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Stochastic simulations are used to create synthetic one-dimensional telegraph approximation (TA)
signals based on turbulent zero crossings, where the interval between crossings is governed by a power
law probability distribution with exponent a. The power law exponent is determined for statistics
of simulated TA signals, namely the box-counting fractal dimension D1, energy spectrum exponent
Bra, and an intermittency exponent 4. For the binary TA signal with no variability in amplitude,
the parameters are related linearly as D1 = 2 — 74 = 1 — pra. The relations are unchanged if
the crossing interval distribution has a finite power law region (i.e. inertial subrange) representing
a flow with finite Reynolds number. However, the finite distribution yields statistics that are not
truly scale-invariant, and distorts the linear relation between the statistic exponents and a. The
behavior is due to finite-size effects apparent from the survival function, or the complementary
cumulative distribution, which for finite Reynolds number is only approximately self-similar and
has an effective exponent differing from «. An expression presented for the effective exponent
recovers the expected relations between o and the TA statistics. The findings demonstrate how a
finite Reynolds number can affect indicators of self-similarity, fractality, and intermittency observed
from single-point measurements.

I. INTRODUCTION

Turbulent fluid dynamics is one of relatively few fields where the existence of self-similarity (scale-invariance) is
supported by both theory [1] and extensive observation [2]. The most well-known power law in turbulence describes
self-similarity within the energy spectrum: for intermediate scales known collectively as the inertial subrange, the
fluctuating energy decays as £ ~ f~5. Here f is the frequency (or wavenumber) and 3 is the spectral exponent. From
a statistics perspective, mechanistic concepts underlying a power law include random walks [3, 4], fractal geometries
[5, 6], and self-organized criticality [7-9].

Attempts to relate self-similarity in turbulence to concepts such as fractal geometries have provided both promising
[e.g., 10, 11] and conflicting [12-15] evidence, where the latter studies observed a scale-dependent fractal dimension
for isosurfaces and iso-crossings. The conflicting evidence may be explained by a combination of several challenges
in isolating specific self-similar features in turbulence. For isosurfaces and iso-crossings near the mean value [12, 13],
diffusive events are over-represented compared to level sets farther from the mean, leading to a relatively narrower
inertial subrange of scales [see, e.g., 16]. The same study [16] also demonstrated how scalar ramp-cliff patterns can
influence the box-counting fractal dimension estimated from scalar concentration fields [12, 14, 15].

An additional factor — and the focus of the present study — is the restriction of the self-similar behavior to a finite
range of scales based on the Reynolds number Re. The finite inertial subrange is a form of truncated power law,
where finite-size effects cause cumulative statistics to deviate from a true power law [17, 18]. Previous works have
briefly mentioned how finite-size effects can lead to an apparent scale-dependent fractal dimension [19, 20], but these
effects have not otherwise been closely evaluated for power laws in turbulence. Specifically, it is not clear how the
extent of the inertial subrange influences the relation between power law exponents of various statistics including the
energy spectrum and fractal dimension.

One strategy to assess power law relations in turbulence is to reduce the measured fluctuating quantity to a one-
dimensional crossing signal. The properties of isosurface geometries are ideally evaluated in three dimensions, but the
reduction of the isosurface to its crossings of a one-dimensional transect is often an experimental necessity, particularly
for point measurements in the high-Reynolds-number atmospheric surface layer. While the signal can be constructed
based on crossings of any arbitrary level set value, the most common signal is defined using zero crossings of the
velocity fluctuations [21-23]. The telegraph approximation (TA) signal [24, 25] based on these zero crossings is 1
when the fluctuating velocity is positive, and is 0 when the velocity is negative. The interval between crossings is
known as the interpulse period [22, 25] or persistence [26-28]. The inertial subrange of the full velocity signal is
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similarly present in the zero-crossing TA signal. Among other statistics, the spectrum of the TA signal and the
probability distribution of the interpulse period both exhibit self-similarity in the inertial subrange for sufficiently
large Re [see, e.g., 24, 25, 29, 30].

Available measurements of simplified turbulent crossing signals present their own challenges for studying finite-size
effects. First, a limited range of 8 values is observed from turbulent measurements, which precludes empirical fits
across the parameter space of 8 and other exponent values. Second, even high-Reynolds-number flows have a narrow
inertial subrange in the context of finite-size effects, as will be seen in later results. For instance, measurements in
atmospheric flows typically have Taylor miscroscale Reynolds number Rey ~ O(10%), corresponding to no more than
three decades (i.e. orders of magnitude) of self-similar inertial subrange [2].

To properly explore the full parameter space of Reynolds number and power law exponents, synthetic TA signals
are constructed here using stochastic simulations based on idealized interpulse distributions. Power law statistics are
computed across a range of interpulse exponent values, and the effective Reynolds number is also varied by truncating
the power law region of the interpulse distributions. The statistics evaluated here are the fractal box-counting
dimension, the energy spectrum, and an intermittency parameter. The simulations are analogous to a Monte Carlo
analysis, except the goal is to identify the ensemble average of statistics rather than their uncertainty. The idealized
simulations are purely stochastic and do not directly model any governing physics. This approach assumes the original
signal is self-similar and identifies the consequence of a finite Reynolds number (truncated power law) on crossing
statistics of the signal. While the analysis is discussed in the context of turbulent flows, the findings are generally
applicable to any finite self-similar process.

The study is organized into the following sections: Sec. II describes the stochastic simulations, Sec. III presents
results of the simulations, Sec. IV introduces a correction for finite Reynolds number, and Sec. V summarizes the
findings.

II. STOCHASTIC SIMULATIONS

The premise of the stochastic simulations is to create a synthetic TA signal s(t) defined by a sequence of “events”,
where the interval 7 between events is governed by a power law probability density function (PDF). In the context of
a turbulent zero-crossing signal, each event represents the position ¢ (in space or time) where the fluctuating quantity
s crosses zero. The design of the simulations is detailed in the sections below for both “unbounded” and truncated
interpulse power laws. The unbounded power law is used as a control case, and the truncated power laws approximate
the interpulse distribution for three Reynolds numbers spanning the range Rey ~ O(10% — 10%).

A. TUnbounded power law

For the unbounded control case, the TA interpulse distribution is modeled as a power law that exceeds the extent
of the simulation domain. The power law PDF is defined as

PDF(r) = Lol (7) - (1)
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where 7 and 75 are the minimum and maximum values of the distribution, respectively, and « is the distribution
exponent. The power law in Eq. (1) is equivalent to a Pareto distribution with exponent o — 1. The integral of the
PDF is equal to unity — as required by the PDF definition — only for a > 1 and if a minimum value is imposed. The
integral is infinite and the PDF is not well-defined for o« < 1. The minimum 7; = 1 is used here for simplicity. While
a maximum value 7 is typically oo for an unbounded power law, 75 = 103%C is employed to avoid infinite values in the
simulations. This value is close to the largest definable number in double-precision floating-point format, and yields
300 decades of power law. An example PDF is shown in Fig. 1(a).

Inverse transform sampling is used to select values of 7 from the distribution. In this approach, the cumulative
distribution function

CDF(r) = 1_(7;71)1& l1 - (:1)1a] 2)

is inverted to define 7 as a function of CDF'":
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FIG. 1. Example synthetic telegraph approximation (TA) signal constructed from a power law probability distribution PDF ~
7~ %. (a) Probability distribution for the interval 7 between events in a signal following Eq. (1). (b) Determination of a single
7 value using inverse transform sampling of the cumulative distribution CDF and Eq. (3). (c) Position ¢ of events based on
ten 7 values. (d) TA signal s(t) whose value 0 or 1 changes at each event.
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The CDF value is simulated by selecting a random value between 0 and 1, and the corresponding interval 7 is
determined from Eq. (3) as shown in Fig. 1(b). A small sample of events is shown in Fig. 1(c), where each event is
separated by simulated intervals 7.

The position ¢ of each event is used to build a synthetic TA signal s(t). Following the TA definition given in the
introduction, the s(t) value alternates between 0 and 1 at each event as seen in Fig. 1(d). The signal is constructed on
a discrete domain between 0 and t,,q; = 10°. The resolution between points on the domain is 7 = 1, thus allowing
for six decades of statistics in the signal. While PDF(7) represents 300 decades of power law, only six decades can be
observed in s(t) due to the limited domain. However, based on later results, the effect of truncation by the domain
size is negligible for this case such that it is considered unbounded for the purpose of the study.

Later results present simulations for one hundred « values between 1.02 and 3. The value av = 1 is excluded because
the PDF is not well-defined as discussed above. The approximate exponent for a turbulent TA signal is o & 1.5 [24].
For a given «, intervals 7 are simulated until ¢,,,, is exceeded to ensure the signal is fully populated. Statistics are
thereafter calculated using s(t), and the process is repeated until the ensemble average statistics are converged. The
number of signals contributing to each statistic varies between 102 for large a and 10* for small o. The latter returns
sparse signals, which require a larger number of realizations to converge statistics.

B. Truncated power law

For a turbulent TA signal, the interpulse PDF is only a power law for 7 values within the inertial subrange of
scales [24, 25]. Smaller interpulse periods are well approximated by a lognormal distribution [29, 32], and larger 7
values follow an exponential cutoff in boundary layer flows [22, 25, 27]. The same PDF shape — a blend of lognormal,
power law, and exponential distributions — is used here to simulate the effect of a truncated power law region. The
case represents a weak power law because a power law expression does not describe the full range of values in the
distribution [33].

Same as for the unbounded power law, inverse transform sampling is used to simulate s(t) based on a random
selection of values for 7. For simplicity, the lognormal portion of the distribution is defined using the parameters p, =
1 and 02 = 1, which respectively correspond to the mean and variance of log(7). From these parameters, the mode
of the lognormal curve is fixed at 71 = 1. The resulting PDF for 7 is given by the piecewise function
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FIG. 2. Power law distribution whose extent is truncated by lognormal and exponential curves. The example exhibits one
decade of power law, corresponding to Reynolds number Rey ~ 10%. (a) Probability distribution for 7 following Eq. (4). The
gray line is an example interpulse distribution from boundary layer turbulence measurements [31], shifted for visual comparison.
(b) Inverse transform sampling of CDF following Eq. (7).

—(lo; T)— 2
Cie Gesno1? o
PDF(1) = { Cor@ e*<1<b (4)
Cse™?7 b<t<m

The transition from the lognormal to the power law curve occurs at e®. This point corresponds to dlog(PDF')/dlog(r) =
« along the lognormal curve, ensuring a smooth transition to the power law. The transition to the exponential cutoff
is imposed at b = 10%e®, where z is the desired number of power law decades. The exponential parameter A = a/b
enforces a smooth transition to the exponential cutoff, i.e. dlog(PDF)/dlog(7) = a at 7 = b. The factors are defined
as
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The constants Cy and C3 are defined relative to C; to ensure the amplitude of PDF(7) is matched at the transition
points, and C is defined to achieve fOTZ PDF(7) = 1. The cumulative distribution corresponding to Eq. (4) is

CiV% (erf (Lg(\g_l) + 1) T<e
CDF(r) = CiCy + 1€2a (Tl_o‘ — e"(l_“)) e*<1t<b (6)
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Finally, the inversion of Eq. (6) yields the transform equation used to simulate the finite power law:

exp [\/ierﬁnv ( %CCLiF — 1) + IJ CDF < C,Cy

1—a

™= [452 (CDF - €1Cy) + e2(-2)] C1Cy < CDF < CCy + S2Cs (7)
~t1og [ (C1Cu+ S — CDF) +e7°| CDF > €1y + $%.

« -«

In Egs. (6) and (7), erf(z) and erfinv(z) refer to the error function and its inverse, respectively, and the two notations
for the exponential function e® and exp(z) are used interchangeably for readability.
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FIG. 3. Statistics for the fractal dimension D; estimated via box counting on simulated TA signals. (a) Box count N ~ At~21
for the unbounded case and oo = 1.1 (dotted line), & = 1.5 (solid), and a = 2 (dashed). (b) Box count for & = 1.5 and varying
Reynolds number, where the vertical lines delineate the power law region for the Rey ~ 102 case. (c) Fractal dimension D; as
a function of o with D1 = a — 1 (line) for reference. The shaded region in (c) corresponds to the typical value a ~ 1.5 for a
turbulent TA signal. In this and later figures, the legend indicates the number of power law decades in PDF(7) and the order
of the equivalent Reynolds number Rey based on the Taylor microscale.

Figure 2 shows a synthetic truncated power law. An example turbulent zero-crossing (interpulse) PDF is included
for reference. The interpulse is estimated from hotwire anemometry measurements of boundary layer turbulence [31],
and exhibits a similar shape to the simulated PDF with one decade of power law. Using the inverse transform of
CDF in Fig. 2(b) and Eq. (7), the truncated signals are simulated on the same domain and for the same range of «
values as the unbounded case.

While the synthetic and experimental distributions in Fig. 2 appear to be qualitatively similar, the idealized
distribution is not designed to reproduce aspects of a zero-crossing signal that are outside the scope of the work. For
instance, the parameters for the lognormal region do not produce the correct scaling for the mean value of T [22], and
the direct transitions between the different scaling regions may not accurately reflect experimental observations.

The breadth of the simulated power law region can be related directly to the Reynolds number. Assuming the
inertial subrange spans O(10n) to O(L) [34], where n and L are the Kolmogorov microscale and the integral scale,
respectively, the extent of the inertial subrange is O(0.0lRei/ ®) [2]. The number of decades in the inertial subrange is
therefore 2 log,o(Rey) — 2. Results for distributions with one (Rex ~ 10%), three (Rey ~ 10), and five (Rey ~ 10%)
decades of power law are presented herein. The six decades of resolution in the simulated domain yield Rey > 10° for
the unbounded case.

III. RESULTS

A. Fractal Dimension

The fractal dimension of the simulated signal is estimated here applying the box counting method [see, e.g., 6, 35, 36]
to the event positions featured in Fig. 1(c). In the box-counting approach, the domain is discretized into segments of
size At and the number of segments N containing at least one event is counted. If the resulting dependency N (At)
follows a power law

N(At) ~ At=P1, (8)

the signal is considered statistically self-similar. Whether the signal is also considered to be a fractal object depends
on the definition, as fractality is sometimes reserved for geometric shapes. The subscript 1 is adopted for the fractal
dimension D; in Eq. (8) because the estimate is made on a one-dimensional signal. The value for D; is bounded
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FIG. 4. Statistics for the energy spectrum power law exponent Bra of simulated TA signals. (a) Spectrum Era for the
unbounded case and o = 1.1 (dotted line), a = 1.5 (solid), and o = 2 (dashed). (b) Spectrum for o = 1.5 and varying Reynolds
number, where the vertical lines delineate the power law region for the Rey ~ 10? case. (c) Exponent fra as a function of «
with fra = 3 — a (line) for reference. The shaded region in (c) corresponds to the typical value a = 1.5 for a turbulent TA
signal.

between 0 and 1. These limits correspond to a signal with 7 > At (for D; = 0) or 7 < At (for D; = 1) for all intervals
7 across the tested range of At.

Example box-counting results are shown in Fig. 3(a,b) for a range of o and power law truncation. The expected
power law in Eq. (8) is approximately observed for the unbounded distribution. However, in Fig. 3(b) N(At) becomes
increasingly dissimilar from a power law as the self-similar region in PDF(7) is increasingly truncated. This trend
is consistent with similar Monte Carlo simulations that showed D;(At) to vary with At for any truncated power law
due to finite-size effects [20]. As a result, a constant fractal dimension can only be achieved in an approximate sense
for finite Reynolds number flows. The absence of a true power law in Fig. 3(b) is further discussed in Sec. IV.

Despite the departure from a power law, the dimension D is estimated by fitting Eq. (8) to the Fig. 3(a,b) curves
assuming D, is constant. The fit is performed within the range of At corresponding to the self-similar region in
PDF (7). The fitted values for D; across the tested range of a are shown in Fig. 3(c). The error bars correspond to
the change in D7 when the region where the power law is fitted is shifted by a factor of two in either direction. The
error bars therefore increase as the dependence D;(At) increases. The large error bars corresponding to small « in
Fig. 3(c) reflect the dissimilarity from a true power law observed in Fig. 3(b). The same method is used to calculate
the error bars in later figures.

For the unbounded PDF case in Fig. 3(c), D;(«) follows a linear trend D; = o« — 1 up to approximately o =~ 1.5,
where the linear relation matches previous predictions [19, 20]. Above o & 1.5, D; asymptotically approaches 1. The
same asymptotic behavior is observed for the truncated distributions representing finite Reynolds number. However,
the results for small o depart from the linear relation as the equivalent Reynolds number decreases. The reason for
the departure is related to the trends in Fig. 3(b) and is discussed in Sec. IV.

B. Energy spectrum

The energy spectrum is defined as Epa(f) ~ |3(f)|?, where 5(f) is the Fourier transform of s(¢) in frequency or
wavenumber space. Prior to computing the transform, s(¢) is multiplied by a Hamming window filter whose length
matches the domain size t,,4,. The signal is also zero-padded. The window filter and zero-padding mitigate aliasing
in §(f).

Using the same format as Fig. 3, the resulting energy spectra are shown in Fig. 4. Spectra for the truncated
distributions in Fig. 4(b) exhibit stronger self-similarity than the box counts in Fig. 3(b). The Fourier transform
efficiently isolates local (in scale) contributions to the variance. In contrast, the box-counting measures a cumulative
effect capturing all intervals smaller than the given At. For the cumulative statistics, the non-power-law behavior is
spread across scales to the expected self-similar region.

The spectral exponent Sy is estimated by fitting the power law Er4 ~ f~? to each individual spectrum. The
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FIG. 5. Statistics for the intermittency exponent pra of simulated TA signals. (a) Intermittency parameter (x2)/(x)? for the
unbounded case and a = 1.1 (dotted line), o = 1.5 (solid), and o = 2 (dashed). (b) Intermittency for & = 1.5 and varying
Reynolds number, where the vertical lines delineate the power law region for the Reyx ~ 102 case. (c) Exponent ura as a
function of a with g = 2 — « (line) for reference. The shaded region in (c) corresponds to the typical value a =~ 1.5 for a
turbulent TA signal.

“T'A” subscript is adopted because 814 & 4/3 observed for turbulent flows differs from the value 8 = 5/3 for the full
signal [29]. The dependency of Sr4 on « is shown in Fig. 4(c). The apparent “roughness” of the curves is attributed
to the shape of s(t). Artificial oscillations appear in the energy spectrum when the sinusoidal basis functions of the
Fourier transform are used to decompose the discontinuous signal. These oscillations may propagate to Sr4 as the
fitted power law region varies with a.

As before, the error bars are largest for the lowest equivalent Reynolds number due to the curvature of Er4(f)
immediately adjacent to the expected self-similar region. The trend for small « observed in Fig. 3(c) is similarly
present for the spectrum exponent. The unbounded case follows a linear relation Sr4 = 3 — a in Fig. 4(c) up to
a =~ 2. This relation is applicable to a superposition of Poisson processes [9], and appears similarly applicable to
the self-similar process simulated here. For a > 2, the results slowly deviate from the linear relation and there is
agreement across cases. It is assumed that Sr 4 asymptotically approaches 0 as « increases, but this trend cannot be
confirmed due to the limited tested range of «.

C. Intermittency

The intermittency is another quantitative measure of variability in the distribution of events. Intermittency can be
parameterized using Obukhov’s local moving average [37]

1 t+At
At) = —
x(t, At) A7 /t

Given the amplitude of s(t) is invariable, the integral corresponds to the number of events occurring within “windows”
of size At. The intermittency is quantified using the scaling [24, 38, 39]

as*
dt

dt. 9)

@N THTA
g A (10)

where angled brackets () indicate an ensemble average across ¢. Equation (10) is defined here using the second-order
moment, but the same principle can be applied to higher-order moments. The exponent ur4 represents how the
variability in number of events across windows changes as the window size is increased.

The intermittency parameter statistics are shown in Fig. 5. Results for the truncated distributions in Fig. 5(b)
exhibit a lack of self-similarity. Same as for the box counting methodology, Eq. (9) accounts for all intervals smaller
than At, resulting in a cumulative metric.
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FIG. 6. Relations between power law exponents of the presented statistics for simulated TA signals. (a) Fractal dimension D4
and intermittency exponent pra, compared to pra = D1 —1 (line). (b) Dimension D and spectrum exponent 814, compared
to Bra =2 — D; (line). (c) Exponents pra and fra, compared to Sra = p+ 1 (line).

Values for pra, fitted using Eq. (10), are plotted as a function of « in Fig. 5(c). The curves follow the same
trends as D and Bra. A linear relation pr4 = 2 — « is observed for the unbounded distribution and small « values.
Truncating the power law distribution to represent a finite Reynolds number leads to a departure from the linear
relation. For larger «, all cases deviate from pur4 = 2 — a as p asymptotically approaches zero.

D. Exponent relations

The relations between power law exponents D1, Bra and ur 4 are plotted in Fig. 6 for the tested range of a. The
lines correspond to the linear trends in panel (c) of Figs. 3, 4, and 5. For visual clarity, the error bars from previous
figures are only reproduced in Fig. 6 for the truncated case with one decade of self-similarity.

A robust inverse relation between pura and Dj is observed in Fig. 6(a). The results are in close agreement with
the prediction pra = 1 — Dy [39, 40], which can be derived via the correlation dimension [41]. The linear trend is
invariant to the Reynolds number (i.e. the truncation of the power law PDF), and the primary difference across cases
is the observed range in pura and D; values.

Linear trends 74 = 2 — Dy and Bra = pra + 1 also exist for the spectral exponent in Fig. 6(b,c). However,
the linearity is limited to Bra £ 1.2. The behavior for smaller Sr4 is attributed to the slower rate at which Sra
asymptotically approaches zero, compared to the corresponding rates for D1 and pr 4.

The results for PDF(7) with Rey ~ 10? are visibly offset from the other cases in Fig. 6(b,c). The difference in 74
is approximately 0.2, which is within the extent of the error bars. The difference may therefore be due to the lack of
self-similarity in the statistics and the precise range chosen to fit the power law exponents. The result highlights the
challenge in recovering the expected relations when the Reynolds number yields a narrow inertial subrange and the
cumulative statistics (D1, pra) lose the signature of self-similarity.

Aside from the offset, the relations in Fig. 6 do not depend on the Reynolds number and the bounds of the power
law PDF. Direct linear relations can be expected between power law statistics, even if the governing distribution
PDF (1) is self-similar across a finite range of values. The effect of Reynolds number on the power law exponent
relations is therefore limited to the altered connection between the statistics and the underlying probability exponent
a.

IV. EFFECT OF FINITE REYNOLDS NUMBER

The probability distribution definitions in Egs. (1) and (2) impose a finite maximum value 5. As a result, intervals
above 15 are under-sampled relative to an infinite power law distribution [17, 18]. Values within the power law region
may be under- or over-sampled, depending on the shape of the cutoff regions bounding the power law.

The consequence of the sampling discrepancy is apparent in the survival function 1 — CDF(7), also known as the
complementary cumulative distribution. For the power law in Eq. (2), the survival function can be expressed as

1-cpr(n =" 711)1_—;2/:)21/2)1—&' (11)

Equation (11) is only a power law for infinite Reynolds number with 75/7 — oo, and otherwise has a finite additive
constant distorting the probability that the next interval exceeds a given value of 7. The distortion has led to the use
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FIG. 7. Effective exponent a. resulting from the distortion of the survival function by the truncated power law, i.e. finite
Reynolds number. Rows correspond to the survival function 1 — CDF(7) (a,b,c) and associated exponent a. (d,e,f) following
Eq. (13). Columns correspond to values of a: 1.1 (a,d); 1.5 (b,e); and 2 (c,f).

of more generalized distributions such as the Zipf-Mandelbrot law [42] to describe cumulative statistics of truncated
power laws.

The survival functions for three values of o are shown in Fig. 7(a,b,c). The trends are consistent with the previously
observed dependencies on «: for finite Reynolds number with a truncated distribution the survival function only
approximates a power law, and the departure from a power law is largest for small « values.

To quantify the deviation from a true power law, the effective exponent o, can be calculated from the slope of the
curves in Fig. 7(a,b,c). Mathematically, the exponent is

d
1—a,.=—1log(l—-CDF)|. 12
a0 = e o ) (12)
The chain rule can be used to simplify the derivative operation as d/dlog(r) = 7d/dr. Using Eq. (11) to compute
the derivative of log(1 — CDF), the effective exponent can be expressed as

TPDF(7)

ae(t) =14+ TDF(T)

(13)

Importantly, the exponent changes as a function of 7, reflecting the fact that the survival function is not a true
power law for a truncated distribution. The effective exponent is shown in Fig. 7(d,e,f) for each simulated case. The
effective exponent is o, ~ «a for the unbounded case, indicating the domain size is sufficiently large to approximately
represent an infinite power law for this study.

Within the range of 7 where a power law is expected, a. in Fig. 7 becomes increasingly larger than a as a decreases
and as the Reynolds number decreases. The decrease in a and Reynolds number both represent an increase in the
portion of the CDF that is “missing” due to the truncated upper limit of the distribution. For a power law defined
only in the range between 7 and 7o, a. is

(r/m)' ™
(r/m)" " + (/1) ™

The result . = « is recovered when 75/71 — 00, i.e. Re — co. The equation for the truncated distribution in Fig.
2 follows a similar form to Eq. 14, except the right-side term in the denominator depends on the prescribed cutoff
behavior. In this sense, the lognormal and exponential cutoffs employed here introduce minor quantitative differences
in the results, but the scale-dependence of the survival function is a direct consequence of finite-size effects resulting
from the finite power law region.

In practice, a, in Eq. 13 can be estimated from discrete histograms approximating the TA interpulse distribution
PDF(r). For simplicity, a single representative value of «, is employed here using the average of a.(7) within the
inertial subrange where power law statistics are fitted.

ae(t) =14 (a—1)

(14)
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FIG. 8. Power law exponent as a function of a (transparent markers) and the effective exponent a. (opaque) for simulated TA
signals. (a) Fractal dimension D;. (b) Spectrum exponent Sr4. (c) Intermittency exponent pra. (d) Spectrum exponent Sra
for boundary layer turbulence measurements of the streamwise (o) and wall-normal (x) velocity components.

Fig. 8 compares the power law exponents as a function of o and a.. Substituting for the effective exponent c,
accounts for the trends observed in panel (c) of Figs. 3, 4, and 5. Further, the corrected results follow the linear
relations exhibited by the unbounded case. The remaining deviation in the Rey ~ 10% case is within the extent of the
error bars and may be due to the strong departure from self-similar statistics previously discussed.

As a practical example, Fig. 8(d) shows the correction of «a for measured turbulent TA signals. The signals were
acquired from a range of positions within a wind tunnel boundary layer above both smooth and rough surfaces [31].
The results for the spectrum exponent Sra4(ca.) align with the expected linear relation and exhibit reduced scatter
compared to Sra(a). The observed difference in B4 between the streamwise and wall-normal velocity components
is due to the smaller integral length for the wall-normal component, leading to a narrower inertial subrange and a
greater effect of truncation. The effective exponent . in Fig. 8(d) successfully accounts for this difference.

The discrepancy between SBra(a) in Fig. 8(d) and Bra = 3 — a has been previously explained as an effect
of intermittency. Specifically, the correction Sra = 3 — pra/2 — a was proposed [24]. The present simulations
demonstrate that 74 = 3 — a is applicable to intermittent, self-similar processes governed by an unbounded power
law. Adjusting the unbounded power law in Fig. 4 for intermittency would lead to incorrect results. Rather, the
relations between the power law statistics and PDF(7) must consider the effective exponent a. in Eq. (13) resulting
from a finite Reynolds number. The success of the correction in Fig. 8 demonstrates that the distortion of the survival
function propagates to statistics based on the simulated signals, and that the resulting parameters D1, S14, and pra
depend on the survival function and its effective exponent 1 — .

V. SUMMARY

For a binary stochastic process described by an unbounded power law probability distribution, linear equations
exist to relate the power law exponent of various statistics. The fractal dimension D, energy spectrum exponent
Bra, and intermittency exponent pups are related as Dy = 2 — fra = 1 — pra. The relation between D and p
matches the predicted analytical solution. The statistics are also linearly related to the probability exponent «, e.g.
as fra = 3 — a, for the range of o applicable to turbulent signals (« &~ 1.5). While a small selection of statistics are
evaluated here, similar linear relations and trends are expected for other parameters like the correlation integral [43].

These relations are directly applicable to the telegraph approximation (TA) of turbulent crossing signals and
estimates of the fractal dimension from single-point measurements. However, certain aspects of the results depend on
the Reynolds number and the extent of the inertial subrange where power law behavior is expected, in which a finite
Reynolds number yields truncated power law statistics. Specifically, a finite Reynolds number changes the effective
exponent o, of the survival function for the TA interpulse 7, which propagates to ensuing statistics. The original
linear relations between o and the other exponents can be recovered by considering the effective exponent a. in Eq.
(13). Yet, cumulative statistics such as the fractal dimension are not self-similar, as a.(7) is strongly scale-dependent
when the Reynolds number is small. The departure from self-similarity may be even greater in practice, as the effect
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of an exponential cutoff on the scale invariance of the power law is not considered here [44].

These finite Reynolds number effects may help to explain experimental observations in turbulence. Previous findings
on the scale dependence of the fractal dimension [12, 13] are likely due to a combination of the technical challenges
discussed in the introduction [16] and the finite-size effects studied here. Additionally, deviations from Sr4 = 3 — «
in turbulent TA signals (Fig. 8) are well-described by the proposed correction derived from the survival function.
The Reynolds number required for these statistical effects to become negligible, Rey > 10°, is well beyond current
numerical and laboratory capacities. These findings are specific to one-dimensional signals, as the extension of the
statistical effects to higher dimensions is not explored here.

Based on the design of the simulations, the linear trends and effective exponent discussed above are purely sta-
tistical properties of truncated power laws. The findings are independent of the governing Navier-Stokes equations
or underlying mechanisms such as self-organized criticality. The relations provide no information on causality, and
the only prerequisite is for self-similarity to exist within the signal. In this regard, the conclusions apply to any
binary process defined by a truncated power law probability distribution. Importantly, the linear expressions cannot
be directly applied to the full turbulent signals exhibiting amplitude variability beyond 0 or 1. In this case, certain
relations also depend on the phase of the signal [45].
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