

1 Recovered microbiome of an oviparous lizard differs across gut and reproductive tissues, cloacal swabs,
2 and feces

3

4 Marie E. Bunker, Mark O. Martin, and Stacey L. Weiss

5 University of Puget Sound, Department of Biology, Tacoma, WA, USA

6

7 **Corresponding author:** Correspondence to Stacey L. Weiss, sweiss@pugetsound.edu

8 **ORCID ID:** Stacey L Weiss: 0000-0003-3571-9667

9

10 **Abstract**

11 Microbial diversity and community function are related, and can be highly specialized in different gut
12 regions. The cloacal microbiome of *Sceloporus virgatus* females provides antifungal protection to
13 eggshells, a specialized function that suggests a specialized microbiome. Here, we describe the cloacal,
14 intestinal, and oviductal microbiome from *S. virgatus* gravid females, adding to growing evidence of
15 microbiome localization in reptiles and other taxa. We further assessed whether common methods for
16 sampling gastrointestinal (GI) microbes – cloacal swabs and feces – provide accurate representations of
17 these microbial communities. We found that different regions of the gut had unique microbial
18 communities. The cloacal microbiome showed extreme specialization averaging 99% Proteobacteria
19 (Phylum) and 83% *Enterobacteriaceae* (Family). *Enterobacteriaceae* decreased up the GI and
20 reproductive tracts. Cloacal swabs recovered communities similar to that of lower intestine and cloacal
21 tissues. In contrast, fecal samples had much higher diversity and a distinct composition (common Phyla:
22 62% Firmicutes, 18% Bacteroidetes, 10% Proteobacteria; common Families: 39% *Lachnospiraceae*, 11%
23 *Ruminococcaceae*, 11% *Bacteroidaceae*) relative to all gut regions. The common families in fecal
24 samples made up < 1% of cloacal tissue samples, increasing to 43% at the upper intestine. Similarly, the
25 common families in gut tissue (*Enterobacteriaceae* and *Helicobacteraceae*) made up < 1% of the fecal
26 microbiome. Further, we found that cloacal swabs taken shortly after defecation may be contaminated

27 with fecal matter. Our results serve as a caution against using feces as a proxy for GI microbes, and may
28 help explain high between-sample variation seen in some studies using cloacal swabs.

29

30 **Keywords:** Microbiome specialization, gut tissue, intestine, feces, cloaca, reptiles, *Sceloporus*

31 **Introduction**

32 As high-throughput sequencing becomes more accessible, microbiome studies are expanding
33 beyond humans and mammalian model systems to non-model organisms. It has become clear that the
34 community of microbes within the gut of all animals plays an important role not only in host physiology
35 but also their ecology and evolution (Archie & Theis, 2011; McFall-Ngai et al., 2013; Moran et al., 2019;
36 Reese & Dunn, 2018). To better understand the wide-ranging implications of host-microbe coevolution
37 and the variety of functions the gut microbiome can provide for the host, it is critical to study a broad
38 diversity of host species with a broad diversity of environmental pressures and adaptations. Conducting
39 such research on wild populations is particularly important because captivity has been shown to change
40 the composition of gut microbiomes (Hird, 2017; Keenan et al., 2013; Kohl et al., 2017).

41 The function and the composition of the gut microbiome can be highly specialized along different
42 regions of the gastrointestinal (GI) tract, which vary in acidity, specific macromolecules secreted by gut
43 epithelia, oxygen content, and other conditions that affect which microbes can thrive (Beasley et al.,
44 2015; Reese & Dunn, 2018). Regional localization of the gut microbiome is well established in both
45 model and non-model systems (Beasley et al., 2015; Colston et al., 2015; Kohl et al., 2017; Shterzer et al.,
46 2020; Videvall et al., 2018; Yasuda et al., 2015; Zhang et al., 2021). Among oviparous vertebrates, the
47 terminus of the GI tract is shared with the reproductive tract, as the cloaca is the site of defecation,
48 copulatory intromission, and oviposition. Thus, the cloacal microbiome of birds and reptiles likely
49 experiences unique selective pressures relative to the rectal microbiome of mammals. For instance, the
50 cloacal microbiome may be affected by breeding season, sex, degree of promiscuity, and other aspects of
51 host reproduction and behavior (Escallón et al., 2019; Lee, 2015; White et al., 2011).

52 In the striped plateau lizard, *Sceloporus virgatus*, females lay their eggs in soil burrows at the
53 onset of the summer monsoon rains and then leave the nest site, providing no further parental care (Rose,
54 1981). Synchronizing oviposition with the monsoon season appears to be unique to *S. virgatus* among
55 temperate lizard species, and has been hypothesized to have a strong selective impact on the species
56 (Vinegar, 1975); this timing may reduce egg mortality by desiccation yet potentially expose eggs to new

57 fungal pathogens. Thus, we propose a strong selective impact on the species' microbiome as well. Indeed,
58 microbes are transferred from the cloacae of *S. virgatus* females to eggshells during egg laying, reduce
59 fungal attachment to eggs, and improve hatch success (Bunker et al., 2021). Given this specialized
60 ecological function of the cloacal microbiome, we hypothesized that the gut microbiome of *S. virgatus*
61 females will express a high degree of localization along the GI and reproductive tracts. While such
62 localization has been found in several other reptile species (Colston et al., 2015; Costello et al., 2010;
63 Keenan et al., 2013; Kohl et al., 2017), we predicted a pattern in contrast to that found in these other
64 reptiles, which generally show an increase in diversity and abundance of bacteria moving down the GI
65 tract to the cloaca. Specifically, we predicted that the cloaca of gravid *S. virgatus* females will show
66 reduced microbial diversity, with a greater relative abundance of microbes with antifungal capabilities,
67 and a unique community structure relative to upper regions. To test this, we compared the microbiome of
68 gravid females across the cloaca, lower and upper intestinal regions, and the oviduct, described in Study
69 1.

70 It is common among studies of reptiles and birds for cloacal swabs and/or fecal samples to be
71 used as a proxy for the gut microbiome as a whole (Colston et al., 2015; Escallón et al., 2019; Hong et al.,
72 2011; Jiang et al., 2017; Kohl et al., 2017; Kreisinger et al., 2015; Zhang et al., 2021). These methods are
73 attractive as they are non-destructive, minimally invasive, and allow for repeat sampling of the same
74 individuals and communities over time (Berlow et al., 2020; Videvall et al., 2018). However, a microbial
75 community recovered from swabs or feces may represent only a portion of the gut due to the regional
76 localization. While only a few studies have directly compared the two non-invasive sampling approaches,
77 unique community structures have been recovered by cloacal swab and fecal sampling in zebra finches
78 and ostriches (Berlow et al., 2020; Videvall et al., 2018). Here, we add to this important work by directly
79 comparing microbial communities collected from cloacal swab and fecal samples of *S. virgatus*
80 individuals. We predict that the communities will be distinct in *S. virgatus*, indicating selection for the
81 particular cohort of microbes that occupy the cloaca, due in part to the natural history of *S. virgatus* (as
82 detailed above). To test this idea, in Study 2 we compared microbial communities recovered from cloacal

83 swabs collected before and after defecation, and we also described the fecal microbiome itself.
84 Additionally, because previous work on the *S. virgatus* microbiome has been based on cloacal swab
85 samples (Bunker et al., 2021; Martin et al., 2010), we assessed whether the microbiome recovered from
86 cloacal swabs was indeed representative of cloacal tissue or other regions of the GI and reproductive
87 tracts.

88

89 **Methods**

90

91 *Study 1: Is the cloaca a uniquely specialized region of the gastrointestinal and reproductive tracts?*

92

93 *Sceloporus virgatus* lizards are small insectivorous animals found in the Madrean Sky Islands of
94 the southwestern United States and south into Mexico (Stebbins, 2003). Our study population is at the
95 northern reach of their range, in Cochise County, Arizona near the American Museum of Natural
96 History's Southwestern Research Station (SWRS). To address the adaptive hypothesis that the cloacal
97 microbiome will be unique from that of the upper GI and reproductive tracts, we collected gravid
98 *Sceloporus virgatus* females (n = 8) between 28 June and 01 July 2019 using a loop of fishing line tied to
99 a retractable fishing pole. Female cloacae were swabbed (BD ESwabTM) immediately following capture.
100 Microbes from these field swabs were eluted into an Amies solution by manual shaking, frozen within 24
101 h of collection, transported on dry ice to Tacoma, WA on 02 July, and then stored at -80°C until DNA
102 extraction. The lizards were kept in large outdoor enclosures at SWRS with access to water bowls and
103 naturally occurring prey until 02 July when they were shipped overnight to Tacoma, WA in individual
104 plastic containers on ice packs. Upon arrival, we euthanized females using buffered MS-222 (Conroy et
105 al., 2009) and collected transverse sections of tissue (~2-4 mm long) from the cloaca (expanded tissue
106 immediately above the vent), lower intestine (~10 mm above cloaca), upper intestine (~5 mm below
107 stomach), and oviduct (at the position of the lowest egg on the left side) using heat sterilized instruments.

108 We did not attempt to separate or isolate mucosal vs. luminal contents. Tissue samples were frozen at -
109 80°C until DNA extraction.

110

111 *Study 2: How does sampling methodology (swab vs feces) affect recovered community composition?*

112

113 To assess the efficacy of cloacal swab and fecal sampling in *S. virgatus*, we collected 8 adult
114 lizards (n = 4 females and n = 4 males) on 30 May 2019 using the same sites and methodology described
115 above. Animals were housed individually in sterile 15 X 23 cm plastic tanks lined with paper towels that
116 had also been sterilized with 70% ethanol on a west-facing screened porch of SWRS's Live Animal
117 Holding Facility. They were offered a single cricket on the day of capture that was removed if not eaten
118 by ~1200 the next day. Sterile water was provided *ad libitum*, and one heat lamp on a 14:10 light cycle
119 was shared between two adjacent tanks.

120 Lizard cloacae were swabbed first at ~0500 on 31 May, before animals had woken up and
121 defecated; this is considered our pre-defecation cloacal swab sample. Beginning at 0600, the tanks were
122 checked for feces every 30 min, until 1830, when the heat lamps had been off for 30 min and the lizards
123 were no longer active. When a fecal pellet was found, it was collected with sterile forceps and the lizard's
124 cloaca was immediately swabbed. Based on this method, all post-defecation cloacal swabs were taken
125 within 30 min of the defecation event. We also collected a control swab, which we used to sample the
126 researchers' hands, a lizard's external vent and belly, and the air of the porch, to collect any microbes that
127 may have contaminated cloacal swabs during sampling.

128

129 *DNA Extraction*

130

131 DNA from swab, tissue, and fecal samples were extracted using the Qiagen DNEasy® Blood and
132 Tissue Kit (Qiagen, Inc). For the cloacal swab samples, we used the manufacturer protocol for

133 Purification of Total DNA from Animal Blood or Cells with the optional lysis buffer incubation for
134 Gram-positive bacteria. For tissue and fecal pellets, we included the optional lysis buffer incubation for
135 30 min at 37°C. After incubation, Buffer AL and proteinase K were added to the tubes. The samples were
136 then incubated at 56°C for 180 minutes (for tissue) or 90 min (for feces) while shaking at 500 RPM (USA
137 Scientific Mixer HC- 8012-0000, Ocala, FL, USA). From here, the extraction was completed according to
138 the Purification of Total DNA from Animal Blood or Cells protocol, beginning at Step 3 (addition of pure
139 ethanol). An extraction blank was included in each extraction. DNA in all samples and blanks was
140 quantified via Qubit (Invitrogen, Waltham, MA) to ensure extraction was successful.

141

142 *Illumina Library Prep*

143

144 We used a two-step polymerase chain reaction (PCR) procedure modified from the iBest
145 Genomics Core at University of Idaho to amplify the 16s V4 region of the microbial DNA in each sample
146 (Taylor et al., 2019). PCR1 utilized 515F/806R primer pairs to amplify the region of interest, and PCR2
147 extended the amplicons with sample-specific barcodes. For PCR1, we used 7.5 uL Phusion Flash High
148 Fidelity Master Mix (ThermoFisher, Waltham, MA), 0.15 uL of the forward and reverse 50 uM primers,
149 0.75 uL molecular grade Bovine Serum Albumen (BSA, 20 mg/mL, New England BioLabs), 5.45 uL
150 purified water, and 1 uL template DNA. The thermal cycling protocol was: initial denaturation at 98°C
151 for 10 sec; 28 cycles of denaturation at 98°C for 1 sec, annealing at 57°C for 5 sec, and extension at 72°C
152 for 20 sec, with a final extension at 72°C for 60 sec (Taylor et al., 2019). We visualized PCR products on
153 a 2% agarose gel using 10x Sybr Green (Molecular Probes, Invitrogen; Carlsbad, CA). All iterations of
154 PCR1 included a positive (*Serratia* genomic DNA) and a negative (purified water) control. Mock
155 communities (BEI Resources, ATCC, Manassas, VA) were also included in some PCR1 runs, as a further
156 measure of quality control.

157 We performed PCR1 in triplicate for each sample, then pooled those replicates for PCR2.

158 Samples (including positive controls) that showed strong bands in at least two of three PCR1 replicates

159 were diluted 1:4 in purified water before being used as template DNA in PCR2, and all others were
160 undiluted. In addition to pooling replicates of the negative controls, negative controls from different
161 PCR1 runs were further pooled to reduce the number of control samples sent for sequencing. Because of
162 this, some iterations of PCR2 contained a pooled PCR1 negative control, and some contained a new
163 PCR2 negative control with purified water instead of DNA template.

164 For PCR2, we used 10 uL Phusion Flash High Fidelity Master Mix, 0.24 uL BSA, 8.01 uL of
165 purified water, 0.75 uL of unique barcoded primer pairs (2 μ M; supplied by iBest Genomics Core, at the
166 University of Idaho; see Taylor et al., 2019), and 1 uL of the PCR1 pooled product. The thermal cycling
167 protocol was the same as the protocol for PCR1, but was run for only 8 cycles (for 36 cycles total). We
168 visualized PCR2 products on a 2% agarose gel with 10x Sybr Green and confirmed that each sample had
169 undergone a band shift compared to PCR1 (indicative of attachment of barcode primers). We then pooled
170 all samples, with pool volume based on the intensity of each sample band, and shipped them to iBest
171 Genomic Core for purification, DNA quantification, and sequencing on the Illumina MiSeq platform. All
172 negative controls and mock communities were included in the sequencing process, but positive controls
173 were not.

174

175 *Illumina Raw Data Processing and Statistical Analysis*

176

177 Sequences were received demultiplexed, with adapters and primers removed. Quality analysis for
178 each sample was performed using FastQC (Andrews, 2010) and those results were consolidated using
179 MultiQC (Ewels et al., 2016). Mean quality scores and length distribution for the whole dataset were
180 manually inspected and used to determine a cutoff length of 250 bp for forward reads and 150 bp for
181 reverse reads. Samples were then processed in R v3.1.6 (R Core Team, 2020) using the DADA2
182 (Callahan et al., 2016) pipeline based on this tutorial: <https://benjjneb.github.io/dada2/tutorial.html>.
183 Samples were trimmed as described above and filtered with a max expected error of 2. An average of
184 91.6% of reads were kept in all experimental samples after processing. Taxonomic classification of

185 amplified sequence variants (ASVs) was performed through the assignTaxonomy function, using the
186 Silva database (Quast et al., 2013), release 132. Potential contaminants were removed with the Decontam
187 package (Davis et al., 2018), using the “prevalence” method with a threshold of 0.1. Control samples,
188 including a control swab (n = 1), extraction blanks (n = 9), and PCR negatives (n = 24), were used for
189 comparison. Any ASV that had fewer than 27 reads across all samples was discarded. One cloacal tissue
190 sample only kept 12 reads after processing and was not included in analyses. Finally, read numbers were
191 log transformed to account for differences in read depth. All parameters were determined based on an
192 analysis of the mock communities.

193 Once samples had been processed, the phyloseq package (McMurdie & Holmes, 2013) was used
194 to organize and store data of different types for analyses. Shannon diversity index values and richness
195 were then calculated with the “estimate_richness_” function from phyloseq, and Faith’s phylogenetic
196 diversity index values were calculated using the Picante package (Kembel et al., 2010) based on
197 phylogenetic trees created and optimized with Phangorn (Callahan et al., 2016; Schliep et al., 2016). The
198 alignment was created with the DECIPHER package (Wright, 2016). We examined how these variables
199 differed across tissue types and swab samples using mixed-effects ANOVAs with lizard ID as a random
200 effect. We compared fecal and pre-defecation cloacal swab communities, as well as pre- and post-
201 defecation cloacal swab communities using separate paired t-tests. Richness was log-transformed to
202 account for non-normal distribution when comparing pre- and post-defecation swabs. Phylogenetic
203 diversity was log transformed when comparing tissue types.

204 Pairwise distances between samples were calculated by the vegan package (Oksanen et al., 2019)
205 using Bray-Curtis distances, and these distances were then used to generate non-metric multidimensional
206 scaling (NMDS) plots. Using the trees described above, we used phyloseq to generate weighted UniFrac
207 distances to compare phylogenetic community composition, and we used unweighted UniFrac distance to
208 compare community membership of groups; both metrics were used to generate Principle Coordinate
209 Analysis (PCoA) plots. For all distance metrics, dispersion between groups was first tested with the
210 betadisper function from the vegan package, and then a PERMANOVA test (Adonis function from the

211 vegan package) was performed. Differential abundance was tested using the Corncob package (Martin et
212 al., 2020). All plots were made with the GGplot2 package (Wickham, 2017).

213

214 **Results**

215

216 *Study 1: Is the cloaca a uniquely specialized region of the gastrointestinal and reproductive tracts?*

217

218 The Shannon diversity value was lowest in the cloacal tissue, on average, but was not statistically
219 different across any tissue types or cloacal swabs ($F = 1.32$, $df = 4,26$, $p = 0.425$, Fig 1a). Similar non-
220 significant patterns were found when comparing richness ($F = 2.07$, $df = 4,26$, $p = 0.114$; Fig 1b) and
221 phylogenetic diversity across tissue types ($F = 1.30$, $df = 4,26$, $p = 0.297$; Fig 1c). When comparing beta
222 diversity, measured by Bray-Curtis distance, there was a significant difference in composition between all
223 groups ($F = 1.52$, $df = 4,33$, $p = 0.014$), although the groups were dispersed similarly ($F = 1.04$, $df = 4,33$,
224 $p = 0.400$, Fig 2a). When clustered using weighted UniFrac distances, community composition tended to
225 differ across all tissue types ($F = 1.87$, $df = 4,33$, $p = 0.060$, Fig 2b), although the groups were dispersed
226 differently ($F = 4.12$, $df = 4,33$, $p = 0.008$), which could account for the difference in distances. When
227 clustered using unweighted UniFrac distances, community membership differed significantly between
228 tissue types ($F = 1.66$, $df = 4,33$, $p = 0.008$, Fig 2c), and the tissue types showed similar dispersion ($F =$
229 1.16 , $df = 4,33$, $p = 0.346$).

230 The most abundant family in all tissue types was *Enterobacteriaceae* (Figure 3; supplemental
231 information). In the cloacal tissue, on average, *Enterobacteriaceae* made up $82.7 \pm 10.8\%$ (SE) of the
232 whole community, while the next most abundant family (*Helicobacteraceae*) only made up $16.6 \pm 10.9\%$
233 and was $> 0.1\%$ in only 2 individuals. No other families made up more than 1% of the composition of the
234 cloacal tissue. The lower intestine showed similar patterns: *Enterobacteriaceae* made up $64.7 \pm 11.5\%$
235 and the next most abundant family was *Helicobacteraceae*. However, the lower intestine had several
236 families that made up between 1-5% of the community, including *Bacteroidaceae*, *Ruminococcaceae*,

237 *Tannerellaceae*, *Lachnospiraceae*, and *Desulfovibrionaceae*. The upper intestine had the lowest percent
238 composition of *Enterobacteriaceae* with only $34.9 \pm 9.1\%$, closely followed by *Ruminococcaceae* which
239 made up $32.9 \pm 12.8\%$ on average, and both *Bacteroidaceae* and *Burkholderiaceae* made up $\sim 9\%$ (± 7.5 ,
240 ± 9.0). The oviduct community was $54.9 \pm 9.3\%$ *Enterobacteriaceae* on average and had many families
241 that were between 1-5%, but no others higher than 10%.

242 A differential abundance analysis showed that the percentage of *Enterobacteriaceae* found in the
243 cloacal tissue microbial community was similar to that in lower intestine ($t = 0.156$, $p = 0.372$)
244 communities, and was significantly greater than that in the upper intestine ($t = -3.09$, $p = 0.005$) and
245 oviduct ($t = -2.06$, $p = 0.049$) communities (supplemental information). It also showed that the cloacal
246 tissue community had distinctly low percentages of *Ruminococcaceae* (lower intestine: $t = 4.38$, $p <$
247 0.001 ; upper intestine: $t = 7.94$, $p << 0.001$; oviduct: $t = 2.49$, $p = 0.019$) and *Bacteroidaceae* (lower
248 intestine: $t = 4.88$, $p < 0.001$; upper intestine: $t = 5.07$, $p << 0.001$; oviduct: $t = 3.59$, $p = 0.001$).
249

250 *Study 2: How does sampling methodology (swab vs feces) affect recovered community composition?*

251

252 Shannon diversity index values were significantly higher in fecal pellets than in pre-defecation
253 cloacal swabs ($t = 16.29$, $df = 7$, $p < 0.001$; Fig 4a), as was richness ($t = 8.39$, $df = 7$, $p < 0.001$; Fig 4b)
254 and phylogenetic diversity ($F = 10.94$, $df = 7$, $p < 0.001$; Fig 4c). Beta diversity analysis using Bray-
255 Curtis distance showed that the microbial composition of fecal pellets was significantly more similar to
256 other fecal pellets than it was to that of the pre-defecation cloacal swabs ($F = 9.65$, $df = 1,14$, $p = 0.001$;
257 Fig 5a). The groups were also dispersed differently ($F = 5.54$, $df = 1,14$, $p = 0.034$). Fecal pellets also
258 differed from pre-defecation cloacal swabs in both UniFrac metrics (weighted: $F = 18.91$, $df = 1,14$, $p =$
259 0.001 , Fig 5b; unweighted: $F = 15.13$, $df = 1,14$, $p = 0.001$, Fig 5c), and dispersion of the communities
260 also varied for each measurement (weighted: $F = 13.83$, $df = 1,14$, $p = 0.002$; unweighted: $F = 4.78$, $df =$
261 $1,14$, $p = 0.046$).

262 The most abundant taxa recovered from fecal pellets was *Lachnospiraceae*, which made up 38.7
263 \pm 5.2% on average (Fig 6). *Enterobacteriaceae*, *Bacteroidaceae*, and *Ruminococcaceae* each accounted for
264 ~10% of the recovered communities, and several others made up between 1-5% of the recovered
265 community including *Tannerellaceae*, *Erysipelotrichaceae*, *Eggerthellaceae*, *Marinifilaceae*, and
266 *Akkermansiaceae*. Pre-defecation cloacal swab communities were dominated by *Enterobacteriaceae*
267 (84.9 \pm 5.3%), and the next most abundant taxa was *Helicobacteraceae*, which only accounted for 5.1 \pm
268 2.2% of the community. A corncob analysis confirmed that *Lachnospiraceae* was significantly more
269 abundant ($t = -7.20$, $p < 0.001$) and *Enterobacteriaceae* was significantly less abundant ($t = 3.83$, $p <$
270 0.001) in fecal samples compared to pre-defecation cloacal swabs.

271 There was no significant difference between pre- and post-defecation cloacal swabs in any alpha
272 diversity metric (Shannon: $t = 1.40$, $df = 7$, $p = 0.204$; Richness: $t = 1.45$, $df = 7$, $p = 0.190$; Phylogenetic
273 diversity: $t = 1.72$, $df = 7$, $p = 0.129$; Fig 4), although the post-defecation swabs tended to have higher
274 diversity. Swab types did not cluster separately based on Bray-Curtis distances ($F = 1.24$, $df = 1,14$, $p =$
275 0.231, Fig 5a), and the groups were dispersed similarly ($F = 2.57$, $df = 1,14$, $p = 0.131$). Pre-defecation
276 swab communities differed from post-defecation swab communities in dispersion based on weighted ($F =$
277 7.08, $df = 1,14$, $p = 0.019$, Fig 5b) and unweighted ($F = 36.14$, $df = 1,14$, $p < 0.001$, Fig 5c) UniFrac
278 distances, as well as composition of unweighted UniFrac distance ($F = 2.20$, $df = 1,14$, $p = 0.035$),
279 although this latter result could be due to differences in dispersion rather than true clustering of groups.
280 The different swab types did not cluster separately based on weighted UniFrac distance ($F = 1.14$, $df =$
281 1,14, $p = 0.281$). While the same two taxa dominated the pre- and post-defecation swabs, post-defecation
282 *Enterobacteriaceae* was reduced to only 44.8 \pm 13.2%, and *Helicobacteraceae* increased to 19.0 \pm 9.5%.
283 There was also an increase in the abundance of feces-associated taxa following defecation, particularly
284 *Lachnospiraceae* which accounted for 15 \pm 7.4% on average. However, there was a distinct bifurcation in
285 the post-defecation cloacal swab samples. In five samples, *Enterobacteriaceae* and *Helicobacteraceae*
286 account for >75% of the community, similar to the pre-defecation swabs, while the remaining three

287 samples had a more “feces-like” community, with a higher abundance of *Lachnospiraceae* and
288 *Bacteroidaceae*.

289

290 *How well does each sampling method represent the gut microbiome?*

291

292 Cloacal swabs recovered similar communities to that of the cloacal tissue and lower intestine:
293 *Enterobacteriaceae* made up $69.8\% \pm 14.2$, with *Helicobacteraceae*, *Ruminococcaceae*, *Bacteroidaceae*,
294 *Lachnospiraceae* and *Tannerellaceae* all making up between 2-10% on average. A differential abundance
295 analysis showed similar abundances of *Enterobacteriaceae* between cloacal swabs and cloacal tissue ($t =$
296 -1.05 $p = 0.304$). In contrast, as described above, tissue from the oviduct and upper intestine had different
297 major taxa and different relative abundances of *Enterobacteriaceae* relative to the cloacal swabs.

298 Even though fecal pellets and tissues were collected from different animals, we compare their
299 microbial communities descriptively. The three most abundant families in fecal pellets (*Lachnospiraceae*,
300 *Ruminococcaceae*, and *Bacteroidaceae*) combined made up an average of 60% of the fecal microbial
301 community, 43% of the upper intestine community, and less than 1% of the cloacal community
302 (supplemental information). The similarity between fecal and the upper intestine communities is
303 predominantly due to the high abundance of *Ruminococcaceae* and *Bacteroidaceae* in the upper intestine.
304 However, despite the high abundance of *Lachnospiraceae* in fecal pellets, only about 1% of the upper
305 intestine community was made up of *Lachnospiraceae*.

306 At the phylum level, fecal pellet communities averaged 62% Firmicutes, 18% Bacteroidetes, and
307 11% Proteobacteria (Fig 7). As we sampled from the oviduct and upper intestine to the lower intestine
308 and cloaca, the percentage of Firmicutes and Bacteroidetes steadily decreased and the percentage of
309 Proteobacteria increased, to the point of nearly totally dominating the cloacal community at an average of
310 99% Proteobacteria found in cloacal tissues (Fig 7).

311

312 **Discussion**

313
314 We found clear localization of the microbiome in the gut and reproductive tracts of gravid *S.*
315 *virgatus* females. While localization has been seen in other reptiles (Colston et al., 2015; Costello et al.,
316 2010; Keenan et al., 2013; Kohl et al., 2017; Zhang et al., 2021), the cloaca in previously sampled reptiles
317 was found to have relatively high diversity, in part because it contained bacterial species from all upper
318 regions of the gut. This pattern may be expected as the cloaca is the terminus of the GI and reproductive
319 systems, and is often assumed to be both inoculated by feces that pass through and influenced by sexual
320 transmission during copulation (Videvall et al., 2018; Wen et al., 2021; White et al., 2011). Similarly, the
321 reproductive tract of chickens shows increasing levels of diversity from oviducts to cloaca, which has the
322 highest diversity (Wen et al., 2021). In contrast to these previously described patterns, the cloacal
323 microbiome of *S. virgatus* lizards has low diversity, especially at the Family and Phylum level, at which it
324 was dominated by *Enterobacteriaceae* and *Proteobacteria*. It is distinct from upper intestine, oviductal, and
325 fecal microbiomes. We propose strong selection for the specific cohort of bacteria found in the *S. virgatus*
326 cloaca, as females deposit beneficial microbes on their eggs during oviposition that facilitate egg survival
327 (Bunker et al., 2021). This function could be the driving force behind the winnowing of the microbiome
328 in the cloaca, especially considering that many members of the *Enterobacteriaceae* family are known to
329 have antifungal properties (Dhar Purkayastha et al., 2018; Gutiérrez-Román et al., 2015; Kalbe et al.,
330 1996).

331 As we only have tissue from gravid females sampled immediately after shipment, it is possible
332 that the localization of the gut microbiome is specific to the gravid condition or an artifact of stress.
333 Although the degree of GI localization in response to these factors has not been well-examined, previous
334 studies have found that fecal microbial complexity is reduced in females during pregnancy and gravidity
335 (Koren et al., 2012; Trevalline et al., 2019b). However, we found similar microbial community structure
336 recovered from swabs in Study 1 (gravid females) and Study 2 (pre-ovulation females and males)
337 suggesting the *S. virgatus* cloacal microbiome is not highly dependent on reproductive condition (see

338 supplemental information). A more direct assessment of the seasonality of the cloacal microbiome is in
339 progress.

340 Cloacal swabs taken from a given individual lizard resulted in communities similar to the lower
341 intestine and the cloacal tissue, and distinct from higher regions of the gut and reproductive tract. The
342 cloacal swab community was predominantly *Enterobacteriaceae* but, like the lower intestine, had several
343 families that made small but noticeable contributions to the community and was dispersed slightly
344 differently than the cloacal tissue microbiome. The upper intestine and oviduct have different microbial
345 communities than the lower sections of the intestinal tract but also have differences in major families
346 from one another. Recent evidence has contradicted the long-accepted idea that embryonic development
347 is sterile (Funkhouser & Bordenstein, 2013). Microbial communities similar to gut microbes have been
348 found in chicken oviducts (Shterzer et al., 2020), and Trevaline et al. (2019a) found that microbes may
349 colonize bird and lizard eggs from within the oviduct before the shell develops. The unique community in
350 the oviduct here could indicate an internal egg microbiome which is seeded during egg development; the
351 functional significance of this microbiome should be investigated further.

352 In contrast to the adequate sampling of the cloacal and lower intestinal microbiome by cloacal
353 swabs, fecal pellets contain strikingly distinct communities from all gut regions. Distinct fecal and GI
354 tract microbiomes have also been found in mammals (Lkhagva et al., 2021; Sugden et al., 2021;
355 Zoetendal et al., 2002). Additionally, fecal samples and pre-defecation cloacal swabs taken from the same
356 *S. virgatus* individuals were found to have different microbial communities from one another by every
357 metric we examined, aligning with evidence from birds that the two non-invasive techniques recover
358 different communities (Berlow et al., 2020; Videvall et al., 2018). As described above, the microbiome of
359 swabs was more similar to the cloaca and lower intestine, and largely dominated by *Enterobacteriaceae*.
360 The microbiome of fecal samples was most similar to that found in the upper intestine, with a relatively
361 high abundance of *Ruminococcaceae* and *Bacteroidaceae*, but was dominated by *Lachnospiraceae* which
362 was largely absent from all regions of the gut, and lacked the high abundance of *Enterobacteriaceae* that

363 was found across the gut. Overall, these patterns caution against the common practice of using fecal
364 samples as a proxy for the gut microbiome without first validating this approach.

365 While we detected some changes between pre- and post-defecation swab samples, those changes
366 were largely non-significant, and were likely due to increased variation within the post-defecation swabs,
367 as indicated by the samples differing more in dispersion than in composition. The variation is due to a
368 distinct bifurcation in the communities recovered from post-defecation swabs, with most of these swabs
369 mirroring cloacal tissue, with its high abundance of Proteobacteria, and a smaller portion displaying a
370 more “feces-like” community. The variation seen in post-defecation cloacal swabs was also seen in the
371 field swabs of gravid females; 5 of the 8 cloacal swab communities from Study 1 were made up of >95%
372 *Enterobacteriaceae* and *Helicobacteraceae*, while other samples were dominated by *Lachnospiraceae*
373 and *Bacteroidaceae*, two feces-associated taxa. Because recovered communities from feces and pre-
374 defecation cloacal swabs were distinct, it seems unlikely that the cloaca is being inoculated with fecal
375 microbes. Rather, a more likely explanation is that small amounts of fecal material may attach to swabs if
376 they are taken shortly after defecation, which then masks the much less diverse cloacal community when
377 it is sequenced. The idea of temporary contamination is further supported by the fact that the same lizards,
378 when re-swabbed for a different study, often had comparatively lower diversity and a greater relative
379 abundance of *Enterobacteriaceae*-associated ASVs (supplemental information). Some animals continued
380 to vary between the feces-like and cloacal tissue phenotype when they were resampled by swabbing,
381 likely due to repeated defecation events. Cloacal swabs often have been found to be inconsistent and
382 unreliable (Videvall et al., 2018; Williams & Athrey, 2020), and potential contamination by fecal material
383 could account for some of this variation. Indeed, cloacal swabs have been used to collect feces in the past
384 (Stanley et al., 2015). The fact that these fecal microbes do not colonize and grow in the *S. virgatus*
385 cloaca supports the hypothesis that the low microbial diversity of the cloaca is due to selection, and that
386 there is a mechanism to maintain stability of the microbiome in that region. This type of selection has
387 been seen in other species (Nyholm & McFall-Ngai, 2004; Zhang et al., 2016), and supports a model in
388 which function is the driving force of microbiome diversity (Reese & Dunn, 2018).

389 At the phylum level, Bacteroidetes and Firmicutes are often considered to represent the core gut
390 microbiome across vertebrates (Colston & Jackson, 2016; Ley et al., 2008). However, this dogma is based
391 largely on studies that rely on fecal sampling in mammals and so may not accurately represent the GI
392 microbiome of diverse vertebrate taxa. For instance, Bacteroidetes have been found to be relatively rare in
393 some gut regions of wild reptiles and birds (Colston et al., 2015; Hird, 2017; Keenan et al., 2013;
394 Kreisinger et al., 2015), and were relatively uncommon across all *S. virgatus* gut regions and even in fecal
395 pellets, which were dominated by Firmicutes. Firmicutes and Proteobacteria were more equally
396 represented in the *S. virgatus* upper intestine, though Proteobacteria were more common, and
397 Proteobacteria increased in dominance down the GI tract to the cloaca, which was nearly entirely
398 composed of this phylum. Proteobacteria have been found to be highly abundant in the gut of other non-
399 mammalian vertebrates (Colston & Jackson, 2016), particularly in studies that sampled directly from the
400 GI tract rather than relying on fecal sampling alone, but its dominance in the *S. virgatus* cloaca appears to
401 be extreme even in comparison to those systems. In gravid females, the lowest relative abundance of this
402 cloacal community member was 96.9% with greater than 99% on average, and the majority of those reads
403 belonged to a single family. The cloacal swabs were less consistent, as discussed above, although still
404 82% Proteobacteria on average (across all samples), similar to that of the lower intestinal tissue.

405 Variation in the gut microbiome across taxa has been considered in relation to diet and other
406 aspects of animal life history and ecology (Colston & Jackson, 2016; Ley et al., 2008). As descriptions of
407 vertebrate microbiomes continue to accumulate, it will be interesting to examine the potential influence of
408 reproductive mode (i.e., viviparity vs. oviparity), as this separates mammals from most non-mammalian
409 vertebrates. We propose that oviparous species, and especially those without egg-tending, may have
410 unique selective pressures on the cloacal microbiome to transfer antifungal or otherwise egg-protective
411 bacteria to eggshells during oviposition. Future research will compare the cloacal microbiome of
412 oviparous and viviparous *Sceloporus* lizards.

413

414 **Conclusions**

415

416 The community structure and composition of the microbiome varies depending on tissue type in
417 the gastrointestinal and reproductive tracts of *S. virgatus*, and is highly specialized at the cloaca. While
418 environmental factors have been known to cause regional variation in the gut microbiome, in this case the
419 difference may be due, in part, to selection for cloacal microbes that increase host fitness via the transfer
420 of antifungal microbes from mother to eggshells during oviposition (Bunker et al., 2021). Additionally,
421 although cloacal swabs and fecal samples are generally accepted methods of sampling the microbiome,
422 neither was able to fully represent the entire community of the gut, and the two methods provided unique
423 results. The cloacal swabs adequately sampled communities of cloacal and lower intestine tissues,
424 whereas the fecal microbiome was a distinct community not representative of any sampled gut tissue. We
425 also found that fecal microbes do not seed the cloaca after defecation. While there were few differences
426 between swabs taken before and after defecation overall, there was evidence of possible fecal
427 contamination of individual swabs. Care should be taken to account for this in future research by
428 excluding samples with visible feces from analyses, and additionally by sequencing fecal pellets to
429 identify a “fecal signature” that may be present on swabs even with no visible contamination. Studies that
430 intend to use cloacal swabs or feces as a proxy for the gut microbiome must think carefully on whether
431 these methods will accurately answer their question; in this study, biologically relevant variation in the
432 microbiome could have been masked due to sampling method.

433

434 **Acknowledgments**

435 We thank Grace Elliott and Helena Heyer-Gray for their help with animal collection, and Marley Weiss
436 for help with tissue collection. Michal Morrison-Kerr and staff at the Southwestern Research Station
437 provided logistical assistance. Funding was provided by the National Science Foundation (Grant number
438 1755408). The work was permitted by the University of Puget Sound Institutional Animal Care and Use
439 Committee (PS18002) and Arizona Game and Fish collecting permit (SP649069). Data collection and

440 analyses performed by the IIDS Genomics and Bioinformatics Resources Core at the University of Idaho
441 were supported in part by NIH COBRE grant P30GM103324.

442

443 **References**

444

445 Archie, E. A., & Theis, K. R. (2011). Animal behaviour meets microbial ecology. *Animal Behaviour*,
446 82(3), 425–436. <https://doi.org/10.1016/j.anbehav.2011.05.029>

447 Beasley, D. E., Koltz, A. M., Lambert, J. E., Fierer, N., & Dunn, R. R. (2015). The Evolution of stomach
448 acidity and its relevance to the human microbiome. *PLOS ONE*, 10(7), e0134116.

449 <https://doi.org/10.1371/journal.pone.0134116>

450 Berlow, M., Kohl, K. D., & Derryberry, E. P. (2020). Evaluation of non-lethal gut microbiome sampling
451 methods in a passerine bird. *Ibis*, 162(3), 911–923. <https://doi.org/10.1111/ibi.12807>

452 Bunker, M. E., Elliott, G., Heyer-Gray, H., Martin, M. O., Arnold, A. E., & Weiss, S. L. (2021).

453 Vertically transmitted microbiome protects eggs from fungal infection and egg failure. *Animal
454 Microbiome*, 3, 43. <https://doi.org/10.1186/s42523-021-00104-5>

455 Callahan, B., McMurdie, P., Rosen, M., Han, A., Johnson, A., & Holmes, S. (2016). DADA2: High
456 resolution sample inference from Illumina amplicon data. *Nature Methods*, 13(7).

457 Callahan, B., Sankaran, K., Fukuyama, J. A., McMurdie, P., & Holmes, S. (2016). Bioconductor
458 Workflow for Microbiome Data Analysis: From raw reads to community analyses.

459 *F1000Research*, 5, 1492. <https://doi.org/10.12688/f1000research.8986.2>

460 Colston, T. J., & Jackson, C. R. (2016). Microbiome evolution along divergent branches of the vertebrate
461 tree of life: What is known and unknown. *Molecular Ecology*, 25(16), 3776–3800.

462 <https://doi.org/10.1111/mec.13730>

463 Colston, T. J., Noonan, B. P., & Jackson, C. R. (2015). Phylogenetic analysis of bacterial communities in
464 different regions of the gastrointestinal tract of *Agkistrodon piscivorus*, the cottonmouth snake.

465 *PLOS ONE*, 10(6), e0128793. <https://doi.org/10.1371/journal.pone.0128793>

466 Conroy, C., Papenfuss, T., Parker, J., & Hahn, N. (2009). Use of tricaine methanesulfonate (MS222) for
467 euthanasia of reptiles. *Journal of the American Association for Laboratory Animal Science : JAALAS*, 48(1), 28–32.

468

469 Costello, E. K., Gordon, J. I., Secor, S. M., & Knight, R. (2010). Postprandial remodeling of the gut
470 microbiota in Burmese pythons. *The ISME Journal*, 4(11), 1375–1385.
471 <https://doi.org/10.1038/ismej.2010.71>

472 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical
473 identification and removal of contaminant sequences in marker-gene and metagenomics data.
474 *Microbiome*, 6(1), 226. <https://doi.org/10.1186/s40168-018-0605-2>

475 Dhar Purkayastha, G., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a
476 *Serratia marcescens* strain indigenous to tea rhizosphere for the management of root rot disease
477 in tea. *PLoS ONE*, 13(2). <https://doi.org/10.1371/journal.pone.0191761>

478 Escallón, C., Belden, L. K., & Moore, I. T. (2019). The Cloacal microbiome changes with the breeding
479 season in a wild bird. *Integrative Organismal Biology*, 1(1). <https://doi.org/10.1093/iob/oby009>

480 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for
481 multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047–3048.
482 <https://doi.org/10.1093/bioinformatics/btw354>

483 Funkhouser, L., & Bordenstein, S. (2013). Mom Knows Best: The Universality of Maternal Microbial
484 Transmission. *PLoS Biology*, 11(8), e1001631. <https://doi.org/10.1371/journal.pbio.1001631>

485 Gutiérrez-Román, M. I., Holguín-Meléndez, F., Dunn, M. F., Guillén-Navarro, K., & Huerta-Palacios, G.
486 (2015). Antifungal activity of *Serratia marcescens* CFFSUR-B2 purified chitinolytic enzymes
487 and prodigiosin against *Mycosphaerella fijiensis*, causal agent of black Sigatoka in banana (*Musa*
488 spp.). *BioControl*, 60(4), 565–572. <https://doi.org/10.1007/s10526-015-9655-6>

489 Hird, S. M. (2017). Evolutionary biology needs wild microbiomes. *Frontiers in Microbiology*, 8.
490 <https://doi.org/10.3389/fmicb.2017.00725>

491 Hong, P.-Y., Wheeler, E., Cann, I. K. O., & Mackie, R. I. (2011). Phylogenetic analysis of the fecal

492 microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S
493 rRNA-based pyrosequencing. *The ISME Journal*, 5(9), 1461–1470.
494 <https://doi.org/10.1038/ismej.2011.33>

495 Jiang, H.-Y., Ma, J.-E., Li, J., Zhang, X.-J., Li, L.-M., He, N., Liu, H.-Y., Luo, S.-Y., Wu, Z.-J., Han, R.-
496 C., & Chen, J.-P. (2017). Diets alter the gut microbiome of crocodile lizards. *Frontiers in*
497 *Microbiology*, 8, 2073. <https://doi.org/10.3389/fmicb.2017.02073>

498 Kalbe, C., Marten, P., & Berg, G. (1996). Strains of the genus *Serratia* as beneficial rhizobacteria of
499 oilseed rape with antifungal properties. *Microbiological Research*, 151(4), 433–439.
500 [https://doi.org/10.1016/S0944-5013\(96\)80014-0](https://doi.org/10.1016/S0944-5013(96)80014-0)

501 Keenan, S. W., Engel, A. S., & Elsey, R. M. (2013). The alligator gut microbiome and implications for
502 archosaur symbioses. *Scientific Reports*, 3(1), 2877. <https://doi.org/10.1038/srep02877>

503 Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S.
504 P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology.
505 *Bioinformatics*, 26(11), 1463–1464. <https://doi.org/10.1093/bioinformatics/btq166>

506 Kohl, K. D., Brun, A., Magallanes, M., Brinkerhoff, J., Laspiur, A., Acosta, J. C., Caviedes-Vidal, E., &
507 Bordenstein, S. R. (2017). Gut microbial ecology of lizards: Insights into diversity in the wild,
508 effects of captivity, variation across gut regions and transmission. *Molecular Ecology*, 26(4),
509 1175–1189. <https://doi.org/10.1111/mec.13921>

510 Koren, O., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Kling Bäckhed, H., Gonzalez, A.,
511 Werner, J. J., Angenent, L. T., Knight, R., Bäckhed, F., Isolauri, E., Salminen, S., & Ley, R. E.
512 (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. *Cell*,
513 150(3), 470–480. <https://doi.org/10.1016/j.cell.2012.07.008>

514 Kreisinger, J., Čížková, D., Kropáčková, L., & Albrecht, T. (2015). Cloacal microbiome structure in a
515 long-distance migratory bird assessed using deep 16sRNA pyrosequencing. *PLoS One*, 10(9),
516 e0137401. <https://doi.org/10.1371/journal.pone.0137401>

517 Lee, W. Y. (2015). Avian gut microbiota and behavioral studies. *Korean Journal of Ornithology*. 22, 1–

518 11.

519 Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R., & Gordon, J. I. (2008). Worlds within worlds:
520 Evolution of the vertebrate gut microbiota. *Nature Reviews Microbiology*, 6(10), 776–788.
521 <https://doi.org/10.1038/nrmicro1978>

522 Lkhagva, E., Chung, H.J., Hong, J., Wilson Tang, W. H., Lee, S. I., Hong, S. T., Lee, S. (2021). The
523 regional diversity of gut microbiome along the GI tract of male C57BL/6 mice. *BMC
524 Microbiology*, 21, 44. <https://doi.org/10.1186/s12866-021-02099-0>

525 Martin, B., Witten, D., & Willis, A. (2020). *corncob: Count Regression for Correlated Observations with
526 the Beta-binomial* (0.1.0) [R]. <https://github.com/bryandmartin/corncob>

527 Martin, M., Gilman, F. R., & Weiss, S. L. (2010). Sex-specific asymmetry within the cloacal microbiota
528 of the striped plateau lizard, *Sceloporus virgatus*. *Symbiosis*, 51(1), 97–105.
529 <https://doi.org/10.1007/s13199-010-0078-y>

530 McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E.,
531 Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll,
532 A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., ... Wernegreen,
533 J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. *Proceedings of
534 the National Academy of Sciences*, 110(9), 3229–3236. <https://doi.org/10.1073/pnas.1218525110>

535 McMurdie, P., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and
536 graphics of microbiome census data. *PLoS ONE*, 8(4), e61217.
537 <https://doi.org/10.1371/journal.pone.0061217>

538 Moran, N, McCutcheon, J, & Nakanachi, A. (2008). Genomes and evolution of heritable bacterial
539 symbionts. *Annual Review Genetics*, 42, 165–190.

540 Nyholm, S. V., & McFall-Ngai, M. (2004). The winnowing: Establishing the squid–vibrio symbiosis.
541 *Nature Reviews Microbiology*, 2(8), 632–642. <https://doi.org/10.1038/nrmicro957>

542 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara,
543 R., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). *vegan*:

544 *Community Ecology Package* (2.5-6) [Computer software]. <https://CRAN.R-project.org/package=vegan>

545

546 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O.

547 (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-

548 based tools. *Nucleic Acids Research*, 41(D1), D590–D596. <https://doi.org/10.1093/nar/gks1219>

549 R Core Team. (2020). *R: A language and environment for statistical computing*. R Foundation for

550 Statistical Computing. <https://www.R-project.org/>

551 Reese, A. T., & Dunn, R. R. (2018). Drivers of microbiome biodiversity: A review of general rules, feces,

552 and ignorance. *MBio*, 9(4). <https://doi.org/10.1128/mBio.01294-18>

553 Rose, B. (1981). Factors Affecting Activity in *Sceloporus Virgatus*. *Ecology*, 62(3), 706–716.

554 <https://doi.org/10.2307/1937739>

555 Sarmiento, C., Zalamea, P.-C., Dalling, J. W., Davis, A. S., Stump, S. M., U'Ren, J. M., & Arnold, A. E.

556 (2017). Soilborne fungi have host affinity and host-specific effects on seed germination and

557 survival in a lowland tropical forest. *Proceedings of the National Academy of Sciences*, 114(43),

558 11458–11463. <https://doi.org/10.1073/pnas.1706324114>

559 Schliep, K., Potts, A. J., Morrison, D. A., & Grimm, G. W. (2017). Intertwining phylogenetic trees and

560 networks. *Methods in Ecology and Evolution*, 8, 1212-1220. <https://doi.org/10.1111/2041-210X.12760>

561

562 Shterzer, N., Rothschild, N., Sbehat, Y., Stern, E., Nazarov, A., & Mills, E. (2020). Large overlap

563 between the intestinal and reproductive tract microbiomes of chickens. *Frontiers in*

564 *Microbiology*, 11, 1508. <https://doi.org/10.3389/fmicb.2020.01508>

565 Stanley, D., Geier, M. S., Chen, H., Hughes, R. J., & Moore, R. J. (2015). Comparison of fecal and cecal

566 microbiotas reveals qualitative similarities but quantitative differences. *BMC Microbiology*, 15,

567 1-11.

568 Stebbins, R. C. (2003). *A Peterson Field Guide to Western Reptiles and Amphibians* R. T. Peterson, Ed.;

569 3rd edition. Houghton Mifflin Harcourt.

570 Sugden, S., St. Clair, C.C., & Stein, L.Y. (2021). Individual and site-specific variation in a
571 biogeographical profile of the coyote gastrointestinal microbiota. *Microbial Ecology*, 81, 240–
572 252. <https://doi.org/10.1007/s00248-020-01547-0>

573 Taylor, M. J., Mannan, R. W., U'Ren, J. M., Garber, N. P., Gallery, R. E., & Arnold, A. E. (2019). Age-
574 related variation in the oral microbiome of urban Cooper's hawks (*Accipiter cooperii*). *BMC*
575 *Microbiology*, 19(1), 47. <https://doi.org/10.1186/s12866-019-1413-y>

576 Trevelline, B. K., Fontaine, S. S., Hartup, B. K., & Kohl, K. D. (2019a). Conservation biology needs a
577 microbial renaissance: A call for the consideration of host-associated microbiota in wildlife
578 management practices. *Proceedings of the Royal Society B: Biological Sciences*, 286(1895),
579 20182448. <https://doi.org/10.1098/rspb.2018.2448>

580 Trevelline, B. K., MacLeod, K. J., Langkilde, T., & Kohl, K. D. (2019b). Gestation alters the gut
581 microbiota of an oviparous lizard. *FEMS Microbiology Ecology*, 95(7).
582 <https://doi.org/10.1093/femsec/fiz086>

583 Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S., & Cornwallis, C. K. (2018). Measuring the gut
584 microbiome in birds: Comparison of faecal and cloacal sampling. *Molecular Ecology Resources*,
585 18(3), 424–434. <https://doi.org/10.1111/1755-0998.12744>

586 Vinegar, M. (1975). Demography of the striped plateau lizard, *Sceloporus virgatus*. *Ecology*, 56(1), 172–
587 182.

588 Wen, C., Li, Q., Lan, F., Li, X., Li, G., Yan, Y., Wu, G., Yang, N., & Sun, C. (2021). Microbiota
589 continuum along the chicken oviduct and its association with host genetics and egg formation.
590 *Poultry Science*, 101104. <https://doi.org/10.1016/j.psj.2021.101104>

591 White, J., Richard, M., Massot, M., & Meylan, S. (2011). Cloacal bacterial diversity increases with
592 multiple mates: Evidence of sexual transmission in female common lizards. *PLOS ONE*, 6(7),
593 e22339. <https://doi.org/10.1371/journal.pone.0022339>

594 Wickham, H. (2017). ggplot2—Elegant Graphics for Data Analysis (2nd Edition). *Journal of Statistical*
595 *Software*, 77.

596 Williams, T., & Athrey, G. (2020). Cloacal Swabs Are Unreliable Sources for Estimating Lower Gastro-
597 Intestinal Tract Microbiota Membership and Structure in Broiler Chickens. *Microorganisms*,
598 8(5), 718. <https://doi.org/10.3390/microorganisms8050718>

599 Wright, E., S. (2016). Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. *The R*
600 *Journal*, 8(1), 352. <https://doi.org/10.32614/RJ-2016-025>

601 Yasuda, K., Oh, K., Ren, B., Tickle, T. L., Franzosa, E. A., Wachtman, L. M., Miller, A. D.,
602 Westmoreland, S. V., Mansfield, K. G., Vallender, E. J., Miller, G. M., Rowlett, J. K., Gevers, D.,
603 Huttenhower, C., & Morgan, X. C. (2015). Biogeography of the intestinal mucosal and luminal
604 microbiome in the rhesus macaque. *Cell Host & Microbe*, 17(3), 385–391.
605 <https://doi.org/10.1016/j.chom.2015.01.015>

606 Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S., Kim, J., Degivry, M.-C., Quéré, G.,
607 Garault, P., van Hylckama Vlieg, J. E. T., Garrett, W. S., Doré, J., & Veiga, P. (2016). Ecological
608 robustness of the gut microbiota in response to ingestion of transient food-borne microbes. *The*
609 *ISME Journal*, 10(9), 2235–2245. <https://doi.org/10.1038/ismej.2016.13>

610 Zhang, L., Yang, F., Li, N., & Dayananda, B. (2021). Environment-Dependent Variation in Gut
611 Microbiota of an Oviparous Lizard (*Calotes versicolor*). *Animals*, 11(8), 2461.
612 <https://doi.org/10.3390/ani11082461>

613 Zoetendal, E. G., von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A. D. L., & de Vos,
614 W. M. (2002). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly
615 distributed along the colon and differ from the community recovered from feces. *Applied and*
616 *Environmental Microbiology*, 68, 3401–3407.

617

618 **Data Availability**

619 The sequences and associated metadata used to support the conclusions of this study are available in the
620 sequence read archive of NCBI (BioProject PRJNA687551). R scripts and csv files are available on
621 Dryad: <https://doi.org/10.5061/dryad.2547d7wps>.

622

623 **Author Contributions**

624

625 All authors contributed to the study conception. Marie E. Bunker collected samples, performed all lab
626 work, and drafted the manuscript. Stacey L. Weiss assisted with field work and sample collection. All
627 authors edited drafts and approved of the final manuscript.

628

629 **Figure Legends**

630

631 **Fig. 1** Mean **(A)** Shannon diversity **(B)** richness and **(C)** Faith's phylogenetic diversity of gravid female *S.*
632 *virgatus* cloacal swabs and tissue types. Although cloacal tissue diversity was lower than the other tissue
633 types and the swabs, this difference was not statistically significant in any measure. Error bars represent
634 standard error

635

636 **Fig. 2** Beta diversity of gravid female *S. virgatus* cloacal swabs and tissue types. **(A)** Non-metric multi-
637 dimensional scaling (NMDS) plot created by using Bray Curtis distance to calculate pairwise distances
638 based on community composition; 3 dimensions were used to calculate distances but only the most
639 influential two are pictured here. Samples clustered using **(B)** weighted and **(C)** unweighted UniFrac
640 distances were used to create Principal Coordinates Analysis (PCoA) plots. Hulls and ellipses are colored
641 by sample type

642

643 **Fig. 3** Percent composition of bacterial families in cloacal swabs and tissue types from gravid female *S.*
644 *virgatus*. Each vertical bar represents one sample. Colored portions of the bars represent the relative

645 abundance of the top ten most abundant taxa; the remaining taxa were combined into the “other”
646 category. The y-axis indicates percent composition of total reads for that sample. Raw data are provided
647 in the supplemental information

648

649 **Fig. 4** Effect of defecation on cloacal swab microbiome samples relative to the fecal pellet microbiome.
650 **(A)** Shannon diversity index values, **(B)** richness, and **(C)** Faith’s phylogenetic diversity of *S. virgatus*
651 cloacal swabs before and after defecation, and fecal pellets. The fecal pellets have significantly higher
652 diversity than the pre-defecation swabs in all metrics, but there were no differences between pre- and
653 post-defecation swabs. Error bars represent standard error

654

655 **Fig. 5** Beta diversity of *S. virgatus* cloacal swabs and feces. **(A)** Non-metric multi-dimensional scaling
656 (NMDS) plots created by using Bray Curtis distance to calculate pairwise distances based on community
657 composition of cloacal swabs of *S. virgatus* lizards before and after defecation, as well as fecal samples
658 from the same individuals. 2 dimensions were used to calculate distances. Samples clustered using **(B)**
659 weighted and **(C)** unweighted UniFrac distances to create Principal Coordinates Analysis (PCoA) plots.
660 Hulls and ellipses are colored by sample type

661

662 **Fig. 6.** Percent composition of bacterial families in pre- and post-defecation swabs, and fecal samples
663 from *S. virgatus* females (F) and males (M). Each vertical bar represents one sample. Colored portions of
664 the bars represent the relative abundance of the top ten most abundant taxa; the remaining taxa were
665 combined into the “other” category. The y-axis indicates the percent composition of total reads for that
666 sample. Raw data are provided in the supplemental information

667

668 **Fig. 7.** Percent composition of the bacterial phyla known to dominate the vertebrate gut microbiome
669 found in all *S. virgatus* samples from Study 1 and Study 2. Each vertical bar represents the mean percent
670 composition for a given sample type. Raw data are provided in the supplemental information