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Abstract: Large-scale multivariate regression is a fundamental statistical tool with

a wide range of applications. This study considers the problem of simultaneously

testing a large number of general linear hypotheses, encompassing covariate-effect

analysis, analysis of variance, and model comparisons. The challenge that accom-

panies a large number of tests is the ubiquitous presence of heavy-tailed and/or

highly skewed measurement noise, which is the main reason for the failure of

conventional least squares-based methods. For large-scale multivariate regres-

sion, we develop a set of robust inference methods to explore data features such

as heavy tailedness and skewness, which are not visible to least squares meth-

ods. The new testing procedure is based on the data-adaptive Huber regression

and a new covariance estimator of regression estimates. Under mild conditions,

we show that our methods produce consistent estimates of the false discovery

proportion. Extensive numerical experiments and an empirical study on quanti-

tative linguistics demonstrate the advantage of the proposed method over many

state-of-the-art methods when the data are generated from heavy-tailed and/or
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skewed distributions.
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1. Introduction

Multivariate regression is a fundamental statistical tool for data analysis

with applications in fields including biology, financial economics, linguistics,

psychology, and social science. By modeling thousands or tens of thousands

of responses and covariates or experimental factors, it provides statistical

decisions on individual levels by simultaneously testing many general linear

hypotheses, including the covariate-effect analysis, analysis of variance, and

model comparisons, among others. For example, multivariate regression

has become a standard tool in differential expression analyses in genomics

(Ritchie et al., 2015), and is commonly used in corpus linguistics for word

usage comparisons (Khany and Tazik, 2019). See Cai and Sun (2017) for a

comprehensive review of relevant applications.

To simultaneously test many general linear hypotheses, the conventional

practice is to compute individual p-values based on F -tests or likelihood ra-

tio tests, and then to employ multiple testing procedures to control the false
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discovery rate (FDR, see Benjamini and Hochberg (1995); Storey (2002)).

However, this standard approach and its theoretical validity often rely on

strong distributional assumptions, such as a normality/sub-Gaussianity or

symmetry condition on the error distribution. Its effectiveness in terms of

FDR control and power may be compromised when dealing with heavy-

tailed and/or skewed data with large scales, such as microarray data (Pur-

dom and Holmes, 2005) and text data (Zipf, 1949).

Overcoming this challenge requires a procedure that is robust against

heavy-tailed and/or skewed error distributions. Heavy tailedness increases

the chance of observing data that are more extreme than the majority. We

refer to these outlying data points as stochastic outliers. A procedure that

is robust against such outliers, as evidenced by its better finite-sample per-

formance than that of a non-robust method, is called a tail-robust procedure

(Ke et al., 2019). In contrast to the conventional robustness under Huber’s

ε-contamination model (Huber, 1964) or the regularization-based robust-

ness for detecting and removing outliers (Kong et al., 2018), the notion of

tail-robustness focuses on the challenge that methods that minimize the

empirical risk perform poorly because the empirical risk is not uniformly

close to the population risk, given the heavy-tailed and/or skewed errors

(Prasad et al., 2020). Although several new methods and estimation the-
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ory under heavy-tailed models have been developed (Catoni, 2012; Minsker,

2018; Sun et al., 2020), fewer studies have focused on inference, especially

in a large-scale setting (Fan et al., 2019; Minsker, 2019).

Building on the idea of the adaptive Huber regression, we develop a

robust multiple testing procedure to test many general linear hypotheses

in the presence of heavy-tailed and/or skewed errors. First, we employ

the adaptive Huber regression to estimate the multivariate regression coef-

ficients, based on which, we construct a robust test statistic and compute

approximate p-values to estimate the false discovery proportion (FDP).

Next, we apply Storey’s FDR controlling procedure (Storey, 2002) to de-

termine a threshold, below which the p-values lead to the corresponding

hypotheses being rejected. By allowing the robustification parameter to di-

verge with the sample size, the adaptive Huber regression estimator admits

a tight non-asymptotic deviation bound and is asymptotically efficient (Sun

et al., 2020). Theoretically, the non-asymptotic Bahadur representation is a

crucial step for establishing the limiting distribution of the estimator or its

functionals. Practically, the proposed method is fully data-driven (Wang

et al., 2021), and therefore computationally attractive and applicable to

large-scale problems.

The main contributions of this study are as follows. Methodologically,
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we develop a tail-robust multiple testing procedure to simultaneously draw

inferences on large-scale multivariate regressions in the presence of heavy-

tailed and/or skewed errors. This general framework includes the large-scale

simultaneous mean testing problem as a special case. Compared with the

traditional approach in multivariate and high-dimensional statistics, our

method imposes very mild moment conditions on the data, and the number

of hypotheses/responses is allowed to grow exponentially fast with the sam-

ple size. These features make our method particularly advantageous and

appealing for conducting an inference on large-scale multivariate regression

models with heavy-tailed and/or asymmetric errors, which is corroborated

by our comprehensive simulation studies. Furthermore, motivated by Hu-

ber (1973), we propose a novel covariance estimator of the adaptive Huber

regression estimate, and derive an interesting new exponential-type devi-

ation bound that is of independent interest. The theoretical analysis of

the new procedure is nontrivial. For that, we explore and develop inter-

esting new technical results, by which we show that the proposed method

controls the FDP and FDR asymptotically under mild moment and corre-

lation conditions on the error vector. Computationally, our method is fast

by taking advantage of the computational efficiency of the data-adaptive

Huber regression (Wang et al., 2021). In addition to numerical experiments,
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we apply our method to analyze text data from the Standardized Guten-

berg Project Corpus (Gerlach and Font-Clos, 2018). We identify genre-

representative words in works of William Shakespeare, and investigate the

differences between the works of Lewis Carroll, Charles Dickens, and Arthur

Conan Doyle. This empirical study demonstrates that our method is a use-

ful addition to the existing toolkit for modeling and analyzing text data in

quantitative linguistics.

The rest of the paper proceeds as follows. In Section 2, we revisit testing

general linear hypotheses based on multivariate regressions, and introduce

our procedure based on the adaptive Huber regression. In particular, we

introduce a novel Huber-type estimator of the covariance of the regression

coefficients in Section 2.2. We establish the statistical guarantees in Section

3. Section 4 presents our simulations. In Section 5, we apply our method

to a well-known quantitative linguistics data set, namely the Gutenberg

Project. Extensions of our method are discussed in Section 6. All proofs

and additional numerical results are provided in the Supplemental Material.

2. Model and Methodology

Throughout the paper, we write }u} � p
°d
i�1 u

2
i q

1{2 as the `2-norm of the

vector u � pu1, ..., udq
T P Rd. Let xu,wy be the inner product of vectors
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u and w and }u}2 � xu,uy. Denote Sd�1 � tu P Rd : }u} � 1u as the

unit sphere in Rd. For the matrix A P Rd�d, denote }A} � supuPSd�1 }Au},

λmaxpAq, and λminpAq as the spectral norm, maximum eigenvalue, and min-

imum eigenvalue, respectively. Let Φpzq :� PpU   zq, with U � Np0, 1q, be

the cumulative distribution function of the standard normal distribution.

Denote Ip�q as the indicator function.

Consider independent data tpYi,Xiqu
n
i�1, where Yi � pYi1, . . . , Yipq

T,

Xi � pXi1, . . . , Xidq
T, with d ¥ 1 and d{nÑ 0 as nÑ 8. For each 1 ¤ j ¤

p, the conditional expectation of Yij given Xi is modeled by EpYij|Xiq �

µj � XT
i βj. Define the data matrices Y � pY1, . . . ,Ynq

T P Rn�p and

X � pX1, . . . ,Xnq
T P Rn�d. The multivariate regression of interest is

Y � 1nµ
T � XB�Ξ, (2.1)

where µ � pµ1, . . . , µpq
T is the intercept vector, 1n � p1, . . . , 1qT P Rn, B �

pβ1, . . . ,βpq P Rd�p consists of the slope coefficients, and Ξ � pεT
1 , . . . , ε

T
n q

T P

Rn�p, with εi � pεi1, . . . , εipq
T. Independent of Xi, the p-dimensional resid-

ual errors εi are independent and identically distributed (i.i.d.), with mean

zero and covariance matrix Σε � pσε,jkq1¤j,k¤p. For ease of notation, let

θj � pµj,β
T
j q

T P Rd�1 and Zi � p1,XT
i q

T P Rd�1, and define the parameter

and design matrix as Θ � pθ1, . . . ,θpq P Rpd�1q�p and Z � pZ1, . . . ,Znq
T,

respectively, so that (2.1) reduces to Y � ZΘ � Ξ. Based on (2.1), we are
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interested in performing a simultaneous inference on the p hypotheses

H0j : Cθj � c0j versus H1j : Cθj � c0j for j � 1, . . . , p, (2.2)

where the matrix C P Rq�pd�1q, the vectors c0j P Rq are prescribed, and

rankpCq � q ¤ d� 1. The hypotheses in (2.2) encompass a variety of

important applications, including inferences on contrasts in an analysis

of variance and testing for treatment effects. Likelihood-based or least

squares-based methods have been employed under the assumption that the

covariates and/or errors follow either normal or light-tailed symmetric dis-

tributions (Friguet et al., 2009). With a large p, the underlying distribu-

tions, by chance alone, may have quite different scales, and can be highly

skewed and heavy tailed. Therefore, outliers occur more frequently, chal-

lenging the efficacy of the standard methods. We make no parametric

distributional assumptions, such as normality or elliptical symmetry. In-

stead, we define moment parameters vj,δ � tEp|ε1j|2�δqu1{p2�δq, for δ ¡ 0.

Specifically, set vj � vj,2.

To test the linear hypotheses in (2.2), we first estimate the model pa-

rameters robustly in the presence of heavy-tailed and/or skewed errors. For

j � 1, . . . , p, define the Huber-type M -estimators pθj as

pθj :� ppµj, pβT

j q
T � argmin

µPR,βPRd

ņ

i�1

`τjpYij � µ�XT
i βq, (2.3)
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where `τ pxq � px2{2qIp|x| ¤ τq � pτ |x| � τ 2{2qIp|x| ¡ τq is the Huber loss

(Huber, 1964), parameterized by τ ¡ 0. Our theoretical analysis suggests

that with τj � n1{p2�δqtlogpnpq � du�1{p2�δq, for some δ ¡ 0, the estimators

pθj are close to θj uniformly over j � 1, . . . , p with high probability, even

when p grows exponentially fast with n. Here, the divergence of τj guaran-

tees pθj to be sub-Gaussian, even if the error admits only a p2 � δqth finite

moment. More importantly, the order of τj grants the desired approxima-

tion error of the Bahadur representation to pθj (Proposition 1), as well as the

uniform non-asymptotic bounds of the estimated covariance of pθj (Theorem

2). As noted in the literature (Catoni, 2012; Fan et al., 2019; Sun et al.,

2020; Wang et al., 2021), the divergent τj is necessary to balance the bias

and robustness in the presence of heavy-tailed and/or skewed errors. On

the other hand, the order of τj in our setting differs from those of earlier

studies on adaptive Huber regressions. For example, with a finite p1� εqth

moment of the error, Sun et al. (2020) focused on estimating the adaptive

Huber regression that corresponds to p � 1 in our setting, and considered

τj � Opnmaxt1{p1�εq,1{2upd � log nq�maxt1{p1�εq,1{2uq. Fan et al. (2019) used

τj � Opn1{2tlogpnpqu�1{2q to test p-dimensional mean vectors under the as-

sumption of a finite fourth moment of the errors, which corresponds to d � 1

in our setting. In practice, τj can be chosen using either cross-validation
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or the recent data-driven method of Wang et al. (2021). The latter avoids

a grid search for each j, and hence is computationally appealing, espe-

cially for large p. Using these robust estimates pθj, we then construct test

statistics with approximated p-values for (2.2) that are obtained under the

null. Together with the Benjamini�Hochberg (BH) method (Benjamini and

Hochberg, 1995) or its variants, for example, Storey (2002), we develop a

robust procedure to simultaneously test the p hypotheses in (2.2).

2.1 Test procedure for general linear hypotheses

We now describe our test procedure for (2.2). Given the estimators pθj
obtained from (2.3), with τj � τ0jn

1{p2�δqtlogpnpq � du�1{p2�δq for τ0j ¥ vj,δ

and δ P p0, 2s, we consider the following test statistic:

Vj � npCpθj � c0jq
TpCpΣjC

Tq�1pCpθj � c0jq, (2.4)

for each j, where pΣj is an estimate of Σj :� covpn1{2pθjq; see Sections 2.2

and 3.2. In (2.2), H0j is rejected for large Vj. As we will show, the Vj are

asymptotically χ2
q-distributed under H0j uniformly in j. Leveraging this,

we can estimate the FDP to determine the rejection threshold that bounds

the estimated FDP by a prespecified level α P p0, 1q.

Let H0 � tj : 1 ¤ j ¤ p,H0j is trueu and p0 :� |H0|. Denote the num-

ber of discoveries and false discoveries by Rpzq �
°p
j�1 IpVj ¥ zq and V pzq �
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IpVj ¥ zq, respectively, for the threshold z ¡ 0. The FDP is defined

as FDPpzq � V pzq{maxtRpzq, 1u. According to the law of large numbers,

V pzq should be close to p0Ppχ2
q ¡ zq, whereas the number of nulls p0 is not

accessible, in general. When both p and p0 are large and p1 � p�p0 � oppq is

small, which is known as a sparse setting in the high-dimensional regime, the

approximated FDP AFDPpzq � pV pzq{maxtRpzq, 1u, with pV pzq � pPpχ2
q ¡

zq, is a reasonable and slightly conservative surrogate for the asymptotic

approximation p0Ppχ2
q ¡ zq{maxtRpzq, 1u and FDPpzq. Using AFDPpzq,

we can determine the threshold pzα � inf tz ¥ 0 : AFDPpzq ¤ αu for the

nominal level α. For j � 1, . . . , p, H0j is rejected whenever Vj ¥ pzα. Essen-

tially, our procedure is based on the BH method, with the input p-values

obtained from robustified/Huberized test statistics. Similar ideas are also

adopted in Cai and Liu (2016) and Cai et al. (2019). The main difference

is that the latter test statistics have closed-form expressions, whereas our

statistics are based on M -estimators.

Note that if π0 � p0{p is bounded away from one as pÑ 8, AFDPpzq

may overestimate FDPpzq. To improve the power, we may combine ex-

isting estimations of π0 in the literature with our procedure to calibrate

the threshold of rejection in a more adaptive fashion. For example, Storey

(2002) estimates V pzq by ppπ0pηqPpχ2
q ¡ zq for a predetermined η P r0, 1q,



2.2 A refined Huber-type estimator of Σj12

where pπ0pηq � tp1� ηqpu�1
°p
j�1 IpPj ¡ ηq and Pj is the p-value associated

with the jth test statistic. Storey and Tibshirani (2003) suggest η � 0.5,

and Blanchard and Roquain (2009) recommend η � α for dependent hy-

potheses. Using this estimate of V pzq, our threshold of rejection can be

refined accordingly as pzηα � inftz ¥ 0 : ppπ0pηqPpχ2
q ¡ zq{Rpzq ¤ αu.

2.2 A refined Huber-type estimator of Σj

A naive estimator of Σj � covpn1{2pθjq for conducting our test is rσε,jj pΣ�1

Z ,

where rσε,jj is an estimate of σε,jj, and pΣZ � n�1
°n
i�1 ZiZ

T
i . When only

µ is present, that is, d � 0, Fan et al. (2019) proposed a U -statistic-based

variance estimator and an adaptive Huber-type estimator of the second

moment, which, combined with the mean estimator, is used to estimate the

variance. The computational complexity of their estimator is Opn2pd� 1qq,

and hence grows fast with d. For the latter estimator, because the squared

data is severely right skewed, the Huber-type truncation inevitably leads

to an underestimation of the second moment, and therefore the variance.

Motivated by the classical theory of the Huber regression (Section 7.6 in

Huber and Ronchetti (2009)), we propose an estimator pΣj based on the

asymptotic covariance of the conventional Huber regression estimator.

Given τ ¡ 0, the classical Huber regression estimator pθ of θ admits
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that n1{2ppθ�θq converges to Np0,Στ q in distribution, where Στ � tPp|ε|  

τqu�2Et`1τ pεq2uΣ�1
Z and ΣZ � EpZZTq P Rpd�1q�pd�1q (Huber, 1973). Re-

sembling Στ , our estimator pΣj consists of three Huber-type estimates and

uses the tapering function (Cai et al., 2010)

I�τ pxq � Ip|x| ¤ τq � h�1
n pτ � hn � |x|qIpτ   |x| ¤ τ � hnq, (2.5)

which is h�1
n -Lipschitz continuous. Given a robustification parameter τj ¡ 0

and the corresponding estimate pθj from (2.3), define Wj � n�1
°n
i�1 I�τjpeijqZiZ

T
i

and mj � n�1
°n
i�1 I�τjpeijq, where eij � Yij � ZT

i
pθj. Here Wj and mj are

estimates of Pp|ε1j| ¤ τjqΣZ and Pp|ε1j| ¤ τjq, respectively. Recall that

pΣZ � n�1
°n
i�1 ZiZ

T
i . Inspired by (7.83) in Huber and Ronchetti (2009),

we define the covariance estimator pΣj in (2.4) as

pΣj � r
ņ

i�1

t`1τjpeijqu
2stpn� d� 1qKju

�1W�1
j
pΣZW�1

j , (2.6)

where Kj � 1� pnmjq
�1pd� 1qp1�mjq is a correction factor that benefits

the finite-sample performance.

For the conventional Huber regression with fixed τ ¡ 0, it can be shown

that, with I�τ pxq replaced by Ip|x| ¤ τq, pΣj converges in probability to Στ

as n Ñ 8. To legitimize using Vj to test (2.2), we show in Section 3.2

that with the adaptive τj, the covariance estimator pΣj in (2.6) is close

to Σj uniformly over j, with high probability. In addition, because hn is
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aligned with τ � τ0apn, p, dq for some function a in n, p, d, to make it scale

invariant, a more adaptive approach is to consider chn, where c can be set as

τ0, which is determined similarly to τ (Wang et al., 2021), or as a minimum

absolute deviation estimator of the variance using the fitted residuals. Refer

to Section S5.3 in the Supplement Material for a numerical experiment that

examines the stability of our method on the choice of hn.

2.3 Related works

Our method generalizes the robust large-scale simultaneous mean testing

procedure considered by Fan et al. (2019). In addition to the robust multiple

inference, Fan et al. (2019) focused on modeling Ξ in (2.1) using a latent

factor model to improve the power, without which their problem can be

viewed as a special case of (2.1). Methodologically, to draw multiple infer-

ences on B in (2.1) with p " n, an easily computable and accurate estimate

of the covariance of the adaptive Huber regression coefficient is needed for

all p regressions. Such an estimator dictates a careful exploitation of the

design Z, whereas Fan et al. (2019) considered only Z � 1 P Rn�1, which

is not trivially extendable to the problem we consider here.

Our estimator in (2.6) bridges the gap, and consists of two parts: the

first part pn � d � 1q�1
°n
i�1t`

1
τj
peijqu

2 provides a robust estimate of σε,jj,
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and the second part K�1
j W�1

j
pΣZW�1

j offers a robustification of the inverse

Gram matrix
�
n�1ZTZ

��1
. This can be naturally considered as a robus-

tification of the covariance of the least squares estimator. In addition, by

using the tapering function I�τ pxq as a smoothed version of the second-order

derivative of Huber’s loss to specify Wj and Kj, our estimator is contin-

uous, which is crucial for the uniform consistency of pΣj across j. The

uniform consistency of pΣj leads to the FDP control of our robust multiple

test for large-scale multivariate regressions. In contrast, in addition to the

fact that the procedure of Fan et al. (2019) is not able to exploit Z when

d ¥ 1, their variance estimator of σε,jj, which is the difference between a

(restricted) robust second-order moment and a squared robust first-order

moment of the error, may suffer from bias when d is large, as discussed

in Section 2.2. Moreover, it requires extra tuning parameters to robustly

estimate the second-order moment. A numerical experiment is reported in

Section S5.5 of the Supplementary Material to verify the above discussion.

3. Statistical Guarantees

In this section, we establish theoretical guarantees of our method by first

assuming a known Σj, and then exploring the closeness between Σj and

pΣj in (2.6). Hereafter, we focus on Zi being random (except for the first
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coordinate), and report the results under fixed designs in the Supplementary

Material.

3.1 Approximation of FDP with known Σj

Assume the covariance matrix Σj is known for each j. Consider the oracle

test statistic V �
j � npCpθj � c0jq

TpCΣjC
Tq�1pCpθj � c0jq. Given z ¥ 0,

write R�pzq �
°p
j�1 IpV �

j ¡ zq, V �pzq �
°
jPH0

IpV �
j ¡ zq, and FDP�pzq �

V �pzq{R�pzq. Heuristically, V �
j is approximately χ2

q-distributed under H0j,

so that we can approximate FDP�pzq by

AFDP�pzq � tp0 Ppχ2
q ¡ zqutR�pzqu�1. (3.1)

To show that AFDP�pzq provides a valid asymptotic (pointwise) approxi-

mation of FDP�pzq, we impose the following technical conditions. Denote

Rε � prε,jkq1¤j,k¤p as the correlation matrix of ε1 � pε11, . . . , ε1pq
T, that is,

Rε � D�1
ε ΣεD

�1
ε , with D2

ε � diagpσε,11, . . . , σε,ppq.

Condition 1. (i) p � ppnq Ñ 8 and logppq � opn1{2q as n Ñ 8; (ii)

the error vectors ε1, . . . , εn are independent, and satisfy Epεij|Ziq � 0,

Epε2ij|Ziq � σε,jj; (iii) there exist δ P p0, 2s, cε ¡ 0, and Cε ¡ 0, such that

cε ¤ min1¤j¤p σ
1{2
ε,jj ¤ max1¤j¤p vj,δ ¤ Cε; and (iv) there exist κ0 P p0, 1q and

κ1 ¡ 0 such that max1¤j�k¤p |rε,jk| ¤ κ0 and p�2
°

1¤j�k¤p |rε,jk| � Opp�κ1q.
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In Condition 1, (i) is a commonly assumed asymptotic regime for pn, pq

in high-dimensional statistical inference; (ii) is standard for linear regres-

sion models; compared with traditional settings that presume a finite fourth

or higher-order moments of errors, (iii) assumes only the uniform bound-

edness of the p2 � δqth moments; and (iv) allows weak dependence among

ε11, . . . , ε1p. In addition, we impose the following conditions on Zi. Denote

rZi � Σ
�1{2
Z Zi, where ΣZ � EpZZTq is assumed to be positive definite.

Condition 2. The predictors tZiu
n
i�1 are sub-Gaussian, that is, for some

A0 ¡ 0, Pp|xu, rZiy| ¥ A0}u}tq ¤ 2 expp�t2q, for any u P Rd�1 and t ¥ 0.

Refer to Vershynin (2018) for an overview of sub-Gaussian vectors. Un-

der Conditions 1 and 2, Proposition 1 shows that AFDP� in (3.1) consis-

tently estimates FDP�. It also provides a guideline to establish the FDP

control and serves as the cornerstone of the guarantees of our method.

Proposition 1. Assume Conditions 1 and 2 hold, and p0 ¥ ap, for some

a P p0, 1q. Let τj � τ0jn
1{p2�δqtlogpnpq � du�1{p2�δq, with τ0j ¥ vj,δ and

δ P p0, 2s. Then, for any z ¥ 0, |FDP�pzq�AFDP�pzq| � oPp1q as n, pÑ 8.

We conclude this subsection with two remarks. If we strengthen Con-

dition 1 (iii) to uniformly bounded kth moments for k ¥ 4, Proposition 1

remains valid, with τj � τ0jn
1{p2�δqtlogpnpq � du�1{p2�δq and δ P p0, k � 2s.
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In addition, to prove Proposition 1, we show that |FDP�pzq�AFDP�pzq| �

OPtp
�κ1q1{2 � q7{4n�1{2 � qtlogpnpq � duδ{p2�δqn�δ{p2�δqu. This explicit rate

is nontrivial and reveals how the parameter q, which corresponds to the di-

mension of the hypothesis, affects the difficulty of testing (2.2). We revisit

this in our numerical studies in Section 4.

3.2 Statistical guarantees with estimated covariance input pΣj

Next, we establish the statistical guarantee of our method using the es-

timated covariance matrices pΣj in (2.6). To this end, Theorem 1 pro-

vides a mild condition on the accuracy of the estimated covariances that

lead to the consistency of the approximated FDP. Let rΣj be a generic

estimator of Σj for each j. The corresponding FDP and its approxima-

tion are �FDPpzq � rV pzq{ rRpzq and �AFDPpzq � p0 Ppχ2
q ¡ zq{ rRpzq, for

z ¥ 0, where rV pzq �
°
jPH0

IprVj ¡ zq, rRpzq �
°p
j�1 IprVj ¡ zq, and

rVj � npCpθj � c0jq
TpCrΣjC

Tq�1pCpθj � c0jq.

Theorem 1. Suppose that the conditions of Proposition 1 hold. As long as

the estimated covariances trΣju
p
j�1 satisfy max1¤j¤p }rΣj�Σj} � oPtplogpnpq � dq�1u,

we have |�FDPpzq � �AFDPpzq| � oPp1q, for any z ¡ 0, as n, pÑ 8.

By verifying that pΣj in (2.6) satisfy the required accuracy in Theo-

rem 1, together with Proposition 1, Theorem 2 acquires the convergence in
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probability of the approximated FDP to the true FDP, for any z ¡ 0, as

n, pÑ 8.

Theorem 2. Suppose that the conditions of Proposition 1 hold. For each

Σj � covpn1{2pθjq, for j � 1, . . . , p, let pΣj be the corresponding estimators

given in (2.6), with τj � τ0jn
1{p2�δqtlogpnpq � du�1{p2�δq and τ0j ¥ vj,δ, for

δ P p0, 2s. Then, with probability at least 1 � 16n�1,

max
1¤j¤p

��pΣj �Σj

�� ¤ C1 max

�"
logpnpq � d

n

*δ{p2�δq
,

∆

hn

�
, (3.2)

where ∆ � td1{2 � p2 log nq1{2urn�1tlogpnpq � dus1{2, and C1 ¡ 0 depends

only on λmaxpΣZq, A0, and vj,δ.

Theorem 2 implies that the required accuracy in Theorem 1, that is,

max1¤j¤p }pΣj�Σj} � oPtplogpnpq�dq�1u, is met if logppq�d � opnδ{p2�2δqq

and ∆{hn � otplogpnpq�dq�1u, such as hn � n�1{4. So far, we have focused

on pΣj in (2.6). In fact, the conclusion in Theorem 2 remains valid for some

variants of pΣj, such as pΣp1q

j �
°n
i�1t`

1
τj
peijqu

2tpn� d� 1qmju
�1KjW

�1
j .

4. Simulation Studies

4.1 Model settings

To examine the finite-sample performance of our procedure, we consider

the following methods: (i) our method that employs the data-adaptive Hu-
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ber regression (Wang et al., 2021); (ii) our method with τj selected using

five-fold cross-validation (Sun et al., 2020); (iii) a least squares-based multi-

ple testing method; (iv) an empirical Bayes-based multiple testing method

implemented using limma (Ritchie et al., 2015); (v) limma, with the tradi-

tional robust M -estimation instead of the least squares; and (vi) an empiri-

cal Bayes-based multiple testing method for count data, implemented using

edgeR (Robinson, McCarthy, and Smyth, 2010). Both limma and edgeR are

widely used to analyze a large number of regression models, and serve as

benchmarks in genomics studies. limma employs empirical Bayes methods

to shrink individual variances toward a common value better control the

FDR. edgeR models count data with large variations using the negative

binomial model. To implement edgeR, we round the response Yij to its

nearest integer. For our method, we set δ � 2 in (2.3) (i.e., we assume the

errors have finite fourth moments) and hn � n�1{4 in (2.5). For (ii), we set

τj � cpvjn1{4tlogpnpq � du�1{4, with pv4
j � n�1

°n
i�1pYij � Ȳ�jq

4, and choose

c from t0.25, 0.5, 0.75, 1, 1.25, 1.5u based on cross-validation that minimizes

the mean-squared prediction error. For (i)–(iii), we use the FDR controlling

procedure of Storey (2002) to determine the threshold.

We generate data from model (2.1) for n � 85, 120, 150, p � 1000, 2000,

p1 � 50, and d � 6, 8. Entries of X P Rn�d are drawn independently from
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Np0, 1q, and each column is standardized to have a zero mean and unit

variance. We consider three heavy-tailed and highly skewed error distribu-

tions: (a) Pareto pscale � 1, shape � 4q, (b) log-normal pµ � 0, σ � 1q,

and (c) a mixture of the log-normal in (b) and a t2 distribution with pro-

portions 0.7 and 0.3, respectively. Setting (c) reflects more challenging

scenarios in practice, because t2 does not have a finite second moment.

Under each setting, we first generate E � pεijq1¤i¤n,1¤j¤p with i.i.d. en-

tries. To incorporate dependence, set Ξ � 100R
1{2
ε E, where the correlation

matrix Rε � prε,jkq1¤j,k¤p admits one of the following three structures:

Model 1, the identity matrix; Model 2, rε,ij � rε,ji drawn independently

from 0.3 � Berp0.1q, for i � j; and Model 3, rε,j,j�1 � rε,j�1,j � 0.3,

rε,j,j�2 � rε,j�2,j � 0.1, and rε,j,j�k � rε,j�k,j � 0, for k ¥ 3. Note that

Model 2 does not satisfy Condition 1 (iv). Together with the results in

Section S5.4 of the Supplementary Material, the results for Model 2 show

that our method is reliable even when Condition 1 (iv) is mildly violated.

For each j � 1, . . . , p, we set µj � 5000 and consider two hypotheses:

Hypothesis 1, H0j : 1Tβj � 0 versus Haj : 1Tβj � 0, where q � 1; and

Hypothesis 2, H0j : βj � 0 P Rd versus Haj : βj � 0, where q � d. For

Hypothesis 1, let βjk � Unifp�150, 150q, for 1 ¤ j ¤ p and 1 ¤ k ¤ d � 1,

βjd � �
°d�1
k�1 βjk, for 1 ¤ j ¤ p�p1, so that 1Tβj � 0, and βjd � δd1{2Wj�
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k�1 βjk, for p� p1 � 1 ¤ j ¤ p, where Wj are Rademacher variables. For

Hypothesis 2, let βj � 0 for 1 ¤ j ¤ p � p1, and βjk � p2d�1q1{2δWjk for

p � p1 � 1 ¤ j ¤ p and 1 ¤ k ¤ d, where Wjk are Rademacher variables.

We take δ � 75η and η � 0.3, which determine the signal strength.

4.2 Numerical performance

We use the nominal FDR level α P t0.05, 0.1, 0.15, 0.2u, and carry out 250

Monte Carlo simulations at each α. Figures 1 and 2 report the empirical

FDR and power under Model 2 with p � 1000 and d � 6. The results under

other settings are documented in Section S5 of the Supplementary Material.

Each point corresponds to a nominal level (marked as a vertical gray dashed

line), with the x- and y-axes representing, the empirical FDR and the power,

respectively. Therefore, the closer the point is to the corresponding vertical

line, the more the empirical and nominal FDRs coincide.

From Figures 1 and 2, across different error settings and hypotheses, our

method, with either the data-driven Huber regression or cross-validation,

controls the FDR well, in general, and maintains high power. The competi-

tors are either too conservative, with a notable power loss, or too liberal

to control the FDR, especially for small n. The advantage of our method

is more substantial when q ¡ 1 (Figure 2). The numerical evidence favors
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using the data-adaptive Huber regression over cross-validation in terms of

both statistical accuracy and computational efficiency. Both limma and

edgeR are fairly conservative, suggesting that researchers should be careful

when using them for heavy-tailed and skewed data. Method (v) is com-

parable to our method when n is large, but completely fails to control the

FDR for errors from the mixture of the log-normal and t2. Overall, the

power of all methods increases with n, and drops for larger p, see Figures

S1�S11 in the Supplementary Material. Because the intrinsic difficulty of

the testing problem elevates with q, the power of all methods shrinks when

q � d � 8 (Figures S3 and S4).

We further examine the power with varying signal strengths, deter-

mined by η. We exclude methods (iii) and (v), because they fail to con-

trol the FDR. In the above settings, we take n � 100, p � 1000, d � 6,

and choose equally spaced η within r0.3, 0.7s for Hypothesis 1 and within

r0.3, 0.5s for Hypothesis 2. From Figure 3, we see that the proposed methods

outperform the competitors across all error settings. The gains in power are

considerable when the error is both heavy tailed and skewed. Again, for our

method, the data-adaptive approach is preferable to cross-validation. With

heavier tails (mixture of log-normal and t2), the power decreases slightly

for all methods.
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5. Real-Data Analysis: The Gutenberg Project

Inference on large-scale text data from literary publications has drawn in-

creased attention, and has provided novel and revealing discoveries in a va-

riety of fields, including sociology (O’Connor et al., 2011), political science

(Wilkerson and Casas, 2017; Baum et al., 2018), criminology (Caines et al.,

2018), and linguistics. A major task in text analysis is to identify word

markers to distinguish or identify different authors, cultures, resources, and

so on. These word markers are usually identified by small p-values from

testing regression coefficients used to model subject effects on the word

frequency, or from model comparisons among multiple groups. In compu-

tational linguistics, for example, Marsden et al. (2013) compared 168 plays

from the Shakespearean era to identify word markers for authorship classifi-

cation. Here, we consider hypotheses that help identify the distinctive word

markers, referred to as “differentially represented” (DR) words, to identify

authors or different writing styles of a particular author.

As a well-known publicly accessible digital library of literary publica-

tions, the Project Gutenberg was founded in 1971, offering 60156 e-books,

as of September 03, 2019. The Standardized Project Gutenberg Corpus

(SPGC, Gerlach and Font-Clos (2018)) is a text corpus of Project Guten-

berg, and provides a static version of the corpus (https://doi.org/10.

https://doi.org/10.5281/zenodo.2422560
https://doi.org/10.5281/zenodo.2422560
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5281/zenodo.2422560). It consists of three data types: raw text, sequences

of word-tokens, and word counts. It also contains metadata about books,

such as author information, subject categories, and book types.

We apply our method to word counts from SPGC to identify idiosyn-

cratic word markers that represent an author or a category of works. Specif-

ically, we consider two problems: a comparison of the works of Lewis Car-

roll, Charles Dickens, and Arthur Conan Doyle, and a study of the works of

William Shakespeare. See a snapshot of the raw data in the Supplementary

Material. From the histograms of the empirical kurtosis of the word counts

(Figure S20), the data are heavy tailed both book-wise and word-wise. For

pre-processing, we first merge the word counts across books, and then re-

move those words with a total count of less than half the number of books

or those that appear in less than 20% of the books under consideration.

Finally, we normalize the filtered word counts by the total counts (Bullard

et al., 2010). The details are deferred to the Supplementary Material.

For the first problem, the three British authors are all from the mid-

19th to early 20th century, and share similar writing structures and back-

grounds. On the other hand, we also observe separations of their 167

works based on word usage in Figure S20 in the Supplementary Mate-

rial. To identify DR words in their works, we use model (2.1) with Xi �

https://doi.org/10.5281/zenodo.2422560
https://doi.org/10.5281/zenodo.2422560
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p1, 1, 0qT if the ith book is written by Carroll, Xi � p1, 0, 1qT if it is writ-

ten by Dickens, and Xi � p1,�1,�1qT if it is written by Conan Doyle, for

1 ¤ i ¤ 167 books, and βj � pµj, α1j, α2jq
T, for 1 ¤ j ¤ 6839 words.

We consider the following linear hypotheses: (Hypothesis CDD1) H0j :

rp0 1 0qT p0 0 1qTsTβj � 0 versus Haj : rp0 1 0qT p0 0 1qTsTβj � 0;

(Hypothesis CDD2) H0j : α1j � 0 versus Haj : α1j � 0; (Hypothesis

CDD3) H0j : α2j � 0 versus Haj : α2j � 0; and (Hypothesis CDD4)

H0j : p0, 1, 1qTβj � 0 versus Haj : p0, 1, 1qTβj � 0. Hypothesis CDD1

compares the three authors together, whereas the other hypotheses com-

pare one author with the remaining two. Using a nominal level of 0.5%, our

method detects 2595, 419, 1388, and 1445 DR words, respectively for each

hypothesis. The top 10 DR words for the three authors, such as being and

sprang are displayed in Figure 4(a). The overall comparison is reported in

Figure S21 in the Supplementary Material. Note that Conan Doyle favored

the word sprang, whereas Carroll and Dickens rarely used it. In Figure 4(c),

we further report the percentages of DR words and non-differentially rep-

resented (NDR) words within each speech category (Nguyen et al., 2016).

DR words among the three authors have higher percentages in adjectives,

adverbs, and pronouns than do NDRs. In contrast, DR words have lower

percentages of nouns, proper nouns, and verbs.
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Next, we investigate the genre difference between the works of Shake-

speare based on three subject groups: poetry, non-historical drama, and

historical drama. We model the normalized word counts by (2.1), with

Xi � p1, 0, 0qT if the ith book is poetry, Xi � p1, 1, 0qT if it is non-historical

drama, and Xi � p1, 1, 1qT if it is historical drama, for i � 1, . . . , 176

books, and βj � pµj, αj, γjq
T, for j � 1, . . . , 4122 words. We consider (Hy-

pothesis WS1) H0j : p0, 0, 1qTβj � 0 versus Haj : p0, 0, 1qTβj � 0, which

compares the non-historical and historical dramas, and (Hypothesis WS2)

H0j : p0, 2, 1qTβj � 0 versus Haj : p0, 2, 1qTβj � 0, which distinguishes

poetry and dramas. With a nominal level of 0.5%, our method identifies

724 and 225 DR words for each hypothesis. Because many of Shakespeare’s

historical dramas are about kings of the Kingdom of England, the words

princely, London, king, and crown appear more often in the historical dra-

mas (Figure 4(b)). In addition, Shakespeare used words such as march,

forces, army, and battle more frequently in the historical dramas than in the

non-historical dramas. Interestingly, the love story-related lexicons, such as

love and marry, appear more often in his non-historical dramas. From Fig-

ure 4(d), the DR words between Shakespeare’s historical and non-historical

dramas have higher percentages of nouns, pronouns, and proper nouns,

whereas their percentages are lower for adjectives, adverbs, and verbs.
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In summary, our method provides a reliable addition to the existing

toolkit in corpus linguistics and text/literature analysis. It can be used to

analyze a large volume of individual words, extending current methods that

focus on the overall distribution of word counts. An interesting follow-up

work is to investigate how stopping words, such as upon affect the results,

and whether their removal alter the discovery.

6. Conclusion

We conclude this article by discussing several open issues. First, our infer-

ence method is based on a normal approximation, which works well for a

moderate sample size. For a relatively smaller sample, the bootstrap may

provide better performance (Cai and Liu, 2016). The pioneering work of

Chernozhukov et al. (2013) on the Gaussian approximation to the func-

tional of high-dimensional empirical processes sheds light on applying the

multiplier bootstrap to the adaptive Huber regression. Although the va-

lidity of the multiplier bootstrap for the adaptive Huber regression can be

established similarly, the computational demand is more challenging.

In addition, our framework can be generalized for potentially heavy-

tailed designs. In practice, in the mediation analysis involving RNA-sequencing

data, for example, both the responses and the entries in the design are
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heavy tailed. To address this challenge, we may replace the entries in

the design by their trimmed versions X ω̄
i � pϕω̄pxi1q . . . , ϕω̄pxidqq

T, where

ϕω̄puq � mintmaxp�ω̄, uq, ω̄u, with the tuning parameter ω̄ ¡ 0. This is

similar to the approach of filtering entries in the design using some thresh-

olds (Pensia et al., 2021). Here, the data-driven selection on ω̄ is largely

unknown, and cross-validation is therefore unavoidable for the implementa-

tion. At the cost of an extra tuning parameter ω̄ and an additional logpnpq

term in the orders of both τ and ω̄, results similar to Proposition 1 can be

established, although the theoretical guarantee on pΣj is more involved.

Finally, it would be challenging, yet interesting to perform a power

analysis of our method to seek potential power improvement. Two ap-

proaches are possible in addition to the adaptive calibration discussed in

Section 2.1. The first relies on recovering the latent common factors, in

addition to the observed covariates (Fan et al., 2019). That is, we consider

a mixed-effects model Yi � ΘZi�Afi� εi, where A P Rp�K is the loading

matrix and fi P RK are zero-mean latent common factors that are unob-

served. Because the common factors contribute to the common variance,

the signal-to-noise ratio can therefore increase using a factor adjustment,

which, in turn, improves the power. The second approach employs a more

subtly designed multiple testing framework than the BH procedure. For
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example, Cai et al. (2019) proposed a new covariate-assisted ranking and

screening (CARS) approach that incorporates a carefully constructed aux-

iliary variable to improve the power. Proposition 6 in Cai et al. (2019)

indicates the applicability of the CARS approach to non-normal data. The

finite fourth-moment assumption is adequate for the asymptotic normality

of their statistics, but not enough for the uniform convergence of the sam-

ple means when the number of hypotheses outnumbers the sample size. An

interesting future direction would be to determine whether the robustifica-

tion/Huberization can be incorporated into the CARS approach to handle

heavy-tailed and/or skewed data. We leave these topics for future work.

Supplementary Material

The online Supplementary Material contains the proofs of all the theoretical

results in the main text, as well as additional numerical results.
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Figure 1: Empirical FDR and power for testing Hypothesis 1 under Model

2 with p � 1000 and d � 6 using six methods: the proposed method with

the data-adaptive Huber regression (D-AH, �); the proposed method with

cross-validation (AH-cv, �); the least squares method (OLS, �); limma (�);

limma with a robust regression (limma-R, �); and edgeR (�). Each point

corresponds to a nominal FDR level (marked as a vertical dashed line), with

the x- and y- axes denoting the empirical FDR and the power, respectively.
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(a) n � 85
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(b) n � 120
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(c) n � 150

Figure 2: Empirical FDR and power for testing Hypothesis 2 under Model

2 with p � 1000 and d � 6 using six methods: the proposed method with

the data-adaptive Huber regression (D-AH, �); the proposed method with

cross-validation (AH-cv, �); the least squares method (OLS, �); limma (�);

limma with a robust regression (limma-R, �); and edgeR (�). Each point

corresponds to a nominal FDR level (marked as a vertical dashed line), with

the x- and y- axes denoting the empirical FDR and the power, respectively.
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(c) Model 3

Figure 3: Plots of the empirical power for testing Hypothesis 2 with n � 100,

p � 1000, d � 6, and η � �0.30, 0.34, . . . , 0.46, 0.5� using four methods: the

proposed method with the data-adaptive Huber regression (D-AH, �); the

proposed method with cross-validation (AH-cv, �); limma (�); and edgeR

(�).
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(a) Hypothesis CDD1
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(b) Hypothesis WS1

(c) Hypothesis CDD1 (d) Hypothesis WS1

Figure 4: Panels (a) and (b): The top 10 DR words placed in ascending or-

der by their p-values (from left to right) for hypotheses CDD1 and WS1, re-

spectively, where the vertical axis shows the counts under a log-scale. Panels

(c) and (d): Percentages of DR and NDR words within each speech category

(https://universaldependencies.org/u/pos/all.html) for hypotheses

CDD1 and WS1, respectively. The nominal FDR level is 0.5%.

https://universaldependencies.org/u/pos/all.html
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