly tracking all unknowns,
the error in observable joints was significantly worse in the eye-
in-hand case.

C. Tracking Lumped Error on dVRK

Two one-minute segments of encoder readings and stereo-
scopic data from the endoscope on an ECM was captured
from a dVRK [12]. The stereoscopic camera system used the
standard dVRK endoscopic lens and has a resolution of 1920
by 1080 pixels at 30FPS. In both sequences, a single PSM arm
was teloperated with gripper in full view of the stereoscopic
camera. In the first sequence, the PSM arm travelled a total
distance of 48 mm, and the ECM was stationary. In the second
sequence, the PSM arm travelled a total distance of 49 mm, and
the ECM arm joint angles were set to sinusoidal patterns similar
to the previous simulation experiment resulting in 35 mm for a
total distance travelled. The PSM arm had blue colored markers
painted on. The markers and edges of the projected cylindrical
insertion shaft were detected in the same manner as the simulated
scene. The initial calibration Tj_ and Tgi were computed
using OpenCV’s solvePnP [57] with manually set associations
of the markers. On a deployed, and fully assembled da Vinci
Surgical System, we envision that these initial transformations
are computed from the set up joints, which connect the ECM
with the PSM arm. However, the dVRK by default does not come

with set up joints, which is why we elected to the sovlePnP with
manually set associations for initialization.

From both sequences, 20 evenly distributed images were
manually annotated using the VGG labeller [59]. These labels
I were considered ground truth and intersection over union
(IoU) was used as the metric in this experiment

IrNIg

41
Ip Ul @1

where I, was a generated mask using our previously developed
rendering procedure [60]. The generated mask was rendered us-
ing the tracked parameters. The distributions of [oU are shown in
Fig. 9 for both stationary and moving camera arm cases. Similar
to the simulation results, the lumped error clearly performed the
best. Examples of surgical tool renderings on top of the image
feed are shown in Fig. 10.

D. Tracking Lumped Error on Baxter

A 77 s video segment was recorded of a 7-DoF arm from
the Baxter robot with corresponding joint reading data. The
first joint link consistently visible in the image frames is after
the n, = 6 joint, and the end-effector moved a total distance
of 5.25 m during the segment. The video was captured on
Microsoft’s Azure Kinect camera which has and RGB camera
and a depth camera. In this experiment, the particle filter which
tracked this robotic arm only used the mono-RGB camera data.
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Fig.9. Distribution of IoU between manual annotations and reprojected rendering from tracked values under various particle filter configurations on the dVRK [12].
The left and right plots correspond to stationary camera and eye-in-hand cases respectively. The plots show tracking the lumped error yields better tool tracking
rather than explicitly tracking all unknowns.

(@

Fig. 10. Images from the best and worst IoU when reprojecting the tracked dVRK [12] surgical tool onto the image. The green and red regions are the intersection
and error, union minus intersection, respectively between the re-projection and surgical tool (best seen in color). The tracking conditions for all sets of three, from left
to right, are: All unknowns™, lumped error**, lumped error and observable joints™*. The corresponding IoU values are also listed. This shows that the failures when
using lumped error are substantially less severe than tracking all unknowns. (a) Best IoU for stationary camera: 0.94%,0.96"*,0.96***. (b) Best IoU for moving
camera arm: 0.89%,0.94**,0.94***. (c) Worst IoU for stationary camera: 0.69*, 0.85"*,0.70***. (d) Worst IoU for moving camera arm: 0.69*, 0.76**, 0.73***.

Fig. 11. DNN was trained in simulation to detect keypoints on a partially visible Baxter robot arm. The keypoint locations on the visible portion of the Baxter
arm in this experiment were optimized for such that their detectability and accuracy is maximized [21], and the result is shown with blue circles in the left figure.
An example of the detections from the Baxter experiment is shown in red on the right figure. These detections were used to update the particle filter tracking the
Lumped Error of the partially visible Baxter arm. A reprojected skeleton of the Baxter using the particle filter is also shown in green on the right figure.

Meanwhile the depth images were used to evaluate performance
of tracking the robotic tool.

The features used to update the particle filter for this ex-
periment were detected using a deep neural network (DNN)
rather than markers as used in the previous experiments. This
was done to show the flexibility of the presented particle filter
with regards to the features used to update it. The DNN chosen

was DeepLabCut [61], and it was trained to detect and optimize
feature points in simulation using our previously developed
method [21]. The resulting feature points which were detected
by the DNN are shown in Fig. 11. The DeepLabCut detections
also provide direct associations for the feature points, A,,, and
a confidence value, 1} € [0, 1], for each detected feature k. To
integrate this with the lumped error tracking, the point feature
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Distribution of position and orientation errors when calibrating for the base-to-camera transform alone with solvePnP and various particle filter

configurations compensating for errors in the base-to-camera transform and joint angles from the Baxter robot experiment. Out of the active tracking methods, the
lumped error parameter reduction technique with the observable joints is the most effective. Meanwhile, solvePnP for the static base-to-camera transform performs
similar to Lumped Error and Observable joints in orientation error, but performs significantly worse in positional error.

observation model in (32) was modified to

P(mt|Wt,Bt,ét)O< Z nf(j*')/mumf7mi(wt=f)t7ét)” (42)
kicA,,

which removes the association step in line 19 from Algorithm
1. Tt is important to include the DNN’s confidence 1} in the
model because sometimes the detections can be poor and the
corresponding update needs to be weighted lower. In the original
observation model, (32), this was done in the association step
where the maximum cost is thresholded at C77, ..

To evaluate tracking performance, the depth images were
compared against the reconstructed robotic arm using the
tracked parameters. The reconstructed scene was rendered using
a virtual camera and a Baxter robot model in V-REP [55]. After
every image used to update the particle filter, the virtual camera
captured a depth image of the reconstructed scene. The tracking
error was defined as the relative transform, T(w€, b¢) € SE(3),
between the rendered point cloud from the virtual camera R and
the corresponding point cloud from Kinect Azure’s depth camera
G. This relative transform is calculated by minimizing

Y IIF - T(w,b)g]

(r,g)ek

(43)

wherer € R, g € G, and K is the correspondence set between
R and G. The optimization was solved using Open3D’s [62]
implementation of the iterative closest point algorithm [63]. To
filter out poorly converged values, only the results where the
amount of corresponded points relative to the total rendered
points, |IC|/|R/, is greater than 0.7 were recorded. Similar to the
dVRK experiments, the initial calibration, T;_, was computed
using OpenCV’s solvePnP [57] using the detected features and
their associations on the first image frame.

For additional comparison, we ran OpenCV’s solvePnP im-
plementation [57] over the first 20 images of the dataset to solve
for a static base-to-camera transform Tj. The 2-D detections
are the same used by the particle filter. Their corresponding 3-D
positions in the base frame of the Baxter robot are generated
using forward kinematics with the joint angle readings §;. The
resulting T and the joint angle readings are used to generate
a rendered point cloud R in V-REP [56], and the same error
metric as previously described is computed.

The distribution of translational errors ||b€|| and orientation
errors ||w€|| for the three different particle filter configurations
are plotted in Fig. 12. In this case, lumped error with observable
joints performed the best. We believe this is since the kine-
matic links on the Baxter are much larger hence making the
simplification from (18) no longer valid.

IV. DISCUSSION

From the experimental results and their respective metrics, it
is evident that using lumped error yields almost always better
tool tracking than explicitly estimating all unknowns for both
stationary camera and eye-in-hand cases. Only two experimen-
tal metrics, Figs. 8(a) and 12(b), performed marginally better
when tracking all unknowns. Nevertheless, these metrics cannot
be viewed in isolation, and their respectively paired metrics,
Figs. 8(b)—(e) and 12(a), showed significant improvement when
tracking the lumped error over all unknowns. Furthermore, the
nonidentifiable values estimated when tracking all unknowns
yielded nonrealistic results as shown in Figs. 5 and 6. This is
due to there being a single solution to the parameters being
estimated when tracking the lumped error rather than the infinite
set of solutions when tracking all unknowns, as shown in Claim
1. Due to the infinite set of solutions, large distributions of the
parameters being estimated occurred which is seen in Figs. 5
and 6 when tracking all unknowns. From the perspective of
the particle filter, this is an inefficient usage of particles and
detrimental to tracking because the particle filter estimates the
posterior probability using a finite number of samples.

Tracking the observable joints when using the lumped error
showed little difference in end-effector accuracy to not tracking
them in the da Vinci simulation. This supports the validity of
applying simplification in (18) to the da Vinci robot because
the link lengths for the observable joints, a dexterous robotic
gripper, are short. However, not tracking the observable joints on
the real-world dVRK performed better. We believe this occurred
due to the features not being detected as consistently in the real
world as in simulation, hence highlighting the usefulness of the
simplification in (18). Meanwhile for the Baxter experiment,
tracking the observable joint angles gave better performance
than using the simplification. In contrast to the da Vinci robot,
the link lengths for the observable joints in the Baxter experiment
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are long hence making errors in their joint angles more catas-
trophic. This matches with our motivation for the simplification
in (18), and that it should only be used when the errors from
the observable joints does not propagate through the kinematic
chain drastically (e.g., a robotic gripper).

In addition to being efficient with respect to parameters
to estimate, the lumped error modeled as a Weiner process
experimentally was found to compensate various distributions
of errors. In the stationary camera arm case in simulation, it
captures both linear cable stretch and uniform bias error from
joint angles. For the eye-in-hand case in simulation, tracking the
lumped error additionally compensated for Gaussian noise from
the camera arm. Meanwhile in the real world experiments, there
are significant nonlinear cable stretch effects on the PSM arm [8]
and backlash and hysteresis on the Baxter robot and ECM arm,
all of which the lumped error successfully compensated.

The proposed particle filter was also shown to be effective
with a variety of visual features to update the lumped error.
The surgical robotic experiments used colored markers and edge
detections of a cylindrical shaft as features which also needed
to be associated. The Baxter robot experiment and previously
equivalent work, SuPer Deep [27], instead used a DNN to
extract features with association. The DNN feature extraction
does perform better, as shown in our previous work [27], but
the marker based approach is still sufficient for precise control
as shown in the previous autonomous suction [64] and needle
regrasping [65] works. This discrepancy in performance is due
to the improved accuracy in feature detection, which directly
improves the accuracy of the particle filters output. Further-
more, we observed better tracking performance when the visible
robotic tool is closer to the camera as the features (learned or
markers) are more accurately detected.

The particle filter in all of the experiments shown here
and the previous ones just described ran on a Intel Core™
19-7940X Processor and NVIDIA’s GeForce RTX 2080 and
yielded a loop rate of 24FPS and 10FPS when using the col-
ored markers and DNN, respectively. Therefore, it is suitable
for real-time applications which is further highlighted by our
previous control experiments. These previous works in surgical
robotic control and their usage of lumped error are discussed
in Appendix V-A.

We also showed that the lumped error is mathematically
equivalent to a previous, popular surgical tool tracking formu-
lation which claimed to only track the error in the transform
from the camera frame to the base of the surgical robot [26].
The equivalency implies that this previous formulation actually
was compensating for both error in base-to-camera transform
and joint angle errors. The surgical tool tracking experiments
presented here focused on the parameter reduction technique.
For performance of surgical tool tracking in surgical environ-
ments, refer to our previously developed work which utilized an
equivalent tool tracking method [24], [27], [64], [65].

Lastly, we want to highlight that the tracking method pre-
sented in this work requires knowledge of the kinematic chain
through the joint transforms T¢_;(-) and camera intrinsics K.
This is a fair assumption as the kinematic chain for a robot is
typically supplied by the manufacturer. Furthermore, the joint
transforms can be calibrated for with high accuracy offline [66].
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Camera calibration is also a well studied method [67] and even
implemented in standard vision toolboxes such as OpenCV [57].
Nonetheless, accurate calibration of these parameters is required
to implement the proposed tracking method in this work.

V. CONCLUSION

In this work, we described the challenges of tracking robotic
tools from visual observations that only showed part of the
kinematic chain and there was uncertainty in base-to-camera
transform and joint angle measurements through a problem
formulation that shows it was infeasible to directly estimate
all of these unknowns. A smaller set of parameters, which we
coined as lumped error, was derived and shown to compensate
all the described uncertainties and was identifiable. Furthermore,
lumped error was mathematically equivalent to a popular instru-
ment tracking method [26] hence giving a deeper understanding
of how it worked. Tracking the lumped error experimentally
was shown to efficiently track robotic tools and even could be
extended to eye-in-hand configurations. Through this extension,
we successfully tracked for the first time a surgical robotic tool
with a moving endoscope, which contained a total of 10 DoF
and a gripper joint.

The proposed tracking method to estimate the lumped error
used a Weiner Process to model the uncertainty and experimen-
tally was found to be efficient. In future work, we intend to use
the analytical derivation of the lumped error to more precisely
describe the uncertainty. In particular, we will use cable stretch
models to describe the joint angle error so the uncertainty of the
motion model for the lumped error appropriately propagates the
transmission errors for cable driven robots such as dVRK [12].
Additionally, we also intend to investigate controllers which
utilize the lumped error parameter reduction in future work. The
controllers presented in the previous autonomous suction [64]
and suture needle regrasping [65] works show great promise to
the capabilities of a lumped error controller. These controllers
will be investigated from a theoretical perspective where criteria
for stability will be defined.

APPENDIX

A. Previous Works Using Lumped Error Tracking for Surgical
Robotic Control

The lumped error simplification has been used to great effect
in previous surgical robotic work under the guise of tracking
KCS [23]. The summary here gives insight into how this tracking
method has enabled our previous work in surgical robotic con-
trol. In addition, minor adjustments are described which show
how these previous works fit into the unified approach for tool
tracking presented here.

1) Position Control: In order to regulate a robotic suction
tool along a motion plan to clear the surgical field of blood,
a controller which uses lumped error was implemented [64].
An example of this motion plan is shown in Fig. 13. In this
automated suction work, the robotic suction tool’s lumped error
was tracked using painted markers for point features and the
cylindrical insertion shaft, similar to the surgical tool tracking
experiments. Since the motion plan generates goal positions
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Fig. 13.  From left to right respectively, the figures show autonomous suction
to clear the surgical field of blood for hemostasis [64] and automated needle
regrasping for suture throwing [65]. Both of these efforts used a controller to
regulate the robotic surgical tools in the camera frame as the goals, blood and
suture needles, are detected and tracked in it. The controllers utilize the lumped
error to accomplish the regulation.

in the camera frame, which will be denoted as py € R3, the
controller regulates the end-effector of the robotic suction tool
in the camera frame. Let b{ € R? be the incorrect position of
the end-effector in the robot base frame which was computed
through forward kinematics with the noisy joint angle measure-
ments ¢;. The controller iteratively transforms the goal pg to the
virtual base defined by the lumped error, and the error d§ € R3,
in the virtual base was computed as

d; = (T T, (W) Py-Bi.  (44)
This error was then used to update the end-effector position

if ][] > 7

iff [|dZ[] < s

d¢ | e
© = emar P
T de 4+ by

ol

(45)

where v, is the max step size. The updated end-effector position
by, | was set on the robotic suction tool using inverse kinematics
and joint level regulators which use the noisy joint angle readings
q: as feedback. These operations were repeated until the error
[|d¢]| was less than some threshold, and then a new goal position
was set from the motion planner. The resulting motion was an
effective controller used to automate clearing of the surgical field
from blood for hemostasis.

2) Orientation Control: The lumped error parameter reduc-
tion was also used to regulate robotic large needle drivers along
motion plans to conduct suture needle regrasping. Similar to
the previously described autonomous suction task, the motion
plan was generated in the camera frame which acts as a bridge
between the tracked surgical robotic tools and reconstructed
suture needle. The lumped errors of the two surgical robotic tools
were tracked using the same point and edge features as described
in the surgical tool tracking experiments. Their positions were
regulated using the same controller as described in (44) and
(45). The orientation was regulated in a similar fashion. Let
Rj € SO(3) and R} € SO(3) be the goal orientation in the
camera frame and incorrect orientation of the end-effector in
the robot base frame computed through forward kinematics
with the noisy joint angle measurements G, respectively. The
orientation of the end-effector is iteratively set to

R; = (Rj_RY, (W)

R; (46)

where R§_ € SO(3) and R, (W) € SO(3) are the rotation
matrix of T§_ and T, (wt,bt), respectively. Similar to the

TABLE I
PARAMETERS USED FOR PARTICLE FILTER TO TRACK DA VINCI TOOLS IN
SIMULATION AND DVRK. ALL ANGLES AND DISTANCES ARE IN RADIANS AND
MILLIMETERS, RESPECTIVELY

Parameter Value
a [0.004 0.004 2 0.004
© 0.004 0.004 0.01]
[0.0025 0.0025 1
pIF diag | 0.0025 0.0025 0.0025
0.005]
age [0.004 0.004 2 0.004]
S diag G)%Oll] 0.01 2.5)
Swobt diag([Zw,: Zb:t))
St diag([0.005 0.005 005])
bt dlag([O 25 0.25 025])
3w,b,0 10(Zw,b,t)
[Ym Yo 7o) [0.15 40.0 0.1]
[Chiae Crnaz] [259m 0.1y + 257,]
[N Nesy] [1000 0.5]

position of the end-effector, the orientation R{ is set using
inverse kinematics and joint level regulators which use the noisy
joint angle readings G as feedback. The controller effectively
regulates the surgical robotic tools along the generated motion
plan to complete the task of suture needle regrasping as shown
in Fig. 13.

B. Implementation Details for Particle Filter

The parameters used to describe the motion models and ob-
servation models for da Vinci in simulation and dVRK tracking
experiments are shown in Table I. These values were chosen
based on our previously equivalent work [24]. The only mod-
ification for the nonstationary robotic endoscope case is the
covariance for the lumped errors, X, ; and X, ¢, are scaled by
2. Note that the relationship of Xy, b0 = 10(Zw b,¢) is still kept
after the scaling. The markers are located in similar locations as
the detected features from previous work by Ye et al. [29]. All
marker locations relative to the joint coordinate frames, pj i from
(28), were measured using calipers on the dVRK. For the Baxter
experiment, the parameters used in the particle filter are listed
in Table II. These values were chosen based on a previously
developed report on Baxter’s performance [68].

C. Camera Projection Equation for Cylinder

The camera projection of a cylinder is an adaptation of
previous work by Chaumette [54]. A cylinder is described by
three parameters: a radius r € R, a directional vector d/ €
]R3 of its center axis, and a position along its center axis
p) € R3. Let d’ and p) be defined in joint frame j, which
is the insertion shaft, and ||d’|| = 1. Using (17) or (24) for
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TABLE I
PARAMETERS USED FOR PARTICLE FILTER TO TRACK BAXTER ROBOT. ALL
ANGLES AND DISTANCES ARE IN RADIANS AND MILLIMETERS, RESPECTIVELY

Parameter Value
i [0.01 0.01 0.01 0.01
ae 0.01 0.01 0.01]
[0.001 0.001 0.001
pIF diag | 0.001 0.001 0.001
0.001]
2w,b,t diag([Ew,t Eb,t])
Yw,t diag([0.00l 0.001 0.001])
pITA diag([0.25 0.25 0.25])
Y w,b,0 10(Bw,b,t)
[vm N Negs] | [5 200 0.5]

the stationary endoscope or robotic endoscope cases, respec-
tively, d’ and p}, are transformed to the camera frame and de-
noted as d°(wy, by, e;) = [a¢ b¢ <] and p&(wy, by, e;) =
[z wg =g] . respectively. Note that (wy,b,) should be re-
placed with (w!, bl) in the robotic endoscope case. The center
axis of the cylinder in the camera frame can be described as

P, = po(We, by, er) + Ad®(wy, by, ) 47)

where A € R. The cross section of a cylinder that is normal to
the center axis can be described as the intersection between the
surface of a sphere with radius r centered along p§ and a plane
with normal d° that contains the point pg. This intersection is
described as
(P —p5) " (PE—ps) — 12 =0 48)
d¢(wy, by,er) ' (P —Pg) =0

where p¢ € R? is a point on the perimeter of the circle from the
cross section of the cylinder in the camera frame.

By combining (47) and (48), an expression for the surface
of a cylinder can be derived. The resulting expression of the
cylinder is

(p§ - P(C)(Wt,btvet))T (Pg - P(C)(Wt,btjet))

2
- (dc(Wh btaet)T (pi - P(c)(Wtabt,et))) —r*=0 (49)

where p$ = [z¢  ue zg]T is a point on the surface of the
cylinder in the camera frame.

Without loss of generality, let (X, Y") be the projected pixel
coordinates of the cylinder to a unit camera using the pin-hole
model. This can be converted to the (u,v) pixel location on a
different camera by setting

U— Cy UV — Cy

where f,, fy,, and ¢, ¢, are the focal lengths and principal point
in pixel units, respectively, from the camera intrinsic matrix K.

(50)

IEEE TRANSACTIONS ON ROBOTICS

Applying the camera pin-hole model to the surface of the
cylinder in the camera frame results in a quadratic

1 1
A+-B+—5C=0 (51)
z z
where
A=X?4+Y? 41— (a°X +b°Y + ¢)?
B=-2((zf — av)X + (y§ — b)Y + 2§ — cv)
C= (@) + (u5)” + (5)* —v* =17 (52)
and
v = azq + by§ + 2. (53)

The quadratic expression with respect to the depth occurs be-
cause there can be at most two solutions to the depth for each
(X,Y) when the cylinder is projected onto an image plane. One
solution is the visible side of the cylinder, and the other is the
obstructed side of the cylinder. The case of a single solution
to depth would occur only at the two edges of the projected
cylinder. This can be enforced by setting the determinant of the
quadratic to zero (B? — 4AC = 0) resulting in

Br Br
(m-dX-ﬁY-h) (_2\/5+(1X+/3Y+h>
(54)

=0
where

a=cYy—b2 B=a%%—cz5 Kk=0bCH—ay;
(55)
after simplification.
Therefore, it is evident that the two edges from the projection

of the cylinder result in two lines

r(zf —av) N r(yg —bv)
(—\/5 ) X + (—\/5 ,8) Y

+<T(25;\/gc”)—n>_o (56)

and

r(z§ — av) r(y§ — b°v)
<—\/5 +a>X+ <—\/5 +ﬁ>Y

r(z§ — cv)
—_— =0. (57
+ ( Niei + ﬁ) (57)

Through simple arithmetic and (50), both of these edges
can be converted to the normal form described in (29)
for any camera. In the normal form, let the resulting two
edges be parameterized by (p1 (wy¢, by, €;), qAﬁl (w¢, by, e)) and

(/32(th by, et)» ¢A72(Wt, by, et))-

D. Da Vinci Simulation Details

The stereoscopic endoscope’s virtual cameras are set to render
540 by 432 images with a field of view of 60°. The baseline
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TABLE III
PARAMETERS USED FOR SIMULATED EXPERIMENTS. ALL ANGLES AND
DISTANCES ARE IN RADIANS AND MILLIMETERS, RESPECTIVELY

Parameter Value

b . [0.005 0.005 0.005
Xob d1ag< 5 5 5] )
ab [0.004 0.004 2 0.004
€ 0.004 0.004 0.01]

e [0.02 0.02 0.0025 0.02

¢ 0.02 0.02 0.05]

ag [0.004 0.004 2 0.004]

Oc,l [0.0075 0.0075 0.75 0.0075]

distance for the stereo cameras is set to 5 mm to give similar
depth challenges in real stereoscopic endoscopes. The random
walk for the orientation, wy a quaternion vector, of the end-
effector is

(58)

e _ e...n
Wit1 = W Wy

where w' is the quaternion representation of axis-angle vector
whose angle is sampled from 2{(0,0.07) radians and axis is
uniformly sampled in spherical coordinates

sin (¢}') cos (67")
sin (67 sin (67)
cos (¢')
where 0} = arccos (ug), ug ~U(—1,1), and ¢} ~ U(0,2m).

The trajectory per trial is ran for 140 time steps. Additional
parameters are given in Table III.

(39)
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