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ABSTRACT

Much research has investigated improving the security and per-
formance of Tor by having Tor clients choose paths through the
network in a way that depends on the client’s location. However, this
approach has been demonstrated to lead to serious deanonymiza-
tion attacks. Moreover, we show how in some scenarios it can lead to
significant performance degradation. For example, we demonstrate
that using the recently-proposed Counter-RAPTOR [38] system
when guard bandwidth isn’t abundant could increase median down-
load times by 28.7%. We propose the CLAPS system for perform-
ing client-location-aware path selection, which fixes the known
security and performance issues of existing designs. We experimen-
tally compare the security and performance of CLAPS to Counter-
RAPTOR and DeNASA [5]. CLAPS puts a strict bound on the leak-
age of information about the client’s location, where the other
systems could completely reveal it after just a few connections.
It also guarantees a limit on the advantage that an adversary can
obtain by strategic relay placement, which we demonstrate to be
overwhelming against the other systems. Finally, due to a powerful
formalization of path selection as an optimization problem, CLAPS
is approaching or even exceeding the original goals of algorithms
to which it is applied, while solving their known deficiencies.
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1 INTRODUCTION

Tor enables anonymous communications on the Internet by offering
a network of relays through which users can route their TCP traffic.
The most effective way of defeating the anonymity goal of Tor
is to run a traffic correlation attack [19, 25, 26, 32], in which an
adversary is able to observe a connection between a user and its
guard (i.e., the first relay it uses) and to detect that same connection
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between the destination and the exit (i.e., the last relay). This attack
is successful despite Tor’s use of encryption, as the low latency of
Tor, which is a core element of the design, makes it effective to
simply time sequences of packets and correlate those timings.

As a result, Tor’s relay selection strategy is critical to limit the
probability that an adversary could observe both the user-guard
traffic and the destination-exit traffic. One common approach to
improving relay selection is to consider the client’s location when
choosing relays [1, 4, 5, 10, 13, 18, 27, 31, 38], which allows a client
to avoid sending traffic over distant or dangerous paths. However,
recent work has shown two major security vulnerabilities of this
general approach: (1) it potentially leaks unbounded amounts of
information about the client’s location to an adversary that can
make and link partial observations of a user’s paths [18, 46], and
(2) it allows an adversary to strategically place relays in locations
that yield a higher chance of being selected by a user [47].

To add to these security problems, we show how existing propos-
als share a performance problem caused by not fully considering the
impact that location-awareness can have on Tor’s load balancing.
Tor currently computes relay weights that bias relay selection so
that relays expect a load proportional to their capacity. All location-
aware path-selection proposals effectively change these weights
such that load balancing is no longer guaranteed, which can lead to
some relays being overloaded (e.g., by being located in a location
preferred by users). We demonstrate this problem in the Counter-
RAPTOR [38] system, where our experiments show that the good
performance reported for Counter-RAPTOR depends on a fortu-
itous distribution of relays and users across locations. For example,
when guard bandwidth is not abundant, (a scenario that has hap-
pened many times over Tor’s existence), we show that downloads
of moderate size (2 MiB) increase for the median client from 9.43s
in current Tor to 12.14s.

In order to address the performance issues of previous works and
to solve their known security issues, we introduce CLAPS, a generic
framework for the design of client-location-aware path-selection
algorithms in Tor. CLAPS makes it possible to optimize path selec-
tion to achieve a primary location-aware goal, while still satisfy-
ing other critical security and performance criteria. CLAPS uses a
powerful linear-programming framework that can yield a solution
improving on prior work even with respect to that work’s own pri-
mary location-aware goal. Moreover, CLAPS introduces several new
tools for path selection, including (1) a method for location-aware
load balancing; (2) a generic technique to prevent location-aware
schemes from leaking user locations to a long-term adversary; and
(3) a new method to bound the risk of relay-placement attacks [47].
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In order to demonstrate the effectiveness of CLAPS, we apply it
to two recent proposals: Counter-RAPTOR [38] and DeNASA [5].
Through experiments and analysis, we show that CLAPS leads to
improvements in both performance and security. Detailed Tor simu-
lations show that CLAPS eliminates the losses of performance these
prior systems experience in realistic network scenarios. Our analy-
sis shows that CLAPS can be configured to achieve any desired limit
on the amount of information leaked about the client’s location,
setting up a trade-off between this leakage and the main location-
aware goal. CLAPS similarly guarantees a configurable maximum
advantage from maliciously placing relays. Our analysis shows that
an adversary can obtain up to a 7X advantage in Counter-RAPTOR
and a 40X advantage in DeNASA, while we configure CLAPS with
a maximum advantage of just 2x.

We achieve these improvements while targeting the goals of
the original algorithm to which CLAPS is applied. Compared to
Counter-RAPTOR, CLAPS increases the median expected resilience
by 18%. When applied to DeNASA, CLAPS decreases the median
expected number of “Suspect ASes” (i.e., certain large and highly-
connected ASes) able to use traffic correlation to deanonymize
the client by a factor 2.3 compared to Vanilla Tor, where DeNASA
reduced the number by a factor 7.

Finally, we discovered performance and security problems in the
current entry guard design. We wrote a Tor proposal [30], further
discussed in Section 6, implemented it, and our code has been
released in Tor-0.4.4.1-alpha.

2 BACKGROUND AND MOTIVATION

The Tor network is comprised of over 6,000 relays and 9 Directory
Authorities, distributed around the world and run by individual
volunteers. The relays mainly forward user traffic. The Directory
Authorities establish an hourly network consensus, which is a docu-
ment containing the authoritative list of all relays in the network.
All relays and clients in the network maintain a copy of the current
consensus. To create an anonymous connection, a Tor client first
chooses a path, which consists of a sequence of three relays: guard,
middle, and exit. Then the client constructs a cryptographic circuit
over that path, encrypting messages once for each hop on the path
such that each one only can identify the previous and next hop.
In Tor’s current path-selection algorithm, which we call Vanilla
Tor, a client chooses relays for a path on the basis of per-relay flags
and weights determined from the consensus. The client will only
choose for the guard position those relays with the Guard flag,
which indicates that the relay has suitable bandwidth and stability
to serve as a guard. The client also will only choose for the exit
position a relay that allows connections to be made to the desti-
nation port and IP, which for many purposes, Tor approximates
with the Exit flag, indicating that the relay allows connections to
common Web ports (80 and 443). For the middle position, any relay
might be selected depending on a positional factor computed by the
Directory Authorities. The client chooses relays based on their con-
sensus weights, which are Tor’s estimates for the relay’s bandwidth
and enables overall load balancing. To choose a relay for position
p, the client scales the consensus weights by a positional factor
that depends on p and the relays’ flags, yielding a vanilla weight
vf , and then selects relay r with probability vf /2 vf . The posi-
tional factors are determined to maximize network throughput by
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maximizing the minimum total vanilla weight in any position. Mak-
ing selection probabilities proportional to bandwidth balances the
traffic load such that all relays in the most bandwidth-constrained
positions are expected to use the same fraction of their bandwidth.
We will design CLAPS to obtain the same load-balancing property.

2.1 Selected Algorithms

In our evaluation (Section 4), we will apply CLAPS to two proposed
path-selection algorithms: Counter-RAPTOR [38] and DeNASA [5].
These algorithms are designed to defend against different threats,
and we briefly describe them.

Counter-RAPTOR [38]. This algorithm’s goal is to reduce the
likelihood to select a guard that would be vulnerable to a BGP
hijack/interception attack. For a client in the ith Autonomous Sys-
tem (AS) and the jth guard, it uses a pre-computed resilience value
R;j € [0, 1] that is the fraction of Internet ASes that cannot perform
a same-prefix BGP hijack or interception on the guard (for details,
see p. 3-5 of [38]). To provide some load balancing, the resilience
is combined with the guard’s bandwidth B;. B; is normalized to
Bj = Bj/maxy Bj. Then the weight of the guard is computed as
wj = aRjj + (1 — a)B(j), where a € [0,1] is a blending parameter
(a = 0.5 is suggested). The selection probability is derived from the
weights of all guards: wj/>  wj. Selecting middle relays and exit
relays are the same as in compared to Vanilla Tor.

DeNASA [5]. This algorithm’s goal is to defend Tor users against
passive end-to-end correlation attacks by an adversary that compro-
mises some Autonomous Systems (ASes). DeNASA only attempts to
avoid observation by certain “Suspect Ases”, which are the k most
common ASes on paths into and out of the Tor network. Qiu and
Gao AS-path inference [29] is used to determine the ASes between
clients and guards and between exits and destinations. DeNASA
is “destination-naive” on the exit side, and for each exit the system
estimates the likelihood that a given Suspect AS will be between it
and the destination, where common Internet destinations are used
for this estimation. DeNASA defines a strategy for guard selection
called g-select and a strategy for exit selection called e-select. In
g-select, the client repeatedly applies Vanilla Tor guard selection
until none of the top k = 2 Suspect ASes appear between the client
and guard. In e-select, after selecting a guard, the client applies
Vanilla Tor exit selection until an exit is selected such that for all
top k = 8 Suspect ASes the exit has a score of less than a parameter
7 (the authors suggest r = 0.1).

2.2 Vulnerabilities in Path Selection

Client-location Leakage. Location-aware path-selection algorithms
choose a path based on the client location. Thus, simply observing
which relays a client selects can leak information about the client’s
location, reducing its anonymity. Prior work has demonstrated that
this leakage worsens when the adversary is able to partially ob-
serve multiple circuits and identify when they are created by the
same user [13, 18, 46]. These attacks can be efficient: in Astoria [27]
(a Tor path-selection algorithm designed to avoid AS-level traffic
correlation), an adversary running destination servers and some
relays can learn over 6 bits of entropy about the client’s origin
AS [18]; against DeNASA, an adversary running relays can learn
over 14 bits of entropy about the client’s AS after observing just 2
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guard selections [46]; and against Counter-RAPTOR, an adversary
running relays can learn over 5 bits of entropy about the client’s
AS within 10 guard selections [13].

Guard Placement Attacks. In the guard placement attack [5, 31,
47], the adversary places guard relays into the Tor network in po-
sitions that maximize their selection probability. Location-aware
algorithms are vulnerable to this attack, as clients prefer relays in
certain advantageous locations. Obtaining the guard relay enables
powerful deanonymization attacks such as website fingerprint-
ing [14, 36, 49] and end-to-end correlation [19]. Wan et al. [47]
demonstrate this attack on several algorithms: against LASTor [1]
(a path-selection algorithm to reduce latency), an adversary can
increase a guard’s selection probability by as much as 158X its
Vanilla Tor probability; against DeNASA, the attack can increase
selection probability by up to 964%; and against Counter-RAPTOR,
an adversary can increase a guard’s selection probability by over
13.6X. They then propose the 6-GP secure security definition, which
requires that an adversary’s selection probability is increased by at
most a factor 6 over Vanilla Tor (or relative to some abstract “cost”).
In our work, we consider and defend against a generalized version
of this attack that applies to all relays, not just guards. We will re-
quire that relay selection in each position satisfies the -GP secure
notion, which we enforce via a bound on selection probability of
times the vanilla probability.

2.3 Performance Challenges in Path Selections

We observe that all existing location-aware path selection algo-
rithms disrupt the load balancing that Tor currently provides. Tor
carefully chooses positional and relay weights to ensure that net-
work throughput is maximized and that relays of a given type all
use the same fraction of their bandwidth in a given position. How-
ever, location-aware path-selection algorithms all use the locations
of clients and relays as another relay-weighting criterion, and the
re-weighting does not take into consideration how many clients
are coming from each location. Therefore, if it occurs that there
are a large number of clients from a given location and relatively
little relay capacity in locations they prefer, the preferred relays
will be overloaded, slowing down those clients and making overall
network throughput sub-optimal.

As a demonstration of this problem, we show via simulation that
this problem indeed exists in Counter-RAPTOR [38] (see Figure 11
in Appendix E.1). A reason that this problem has not previously
been acknowledged is that prior work experimentally evaluated
performance using the current distribution of relays and clients as
well as current load levels. While it may be that Tor performance at
the moment would not be impacted by these algorithms, that could
change at any time as client demand and relay supply change. More-
over, the problem may be hidden due to a current excess of relay
bandwidth [44], a situation that could also change as client demand
continues to grow. Our experiments shows that load imbalance
can cause reduced performance in Counter-RAPTOR when the Tor
network changes, specifically when demand increases in a given
location or when relay supply reduces in a given position. Another
example of the importance of considering multiple network loads
is offered by incentive research for anonymous communication,
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in which a change of the network load has made state-of-the-art
prioritization techniques inefficient [8].

We argue that path-selection algorithms should be guaranteed
to provide good performance regardless of the network state, as
both will inevitably and unpredictably change. A path-selection
algorithm should be versatile to network changes and always reach
a state in which overall throughput is maximized and all relays in
the most-constrained positions are using the same fraction of their
bandwidth capacity.

Vanilla Tor’s strategy is versatile and modifies in which position
some relays are used upon network state changes [9]. In our design,
we show how to incorporate performance versatility into location-
aware path selection goal.

3 DESIGN

As we have described, existing proposals for location-aware path se-
lection do not maintain the load balancing necessary for reasonable
Tor performance. In addition, prior work has demonstrated that
these proposals in general suffer from two severe security vulnera-
bilities: (1) each path selection leaks more information about the
client’s location, and the adversary eventually learns the client’s
location [46]; and (2) malicious relays can be adversarially placed to
observe a disproportionately large fraction of network traffic [47].

We present the CLAPS system to solve all of these deficiencies.
CLAPS includes two high-level, novel components: (1) a generic
optimization framework that uses linear programs (LPs) to com-
pute relay weights that balance multiple security and performance
criteria, and (2) a location masking technique that guarantees only
limited information leaks about a client’s true location over time.
These strategies can be used independently; however, CLAPS uses
them both as they solve different and critical problems with location-
aware path selection.

CLAPS can be viewed as a framework to improve existing sys-
tems for client-location-aware path selection. It solves the known
problems with these systems while still achieving their original
goals, thereby making them suitable candidates to replace Tor’s ex-
isting path-selection algorithm. CLAPS is flexible, which we demon-
strate by showing how it can be used to achieve the goals of two
proposed systems: Counter-RAPTOR [38] and DeNASA [5].

We first give on overview of the design of CLAPS before dis-
cussing details of its key assumptions and components. Notation is
introduced throughout and is also summarized in Appendix A.

3.1 Overview

CLAPS modifies Tor path selection by changing how relay weights
are computed and used. Location-awareness is achieved by com-
puting different sets of weights for different locations. Moreover,
clients mask their locations when using these weights to prevent
leaking their true location through path selections. Weights are
thus only needed for a set of mask locations. As in Vanilla Tor, the
Directory Authorities compute the weights and distribute them to
relays. Similarly, the Directory Authorities produce the masking
data and distribute them to the relays. Given a set of weights, a
client uses them to select relays for a circuit and then constructs
the circuit in the same way as in Vanilla Tor.

The Directory Authorities each compute weights and mask in-
formation on the basis of public data and the rest of the consensus
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data. Mask data is recomputed at a low frequency (e.g., every year)
to limit information leakage across masks changes while allowing
for some changes in the underlying location data. Weights are re-
computed more frequently (e.g., every day) to accommodate churn
among the Tor network relays.

3.2 Locations and Densities

We suppose that there exists a public set of locations .£. Depending
on the path-selection goals, these locations could, for example, be
the set of ASes on the Internet or a set of geographic regions. We
assume that each client exists in one location, and that each client
can determine its own location.

To make load balancing possible, we require that the Tor net-
work measure the density of clients in each location. That is, the
network must publish the relative amount of client traffic coming
from each location in L. As demonstrated in Sec. 2.3, without some
information about how much client demand exists in each location,
we cannot guarantee a load-balanced network while allowing path
selection to depend on the client location. We do not prescribe a
specific way to obtain these densities; instead, we observe that Tor
Metrics [44] already provides daily estimates of total users per coun-
try and suggest that either these techniques or more sophisticated
methods [23] can be used.

3.3 Weight Computation

CLAPS uses Tor’s consensus weights as the key mechanism through
which it achieves performance and security goals. Clients use
weights to select relays for circuits by randomly choosing from
among the relays with probabilities proportional to their weights.
As in Tor currently, the Directory Authorities compute a new set
of weights for each consensus (i.e., hourly).

CLAPS uses a novel optimization approach to compute these
weights that takes into account multiple goals. It uses linear pro-
grams (LPs) to formulate the weight computation as an optimization
problem. LPs provide a general framework for determining optimal
weights. A single objective function allow multiple performance
and security criteria to be balanced, while hard requirements can
be expressed using optimization constraints.

The LPs determine the relay weights for each position: guard,
middle, and exit. The positions are given some order, and then
weights for each position are computed in that order. Weights are
greedily optimized at each position to keep the LPs manageable in
size and ensure the constraints and objective remain linear.

For a given position, a different set of weights may be produced
for each combination of a client location and relay choices in the
previous circuit positions. This design allows us in principle to
produce an arbitrary path-selection distribution over circuits for
every client location, although for efficiency we generally only
consider a smaller number of locations and limited number of
previous positions. For example, as we describe in Section 4, we
adapt the DeNASA algorithm by computing a set of guard weights
for each client location, a single set of middle weights, and a set of
exit weights for each pair of client and guard location.

The optimization objective is to minimize the total penalty over
all clients. Penalties are an abstraction of the soft goals of path
selection, that is, goals that are not hard constraints. Penalty scores
may indicate a target threat model (e.g., susceptability to a BGP
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hijack [38]) or a key performance goal (e.g., minimal latency [1]).
Penalty scores for relays in a given position are provided as inputs
to the optimization, where the scores may be different for each
combination of a location and the relays in previous positions.

Requirements for path selection are specified as LP constraints.
These requirements include those goals that take higher precedence
than minimizing penalties. CLAPS uses constraints to ensure that
(1) Tor remains load-balanced, (2) Tor is secure against relay place-
ment attacks (i.e., is 8-GP secure [47]), and (3) no client obtains
an expected penalty worse than it would under Vanilla Tor. These
additional criteria allow us to minimize penalties without reduc-
ing Tor throughput, becoming vulnerable to malicious relays, or
making Tor penalties worse for any individual client, respectively.

As a first step in ensuring load balancing, we use an initial LP,
LP;, that maximizes the minimum bandwidth across all positions.
We will require that the final weights provide this bandwidth in each
position to ensure maximimum total throughput. Let # = {g, m, e}
be the set of circuit positions (i.e., guard, middle, and exit). Let R be
the set of all relays, and let Rp be the subset of relays that can be
used in position p € P (e.g., relays in Rg must have the Guard flag).
Let B, be the bandwidth of relay r € R. LP; outputs the maximum
bandwidth f that can be provided in all p € # simultaneously. LP;
identifies a weight wf for each relay r and position p such that
2pep er’ < B, and Zre'Rp wf > f. Note that LP{ computes relay
weights, but these are just used to determine § and are not be by
clients. For details, see Figure 7 in Appendix A.

Next, we determine weights for each position in the same order
7 in which clients will choose relays for a circuit. We allow relay
weights for a given position to depend on the client’s location and
the relays chosen in previous positions. Doing so enables algorithms
such as choosing guards and exits that are in dissimilar locations
to avoid network-level adversaries. Generally, guards should be
selected independently of other positions (i.e., 71 = g) because they
are used long-term, but we do not require this (notably, Vanilla
Tor uses order 7 = (e, g, m)). To express the weights, we define an
extended set of positional locations L, for the ith position that
contains a potentially different element for each client location
and sequence of (i — 1) relays. The first position simply uses the
client locations: L, = L. For example, if the choice of exit should
depend on both the client and guard location, £ should contain
all pairs of client and guard locations. For convenience, define
A, r): Lg; xR — Ly, as the map from the current positional
location ¢ to the next one after choosing r for the ith position.

The optimization problem in each position depends on several
external values. Let 6, > 1 be the maximum factor by which any
relay’s selection probability in position p can increase over Vanilla
Tor. This value limits the susceptability to a relay-placement attack.
6p should be set to the largest acceptable advantage factor for an
adversary in position p. Let Dy > 0 be the client density in location
¢ e L,with }\p D¢ = 1. Dy is obtained from network measurements.
Let Pz,zr’ be the penalty for choosing relay r in position 7; from £ €
L ;. Higher penalty values indicate worse relays to choose. Penalty
values can be set to achieve differing performance or security goals,
but they must depend on public data.

For convenience, we also define several values to help us compute
weights for the ith position. These values depend on weights already
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Figure 1: Linear program LP; that determines weights for the ith
position (r;).

having been computed for the previous i — 1 positions. Let Az¢ be
the probability that a client in € € L, chooses relays for the jth to
(i— 1)st positions that yield positional location £’ € L. Let 5?" be
the client density over positional locations £;, computed as the

expected density in a location after choosing the first i — 1 relays.

Let " be the sum over positional locations of the weights of relay
r in position x; weighted by densities 5”’ Finally, let V”‘ be the
expected penalty in 7; from € € Ly, when using the vamlla weights
to choose positions from j to i accordmg to 7. See Appendix A for
precise definitions of these values.

The linear program LP, (Figure 1) is solved to determine the
weights in position ;. It outputs a weight w’’ for each £ € L,
and r € R, which is the weight used by a client in location ¢ for
relay r. The Directory Authorities solve an instance of LP; for each
circuit position in # in the order they appear in 7.

LP; minimizes the expected penalty of the average client in
position x;, subject to several constraints. Constraint 2 maximizes
network throughput by ensuring that the total bandwidth allocated
to the position is equal to the amount f determined in LP;. The
intuition behind this constraint is to see the cumulative bandwidth
of relays in each position of the path as a pipe through which data
flows. We want the three pipes to have the same size, similar to
Vanilla Tor’s bandwidth-weighed design.

Constraint 3 requires that the selection probability of any relay is
at most 0, times its probability in Vanilla Tor (recall that v‘r) is the
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vanilla weight of relay r in position p). We note that doing so guar-
antees that CLAPS satisfies §-GP-security [47] in all positions, not
just at the guard. Constraint 4 guarantees that the expected penalty
from any location is at most the expected penalty in Vanilla Tor.
The LP objective does minimize the penalty for the average client,
but this constraint provides a worst-case guarantee that no client
will be worse off than under current Tor. Worst-case guarantees of
this sort are important to provide fairness and minimize adoption
concerns. Constraint 5 enforces relay bandwidth limits. In combi-
nation with Constraint 2, it ensures that traffic is load balanced in
the sense that no relay is fully loaded until maximum total network
throughput is achieved, thus preventing the performance problems
discussed in Section 2. Finally, Constraints 6 and 7 guarantee that
weights are non-negative and respect position flags.

Relay weight wp can be interpreted as the amount of r’s band-
width that is allocated to position p from clients in £. More precisely,
for total traffic from clients in £ of f; < f, w’?r Be/ P of that traffic
will be forwarded by r in position p, in expectation. Thus we can see
that CLAPS allows per-relay allocation of bandwidth across posi-
tions, in contrast to all previous systems, which follow Vanilla Tor’s
positional allocation based only the four relay classes defined by the
Guard and Exit flags. This flexibility gives CLAPS the capability to
improve even on the original goals of existing designs. For example,
CLAPS may achieve better guard resilience than Counter-RAPTOR
itself, as it can use more high-resilience relays in the guard position
and prefer low-resilience relays in the less-critical middle position.
LP; also includes weights wg for positions j > i. Including
these weights ensures that greedily optimizing the current position
does not prevent weights for future positions from existing that
satisfy the LP constraints. Note that these variables are defined for
te Ly andnotf e Ly, This is not a limitation for Constraints 2,
3,5, 6, or 7, because any satisfying weights for £, can be turned
into one for L, simply by taking their weighted sum with the A4
probabilities as weights, and vice versa. However, this equivalence
is not necessarily true for Constraint 4 because it contains penalty
values that depend on the location. Therefore, we initially seek a
solution satisfying Constraint 4 only for the given position i. If one
is not found, we backtrack to previous positions (trying one at a
time) and solve the LPs again after adding extra constraints for
positions j > i that their weights are proportional to the vanilla
weights (Appendix A). These extra constraints only enforce that
such weights could be a solution, not that they will be the output
of the later LPs. This addition is unnecessarily restrictive, which
is why we only add it if an initial solution is not found (in our
experiments, we never fall back to this case). This algorithm is
guaranteed to find a solution as the vanilla weights always satisfy
the constraints in all positions (after normalizing to sum to f5).

3.4 Location Masking

We describe how to use location masking with any location-aware
path-selection algorithm to limit leakage of the client location over
time. In this technique, each client chooses a location mask and
then performs path selection as if that mask were its true location.
Thus its choices of paths can at most reveal its location mask, even
if the adversary can observe many such choices over time. As long
as the choice of mask does not leak much information about the
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true client location, the client obtains a long-term defense against
the deanonymization demonstrated in the Tempest attacks [46].

Masks are chosen that balance several goals: (1) the mask should
be similar to the true location so that the client continues to benefit
from the location-awareness of path selection, (2) the mask should
not reveal too much about the true location, and (3) the mask
should be used by many users and thus not serve as a pseudonym.
We abstract the first goal using a distance function d that takes
a pair of locations and returns a number indicating how similar
they are for purposes of a given location-aware path-selection
algorithm. For example, in Counter-RAPTOR, a reasonable distance
function is the average difference between the resilience values of
the available guards. We abstract the second goal with an anonymity
function « that takes a set of locations and returns a vector of
scores indicating the degree of anonymity along several different
dimensions. For example, anonymity dimensions may include the
number of locations and the number of users. For the third goal,
we will ensure a minimum density of clients using each mask.

We further introduce the notion of a location guard, which is a
mask chosen by a client and maintained for a long time (e.g., several
years). Location guards are needed because location masks must
get updated as distances between locations vary over time. For
example, distances based on BGP routes will change as the Internet
topology changes. Thus, clients need to update their masks as the
system discards old ones, but each new mask selection would allow
more information to leak about the true location. To solve this,
each client maintains a location guard and chooses a mask based
on its guard rather than its true location. Thus, even as changing
conditions cause mask updates, clients still limit leakage about their
locations to only what is implied by their guards.

We cluster locations to define masks. Clusters are chosen to
minimize intra-cluster distances as measured by d while ensuring
that each cluster provides a minimal level of anonymity in every
dimension, including a minimum client density. All clients with
a location guard in a given cluster use as their mask the member
that is the closest on average to the entire cluster. Let L be the
set of client locations (e.g., all ASes on the Internet). Let A € R¢
be the set of anonymity thresholds for the clusters. The CLUSTER
algorithm is detailed in Figure 2. It modifies a standard greedy
algorithm for clustering by requiring that the cluster exceed the
anonymity thresholds, which it finds by gradually tightening a
limit ¢ on the amount of anonymity increase needed in each greedy
selection. Moreover, it attempts to maximize the number of clusters,
as in the larger CLAPS system, more masks creates a larger space
of possible weights when trying to minimize the location-aware
objective. CLUSTER starts with one cluster and thus always finds a
solution as long as the anonymity constraints are satisfied by the
whole set of locations.

3.5 Circuit Construction

Clients in CLAPS maintain Directory Guards as in Vanilla Tor.
These guards are just used to distribute network information and
thus need not be selected using location information. To obtain
its location mask, a client requests the mask corresponding to its
location guard from one of its Directory Guards, which can already
observe the client’s location. Similarly, a client can obtain from a
Directory Guard all relay weights for its location mask. However, we
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Input: L, a set of locations that will be clustered.
Output: C, a clustering of L; and M, the mask of each cluster
Procedure:

C—0M-—0
forn < 1to |L|do
for¢p € (1,1-1/|L|,...,1/|L|)do

(1) Initialize C’ with n clusters and its masks to arbitrary
distinct locations M’ « (€1, . .. {p).

(2) Until all locations have been assigned: Select cluster
C; € C’ with lowest anonymity score a(C);. Take the
top fraction ¢ of unassigned locations, ranked by the
amount that they would increase C;’s minimum
anonymity score, and from them select the location ¢ that
minimizes distance d(Mj, £). Assign £ to C;.

(3) For each cluster, if the mask doesn’t minimize the
average distance between the mask and all cluster
locations, update it to a minimizing location.

(4) If a cluster mask changed in Step (3) and the iteration
limit hasn’t been exceeded, return to Step (2) with the
new masks.

if VCe(C',1<i<a:a(C); > A; then break

if3C e C’,1<i < a: a(C); < A; then break

elseC—C' MM

return (C, M)

Figure 2: CLUSTER algorithm

can improve the efficiency when the first position is the guard (i.e.,
71 = g) by obtaining any weights that depend on the entry guard
from the guard itself; e.g., in DeNASA, the exit weights depend on
the guard AS, and the client can obtain exactly the exit weights
needed for its guards by requesting one set through each guard.

Circuits are constructed in CLAPS using the Tor’s current cryp-
tographic protocol. CLAPS only changes the way that the relays
for the circuit are chosen. Relays are chosen for each position in a
circuit in the order they appear in 7. After choosing the first i — 1
positions, the client is in some positional location £ € L, and re-
lay r is chosen for the ith position with probability w:f;' /.U =g,
then the relay chooses a new guard if it hasn’t selected them all yet.
Once the relay has chosen its guards, it selects one for its circuit
from among its existing guards with uniform probability. Uniform
selection prevents double-weighting guards when clients maintain
multiple guards (the default number is currently one). However, it
is not suitable with location-aware guard selection if the guard is
not selected first, as guards are held long-term and may have high
penalties with the current partially-constructed circuit. Therefore,
it should be that 71 = g unless guard selection is location-unaware
(e.g., Vanilla Tor). After choosing relays for all positions, CLAPS
returns to Tor’s existing algorithm, which applies some restrictions,
such as the disallowing a circuit to contain multiple relays in the
same /16. Path selection is retried if the current choice violates a
restriction.

4 EVALUATION

In this section, we empirically evaluate the security and perfor-
mance properties of location-aware path selection algorithms gen-
erated by the CLAPS framework. We present two algorithms: (1)
CLAPS-CR, a path selection algorithm designed to maximize chosen
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guards’ hijack resilience, and (2) CLAPS-DN, a path selection algo-
rithm designed to minimize the probability that a given “suspect
AS” is simultaneously present on both the client-guard network
path and exit-destination network path. These algorithms goals’
mirror those of Counter-RAPTOR [38] and DeNASA [5]; as such,
we can use these systems as reference points for comparison.

4.1 Implementation

We implemented all of the CLAPS algorithms in a approximately
ten-thousand lines of C, C++, and Python. The clustering algorithm
was implemented in C++ for efficiency. We use Python to define
CLAPS LPs and use the CLP linear program solver to solve the
generated LPs [7]. We implemented CLAPS in Tor v0.3.5.8 so that
it could be simulated in the Shadow simulator. Our source code is
available online.!

4.2 CLAPS-CR

A few algorithm inputs must be defined in order to run CLAPS and
obtain a path selection distribution. CLUSTER (Figure 2) requires a
set of locations to cluster £, the choice of a distance function d, an
anonymity function «, and a minimum anonymity score A. The LP
described in Section 3.3 requires the definition of positional loca-
tions L, a parameter for relay placement 0, and penalty matrices
P’ where each entry PZfr‘ corresponds to the penalty of a client in
location ¢ choosing relay r for position 7; in a circuit. Below we
discuss how we chose inputs to instantiate CLAPS-CR.

4.2.1 Path-Selection Goal. In CLAPS-CR, our objective is to have
clients choose guard relays with high hijack resilience. Recall from
Section 2 that a guard’s hijack resilience depends both on the client’s
and guard’s autonomous system of origin. Let Ry, be the hijack
resilience of relay r when used from client location ¢.

4.2.2  Clustering Inputs. First, we must decide on a set of locations
that are input into the clustering algorithm. Following Sun et al.,
we consider a client’s autonomous system to be its location [38].

Next, we must choose dcpg, the distance function used in the
location clustering algorithm. Recall that all locations within a
cluster are restricted to use the same relay selection distribution;
the clustering algorithm will attempt to minimize the distance be-
tween locations in the same cluster. Thus, a reasonable distance
function will assign low distances to pairs of client locations that
have similar preferences for relays. Accordingly, we define dcg
to be sum, across all guard relays, of the bandwidth-weighted re-
silience disagreement between two locations. This is expressed as
dcr(l1,€2) = Zrer, BrlRe,, r — Ry, r |-

This distance is minimized when Ry, , = Ry, , for all guard re-
lays, i.e., when ¢; and ¢ agree on which relays are hijack resilient.
We weight the magnitude of the disagreement by the relay’s band-
width. With this weighting, disagreements about the resilience of
high-bandwidth guard relays are more significant than disagree-
ments about low-bandwidth relays.

Then, we must define an anonymity function acg that maps
a set of locations to an anonymity score. We consider three dif-
ferent anonymity criteria when defining acg: (1) the total client
density in C, defined as Size(C) = Zycc Dy, (2) the entropy of the

!https://github.com/orgs/CLAPS-CCS2020/
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distribution of users across locations in the cluster, and (3) the en-
tropy of the distribution of users across countries in the cluster.
The entropy of the distribution of users across locations is com-
puted as EL(C) = —Z¢cc [D¢/Size(C) - log,(D¢/Size(C))|; EC(C),
the entropy of the distribution of users across countries, is defined
similarly. All together, we define acr(C) = (Size(C), EL(C), EC(C)).
The cluster size criterion allows us to concretely specify the min-
imum number of clients per cluster. The entropy-based criteria
allow us to quantify anonymity with respect to an adversary who
has no a priori knowledge of a given client’s location/country and
ensures that we provide sufficient anonymity over these sensitive
attributes [34, 46].

Finally, we must define Acg € R3, the minimum anonymity
score that must be achieved by each cluster in a valid clustering.
We set the components of Acp relative to the current Tor network.
In this work, we allow each cluster to reduce Tor’s anonymity by
a factor up to 20; we will show that the clusters produced at this
reduction-level still provide strong anonymity. Let L be the set
of all client locations present in the Tor network today. We set
Acr = (Size(L)/20, EL(L) — log,(20), EC(L) — log,(20)) .

After running the LP, we obtain a clustering C = {C;}]_;.

4.2.3 LP Inputs. Sequentially, the LPs are defined and executed
after the clustering is complete, so we can use outputs from the
clustering algorithm as inputs to our LPs. In CLAPS-CR, we will
be obtaining an optimized guard-selection distribution for each
cluster.

For Lg, the set of positional locations input into the guard-relay
LP, we will use {C; ?:1’ the set of clusters. This will define one
guard-selection distribution for each cluster.

Next, we must define Par, the penalty of cluster C; choosing
relay r as a guard. Note that a penalty matrix must be defined only
for each positional location in £z and not the total set of locations L.
We define P%‘,»r =Yrec; [D[(l - Rg’,)]; in other words, we define
the penalty for relay r to be the weighted linear combination of
the complement of hijack resilience for each client location in the
cluster. Since the LP minimizes penalty, hijack resilience will be
maximized. Weighting each penalty value by client density allows
us to provide more benefit to client locations with many Tor users;
note that, by our constraint, we will not make security worse for
any low-density client-locations whose penalties are not as heavily
reflected in this sum.

Finally, we must choose a value 0 to provide guard placement
attack security. We find that 6 has a large influence on the quality
of solutions we obtain. We explore the values recommended by
Wan et el[47]: 0g € {1.25,2,5}.

When defining middle and exit relay distributions for CLAPS-
CR,weset Ly = Le = {1}, PT, = P{, = 1,and Oy = O = 0.
These trivial settings indicate that all CLAPS-CR clients will use
middle and exit weights proportional to Vanilla Tor middle and exit
weights while maintaining the network’s load balance.

4.3 CLAPS-DN

4.3.1 Path-Selection Goal. In CLAPS-DN, our objective is to have
clients choose relays for circuits that avoid a set of suspect ASes who
are likely to be on the client-guard and exit-destination paths when
building circuits in Vanilla Tor. We use the same set of eight suspect
ASes Sg = {AS1299, AS3356, AS6939, AS174, AS2914, AS3257,
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AS6453, AS9002} identified by Barton et al. [5]. Let S = {AS1299,
AS3356} (the two ASes avoided by DeNASA’s g-select algorithm).
4.3.2  Clustering Inputs. Similar to CLAPS-CR, we use clients’” au-
tonomous systems as the set of locations that will be clustered; in
part, a client’s autonomous system determines the suspects on the
client-guard paths, as was the case for CLAPS-CR.

We define dpn ({1, €2) = Zrqugzsess B,«|I§l7r - I;Z,r| where

If,’r is an indicator variable such that Iz’r =
in on the link between client location ¢ and relays r; otherwise,
I ls’ L= 0. Similar to the distance function defined for CLAPS-CR, this
distance function captures the magnitude of disagreement about
which suspects are present to the guards in the network.

We set apy = acr and Apy = Acg. Both algorithms use
autonomous systems for the set of client locations being clustered,
and so we can use the same anonymity criterion for both algorithms.
4.3.3  LP Inputs. Unlike CLAPS-CR, in CLAPS-DN we will define
non-trivial exit relay penalties that will mimic the design of De-
NASA. First, to obtain the guard selections distributions for each
cluster, we set the initial positional locations to L = {C;}_ ;.

1 if suspect AS s

We define Pé_r =3sec; [D[ . maX({IZr}se&)] ; L.e., the penalty
for relay r is the density-weighted combination of max({I ; sesy)
for each location ¢ in the cluster. This penalty matches DeNASA’s
g-select algorithm, which selects guards only if neither suspect AS
in Sz is on the client-guard link.

We also use a CLAPS LP to generate exit selection distributions
that avoid suspect ASes. One exit-selection distribution is generated
for each cluster-guard relay pair. So, for this LP, we set the set of
positional locations to Le = {(Cj,g)} for 1 <i<nandg e Rg.

Let Pr[s € (e &> D)] be probability that suspect AS s is on the link
between exit e and destination D, where the randomness is taken
over uniform choice of D from among the Top 200 Alexa websites

[5]. To match DeNASA’s e-select algorithm, we define P(ec_ or =

Srec;Zses, [Dg . Izg -Pr[se(re D)]]. In other words, for each
client location and guard ¢, g, we compute the probability that a
suspect on the client-guard link is present on an exit-destination
link. The penalty for a relay r in the exit position is the weighted
combination of this value for each ¢ € C;.

For simplicity, we set 0g = 0 and run simulations for the recom-
mended values of 6 (1.25, 2, and 5).

Similar to CLAPS-CR, L, = {L}, PTr =1, and 0, = oo. These
settings indicate the CLAPS-DN clients should select middle re-
lays with weights proportional to Vanilla Tor while respecting the
network load balance.

4.4 Security Evaluation

4.4.1 Datasets & Methodology. We empirically evaluated the se-
curity of CLAPS-CR and CLAPS-DN through a series of analyses
and simulations on archived Tor and Internet data. We used Tor
consensus documents and server descriptors from 15 January 2019
[42]; at this time, there were approximately 6,600 relays in the
Tor network. We used Route Views Prefix-to-AS mappings from
15 January 2019 to map relays to their autonomous systems [33].
CAIDA’s AS Organization data from 1 January 2019 was used to
map autonomous systems to their organization and country [40].
We used CAIDA’s AS relationship topology from January 2019 in
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Min O Q Q3 Max

CLAPS-CR (14 Clusters)
Density 52% 52% 53% 87% 14%
Num. ASes 2267 3348 4381 5196 6898
Num. Countries 74 89 107 119 137

CLAPS-DN (16 Clusters)
Density 51% 51% 52% 62% 16%
Num. ASes 2974 3251 3627 4559 6481
Num. Countries 130 136 143 155 159

Table 1: Summary statistics describing the clusters obtained for
CLAPS-CR and CLAPS-DN. Q;, Oz, and Q3 denote the 25th, 50th,
and 75th percentile respectively.

order to infer AS paths between Internet hosts [39].2 Inferred AS
paths are used to compute hijack resilience (for Counter-RAPTOR
and CLAPS-CR) and the presence of suspect ASes (for DeNASA and
CLAPS-DN). The programs for computing relay hijack resilience
were obtained directly from Sun et al[38]. We compute AS paths
using shortest, valley-free path inference [24], a technique that is
consistent with prior work [5, 46, 47].

We used autonomous systems as the client locations in our algo-
rithms. For our analyses, we consider any autonomous system in
the CAIDA’s AS topology that advertises at least one IPv4 address
as a client location; in total, there are 62,891 such ASes (many prior
works consider only tens or hundreds of ASes when analyzing
system security [5, 13, 38, 47]). CLAPS requires a measured density
(i.e., Tor user count) for each of these ASes. To estimate AS density,
we take Tor’s measured user-per-country statistics and distribute
users into ASes within their country proportional to the number
of IPv4 addresses each AS originates. These estimates can be im-
proved if measurement systems are put in place to directly measure
clients’ ASes. The top five highest-density ASes according to this
assignment are (1) AS12389, Rostelecom, RU; (2) AS3320, Deutsche
Telekom, DE; (3) AS23693, Telekomunikasi Selular, ID; (4) AS7018,
AT&T, US; and (5) AS15557, SFR SA, FR.

4.4.2 Clusters. In CLAPS, it is possible for a client to leak its clus-
ter to an adversary who observes path-selection behavior over time
[46]; therefore, it is crucial that each cluster contains a diverse
set of clients to provide anonymity. This is why we quantify clus-
ter anonymity () and ensure that the clusters meet a number of
anonymity criteria.

We ran our clustering algorithm in our simulated network. For
CLAPS-CR, we obtained a clustering with 14 clusters. For CLAPS-
DN, we obtained a clustering with 16 clusters. Table 1 contains
summary statistics describing the composition of the clusters. Note
that the minimum fraction of density in any cluster is 100%/20 =
5%, since we allow a 20X reduction in anonymity set size for the
anonymity criteria. Even the smallest cluster in our clustering con-
tains 74 distinct countries, thousands of ASes, and 5% of Tor’s
millions of users. We find that our clustering procedure does well
at producing balanced clusters—the largest clusters obtained are
only 3x denser than the least dense clusters in the clustering.

4.4.3 CLAP-CR Hijack Resilience. We examine CLAP-CR’s ability
to maximize client-guard hijack resilience, its primary objective. For

2Qur analysis of DeNASA and CLAPS-DN uses an older AS topology from February
2018. App. C shows our main security evaluation when instead using the 2019 topology.
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Figure 3: Expected hijack resilience when choosing guards accord-
ing to Tor (Vanilla), C.R., and CLAPS-CR.
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Figure 4: Expected number of suspects present on both the client-
guard and exit-destination path when building a random circuit.

each client location, we calculated a client’s expected client-guard
hijack resilience 3, cg, Pr[r]R;,, where the selection probability
Pr is defined under a particular path-selection algorithm. We con-
sidered three algorithms: (1) Vanilla, (2) Counter-RAPTOR, and (3)
CLAPS-CR. We considered Counter-RAPTOR when a = 0.5 (i.e.,
each guard’s selection probability is proportional to a 50/50 blend of
its resilience and bandwidth) and when a = 1.0 (i.e., each guard’s se-
lection probability is proportional to its resilience). Figure 3 shows
the results of this analysis. Expected hijack resilience under an
algorithm is plotted on the x-axis; the y-axis plots the cumulative
fraction of Tor clients that experience at most a given hijack re-
silience. When 0 = 1.25, a conservative setting for 0, the CLAPS-CR
path selection algorithm is competitive with Counter-RAPTOR at
a = 0.5 which is the a-value recommended by Sun et al.; the median
hijack resilience for Counter-RAPTOR (& = 0.5) is 0.62, whereas the
median hijack resilience for CLAPS-CR (6 = 1.25) is 0.63. By 6 = 2,
the CLAPS-CR strategy dominates Counter-RAPTOR (@ = 1.0)
for nearly all client locations, while simultaneously improving on
other aspects of Counter-RAPTOR, such as relay-placement attack
vulnerability (which will be shown) and information leakage over
time [46]. It offers a 13% improvement in hijack resilience at the
80th percentile (from 0.77 to 0.87). These improvements highlight
the benefit of using our optimization framework instead of relying
on heuristic approaches to achieve security.

4.4.4 CLAP-DN Suspect Avoidance. Here, we analyze CLAPS-DN’s
ability to avoid suspect ASes. We compute the expected number of
suspect ASes that will be on both the client-guard network path
and exit-destination network path where randomness is taken over
the choice of guard relay, the choice of exit relay, and the uniform
choice of web destination to visit. Following Barton et al.[5], we
used the Alexa Top 200 destinations as the set of destinations that
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clients visit. We resolved these destinations to IP addresses and ASes
at a network vantage point in New York, USA. Figure 4 presents
our results; similar to the previous analysis, the expected number
of intersecting suspect ASes appears on the x-axis, and the y-axis
plots a CDF of clients.

Unlike Counter-RAPTOR, we are unable to obtain a path-selection

algorithm that dominates DeNASA. CLAPS-DN does offer substan-
tial protections over Vanilla Tor, and at § = 2 offers comparable
protections in the median case (0.02 vs. 0.06 expected suspects).
We will see that DeNASA offers poor relay-placement protection
and prior work has shown it leaks location information quickly
[46]; CLAPS-DN provides a way to achieve similar security without
these critical vulnerabilities.
4.4.5 Relay-Placement Attacks. In addition to analyzing how well
these algorithms achieve their objectives, we also analyzed how
well these algorithms defend against relay placement attacks. In
this analysis, we consider an adversary who places some malicious
relays into the Tor network with the goal of having Tor clients
choose the malicious relays for circuits. We consider an adversary
who targets a particular cluster of users in CLAPS and the same
subset of users under Counter-RAPTOR and DeNASA. We present
results for the most vulnerable cluster which gives an upper-bound
on the adversary’s success probability.

For Counter-RAPTOR and CLAPS-CR, we identified an AS with
maximal hijack resilience that the adversary places relays into. We
ensured that this AS allows Tor relays, as it already contains guard
relays. The adversary in our attack places 100 malicious relays into
the identified AS, each relay with bandwidth approximately equal
to 7 Mbps (Wan et al. showed that effectively attacking Counter-
RAPTOR requires running many small relays instead of a few large
ones). We compute the likelihood that clients choose these malicious
relays and present the results in Figure 5a. In all three subfigures,
the x-axis denotes the adversary’s probability of succeeding in the
relay placement attack, and the y-axis denotes the CDF over targeted
clients. Because all clients in a given cluster choose relays according
to the same distribution, the CDFs for CLAPS-CR appear as vertical
lines (this is also true for Vanilla Tor, where all clients choose relays
according to a single distribution). Indeed, our constraints provide a
concrete bound for the adversary’s success probability; for example,
in Vanilla Tor, the adversary achieves a success probability of 0.56%—
for 0 = 2 in CLAPS-CR, the adversary’s success probability is 1.12%,
a 2X increase. However, for Counter-RAPTOR, this attack success
is much higher; for some client locations, the adversary succeeds
with probability 3.89% (« = 0.5) and 7.23% (a = 1.0), a 7x / 13X
increase in attack success probability relative to Vanilla Tor.

DeNASA suffers worse from relay placement attacks. We simu-
lated an adversary who places a single malicious guard relay and
single malicious exit relay into an AS that already contains Tor
relays. We let the relays have bandwidth approximately equal to
700 Mbps, which corresponds to the highest-bandwidth relays run-
ning in the Tor network. The adversary’s strategy remains the
same: the adversary targets the most vulnerable cluster and places
relays in ASes that maximize the likelihood that the malicious re-
lays are chosen. In this attack, the adversary maximizes the exit
relay selection probability conditioned on the malicious guard re-
lay being selected by a targeted client (in both CLAPS-DN and
DeNASA, exit-relay selection distributions are determined by a
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Figure 5: Probability of success when the adversary runs a relay placement attack. Figure (a) shows the probability of succeeding in a guard
placement attack against Counter-RAPTOR and CLAPS-CR. Figure (b) shows the probability of succeeding in a guard placement attack against
DeNASA and CLAPS-DN. Figure (c) shows the probability of succeeding in an exit placement attack against DeNASA and CLAPS-DN.

client’s guard relay). Figure 5b shows the probability that the ad-
versary’s guard placement attack succeeds, and Figure 5c shows
the probability that the adversary’s exit placement attack succeeds,
given that the guard-placement attack succeeded. As was the case
in CLAPS-CR, CLAPS-DN places a concrete bound on the adver-
sary’s success probability (the success probability against Vanilla
Tor is 0.55% in the guard position and 0.77% in the exit position).
Against DeNASA, the adversary succeeds in the guard-placement
attack against some client locations with ~20% probability—a 40x
increase over Vanilla Tor. In the exit-placement attack, the adver-
sary achieves 5% probability (a 10X increase) for many locations.
These unbounded increases highlight the importance of CLAP’s
constrained approach to relay placement security.

4.5 Performance Evaluation

We evaluate CLAPS on three different Tor topologies and demon-
strate the performance issues of previous location-aware schemes.
All our experiments contain our Tor performance and security fixes
(our Tor Proposal 310 [30], summarized in Section 6).

4.5.1 Methodology. We ran our experiments using the Shadow
discrete-event network simulator [15, 16]. Our simulations are
scaled down to 2,400 Tor clients and 250 relays. We used the recom-
mended value for setting the Web/Bulk fraction of clients [17]. The
first topology, scaled down from a consensus in June 2017, is repre-
sentative of current Tor topologies®, and contains a large amount
of guard bandwidth relative to the other positions. Moreover, af-
ter balancing bandwidth between path positions, Vanilla Tor exit
bandwidth remains scarce; there is roughly half of the bandwidth
compared to what is available in middle and entry positions. The
second Tor topology is similar to previous Tor network states (e.g.,
March 2015) and contains a large amount of guard bandwidth, yet
not disproportionately high compared to the other positions (157%
more than all exit and exit+guard bandwidth). After balancing the
bandwidth between positions using the bandwidth-weight equa-
tions [43], the three positions have the potential to offer the same
total bandwidth to paths (which both Vanilla Tor and CLAPS can
achieve with a total of 245145 Consensus Weight for each position).
The third topology focuses on the client distribution, and assumes a
sudden increase of users from a chosen region of the world within
our network built from a June 2017 Tor consensus.

3From 2016 onward, Tor exit bandwidth is scarce
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4.5.2  Analysis. Figure 6 shows the measured results from the
Shadow simulations. Each plot is a CDF of client performance,
where the x-axis shows the median time to download a 2 MiB Web
page.

In the first column, Figure 6a and Figure 6d compare CLAPS-CR
and CLAPS-DN against Counter-RAPTOR/DeNASA and Vanilla
Tor. One goal of CLAPS stated in Section 3 is to offer similar perfor-
mance to Vanilla Tor from the load-balancing constraint defined in
the linear program. Surprisingly with CLAPS-CR in Figure 6a, about
20% of Tor clients perform even better than Vanilla Tor up to = 5 sec-
onds in their median download time for our 2MiB page transfer. We
observed that this performance improvement increases as we relax
the guard placement attack constraint. When we relax the place-
ment constraint (i.e., we increase 6), we increase the probability for
CLAPS-CR clients to select guard relays with high resilience values.
We might expect this behavior to impact the quality of the path
regarding performance metrics that are not part of the optimization
constraint, such as path latency. Intuitively, from a given location,
highly resilient relays should be closer to the client hence shortening
the overall paths that these clients make. These shorter paths may
cause an overall increase in client performance compared to Vanilla
Tor while the load-balancing property is similar. Appendix D dis-
plays an analysis of path latency and path loss with respect to each
path selection and 6 value, and the results are consistent with our
hypothesis.

Counter-RAPTOR and DeNASA perform worse than Vanilla Tor
in the first column (Figure 6a and Figure 6d). Yet, the performance
is not disproportionately worse, even when Counter-RAPTOR uses
the resilience values as the only selection criterion (¢ = 1), which
does not account for any performance factor. For both figures, the
distribution of bandwidth gives twice the quantity of bandwidth
in the entry and middle positions compared to the exit position
after applying bandwidth-weight equations. As previously observed
in Section 2.3, the impact of unbalanced path selection is partially
absorbed by the spare bandwidth capacity at the entry position. If the
condition of the network is not favorable to Counter-RAPTOR and
DeNASA (i.e., scarce guard bandwidth), performance can degrade
significantly.

Indeed, when removing this excess bandwidth (second column,
Figure 6b and Figure 6e), the performance of Counter-RAPTOR and
DeNASA degrades significantly while Vanilla Tor and CLAPS keep
performing almost as well as in the original topology. Given the
reduction of entry bandwidth, CLAPS’s most significant constraint
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becomes the load-balancing; hence, a given location does not focus
on the most secure guards as it does in Figure 6a. For CLAPS-CR,
this explains why CLAPS does not outperform Vanilla Tor in this
network.

Figure 6¢ and Figure 6f in the third column show how path
selection performs in the event of many Tor users connecting from
the same location in the world, such as a city or a country. Sudden
spikes of users connecting or disconnecting from the Tor network
happened several times in Tor’s history in various countries, often
due to censorship and societal events. Sudden spikes of users can
happen again, and a location-aware path selection algorithm should
be able to provide similar performance during these events, similar
to how Vanilla Tor performs. Previous works do not account for
heterogeneity in user density, which explains why they slow down
on this particular network state. In both Figures, we simulate a
20% increase in users from Michigan ( a well-connected location
in our topology) which is causing poor load-balancing in Counter-
RAPTOR and DeNASA. CLAPS adapts by using weights subject
to our load-balancing constraint that accounts for the increased
usage of the network from this location. Note that Michigan was
chosen because it is a location close to the Tor relays in expectation,
and well connected to them (having low latency and low link loss).
Hence, performance loss might be caused by poor usage of the
available relays from the path selection algorithm.

Regarding CLAPS, note that the results slightly differ from Vanilla
Tor. We observed in this network configuration that CLAPS clients
were using paths with slightly better latency in the case of CLAPS-
CR, and slightly worse in the case of CLAPS-DN. Regarding CLAPS-
DN, by trying to avoid well-connected suspect ASes, network paths
chosen become significantly longer. Performance degradation in-
creases with 6 as CLAPS-DN avoids more suspect ASes. Appendix D
shows path loss and latency results in this setup, showing CLAPS-
DN having higher latency and packet-loss as 6 increases.

Recap. We conducted a performance analysis under three signif-
icantly different Tor network topologies: one similar to the current
state of the Tor network and two others reminiscent of previous
existing topologies or events. Our results confirm the efficiency of
our load-balancing constraint codified in our linear program and
the performance versatility of our scheme. Our results also show that
previous works in location-aware path selection algorithms underes-
timate the importance of network diversity in their approaches. We
conjecture that the same result would apply to other works we did
not explore here but which could be implemented with CLAPS as
well. Moreover, our results show that we can obtain a more secure
location-aware Tor network without undermining performance.

Using the CLAPS approach, Tor path selection is not limited by
a performance/security trade-off, but rather by a security/security
trade-off between different threat models when the goal is to achieve
a path selection algorithm that maintains similar performance to
Vanilla Tor.

4.6 Efficiency

In this section, we briefly discuss the practical costs of CLAPS. In
this analysis, we assume a Tor network with 6,700 relays. In CLAPS-
CR, clients must download an additional set of guard, middle, and
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exit weights for the relays in the network. Assuming a 4 byte encod-
ing is used to store weights, clients will download approximately
80 KB additional data. Tor’s directory authorities will send approxi-
mately 1.60 MB additional data to each relay serving Tor directory
information (for 20 clusters).

The client cost in CLAPS-DN is similar—each client still down-
loads a set of CLAPS weights which costs 80 KB; however, the
client must download a new exit weight distribution each time a
new guard is selected, which happens infrequently. A single exit
weight distribution costs at most 27 KB. To each directory relay,
Tor Directory Authorities need to send (1) one guard weight distri-
bution per cluster, (2) a single middle weight distribution, and (3)
one exit weight distribution per cluster-guard-relay pair. (1) costs
approximately 536 KB. (2) costs approximately 27 KB. Without
compression, sending (3) can be expensive—approximately 175 MB.
However, by de-duplicating weight distributions for guards and
exits in common ASes, this cost can be reduced to about 10 MB.
Applying compression may further reduce this cost.

The linear programs formulated and solved in our evaluations
of CLAPS-CR and CLAPS-DN were manageable in complexity. The
largest LPs had approximately 100,000 rows (constraints) and 30,000
columns (variables) in MPS format. No LP took more than 5 minutes
to solve using CLP on a machine with an Intel Xeon E7-8891 CPU.

5 RELATED WORK

A significant number of research works have targeted performance
improvements of the Tor network [1-3, 6, 11, 12, 22, 28, 35, 37,
45, 48]. Several of them had their claims disproved with more
recent research tools. For example, Snader and Borisov’s trade-
off [37] of security/performance does not improve performance
when the tune-up focuses on high bandwidth relays [6]. We also
demonstrated degraded performance of proposed path selection al-
gorithms relative to analyses performed in the original works [5, 38]
by considering an analysis involving network topology changes.

Regarding security, we can classify path-selection algorithms
within two broad categories: first, the ones that are not location-
aware: see [4, 31, 37]. For example, Waterfilling rebalances relay
weights to better defend against an adversary owning or compro-
mising relays to perform end-to-end correlation. [31]

Then, there have been many proposed location-aware path se-
lection algorithms [5, 10, 13, 18, 20, 21, 27, 38] (see Table 3 in the
appendix). Astoria, which focuses on AS-level adversaries, does al-
ready take advantage of a LP formulation to build a distribution that
would minimize the probability to encounter an adversary. How-
ever, their model lacks performance versatility, load-balancing, and
consideration for threats such as the relay placement and Tempest
attacks. By using CLAPS and modeling Astoria as a destination-
naive algorithm, Astoria could achieve the same load-balance as
Vanilla Tor with potentially as good compromised paths avoidance.
TAPS [18], another location-aware path selection algorithm, uses
a notion of trust to choose paths not likely to be observed be the
adversary. TAPS uses a clustering mechanism similar to location
masking to prevent leaking location information. However, this
mechanism is (1) specific to the TAPS algorithm, (2) includes a lim-
ited notion of anonymity, and (3) suffers from a deanonymization
attack [46]. We solve the attack with the addition of location guards.
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Figure 6: Simulation results comparing CLAPS-CR/DN to Counter-RAPTOR, DeNASA, and Vanilla Tor. (a) and (d) are scaled down networks
from June 2017 containing 250 relays and 2400 clients. The networks in (b) and (e) have 51% reduced guard bandwidth from the topologies
used in (a) and (d). Figures (c) and (f) show the performance of clients connecting from Michigan assuming a sudden increase in those clients.

A recent work has showed the impact of information leak over
time of location-aware path selections [46]. In response to those
problems, DPSelect [13] applies a differential-private guard selec-
tion mechanism to Counter-RAPTOR to reduce the maximum di-
vergence between client distributions, yet it does not address per-
formance issues nor deal with relay placement attacks. CLAPS
supports a different idea, called location masking to make the leak
of information eventually only reveal the location mask. This design
also applicable to previous location-aware schemes. Techniques
from DPSelect may be applied to CLAPS in order to slow the rate
at which location masks are potentially leaked.

A summary of each path selection goal which we could consider
for CLAPS is given in Table 3 in Appendix B. An instance of CLAPS
might be created for any these systems that take advantage of
pre-computed data.

6 DISCUSSION

There is no single path-selection algorithm that we recommend
with CLAPS. Instead, we aim to demonstrate how the common
obstacles to the use of existing proposals can all be solved with
CLAPS, making any one of them suitable for Tor. CLAPS can be
used with any client-location-aware path-selection algorithm that
does not take into account the destination’s location and take ad-
vantage of pre-computed data. Using the destination location is
more difficult, as it is highly variable and is not known before the
connection is needed. However, due to these issues, most of the
existing location-aware path-selection algorithms avoid using the
destination, and many can be usefully modified to only consider the
client’s location. For example, a version of LASTor [1] can be used
that minimizes latency from the client to the exit, no longer consid-
ering the destination. Moreover, the various proposed algorithms
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have several different and important goals, and our general frame-
work provides a powerful methodology to combine and balance the
various criteria of these proposals within a single path-selection
algorithm.

Finally, in the course of investigating how to improve Tor’s
weight computations, we have observed a significant flaw in the way
that guards are selected. In Tor, guards are first sampled according
to their weights and then chosen uniformly at random from the
sampled set [41]. This process causes the effective weights for guard
to skew towards uniform weighting, where the skew increases with
the ratio of sampled to total guards. It especially can cause problems
in client-location-aware algorithms, as clients in certain locations
may choose from relatively few well-placed guards. It also causes a
serious problem with the accuracy of research using Tor simulations,
as simulation networks are typically much smaller than the actual
Tor network [15]. We have proposed an efficient solution to this
issue, described in Tor Proposal 310. We have implemented it as a
patch, which we have used in our experiments. Our code has been
merged and tagged to be released in June 2020 with Tor 0.4.4.x.

7 CONCLUSION

We improve the security and performance of location-aware path-
selection algorithms for Tor by designing a generic framework for
location-aware path selection algorithms. CLAPS can be applied
to many of them to achieve their primary purpose while solving
performance and security problems. We describe how to apply
CLAPS to two specific client-location-aware algorithms: counter-
RAPTOR [38] and DeNASA [5]. Through experiments, we show
how CLAPS eliminates their performance deficits, solves their se-
curity flaws, and obtains results towards their primary goal that
are competitive or better than the original systems.
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Notation Description
A anonymity scores
a (CR.)  Percent resilience incorporated into relay weight
a (CLAPS) Allowable anonymity reduction factor
B, Bandwidth of relay r
B Maximum bandwidth in all positions at once
Y Allowed cluster distance increase
d({1,€2)  Distance between €1 and ¢ when clustering
D, Client density in location £
5?" Positional client density
EC(C) Entropy of the distribution of users in countries in C
EL(C) Entropy of the distribution of users in locations in C
L Set of client locations
Ly Locations when choosing relay in position p
AL, r) Positional location after choosing relay r from ¢
Aeer Probability to choose positional location ¢’ from ¢
o] Density weight at relay r in position 7;
P Circuit positions: g, m, and e
Pjgr Penalty for relay r in position p from location ¢
T Sequence of positions during circuit relay selection
Re » BGP Hijack resilience of relay r from location ¢
R Set of relays
Rp Relays admissible in position p
Size(C)  Total density contained in set of locations C
T DeNASA e-select parameter
0p Weight increase limit in position p over Vanilla Tor
vf Vanilla weight for relay r in position p
Vf Expected penalty of p from ¢ with vanilla weights
w‘;r Weight for relay r in position p from position £

Table 2: Common notation used in this work.

A DESIGN DETAILS
A.1 Notation

Table 2 summarizes common notation used in this work.

A.2 Weight computation

LP; in Figure 7 computes the maximum bandwidth f achievable
in all positions simultaneously. f§ takes the output value of b from
LP;.
We also give some detailed definitions for certain variables.
For ¢’ € Ly, A¢¢ is the probability that a client in £ € Lg;
chooses relays for the jth to (i — 1)st positions that yield positional
location ¢’ € L,. This can be expressed recursively as

Aee = Z Aeer Z

["El:,rif] reR: A(L” ,r)=t'

wi
'r
— (13)
B
where, for i = j, Agpr = 1if € = ¢’ and Ay = 0 otherwise.
V(f[ ! is the expected penalty in 7; from positional location £ €
Ly, j < i, when using the vanilla weights to choose the jth to ith

positions in & order. Recall that vf is the vanilla weight for relay r

in position p. Then let A7, be the probability to choose positional
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Maximize b (8)
Maximize the total bandwidth in any position.
Subject to
Vr e R: >wl <8, )
peP
Limit each relay’s total weight to its bandwidth.
VpeP: dwl=b (10)
rerR
Allocate at least b weight to each position.
VpeP,reR: wl >0 (11)
Require weights to be non-negative.
VpeP,re R\R,: wl =0 (12)

Set weight to zero when inadmissible in the position.

Figure 7: Linear program LP;, used to maximize the minimum po-
sitional bandwidth. Its variable are (1) {w’ }pep,rer, where wt is
the bandwidth relay r allocates to position p; and (2) b, which is the

minimum bandwidth in any position.

location ¢’ from £ when using vanilla weights (i.e., with v}* /Y 07"
in place of WZ,’;V /P in the definition of A¢/). Then

W

A9 e
el reR ZseR Uf

v, (14)

(5?" is the client density of positional location £ € L. Given
weights wgr’"l for the (i — 1)st position (e.g., as obtained from LP5),
it can be expressed recursively as

-1, ,7Ti-1
Op Wl

B

T _
5{, =
UeLln_ reR: AN, r)=¢

(15)

o] is the sum of the weights of relay r in position 7; weighted

by the positional location densities. It can be expressed as

i, JTi
Z 8piw,,.

[)E.Lni

i _
Wy =

(16)

Constraints 17 and 18 are added to LP; if a solution is not initially
found for all positions.

TTi
w
. . 1 I T
VisileLus 3 A Y=gV SV )
el reR
7 7
w v J
Vji>i,0 € Ly: —Lr ~ L (18)

e
ﬁ Zseﬂ Z)s]

B PATH SELECTION ALGORITHMS

Table 3 presents a summary of many proposed Tor path-selection al-
gorithms. We organize the algorithms into two broad categories: (1)
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security focused, and (2) performance focused. The security-focused
algorithms primarily aim to improve an aspect of Tor’s security (e.g.,
by preventing BGP hijack attacks), while the security-focused algo-
rithms aim to improve Tor’s performance (e.g., by having clients
choose short paths through the network). Many of these algorithms
are location-aware, denoted by the check mark in the rightmost
column of the table.

C DENASA & CLAPS-DN

1 T
* @' -+’
osl ] / f
oA
2 * ¢ +
£ 06
E 0.4 1 ° +/J
S Ll 7
Vanilla —_—
02 o r DeNASA (7 = 0.1) —x— |
g’(_o L+ ‘CLAPSf[‘)N @ = 2.0) ——
0 0.05 0.1 015 02 025 03 035 04 045

Expected Num. Intersecting Suspect ASes

Figure 8: Expected number of suspects present on both the client-
guard and exit-destination path when building a random circuit.

In this appendix section we provide a brief analysis of Vanilla
Tor, DeNASA, and CLAPS-DN when AS paths are inferred with
CAIDA’s AS relationship topology from January 2019. We run se-
curity experiments in accordance with the methodology set out
in Section 4 to estimate the likelihood of a suspect AS appearing
on a client’s client-guard path and exit-destination path. (For this
analysis, our clustering algorithm chose n = 14 clusters.

Figure 8 shows the expected number of suspects present on
both the client-guard path and exit-destination path for Vanilla
Tor, DeNASA, and CLAPS-DN (analogous to Figure 4). We see a
similar relationship presented in Section 4: DeNASA offers the
best protection against the suspect ASes, but CLAPS-DN offers a
significant improvement over Vanilla Tor and is not vulnerable to
Tempest and relay placement attacks.

D NOTES ON EVALUATING PERFORMANCE
D.1 Changing Shadow Defaults

Default options for Tor simulation had to be changed to make more
circuit selections and make a more statistically relevant use of the
Tor network, including a reduction of the error rate. We did not
change the client model; we changed how would Tor react when
receiving new streams to handle. We made it closer to how Tor
behaves with Tor Browser: using a different circuit for each destina-
tion or destination port. In effect, the simulation sampled and used
10X more circuits with the same user model. Intuitively, it should
make the sampled circuit distribution closer to the theoretical true
distribution offering load-balancing with proportional use of each
relay.

To validate our approach we compared our Shadow configuration
with the default configuration. Shown in Figure 9, we observed a
meaningful impact on the performance results, much greater than
the discrepancy from two different instances of a same experiment.
Then, we compared the empirical distribution of relay selection to
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Table 3: Proposed Tor path selection algorithms

CCS 20, November 9-13, 2020, Virtual Event, USA

Algorithm Goal Location Aware
Security Focused

Edman-Syverson [10] Prevent traffic analysis v

DistribuTor [4] Prevent traffic analysis

DeNASA [5] Prevent traffic analysis v

Astoria [27] Prevent traffic analysis v

TAPS [18] Prevent traffic analysis v

DeTor [18] Avoid geolocations v

Waterfilling [31] Prevent traffic analysis

Counter-RAPTOR [38] Prevent BGP hijacks v

DPSelect [13] Limit path selection info leakage v

TrilateraTor [20] Avoid geolocations v
Performance Focused

Coordinate [35] Improve e2e connection throuput

LASTor [1] Improve latency, prevent traffic analysis v

Panchenko’12 [28] Rebalance Tor v

Conflux [2] aggregated bw via multipath

ABRA [12] Avoid congested relays

CAR [438] Avoid congested relays v

PredicTor [6] Predict fast paths

NavigaTor [3] Measurement feedbacks to discard slow circs v

Mixed
Snader-Borisov [37]

Improve load balance

. =

" 0.8 - -
€

£ 06 | -
©]

o 0.4 il
a
©]

0.2 - " Vanilla —_

0 ‘ Vanilla w/ Stream Isolation - - -
L L L
0 10 20 30 40 50

Download Time (s)

Figure 9: Shadow Tor experimentation with 250 relays and 2400
clients. The only difference is the SocksPort option: one simulation
turns on stream isolation by Addr and Port (similar to what Tor
browser does. Tor browser also multiplexes stream by same-origin

policy)

the ideal (relaxed from Family and /16 constraints) distribution of
relay selection. We observed our configuration changes to make
the usage of relays closer to the theoretical (and ideal) distribution.

D.2 Details on Path Quality

During our experiments, we observed that CLAPS could deviate
from the expected performance results (i.e., similar to Vanilla Tor)
despite the load-balancing constraint being satisfied. Recall that
load-balancing in Vanilla Tor and in CLAPS is only expressed as a
function of the bandwidth and the overall bandwidth for each path
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position. Our hypothesis for explaining these differences (some-
times better, sometimes worse) lays into the quality of paths that
the algorithm is selecting regarding metrics that aren’t part of the
load-balancing logic but could influence performance results. In
Shadow, all relays and clients are connected (it is a complete topol-
ogy), and each edge has a latency and a loss rate associated with it.
We measured those values from the paths built in the simulation to
observe whether a discrepancy into those values could explain our
performance results. Figure 10 shows that it is possibly the case.
Note that we do not show the path latency figures because loss and
latency are directly proportional in Shadow, hence the graphs are
similar. Loss is more meaningful to show for the context of time to
download, since this value influences TCP’s performance.

E NOTES ON PATH SELECTION

E.1 Performance Challenges

We claim that previous location-aware schemes (e.g., Counter-
RAPTOR and DeNASA[5, 38]) can display arbitrarily worse perfor-
mance compared to Vanilla Tor; however, many of these schemes
have been demonstrated in previous works to have satisfactory per-
formance characteristics. To understand our claim and our results,
we illustrate with the following example

Suppose that the network’s capacity is composed of 10 units
of guard-flagged relays, 2 unit of unflagged relays, 1 unit of exit-
flagged relays, and 2 units of guard-and-exit flagged relays. The
bandwidth-weight equations compute the position weights such
that multi-roles relays’ bandwidth are affected most where needed
to reach an equilibrium: 4 units of guard-flagged relays are used in
the middle position, and all units of guard-exit relays are used in
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(a) Cumulative link loss on path from the client to the exit relay.
Data collected from the experiment in Figure 6a.
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(c) Cumulative link loss on path from the client to the exit relay.
Data collected from the experiment in Figure 6f.
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(b) Path length (in km) showing shorter paths for CLAPS Counter-
RAPTOR. Data collected from the experiment in Figure 6a.
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(d) Path length (in km) showing longer paths for CLAPS DeNASA.
Data collected from the experiment in Figure 6f.

0
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Figure 10: Path information collected from experiments conducted during CLAPS’s evaluation. Those results show the impact of the guard-
placement attack constraint 0 on the length, loss, and latency of the paths built during the experiments.

exit position. The network resource ends-up to be probabilistically
distributed to (6, 6, 3) for (entry, middle, exit) positions of. This
proportion is happening for our simulated network from June 2017
(i.e., Figure 11a) and on more recent consensuses as well. The state
of the Tor network is what explains Figure 11a, where the network
has a very constrained exit position with half of the capacity in total
compared to the entry and middle positions, generating congestion
at the exits. Therefore, the entry and middle relays have spare
bandwidth, or in other words, have a lower load than the exit relays.
As a consequence, it is likely that relays involved in entry or middle
positions (or both) can be unbalanced (to some extent) without
impacting the overall performance too much, leading to Counter-
RAPTOR’s ostensible good results, similar to other algorithms and
analysis in the literature [5, 13, 21].

A first example of non-versatility performance problem of pre-
vious location-aware path selection is linked to the distribution
of user locations. Previous works ignore the density of Tor usage
per client location which can lead to arbitrary performance for the
overall Tor users, and arbitrarily low performance from a location
in which a high density of users appears. Figure 11b shows a 20%
increase of Tor users from a given location and displays unusable
download times for a large fraction of them. Note that such a spike
of usage already happened several times in the Tor network.

We give in Figure 11c a second example of the non-versatility
issue based on a different network state that existed during several
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years in the past, and that may again exist in the future. Figure 11c
shows a simulation scaled down from a consensus of March 2015,
where the network resources can be potentially distributed equally
between each position (which is the bandwidth-weights equations
objective of Vanilla Tor). In such a network state, a path selection
algorithm that unbalances one of the path positions (the entry, in
the case of Counter-RAPTOR) would yield increased congestion
and reduce the expected bandwidth, as depicted in Figure 11c. That
is, Counter-RAPTOR performs worse because there is no spare
resources in this network state to absorb the impact of the blending.
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(a) June 2017 network state simulated with
2400 Tor clients and 250 relays.
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(b) June 2017 network state simulated with
2400 Tor clients for which 20% of them are as-
signed to a particular location, and the others
are distributed according to available online
metrics. Uses the same 250 relays as in (a).
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(c) March 2015 network state simulated with
2400 Tor clients and 250 relays. Compared to
(a), this network state can be perfectly load-
balanced, hence has no spare bandwidth in
guard and middle positions.

Figure 11: These figures show the impact of congestion for Counter-RAPTOR path selection given different network states.
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