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Deep Heterogeneous Dilation of LSTM for
Transient-Phase Gesture Prediction Through
High-Density Electromyography: Towards

Application in Neurorobotics
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Abstract—Deep networks have been recently proposed to es-
timate motor intention using conventional bipolar surface elec-
tromyography (sEMG) signals for myoelectric control of neuro-
robots. In this regard, Deepnets are generally challenged by long
training times (affecting practicality and calibration), complex
model architectures (affecting the predictability of the outcomes),
and a large number of trainable parameters (increasing the need
for Big Data). Capitalizing on our recent work on homogeneous
temporal dilation in a Recurrent Neural Network (RNN) model,
this letter proposes, for the first time, heterogeneous temporal di-
lation in an LSTM model and applies that to high-density surface
electromyography (HD-sEMG), allowing for the decoding of dy-
namic temporal dependencies with tunable temporal foci. In this
letter, a 128-channelHD-sEMGsignal space is considereddue to the
potential for enhancing the spatiotemporal resolution of human-
robot interfaces. Accordingly, this letter addresses a challenging
motor intention decoding problem of neurorobots, namely, tran-
sient intention identification. Our approach uses only the dynamic
and transient phase of gesture movements when the signals are
not stabilized or plateaued, which can significantly enhance the
temporal resolution of human-robot interfaces. This would even-
tually enhance seamless real-time implementations. Additionally,
this letter introduces the concept of “dilation foci” to modulate the
modeling of temporal variation in transient phases. In this work
a high number (e.g., 65) of gestures is included, which adds to
the complexity and significance of the understudied problem. Our
results show state-of-the-art performance for gesture prediction in
terms of accuracy, training time, and model convergence.

Index Terms—Human-centered robotics, neurorobotics, high
density sEMG, temporal dilation, recurrent neural networks.
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I. INTRODUCTION

A S of 2005, more than 1.6 million people in the United
States were living with the loss of a biological limb. This

population is estimated to double by 2050. Besides accidents
and congenital conditions, some medical conditions can lead to
amputation, such as cancer, vascular diseases, diabetes, and pe-
ripheral arterial diseases [1]. The population of peoplewho have
such conditions is also growing in an accelerated manner. Thus,
the research in fabrication and seamless control of prostheses is
in substantially high demand. For upper-limb functions, due to
the complexity and diversity of tasks, intuitive and agile (fast in
response) control are technically challenging. Addressing these
problems can help amputees with Activities of Daily Living
(ADLs) beyond essential hand functions. Furthermore, existing
gesture detection algorithms have lowaccuracy and high latency,
leading to a high rejection rate in commercial systems [2]–[4].
Surface electromyography has been used extensively in the
literature to implement myoelectric control of bionic limbs,
allowing for peripheral interfacing of the humanmotor intention
to robotic actions in a noninvasive manner [5]. sEMG-based
gesture classification can be used as a reference for real-time
robotic control. A conventional approach is to feed extracted
temporal and spectral features from sEMG signals to classic
models such as Support Vector Machines (SVMs) or Linear
Discriminant Analysis (LDA) [6]–[8]. Researchers have also
achieved high performance when feeding denoised sEMG from
only two pairs of electrodes to a probabilistic classifier [9].
Deep learning techniques have been increasingly used to de-
code the complex human neurophysiological responses to motor
commands, exploiting the rich information present in the sEMG
signals. Convolutional neural networks (CNNs) have been lever-
aged in sEMG-based prosthetic studies [10]–[16] because of
their ability to detect and localize human neurophysiological
features in a given segment of muscle-activity signal. Recurrent
Neural Networks have also been used [17]–[21] because they
capture the underlying temporal dynamics from sEMG signals.
Long-Short-Term Memory (LSTM) is a type of RNN [22]. An
LSTM unit has a cell, an input gate, an output gate, and a forget
gate, which work together to allow the model to capture both
long and short dependencies of the signals.
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Some recent articles [23], [24], including our previous
work [25], [26], have proposed hybrid models that leverage the
benefits of both CNNs and RNNs in gesture detection. In [25],
we proposed a hybrid approach that achieves high performance
on conventional user-specific and generalized gesture classi-
fication, with reduced need for re-training and re-calibration.
However, traditional bipolar sEMG signals have challenges
in capturing muscle group activities due to limited numbers
of sensors and sparse sensor placement, thereby limiting the
number of detected gestures. Most existing literature only uses
the plateau phase of contraction, which is a steady-state phase
during highly-controlled and instructed task conduction when
the signal does not represent a dynamic contraction. The use
of the steady segment of the signal results in low temporal
resolution, late reaction, and incorrect classification during tran-
sient phases which can affect practicality and intuitiveness. This
letter aims to address the aforementioned issues by propos-
ing a new computational model that can process high-density
surface electromyography (HD-sEMG) signals to enhance the
spatiotemporal resolution of intention decoding.
High-density surface electromyography has attracted consid-
erable attention in recent years because it encodes distributed
activities of motor units across the muscles and the gradient
of changes in time and space, which are critical factors for
distinguishing intendedmotor tasks. HD-sEMG signals are non-
invasively collected from a large number of electrodes arranged
in a two-dimensional array. The dense placement (e.g., 5-10 mm
inter-electrode space) of electrodes in a 2D grid describes the
muscle activities both as a function of time and topologically (in
space) for the muscle group. Some recent efforts have been con-
ducted to utilize various representations of HD-sEMG signals
for detecting human intention. Examples are as follows: time-
domain representation [27]–[29], image-based muscle activity
heatmap representation [24], [27], [30], and motor unit action
potentials and the corresponding spike trains derived through
decomposition of HD-sEMG [31]–[33]. In the above literature,
HD-sEMG has shown the ability to secure high accuracy. How-
ever, there are some critical limitations as follows: (a) signals
are often down-sampled to reduce the volume of high-density
information in some (not all) cases, (b) relatively low number
of classified gestures (< 27 gestures) are considered, (c) low
number of subjects, and (d) the plateaued phases of contraction
are considered under controlled environments and long signal
windows. In this letter, we use a new open dataset (see Sec-
tion II-A), and specifically address the transient-phase decoding
problem for a high number of gestures using the proposed novel
algorithm. We conduct a comprehensive comparative study to
support state-of-the-art results.
Despite the diversity of model structures (CNNs, RNNs, or
hybrid models), the literature suffers from the most common
deep-learning problems, including long training times, vanish-
ing/exploding gradients, and short dependencies. Furthermore,
these models suffer from traditional deep learning limitations,
such as requiring large training sets to classify a large number of
classes and avoid overfitting. Therefore, we previously proposed
homogeneous temporal dilation by adding dilation into the
LSTM module [26], modeling longer temporal dependencies

and thereby mitigating vanishing/exploding gradients. At the
same time, it makes the structure less complex, allowing the
training time to be 20 times faster than existing counterparts.
In this letter, we are taking the next fundamental step by
proposing nonlinear heterogeneous temporal dilation of a pure
LSTM network to further explore the benefits of various dilation
modes. In heterogeneous temporal dilation, the skipped LSTM
cells exponentially increasewithin each layer, broadening the re-
ceptive field of the model for capturing longer and more diverse
temporal dependencies. Additionally, we analyze the impact of
dilation focus (see Fig. 4), which varies the connection density
of the LSTM cells along the temporal dimension. Furthermore,
we train and test on the transient phase of each repetition, which
contains only 10% of the signal length. We also investigate the
effect of different window lengths and achieve the best model
performancewith awindowsizeof 200ms.The sixcontributions
of this letter are summarized below:
Contribution 1: This letter proposes heterogeneous temporal
dilation, for the first time, which introduces nonlinearity in
the skip connections of LSTM cells to increase the reach and
variety of temporal dependencies. The nonlinear dilation further
alleviates deep learning problems such as vanishing/exploding
gradients and long training times.
Contribution 2: The proposed dilated model powerfully and
successfully predicts a high number (65) of gestures, achieving
83% accuracy and enhancing the model versatility.
Contribution 3: The gesture prediction task is designed to
need only the transient phases of the signal (10% of the signal
length from each repetition) which significantly enhances the
agility and temporal resolution.
Contribution 4: The concept of dilation foci is proposed
and implemented for the first time, adding one more degree of
freedom to the proposedDeepnetmodel,modulating themodel’s
temporal reach, which is beneficial for adaptability.
Contribution 5: The analysis of varying window sizes found
the best model performance (82% median accuracy) when the
window size is 200 ms (which is lower than the real-time
requirement of 300 ms in prosthesis control [34]).
Contribution 6: The proposed heterogeneous dilation short-
ens the training time by more than 20 times over regular RNN
models.

II. MATERIAL AND METHODS

A. Data Acquisition Process

In order to design a robust, lightweight, and efficient pros-
thetic control interface that can support versatile ADLs beyond
essential hand functions, this letter is based on a high-quality
HD-sEMG database that includes 65 isometric hand gestures
with different degrees of freedom (DoFs) recently published in
the scientific data of Nature [35]. The movements consist of 16
1-DoF finger and wrist gestures, 41 2-DoF compound gestures
of fingers and wrist, and eight multi-DoF gestures of grasping,
pointing, and pinching. The database was collected from 20
healthy participants, 14 males and 6 females, with wide-ranging
ages between 25 and 57 years old (mean: 35 years old). We only
use the signals from 19 subjects because the data from subject
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Fig. 1. 32 muscle-activity heatmaps associated with 16 1-DoF movements from the best-performing subject (#15). Each gesture has two heatmaps (forearm
extensor and flexor). Each heatmap is an 8×8 grid, consisting of 64 electrodes.

Fig. 2. This figure shows the corresponding forces of three gestures with
differentDoFs oneach repetition. Thedashed lines indicate theend (0.5 seconds)
of transient phases.Force indices0-5denote straingauges on indexfinger,middle
finger, ring finger, little finger, thumb finger flexion/extension, thumb finger
abduction/adduction, respectively. Line colors denote five different repetitions.
(a) Little finger force of little finger bend gesture; (b) Ring finger force and
thumb forces of ring finger bend and thumb down gesture; (c) All five fingers
forces of palmar grasp gesture.

5 is not available. The HD-sEMG signals were recorded using a
Quattrocento (OT Bioelettronica) biomedical amplifier system
through two 8×8 electrode grids (a total of 128 channels) with

Fig. 3. (a) Regular baseline model (all LSTM cells are connected); (b) Dilated
baseline model with first-order dilation.

Fig. 4. (a) Left-focused model where the highest connection density is at the
beginning timestamps; (b) middle-focused model where the highest connection
density is at the middle timestamps; (c) right-focused model where the highest
connection density is at the end timestamps.
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a 10mm inter-electrode distance, at a sampling rate of 2048 Hz.
The two grids were positioned on the dorsal (outer forearm) and
the volar (inner forearm) of the upper forearm. The recording
was performed in a differential manner, where the channel i sig-
nal is the signal difference between electrode i + 1 and electrode
i, to reduce common-mode noise. Each subject was asked to
perform each gesture for five repetitions before switching to the
next one. Each repetition lasts for five seconds, followed by an
equal-duration rest. Fig. 1 shows muscle-activity heatmaps from
the two 8×8 electrode grids (inner and outer forearm) for the
best-performing subject. Due to space limitations, we only show
16 out of the 65 gestures, and choose the simplest most visually
intuitive examples. We show the heatmaps for the two grids, for
a total of 32 heatmaps. It can be observed that for Movement
2 “ring finger: bend,” which is an extension of the little finger,
more muscle activity is observed on the outer forearm (which
contains the extensors) than on the inner forearm. Independent
forces from each finger and the wrist were utilized to assist the
temporal re-labeling in aligning the movement labels with the
segments of the hand gestures once they have reached a plateau.
This letter uses the labels before the temporal adjustment to
include the transient phase.

B. Data Preprocessing

In this work, we define the length of the transient phase by
averaging the corresponding force signals of each gesture across
all subjects. The HD-sEMG signals of each repetition have been
truncated after 0.5 secs to capture the computed transient phase
average. Fig. 2 shows the 0.5-second transient phases (indicated
by dashed lines) of the corresponding force signals ofMovement
1 (1-DoF), Movement 26 (2-DoF), and Movement 61 (multi-
DoF). We then scale up the signal magnitudes using Min-Max
normalization only based on training data, followed by Mu-law
transformation [36] on each data scalar in a logarithmic and
nonlinear manner. Mu-law transformation is applied as can be
seen in (1) to enhance the discriminability of the information
among channels.

F (xt) = sign(xt)
ln(1 + µ|xt|)
ln(1 + µ)

. (1)

In (1), xt denotes each data scalar and µ = 2048. We conduct
signal windowing and evaluate the effect of varying window
sizes, following the real-time implementation standards in my-
oelectric control [34], [37]–[40]. We investigate sliding window
sizes of 100 ms, 200 ms, and 300 ms with the same step size
of 10 ms. Each short window is a data point for training the
model. As a result, the model input has a shape of (sampling
rate*window size)×128. 128 is the number of channels (two
8×8 grids). Thus, for a 200 ms window size, only 20 minutes
of calibration/training data is fed to the model for each subject.
It is commendable that a 65-class model can work with such
little data, enhancing the practicality and reducing the need for
extensive calibration.

III. MODEL STRUCTURE

Based on our previous research and recent literature, it should
be mentioned that for a large number of gestures and the
steady-phase of contraction, deep neural networks can achieve
high performance when given large datasets. However, deep
structures and the need for large datasets are two primary factors
leading to complex model architectures and long training times.
Motivated by this issue, in this letter we propose heterogeneous
temporal dilation, for the first time, aiming at adding longer,
nonlinear, and more diverse temporal reach to the LSTMmodel.
This letter also proposes one new degree of freedom, dilation
focus, to the model structure, indicating the skewness of the
connection density of the dilated LSTM cells on each layer.

A. Regular Baseline Model and Dilated Baseline Model

We compare the model performance of the proposed hetero-
geneously dilated model with two baseline models: a regular
LSTMmodel (seeFig. 3(a)) and ahomogeneouslydilatedLSTM
model. (See Fig. 3(b)). The study using the regular baseline
model evaluates the effect of any dilation, while the study
on the dilated baseline model compares the effect of different
temporal dilation strategies (homogeneous vs. heterogeneous).
For consistency, the regular baseline model consists of four
LSTM layers, each having the number of LSTM cells equal
to window size × sampling rate (e.g., 409 LSTM cells for a
200 ms window) and 128 hidden units. The 128 hidden units
of the last LSTM cell of the fourth LSTM layer are fed into
the classifier (i.e., a fully connected neural net which fuses
the decoded information for gesture prediction). The classifier
contains three fully connected layers, sequentially including 64,
32, and 65 nodes, to conduct gesture prediction. The dilated
baseline model has a similar architecture to the regular baseline
model, but the 3rd-order homogeneous dilation is injected into
the LSTM layers. Refer to our previous work [26] for more
details on the homogeneous model and the aggressiveness of
temporal dilation. Early stopping (a common technique to pre-
vent overfitting in the literature [20], [41], [42]) with a patience
factor of 30 is used. This means that the model will stop training
after 30 iterations past the point at which the accuracy has
plateaued.

B. Heterogeneous Dilation and Dilation Focus

Compared with the homogeneous dilation that has vertical
aggressiveness within each layer, in heterogeneous dilation,
we examine different aggressiveness horizontally within the
second layer. The number of skipped LSTM cells between two
connected cells exponentially increases/decreases, determined
by the dilation focus. In a left-focused model (see Fig. 4(a)),
the model is divided into three equal-length time segments. The
number of skipped cells (denoted as Nk) of each time segment
can be derived from an exponential function shown in (2).

Nk = n · (2k − 1), k = 1, 2, 3 (2)
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TABLE I
MODEL DESCRIPTIONS

k denotes the k-th time segment, andn represents the maximum
number of skip connections given the time segment. In a right-
focused model (see Fig. 4(c)), the model is also segmented into
three equal parts on the time axis. The number of the skipped
cells of each time segment can be calculated from the same
exponential function but with k in the reverse order. In a middle-
focused model (see Fig. 4(b)), we first find the median cell of
each layer, and thendivide theLSTMmodel into two submodels,
each having three equal-length time segments (one-sixth of the
window size). The submodel on the left is equivalent to a right-
focused dilated model, whereas the submodel on the right is
equivalent to a left-focused dilated model. Early stopping with
a patience factor of 30 is again used.

IV. EXPERIMENTS AND RESULTS

A. Experiment Models

Following the previously explained model structures, we
perform a comprehensive analysis on five LSTM-based models
listed in Table I. Model 1 is a regular 4-layer LSTM network.
Model 2 adds 3rd-order homogeneous dilation, skipping 7 out
of every 8 cells on the second layer. (Refer to [26] for details
on the upper layers.) Based on model 2, we extend to models
3-5, where we replace the homogeneously dilated second layer
with the three versions of heterogeneous dilation. We adapt the
heterogeneous dilation only on one layer because experiments
showed that applying dilation of the same focus on too many
layers results in an overall condensing of information in one
area and too much loss in the other areas, therefore affecting the
performance. A left-focused dilation is used on the second layer
of model 3, a middle-focused dilation is used on model 4 and a
right-focused dilation is used on model 5.We train user-specific
models for each of the 19 subjects.
To evaluate the model generalization and performance legiti-

macy on new data, we conduct k-fold (k = 5) cross-validation.
We hold out one repetition for testing and use the other four for
training. The average results of the cross-validation are reported
in Tables II and III and used for the box plots in Fig. 5.

B. Results and Statistical Analysis

We perform statistical analysis on all previously mentioned
models across all 19 subjects. We perform D’Agostino-Pearson
test for normality, which compares the results using paired
t-tests. The significance threshold for the p-value is 0.05. We
apply Bonferroni correction to the observed p-values to reduce

TABLE II
MODEL ACCURACY

TABLE III
NUMBER OF CONVERGE ITERATIONS

Fig. 5. Accuracy box plots of models using: (a) a 100 ms window, (b) a 200
ms window, (c) a 200 ms window comparing the dilated versions, and (d) a 300
ms window.

the probability of false positives. Markers are used to denote
corrected p-value ranges as following: (a) The ns marker (for
not significant) denotes 0.05 to 1; (b) * denotes 0.01 to 0.05; (c)
** denotes 0.001 to 0.01; (d) *** denotes 0.0001 to 0.001; and
(e) **** denotes smaller than 0.0001. Fig. 5 shows box plots of
the different model prediction accuracies with the comparison
markers. As can be seen, the dilated models are consistently
performing better than thebasemodels, demonstrating the power
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Fig. 6. Validation accuracy per iteration. Blue line is the proposed and red line is the conventional technique. Subject 5 is missing from the online database.

in performance of the dilation models. Among the dilated ver-
sions, the middle-focused heterogeneous dilation model (model
4) shows the best result. Table II lists the median accuracy of
each model for different window sizes. We achieve the best
accuracy of 83.332%, using the middle-focused structure and
the 200 ms window size. Fig. 5(c) shows the t-test results
between the best-performing (middle-focused) model and other
dilated models. It can be observed that the middle-focused
model has a statistically significantly higher performance. This
evidence shows that our proposed structure has the potential to
increase accuracy while enhancing the model’s generalizability
and adaptability on transient-phase data.
Similarly, we compare the number of iterations for conver-
gence in training the model, which we define as the number
of iterations required for the validation accuracy to reach 95%
of the final best accuracy using the same method previously
presented. We show in Table III that the dilated models require
less iterations to converge. In particular, formodels with window
sizes of 100 ms and 200 ms, the middle-focused model achieves
fastest convergence.
Fig. 6 compares validation accuracies between the basemodel
and the middle-focused heterogeneous dilation model with a
200 ms sliding window for all subjects. The plot shows the
progression of accuracy with training iterations. We can see that
the proposed heterogeneous dilation model brings significant
and consistent improvements in accuracy, convergence speed,
and smoother convergence patterns.

V. COMPARATIVE STUDY

Here we conduct a comparative study to compare the pro-
posed heterogeneously dilated model with conventional non-
sequential Deepnets that have been most commonly used in the
literature [10]–[16], [43], [44]. This comparative study empha-
sizes the importance of sequential modeling in capturing the
underlying temporal dynamics. In addition, a comparison of
our proposed temporally dilated model and common sequential
modeling technique, i.e., LSTM, was presented in Section IV
(Experiments and Results) to highlight the benefits of our pro-
posed architecture.

TABLE IV
RESULTS FOR COMPARING THE PROPOSED HETEROGENEOUSLY DILATED

LSTM MODEL WITH CONVENTIONAL DEEPNETS

Note: Acc - Accuracy;# - The number of.

Thus, in this section, we compare our best (middle focused)
model with a CNN and a Multilayer Perceptron (MLP). All
models use a window size of 200 ms. The CNN model consists
of two CNN blocks, each having a convolutional layer, a batch
normalization layer, and a Parametric Rectified Linear Unit
activation function. The first convolutional layer has 16 filters
and the second has 24 filters. Each layer has a kernel size of
15×5. A max-pooling layer with a kernel size of 2×2 is defined
between CNN blocks. The outputs of the last CNN block are
flattened and fed to a two-layer fully connected classifier for
gesture prediction. The tested MLP model has 128 nodes on the
hidden layer. The results are shown in Table. IV.
Observation 1: With the limited window size and limited data
from the transient phase, both CNN (with 59.561% accuracy)
and MLP (with 49.877% accuracy) fail in the gesture prediction
task.
Observation 2: The proposedmodel has a level of information
modeling and compactness that is not possible to achieve by
CNN or MLP. It should be added that the trainable parameters
of CNN are > 60 times more than the proposed model, and the
number of trainable parameters of theMLP are> 12 times more
than the proposed model.

VI. CONCLUSION

This letter proposes a nonlinear temporal dilation, named
“heterogeneous dilation,” into theLSTM layers.We have shown
that the proposed structure significantly improves the training
times and convergence speeds (>20 times faster) and boosts the
accuracy when predicting 65 diverse gestures, compared with a
non-dilated counterpart LSTM. This letter brings research one
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step closer to real-time implementation of prosthesis control by
training the proposed model only on the transient phases, using
just 10% of information at the beginning of each repetition.
Moreover, the conducted study on the impact of varying window
sizes has found that our proposedmodel achieves state-of-the-art
performance when using a slidingwindow size of 200 ms, which
is shorter than the real-time implementation requirement of
300 ms. The introduction of dilation focus to the proposed
model adds another novel degree of freedom into the structure,
shifting the model focus to prioritize the deep observations and
hidden states of a particular segment of information. Hence, the
heterogeneously dilated model becomes more robust, agile, and
adaptable to various tasks. The fast convergence of the proposed
model opens thedoor for ubiquitous outside-the-lab applications
and for researchers who do not have access to high-performance
computers.
In this work, we evaluate our heterogeneously dilated model

on a large variety of HD-sEMG signals that can capture the
varying neurophysiological features of 19 able-bodied subjects
of different demographics andbiomechanics, demonstrating that
our model is adaptable and robust. The authors would like to
highlight and confirm that even though we utilize an inclusive
dataset to capture variability in human neurophysiology, the
neurophysiology of the healthy population does not reflect the
amputees’, which varies based on the nature of surgeries and
underlying causes. Hence, as part of our future work, we will
collect data from amputees to translate the performance of our
model to practical applications. Also, this letter applies hetero-
geneous dilation and dilation foci in user-specific hand gesture
prediction, following the convention in the literature. Leveraging
our work in generalization and temporal dilation, proposing a
heterogeneously dilated and generalized model for hand gesture
prediction in upper-limb prosthetic control is another future line
of our research. More details about our preliminary work on
generalization can be found in [25].
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[35] N. Malešević et al., “A database of high-density surface electromyogram
signals comprising 65 isometric hand gestures,” Sci. Data, vol. 8, no. 1,
p. 63, Feb. 2021, doi: 10.1038/s41597-021-00843-9.

[36] E. Rahimian, S. Zabihi, S. F. Atashzar, A. Asif, and A. Mohammadi,
“XceptionTime: Independent time-window xceptiontime architecture for
hand gesture classification,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 1304–1308.

[37] H. F. Hassan, S. J. Abou-Loukh, and I. K. Ibraheem, “Teleoperated
robotic armmovement using electromyography signal with wearable myo
armband,” J. King Saud Univ. - Eng. Sci., vol. 32, no. 6, pp. 378–387,
Sep. 2020.

[38] W.-T. Shi,Z.-J. Lyu,S.-T.Tang, T.-L. Chia, andC.-Y. Yang, “Abionic hand
controlled by hand gesture recognition based on surface EMG signals: A
preliminary study,” Biocybern. Biomed. Eng., vol. 38, no. 1, pp. 126–135,
Jan. 2018.

[39] A. Aranceta-Garza andB.A. Conway, “Differentiating variations in thumb
position from recordings of the surface electromyogram in adults perform-
ing static grips, a proof of concept study,” Front. Bioeng. Biotechnol.,
vol. 7, p. 123, May 2019, doi: 10.3389/fbioe.2019.00123.

[40] M. F. Wahid, R. Tafreshi, and R. Langari, “A multi-window majority
voting strategy to improve hand gesture recognition accuracies using
electromyography signal,” IEEETrans.NeuralSyst. Rehabil. Eng., vol. 28,
no. 2, pp. 427–436, Feb. 2020.

[41] U.Côté-Allard,C.L. Fall,A.Campeau-Lecours,C.Gosselin, F.Laviolette,
and B. Gosselin, “Transfer learning for sEMG hand gestures recognition
using convolutional neural networks,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., 2017, pp. 1663–1668.

[42] C. Maufroy and D. Bargmann, “CNN-Based detection and classification
of grasps relevant for worker support scenarios using sEMG signals of
forearm muscles,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2018,
pp. 141–146.

[43] Y. He, O. Fukuda, N. Bu, H. Okumura, and N. Yamaguchi, “Surface
EMG pattern recognition using long short-term memory combined with
multilayer perceptron,” in Proc. 40th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc., 2018, pp. 5636–5639.

[44] S. Zhou, K. Yin, F. Fei, and K. Zhang, “Surface electromyography-based
hand movement recognition using the Gaussian mixturemodel, multilayer
perceptron, and AdaBoost method,” Int. J. Distrib. Sensor Netw., vol. 15,
no. 4, 2019, Art. no. 1550147719846060.

Authorized licensed use limited to: New York University. Downloaded on February 19,2022 at 02:02:39 UTC from IEEE Xplore.  Restrictions apply. 


