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Abstract: Large-scale multivariate regression is a fundamental statistical tool with
a wide range of applications. This study considers the problem of simultaneously
testing a large number of general linear hypotheses, encompassing covariate-effect
analysis, analysis of variance, and model comparisons. The challenge that accom-
panies a large number of tests is the ubiquitous presence of heavy-tailed and/or
highly skewed measurement noise, which is the main reason for the failure of
conventional least squares-based methods. For large-scale multivariate regres-
sion, we develop a set of robust inference methods to explore data features such
as heavy tailedness and skewness, which are not visible to least squares meth-
ods. The new testing procedure is based on the data-adaptive Huber regression
and a new covariance estimator of regression estimates. Under mild conditions,
we show that our methods produce consistent estimates of the false discovery
proportion. Extensive numerical experiments and an empirical study on quanti-
tative linguistics demonstrate the advantage of the proposed method over many

state-of-the-art methods when the data are generated from heavy-tailed and/or



skewed distributions.
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1. Introduction

Multivariate regression is a fundamental statistical tool for data analysis
with applications in fields including biology, financial economics, linguistics,
psychology, and social science. By modeling thousands or tens of thousands
of responses and covariates or experimental factors, it provides statistical
decisions on individual levels by simultaneously testing many general linear
hypotheses, including the covariate-effect analysis, analysis of variance, and
model comparisons, among others. For example, multivariate regression
has become a standard tool in differential expression analyses in genomics
(Ritchie et al., 2015), and is commonly used in corpus linguistics for word
usage comparisons (Khany and Tazik, 2019). See Cai and Sun (2017) for a
comprehensive review of relevant applications.

To simultaneously test many general linear hypotheses, the conventional
practice is to compute individual p-values based on F-tests or likelihood ra-

tio tests, and then to employ multiple testing procedures to control the false



discovery rate (FDR, see Benjamini and Hochberg (1995); Storey (2002)).
However, this standard approach and its theoretical validity often rely on
strong distributional assumptions, such as a normality /sub-Gaussianity or
symmetry condition on the error distribution. Its effectiveness in terms of
FDR control and power may be compromised when dealing with heavy-
tailed and/or skewed data with large scales, such as microarray data (Pur-
dom and Holmes, 2005) and text data (Zipf, 1949).

Overcoming this challenge requires a procedure that is robust against
heavy-tailed and/or skewed error distributions. Heavy tailedness increases
the chance of observing data that are more extreme than the majority. We
refer to these outlying data points as stochastic outliers. A procedure that
is robust against such outliers, as evidenced by its better finite-sample per-
formance than that of a non-robust method, is called a tail-robust procedure
(Ke et al., 2019). In contrast to the conventional robustness under Huber’s
e-contamination model (Huber, 1964) or the regularization-based robust-
ness for detecting and removing outliers (Kong et al., 2018), the notion of
tail-robustness focuses on the challenge that methods that minimize the
empirical risk perform poorly because the empirical risk is not uniformly
close to the population risk, given the heavy-tailed and/or skewed errors

(Prasad et al., 2020). Although several new methods and estimation the-



ory under heavy-tailed models have been developed (Catoni, 2012; Minsker,
2018; Sun et al., 2020), fewer studies have focused on inference, especially
in a large-scale setting (Fan et al., 2019; Minsker, 2019).

Building on the idea of the adaptive Huber regression, we develop a
robust multiple testing procedure to test many general linear hypotheses
in the presence of heavy-tailed and/or skewed errors. First, we employ
the adaptive Huber regression to estimate the multivariate regression coef-
ficients, based on which, we construct a robust test statistic and compute
approximate p-values to estimate the false discovery proportion (FDP).
Next, we apply Storey’s FDR controlling procedure (Storey, 2002) to de-
termine a threshold, below which the p-values lead to the corresponding
hypotheses being rejected. By allowing the robustification parameter to di-
verge with the sample size, the adaptive Huber regression estimator admits
a tight non-asymptotic deviation bound and is asymptotically efficient (Sun
et al., 2020). Theoretically, the non-asymptotic Bahadur representation is a
crucial step for establishing the limiting distribution of the estimator or its
functionals. Practically, the proposed method is fully data-driven (Wang
et al., 2021), and therefore computationally attractive and applicable to
large-scale problems.

The main contributions of this study are as follows. Methodologically,



we develop a tail-robust multiple testing procedure to simultaneously draw
inferences on large-scale multivariate regressions in the presence of heavy-
tailed and/or skewed errors. This general framework includes the large-scale
simultaneous mean testing problem as a special case. Compared with the
traditional approach in multivariate and high-dimensional statistics, our
method imposes very mild moment conditions on the data, and the number
of hypotheses/responses is allowed to grow exponentially fast with the sam-
ple size. These features make our method particularly advantageous and
appealing for conducting an inference on large-scale multivariate regression
models with heavy-tailed and/or asymmetric errors, which is corroborated
by our comprehensive simulation studies. Furthermore, motivated by Hu-
ber (1973), we propose a novel covariance estimator of the adaptive Huber
regression estimate, and derive an interesting new exponential-type devi-
ation bound that is of independent interest. The theoretical analysis of
the new procedure is nontrivial. For that, we explore and develop inter-
esting new technical results, by which we show that the proposed method
controls the FDP and FDR asymptotically under mild moment and corre-
lation conditions on the error vector. Computationally, our method is fast
by taking advantage of the computational efficiency of the data-adaptive

Huber regression (Wang et al., 2021). In addition to numerical experiments,



we apply our method to analyze text data from the Standardized Guten-
berg Project Corpus (Gerlach and Font-Clos, 2018). We identify genre-
representative words in works of William Shakespeare, and investigate the
differences between the works of Lewis Carroll, Charles Dickens, and Arthur
Conan Doyle. This empirical study demonstrates that our method is a use-
ful addition to the existing toolkit for modeling and analyzing text data in
quantitative linguistics.

The rest of the paper proceeds as follows. In Section 2, we revisit testing
general linear hypotheses based on multivariate regressions, and introduce
our procedure based on the adaptive Huber regression. In particular, we
introduce a novel Huber-type estimator of the covariance of the regression
coefficients in Section 2.2. We establish the statistical guarantees in Section
3. Section 4 presents our simulations. In Section 5, we apply our method
to a well-known quantitative linguistics data set, namely the Gutenberg
Project. Extensions of our method are discussed in Section 6. All proofs

and additional numerical results are provided in the Supplemental Material.

2. Model and Methodology

Throughout the paper, we write |ul| = (3¢, u?)"/? as the fy-norm of the

vector u = (uy,...,uq)T € R% Let (u,w) be the inner product of vectors



u and w and |ul? = (u,u). Denote S*! = {u € R?: |u| = 1} as the
unit sphere in R?. For the matrix A € R?*¢ denote ||A|| = supyega—1 |Aul,
Amax (A), and Apin(A) as the spectral norm, maximum eigenvalue, and min-
imum eigenvalue, respectively. Let ®(z) := P(U < z), with U ~ N(0,1), be
the cumulative distribution function of the standard normal distribution.
Denote I(-) as the indicator function.

Consider independent data {(Y;, X;)}",;, where Y; = (Vi1,...,Y,)T,
X; = (Xi1,..., Xiq9)t, withd > 1and d/n — 0 asn — 00. Foreach 1 < j <
p, the conditional expectation of Y;; given X; is modeled by E(Y;;|X;) =

pi + X7 B;. Define the data matrices Y = (Yy,...,Y,)T € R"? and

X = (Xy,...,X,)T € R4 The multivariate regression of interest is
Y=1,u"+XB+E, (2.1)

where p = (p1, ..., up)" is the intercept vector, 1, = (1,...,1)T e R", B =
(B1,--.,B,) € RYP consists of the slope coefficients, and E = (€7, ... € )" €
R™ P with €; = (€;1,...,€;,)" . Independent of X;, the p-dimensional resid-
ual errors €; are independent and identically distributed (i.i.d.), with mean
zero and covariance matrix X, = (0cjx)1<jr<p- For ease of notation, let
0; = (1;,8;)" e R*! and Z; = (1,X])" € R**!, and define the parameter
and design matrix as © = (0y,...,0,) € RUTVXP and Z = (Z,,...,Z,)",

respectively, so that (2.1) reduces to Y = ZO + E. Based on (2.1), we are



interested in performing a simultaneous inference on the p hypotheses
HOj . CBJ = Cp; VEISuUS Hlj : Cej # Coj fOI'j = ]., - D, (22)

where the matrix C € R+ the vectors co; € R? are prescribed, and
rank(C) = ¢ < d+ 1. The hypotheses in (2.2) encompass a variety of
important applications, including inferences on contrasts in an analysis
of variance and testing for treatment effects. Likelihood-based or least
squares-based methods have been employed under the assumption that the
covariates and/or errors follow either normal or light-tailed symmetric dis-
tributions (Friguet et al., 2009). With a large p, the underlying distribu-
tions, by chance alone, may have quite different scales, and can be highly
skewed and heavy tailed. Therefore, outliers occur more frequently, chal-
lenging the efficacy of the standard methods. We make no parametric
distributional assumptions, such as normality or elliptical symmetry. In-
stead, we define moment parameters v; 5 = {E(]ey;|>7°)}/C+ for § > 0.
Specifically, set v; = v; .

To test the linear hypotheses in (2.2), we first estimate the model pa-
rameters robustly in the presence of heavy-tailed and /or skewed errors. For

7 =1,...,p, define the Huber-type M-estimators éj as

~ AT . n
0, := (fi;, 3;)" = argmin ZETJ. (Yij — p—XIB), (2.3)

peR,BeR ;7



where (,(z) = (22/2)I(|z] < 7) + (7]x] — 72/2)I(J]z| > 7) is the Huber loss
(Huber, 1964), parameterized by 7 > 0. Our theoretical analysis suggests
that with 7; = n/?*){log(np) + d} =3+ for some § > 0, the estimators
éj are close to @; uniformly over j = 1,...,p with high probability, even
when p grows exponentially fast with n. Here, the divergence of 7; guaran-
tees éj to be sub-Gaussian, even if the error admits only a (2 + ¢)th finite
moment. More importantly, the order of 7; grants the desired approxima-
tion error of the Bahadur representation to éj (Proposition 1), as well as the
uniform non-asymptotic bounds of the estimated covariance of éj (Theorem
2). As noted in the literature (Catoni, 2012; Fan et al., 2019; Sun et al.,
2020; Wang et al., 2021), the divergent 7; is necessary to balance the bias
and robustness in the presence of heavy-tailed and/or skewed errors. On
the other hand, the order of 7; in our setting differs from those of earlier
studies on adaptive Huber regressions. For example, with a finite (1 + €)th
moment of the error, Sun et al. (2020) focused on estimating the adaptive
Huber regression that corresponds to p = 1 in our setting, and considered
7; = O(nnaxt/+.1/2 (g 4 Jogn)~max{l/1+6.1/2H) - Fan et al. (2019) used
7; = O(n**{log(np)}~/?) to test p-dimensional mean vectors under the as-
sumption of a finite fourth moment of the errors, which corresponds to d = 1

in our setting. In practice, 7; can be chosen using either cross-validation



2.1 Test procedure for general linear hypotheses10

or the recent data-driven method of Wang et al. (2021). The latter avoids
a grid search for each j, and hence is computationally appealing, espe-
cially for large p. Using these robust estimates éj, we then construct test
statistics with approximated p-values for (2.2) that are obtained under the
null. Together with the Benjamini—Hochberg (BH) method (Benjamini and
Hochberg, 1995) or its variants, for example, Storey (2002), we develop a

robust procedure to simultaneously test the p hypotheses in (2.2).

2.1 Test procedure for general linear hypotheses

We now describe our test procedure for (2.2). Given the estimators ?)j
obtained from (2.3), with 7; = 70,nY+9{log(np) + d} V) for 1; > v;4

and ¢ € (0, 2], we consider the following test statistic:
V; = n(CO; — coy)"(CZ,C")7(CO; — cyy), (2.4)

for each j, where ZAIJ- is an estimate of 3, := cov(n1/2@j); see Sections 2.2
and 3.2. In (2.2), Hy, is rejected for large V;. As we will show, the V; are
asymptotically Xg—distributed under Hy; uniformly in j. Leveraging this,
we can estimate the FDP to determine the rejection threshold that bounds
the estimated FDP by a prespecified level a € (0, 1).

Let #6) = {j : 1 < j < p, Hy; is true} and py := |#€|. Denote the num-

ber of discoveries and false discoveries by R(2) = >7_ I(V; > z) and V(z) =



2.1 Test procedure for general linear hypothesesi1

2 jen, 1(Vj = 2), respectively, for the threshold z > 0. The FDP is defined
as FDP(z) = V(z)/ max{R(z), 1}. According to the law of large numbers,
V (2) should be close to poP(x2 > z), whereas the number of nulls py is not
accessible, in general. When both p and pg are large and p; = p—pg = o(p) is
small, which is known as a sparse setting in the high-dimensional regime, the
approximated FDP AFDP(z) = V(2)/ max{R(z), 1}, with V(z) = pP(x; >
z), is a reasonable and slightly conservative surrogate for the asymptotic
approximation poP(x2 > z)/max{R(z),1} and FDP(z). Using AFDP(z2),
we can determine the threshold Z, = inf{z = 0: AFDP(z) < o} for the
nominal level a. For j =1,...,p, Hy; is rejected whenever V; > Z,. Essen-
tially, our procedure is based on the BH method, with the input p-values
obtained from robustified/Huberized test statistics. Similar ideas are also
adopted in Cai and Liu (2016) and Cai et al. (2019). The main difference
is that the latter test statistics have closed-form expressions, whereas our
statistics are based on M-estimators.

Note that if mp = po/p is bounded away from one as p — o, AFDP(z)
may overestimate FDP(z). To improve the power, we may combine ex-
isting estimations of my in the literature with our procedure to calibrate
the threshold of rejection in a more adaptive fashion. For example, Storey

(2002) estimates V'(z) by pfo(n) P(x2 > 2) for a predetermined 7 € [0, 1),



2.2 A refined Huber-type estimator of ;12

where To(n) = {(1—n)p} ' 27_, I(P; > n) and P; is the p-value associated
with the jth test statistic. Storey and Tibshirani (2003) suggest n = 0.5,
and Blanchard and Roquain (2009) recommend 7 = « for dependent hy-
potheses. Using this estimate of V(z), our threshold of rejection can be

refined accordingly as 2] = inf{z = 0 : p7io(n) P(x; > 2)/R(z) < a}.

2.2 A refined Huber-type estimator of 3;

. . ~ . oA Sl
A naive estimator of 3; = cov(n'/26;) for conducting our test is ;% ,

where G ;; is an estimate of o, ;, and S, =nt S Z;ZT. When only
p is present, that is, d = 0, Fan et al. (2019) proposed a U-statistic-based
variance estimator and an adaptive Huber-type estimator of the second
moment, which, combined with the mean estimator, is used to estimate the
variance. The computational complexity of their estimator is O(n?*(d + 1)),
and hence grows fast with d. For the latter estimator, because the squared
data is severely right skewed, the Huber-type truncation inevitably leads
to an underestimation of the second moment, and therefore the variance.
Motivated by the classical theory of the Huber regression (Section 7.6 in
Huber and Ronchetti (2009)), we propose an estimator f)j based on the
asymptotic covariance of the conventional Huber regression estimator.

Given 7 > 0, the classical Huber regression estimator 0 of 0 admits



2.2 A refined Huber-type estimator of 3,13

that n'/2(6 — @) converges to N (0, 3,) in distribution, where 3, = {P(|¢| <
T 2E{C (e)2}2,! and X, = E(ZZT) € REUTV*(E@+D) (Huber, 1973). Re-
sembling 3., our estimator ij consists of three Huber-type estimates and

uses the tapering function (Cai et al., 2010)
I*(z) = I(Jz| < 7) + b, (7 + by — |2 (7T < |2] < 7+ hy), (2.5)

which is h;, '-Lipschitz continuous. Given a robustification parameter 7; > 0
and the corresponding estimate 8; from (2.3), define W; = n=2 37", ¥ (eif)ZiZ]
and my; = n' 3L, 1% (e;;), where e;; = Yj; — ZiTéj. Here W; and m; are
estimates of P(|e;| < 7;)2z and P(ley;| < 75), respectively. Recall that
S, = n 'Y | ZZT. Inspired by (7.83) in Huber and Ronchetti (2009),

we define the covariance estimator 2j in (2.4) as
5 = Z{f’ e) P l{(n —d— 1)K} "W, W (2.6)

where K; = 1 4 (nm;) "' (d + 1)(1 — m;) is a correction factor that benefits
the finite-sample performance.

For the conventional Huber regression with fixed 7 > 0, it can be shown
that, with I*(z) replaced by I(|z| < 1), flj converges in probability to X,
as n — oo. To legitimize using V; to test (2.2), we show in Section 3.2
that with the adaptive 7;, the covariance estimator f]j in (2.6) is close

to X, uniformly over j, with high probability. In addition, because h,, is



2.3 Related works14

aligned with 7 = ma(n, p, d) for some function a in n, p, d, to make it scale
invariant, a more adaptive approach is to consider ch,,, where c can be set as
7o, which is determined similarly to 7 (Wang et al., 2021), or as a minimum
absolute deviation estimator of the variance using the fitted residuals. Refer
to Section S5.3 in the Supplement Material for a numerical experiment that

examines the stability of our method on the choice of h,,.

2.3 Related works

Our method generalizes the robust large-scale simultaneous mean testing
procedure considered by Fan et al. (2019). In addition to the robust multiple
inference, Fan et al. (2019) focused on modeling E in (2.1) using a latent
factor model to improve the power, without which their problem can be
viewed as a special case of (2.1). Methodologically, to draw multiple infer-
ences on B in (2.1) with p » n, an easily computable and accurate estimate
of the covariance of the adaptive Huber regression coefficient is needed for
all p regressions. Such an estimator dictates a careful exploitation of the
design Z, whereas Fan et al. (2019) considered only Z = 1 € R™*!  which
is not trivially extendable to the problem we consider here.

Our estimator in (2.6) bridges the gap, and consists of two parts: the

first part (n —d —1)"' 3% {¢] (ei;)}* provides a robust estimate of o j;,
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and the second part K 1W;1ZA] ZW;l offers a robustification of the inverse
Gram matrix (n‘lZTZ)_l. This can be naturally considered as a robus-
tification of the covariance of the least squares estimator. In addition, by
using the tapering function I*(x) as a smoothed version of the second-order
derivative of Huber’s loss to specify W; and K, our estimator is contin-
uous, which is crucial for the uniform consistency of ZA]J- across j. The
uniform consistency of ZAlj leads to the FDP control of our robust multiple
test for large-scale multivariate regressions. In contrast, in addition to the
fact that the procedure of Fan et al. (2019) is not able to exploit Z when
d > 1, their variance estimator of o ;;, which is the difference between a
(restricted) robust second-order moment and a squared robust first-order
moment of the error, may suffer from bias when d is large, as discussed
in Section 2.2. Moreover, it requires extra tuning parameters to robustly
estimate the second-order moment. A numerical experiment is reported in

Section S5.5 of the Supplementary Material to verify the above discussion.

3. Statistical Guarantees

In this section, we establish theoretical guarantees of our method by first
assuming a known 3J;, and then exploring the closeness between 33; and

flj in (2.6). Hereafter, we focus on Z; being random (except for the first
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coordinate), and report the results under fixed designs in the Supplementary

Material.

3.1 Approximation of FDP with known %;

Assume the covariance matrix 3; is known for each j. Consider the oracle
test statistic ‘/jo = n(Caj — Coj)T(CszT)il(Caj — C()j). Given z > 0,

write R°(z) = >0 I(VP > 2), V°(2) = X}

7=1

iereo LV > 2), and FDP°(2) =
V°(z)/R°(z). Heuristically, V}° is approximately x;-distributed under H;,

so that we can approximate FDP°(z) by
AFDP®(2) = {po P(xg > 2)H{R"(2)} . (3.1)

To show that AFDP°(z) provides a valid asymptotic (pointwise) approxi-
mation of FDP°(z), we impose the following technical conditions. Denote
R. = (rejk)1<jk<p as the correlation matrix of €, = (€1,...,€1,)7, that is,

R, =D 'Y. D!, with D? = diag(oc 11, -+, e pp)-

Condition 1. (i) p = p(n) — oo and log(p) = o(n'/?) as n — oo; (ii)

the error vectors €, ...,€, are independent, and satisfy E(e;|Z;) = 0,

E(€}|Zs) = ocjy; (iii) there exist 6 € (0,2], cc > 0, and C > 0, such that
1/2

ce < minjgjg, aeé-j < maxi<j<p Vjs < Cf; and (iv) there exist kg € (0,1) and

k1 > 0 such that max<jzr<p [7e k| < Ko and p~2 ZK#KP 7 k| = O(p~™).
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In Condition 1, (i) is a commonly assumed asymptotic regime for (n, p)
in high-dimensional statistical inference; (ii) is standard for linear regres-
sion models; compared with traditional settings that presume a finite fourth
or higher-order moments of errors, (iii) assumes only the uniform bound-
edness of the (2 + 0)th moments; and (iv) allows weak dependence among
€11, - -, €1p. In addition, we impose the following conditions on Z;. Denote

Z = E;/QZi, where X, = ]E(ZZT) is assumed to be positive definite.

Condition 2. The predictors {Z;}!", are sub-Gaussian, that is, for some

Ay > 0, P([(u, Z)| = Agllult) < 2exp(—t2), for any u e R and ¢ > 0.

Refer to Vershynin (2018) for an overview of sub-Gaussian vectors. Un-
der Conditions 1 and 2, Proposition 1 shows that AFDP® in (3.1) consis-
tently estimates FDP°. It also provides a guideline to establish the FDP

control and serves as the cornerstone of the guarantees of our method.

Proposition 1. Assume Conditions 1 and 2 hold, and py = ap, for some
a € (0,1). Let 7; = 7o;n/ ) {log(np) + d} Y+ with 7; = v;5 and

d € (0,2]. Then, for any z = 0, |[FDP°(2)—AFDP°(2)| = op(1) asn,p — oo.

We conclude this subsection with two remarks. If we strengthen Con-

dition 1 (iii) to uniformly bounded kth moments for k > 4, Proposition 1

remains valid, with 7; = 7,7+ {log(np) + d}~/?*9) and 6 € (0,k — 2].
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In addition, to prove Proposition 1, we show that [FDP°(z) — AFDP°(z)| =
Op{p™1¢"? 4+ ¢"/*n=12 4 ¢{log(np) + d}*/+)n=°/C+0)}  This explicit rate
is nontrivial and reveals how the parameter ¢, which corresponds to the di-
mension of the hypothesis, affects the difficulty of testing (2.2). We revisit

this in our numerical studies in Section 4.

3.2 Statistical guarantees with estimated covariance input f]j

Next, we establish the statistical guarantee of our method using the es-
timated covariance matrices ij in (2.6). To this end, Theorem 1 pro-
vides a mild condition on the accuracy of the estimated covariances that
lead to the consistency of the approximated FDP. Let ENJJ- be a generic
estimator of 3; for each j. The corresponding FDP and its approxima-
tion are FDP(z) = V(2)/R(z) and AFDP(2) = pyP(x2 > 2)/R(2), for
z > 0, where V(z) = Yjers IV, > 2), R(z) = ?ZIH(\N/J» > z), and

V; = n(Ch; — cy;)"(CZ;CT) H(CH; — cy).

Theorem 1. Suppose that the conditions of Proposition 1 hold. As long as
the estimated covariances {2; Yi_1 satisfy maxi<j<, 12,2, = op{(log(np) + d)~*},

we have |Ff‘13f)(z) = m(zﬂ = op(1), for any z > 0, as n,p — 0.

By verifying that ZAlj in (2.6) satisfy the required accuracy in Theo-

rem 1, together with Proposition 1, Theorem 2 acquires the convergence in
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probability of the approximated FDP to the true FDP, for any 2z > 0, as

n,p — 0.

Theorem 2. Suppose that the conditions of Proposition 1 hold. For each
Y = cov(nl/Qaj), forj=1,...,p, let ij be the corresponding estimators
given in (2.6), with 7; = To;n/ ) {log(np) + d} =Y+ and 7; > v;5, for

§ € (0,2]. Then, with probability at least 1 — 16n1,

N ] d 5/(2+9) A
1<j<p n hn

, (3.2)

where A = {d/? + (2logn)?}[n~{log(np) + d}]/?, and C; > 0 depends
only on Amax(Xz), Ao, and v;s.

Theorem 2 implies that the required accuracy in Theorem 1, that is,
maxy <, |2, — ;| = op{(log(np) +d)~1}, is met if log(p) + d = o(n®/(2+29))
and A/h,, = o{(log(np) +d)~'}, such as h,, = n~/%. So far, we have focused

on ij in (2.6). In fact, the conclusion in Theorem 2 remains valid for some

variants of f]j, such as ZAIE.I) = D 1 (ei) Y {(n —d — Dym;} KW

4. Simulation Studies

4.1 Model settings

To examine the finite-sample performance of our procedure, we consider

the following methods: (i) our method that employs the data-adaptive Hu-
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ber regression (Wang et al., 2021); (ii) our method with 7; selected using
five-fold cross-validation (Sun et al., 2020); (iii) a least squares-based multi-
ple testing method; (iv) an empirical Bayes-based multiple testing method
implemented using limma (Ritchie et al., 2015); (v) limma, with the tradi-
tional robust M-estimation instead of the least squares; and (vi) an empiri-
cal Bayes-based multiple testing method for count data, implemented using
edgeR (Robinson, McCarthy, and Smyth, 2010). Both 1imma and edgeR are
widely used to analyze a large number of regression models, and serve as
benchmarks in genomics studies. limma employs empirical Bayes methods
to shrink individual variances toward a common value better control the
FDR. edgeR models count data with large variations using the negative
binomial model. To implement edgeR, we round the response Y;; to its
nearest integer. For our method, we set § = 2 in (2.3) (i.e., we assume the
errors have finite fourth moments) and h, = n~"/* in (2.5). For (ii), we set
75 = ) {log(np) + d} =, with 0} = n=! X" (Vi — V)", and choose
¢ from {0.25,0.5,0.75,1,1.25, 1.5} based on cross-validation that minimizes
the mean-squared prediction error. For (i)—(iii), we use the FDR controlling
procedure of Storey (2002) to determine the threshold.

We generate data from model (2.1) for n = 85,120, 150, p = 1000, 2000,

p1 = 50, and d = 6,8. Entries of X € R"*? are drawn independently from
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N(0,1), and each column is standardized to have a zero mean and unit
variance. We consider three heavy-tailed and highly skewed error distribu-
tions: (a) Pareto (scale = 1,shape = 4), (b) log-normal (u = 0,0 = 1),
and (c) a mixture of the log-normal in (b) and a t, distribution with pro-
portions 0.7 and 0.3, respectively. Setting (c) reflects more challenging
scenarios in practice, because ty does not have a finite second moment.
Under each setting, we first generate E = (€;;)1<i<n,1<j<p With i.i.d. en-
tries. To incorporate dependence, set E = 100R2/ 2E7 where the correlation
matrix Re = (e jr)1<jk<p admits one of the following three structures:
Model 1, the identity matrix; Model 2, rc;; = r; drawn independently
from 0.3 x Ber(0.1), for ¢ # j; and Model 3, rejj+1 = Teji1,; = 0.3,
Tejj+2 = Tejro,; = 0.1, and rcjivx = rejrr; = 0, for & = 3. Note that
Model 2 does not satisfy Condition 1 (iv). Together with the results in
Section S5.4 of the Supplementary Material, the results for Model 2 show
that our method is reliable even when Condition 1 (iv) is mildly violated.

For each j = 1,...,p, we set p; = 5000 and consider two hypotheses:
Hypothesis 1, Hy; : 1Tﬂj = 0 versus Hg; : 1Tﬂj # 0, where ¢ = 1; and
Hypothesis 2, Hyj : B; = 0 € R? versus H,; : B; # 0, where ¢ = d. For
Hypothesis 1, let B, ~ Unif(—150,150), for 1 < j < pand 1 <k <d—1,

Bija = — Y4} Bjk, for 1 < j < p—pi, so that 178, = 0, and Bj4 = 6d"/2W; —
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ZZ;} Bjk, for p —p1 + 1 < j < p, where W; are Rademacher variables. For
Hypothesis 2, let B; = 0 for 1 < j < p — py, and By, = (2d=1)20W;;, for
p—p1+1<j<pand 1<k <d, where Wj, are Rademacher variables.

We take § = 751 and n = 0.3, which determine the signal strength.

4.2 Numerical performance

We use the nominal FDR level a € {0.05,0.1,0.15,0.2}, and carry out 250
Monte Carlo simulations at each a. Figures 1 and 2 report the empirical
FDR and power under Model 2 with p = 1000 and d = 6. The results under
other settings are documented in Section S5 of the Supplementary Material.
Each point corresponds to a nominal level (marked as a vertical gray dashed
line), with the z- and y-axes representing, the empirical FDR and the power,
respectively. Therefore, the closer the point is to the corresponding vertical
line, the more the empirical and nominal FDRs coincide.

From Figures 1 and 2, across different error settings and hypotheses, our
method, with either the data-driven Huber regression or cross-validation,
controls the FDR well, in general, and maintains high power. The competi-
tors are either too conservative, with a notable power loss, or too liberal
to control the FDR, especially for small n. The advantage of our method

is more substantial when ¢ > 1 (Figure 2). The numerical evidence favors
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using the data-adaptive Huber regression over cross-validation in terms of
both statistical accuracy and computational efficiency. Both limma and
edgeR are fairly conservative, suggesting that researchers should be careful
when using them for heavy-tailed and skewed data. Method (v) is com-
parable to our method when n is large, but completely fails to control the
FDR for errors from the mixture of the log-normal and t,. Overall, the
power of all methods increases with n, and drops for larger p, see Figures
S1—S11 in the Supplementary Material. Because the intrinsic difficulty of
the testing problem elevates with ¢, the power of all methods shrinks when
q = d = 8 (Figures S3 and S4).

We further examine the power with varying signal strengths, deter-
mined by 7. We exclude methods (iii) and (v), because they fail to con-
trol the FDR. In the above settings, we take n = 100, p = 1000, d = 6,
and choose equally spaced n within [0.3,0.7] for Hypothesis 1 and within
[0.3,0.5] for Hypothesis 2. From Figure 3, we see that the proposed methods
outperform the competitors across all error settings. The gains in power are
considerable when the error is both heavy tailed and skewed. Again, for our
method, the data-adaptive approach is preferable to cross-validation. With
heavier tails (mixture of log-normal and t5), the power decreases slightly

for all methods.
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5. Real-Data Analysis: The Gutenberg Project

Inference on large-scale text data from literary publications has drawn in-
creased attention, and has provided novel and revealing discoveries in a va-
riety of fields, including sociology (O’Connor et al., 2011), political science
(Wilkerson and Casas, 2017; Baum et al., 2018), criminology (Caines et al.,
2018), and linguistics. A major task in text analysis is to identify word
markers to distinguish or identify different authors, cultures, resources, and
so on. These word markers are usually identified by small p-values from
testing regression coefficients used to model subject effects on the word
frequency, or from model comparisons among multiple groups. In compu-
tational linguistics, for example, Marsden et al. (2013) compared 168 plays
from the Shakespearean era to identify word markers for authorship classifi-
cation. Here, we consider hypotheses that help identify the distinctive word
markers, referred to as “differentially represented” (DR) words, to identify
authors or different writing styles of a particular author.

As a well-known publicly accessible digital library of literary publica-
tions, the Project Gutenberg was founded in 1971, offering 60156 e-books,
as of September 03, 2019. The Standardized Project Gutenberg Corpus
(SPGC, Gerlach and Font-Clos (2018)) is a text corpus of Project Guten-

berg, and provides a static version of the corpus (https://doi.org/10.
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5281/zenodo.2422560). It consists of three data types: raw text, sequences
of word-tokens, and word counts. It also contains metadata about books,
such as author information, subject categories, and book types.

We apply our method to word counts from SPGC to identify idiosyn-
cratic word markers that represent an author or a category of works. Specif-
ically, we consider two problems: a comparison of the works of Lewis Car-
roll, Charles Dickens, and Arthur Conan Doyle, and a study of the works of
William Shakespeare. See a snapshot of the raw data in the Supplementary
Material. From the histograms of the empirical kurtosis of the word counts
(Figure S20), the data are heavy tailed both book-wise and word-wise. For
pre-processing, we first merge the word counts across books, and then re-
move those words with a total count of less than half the number of books
or those that appear in less than 20% of the books under consideration.
Finally, we normalize the filtered word counts by the total counts (Bullard
et al., 2010). The details are deferred to the Supplementary Material.

For the first problem, the three British authors are all from the mid-
19th to early 20th century, and share similar writing structures and back-
grounds. On the other hand, we also observe separations of their 167
works based on word usage in Figure S20 in the Supplementary Mate-

rial. To identify DR words in their works, we use model (2.1) with X; =
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(1,1,0)™ if the ith book is written by Carroll, X; = (1,0, 1) if it is writ-
ten by Dickens, and X; = (1,—1,—1)T if it is written by Conan Doyle, for
1 < i < 167 books, and B; = (i, oy, a95)T, for 1 < j < 6839 words.
We consider the following linear hypotheses: (Hypothesis CDD1) Hy; -
[(010)T (00 DT)TB; = 0 versus Hy; : [(010)T (00 1)T]'B; # 0;
(Hypothesis CDD2) Hy; : ay; = 0 versus H,j : ai; # 0; (Hypothesis
CDD3) Hy; : ag; = 0versus H,j : ag; # 0; and (Hypothesis CDD4)
Hy; = (0,1,1)"8; = 0 versus Hy; : (0,1,1)"3; # 0. Hypothesis CDD1
compares the three authors together, whereas the other hypotheses com-
pare one author with the remaining two. Using a nominal level of 0.5%, our
method detects 2595, 419, 1388, and 1445 DR words, respectively for each
hypothesis. The top 10 DR words for the three authors, such as being and
sprang are displayed in Figure 4(a). The overall comparison is reported in
Figure S21 in the Supplementary Material. Note that Conan Doyle favored
the word sprang, whereas Carroll and Dickens rarely used it. In Figure 4(c),
we further report the percentages of DR words and non-differentially rep-
resented (NDR) words within each speech category (Nguyen et al., 2016).
DR words among the three authors have higher percentages in adjectives,
adverbs, and pronouns than do NDRs. In contrast, DR words have lower

percentages of nouns, proper nouns, and verbs.
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Next, we investigate the genre difference between the works of Shake-
speare based on three subject groups: poetry, non-historical drama, and
historical drama. We model the normalized word counts by (2.1), with
X; = (1,0,0)T if the ith book is poetry, X; = (1,1, 0)T if it is non-historical
drama, and X; = (1,1,1)T if it is historical drama, for i = 1,...,176
books, and B; = (1, a;,7;)", for j = 1,...,4122 words. We consider (Hy-
pothesis WS1) Hy; : (0,0,1)"3; = 0 versus Hy; : (0,0,1)"3; # 0, which
compares the non-historical and historical dramas, and (Hypothesis WS2)
Hy; - (0, 2,1)T[3j = 0 versus H,; : (O,Q,l)Tﬁj # 0, which distinguishes
poetry and dramas. With a nominal level of 0.5%, our method identifies
724 and 225 DR words for each hypothesis. Because many of Shakespeare’s
historical dramas are about kings of the Kingdom of England, the words
princely, London, king, and crown appear more often in the historical dra-
mas (Figure 4(b)). In addition, Shakespeare used words such as march,
forces, army, and battle more frequently in the historical dramas than in the
non-historical dramas. Interestingly, the love story-related lexicons, such as
love and marry, appear more often in his non-historical dramas. From Fig-
ure 4(d), the DR words between Shakespeare’s historical and non-historical
dramas have higher percentages of nouns, pronouns, and proper nouns,

whereas their percentages are lower for adjectives, adverbs, and verbs.
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In summary, our method provides a reliable addition to the existing
toolkit in corpus linguistics and text/literature analysis. It can be used to
analyze a large volume of individual words, extending current methods that
focus on the overall distribution of word counts. An interesting follow-up
work is to investigate how stopping words, such as upon affect the results,

and whether their removal alter the discovery.

6. Conclusion

We conclude this article by discussing several open issues. First, our infer-
ence method is based on a normal approximation, which works well for a
moderate sample size. For a relatively smaller sample, the bootstrap may
provide better performance (Cai and Liu, 2016). The pioneering work of
Chernozhukov et al. (2013) on the Gaussian approximation to the func-
tional of high-dimensional empirical processes sheds light on applying the
multiplier bootstrap to the adaptive Huber regression. Although the va-
lidity of the multiplier bootstrap for the adaptive Huber regression can be
established similarly, the computational demand is more challenging.

In addition, our framework can be generalized for potentially heavy-
tailed designs. In practice, in the mediation analysis involving RNA-sequencing

data, for example, both the responses and the entries in the design are
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heavy tailed. To address this challenge, we may replace the entries in
the design by their trimmed versions X = (¢g(xi1) - .., 9s(zi))T, where
vs(u) = min{max(—w, u),w}, with the tuning parameter w > 0. This is
similar to the approach of filtering entries in the design using some thresh-
olds (Pensia et al., 2021). Here, the data-driven selection on @ is largely
unknown, and cross-validation is therefore unavoidable for the implementa-
tion. At the cost of an extra tuning parameter w and an additional log(np)
term in the orders of both 7 and @, results similar to Proposition 1 can be
established, although the theoretical guarantee on f]j is more involved.
Finally, it would be challenging, yet interesting to perform a power
analysis of our method to seek potential power improvement. Two ap-
proaches are possible in addition to the adaptive calibration discussed in
Section 2.1. The first relies on recovering the latent common factors, in
addition to the observed covariates (Fan et al., 2019). That is, we consider
a mixed-effects model Y; = OZ,; + Af; + €;, where A € RP*X is the loading
matrix and f; € R¥ are zero-mean latent common factors that are unob-
served. Because the common factors contribute to the common variance,
the signal-to-noise ratio can therefore increase using a factor adjustment,
which, in turn, improves the power. The second approach employs a more

subtly designed multiple testing framework than the BH procedure. For



30

example, Cai et al. (2019) proposed a new covariate-assisted ranking and
screening (CARS) approach that incorporates a carefully constructed aux-
iliary variable to improve the power. Proposition 6 in Cai et al. (2019)
indicates the applicability of the CARS approach to non-normal data. The
finite fourth-moment assumption is adequate for the asymptotic normality
of their statistics, but not enough for the uniform convergence of the sam-
ple means when the number of hypotheses outnumbers the sample size. An
interesting future direction would be to determine whether the robustifica-
tion/Huberization can be incorporated into the CARS approach to handle

heavy-tailed and/or skewed data. We leave these topics for future work.

Supplementary Material

The online Supplementary Material contains the proofs of all the theoretical

results in the main text, as well as additional numerical results.
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Figure 1: Empirical FDR and power for testing Hypothesis 1 under Model

2 with p = 1000 and d = 6 using six methods: the proposed method with

the data-adaptive Huber regression (D-AH, B); the proposed method with

cross-validation (AH-cv, 4); the least squares method (OLS, e); 1imma (A);

limma with a robust regression (limma-R, v); and edgeR (+). Each point

corresponds to a nominal FDR level (marked as a vertical dashed line), with

the 2- and y- axes denoting the empirical FDR and the power, respectively.
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Model

2 with p = 1000 and d = 6 using six methods: the proposed method with

the data-adaptive Huber regression (D-AH, B); the proposed method with

cross-validation (AH-cv, 4); the least squares method (OLS, e); 1imma (A);

limma with a robust regression (limma-R, v); and edgeR (+). Each point

corresponds to a nominal FDR level (marked as a vertical dashed line), with

the 2- and y- axes denoting the empirical FDR and the power, respectively.
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Figure 3: Plots of the empirical power for testing Hypothesis 2 with n = 100,
p = 1000, d = 6, and n € {0.30,0.34, ...,0.46,0.5} using four methods: the
proposed method with the data-adaptive Huber regression (D-AH, B); the

proposed method with cross-validation (AH-cv, 4); limma (A); and edgeR
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Figure 4: Panels (a) and (b): The top 10 DR words placed in ascending or-
der by their p-values (from left to right) for hypotheses CDD1 and WSI, re-
spectively, where the vertical axis shows the counts under a log-scale. Panels
(c) and (d): Percentages of DR and NDR words within each speech category
(https://universaldependencies.org/u/pos/all.html) for hypotheses

CDD1 and WS1, respectively. The nominal FDR level is 0.5%.
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