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Abstract Our understanding of the ecological dri-

vers that control community structure of benthic

rotifers is poorly known. By reviewing 21 papers on

freshwater benthic rotifers we compiled an inventory

of an additional 258 species, 27 genera, and six

families not previously listed in the review of benthic,

lotic rotifers by Ricci and Balsamo (Freshw Biol

44:15–28, 2000). This raises the number of reported

benthic species to 416, * 23% of all rotifers. Using

selected papers within our dataset we tested two

hypotheses: (1) Within lakes of different trophic state

benthic rotifer communities differ in their species

composition and (2) because rotifer trophi types reflect

strong specificity for certain foods, there is a differ-

ence in the distribution of trophi types in lakes of

different trophic state. We found that the trophic state

of water bodies influences species composition of

benthic rotifers, but there was no significant difference

in the distribution of their trophi types. To aid in

understanding community assembly of benthic roti-

fers, we provide a list of knowledge gaps that future

studies could address.

Keywords Benthos � Ecology � Interstitial �
Diversity � Species composition

Preface

This paper celebrates the research of the late Ramesh

Gulati, a guide and mentor to us and many others.

During his long, distinguished career he significantly

extended our understanding of the ecology of trophic

interactions in the plankton, lake biomanipulation, and

lake restoration. In this short communication we

extend his vision of understanding rotifer trophic

dynamics into the realm of community structure of

benthic rotifers.
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Introduction

Rotifera (sensu stricto) is a diverse, moderately sized

phylum of * 2000 species comprising small

(* 50–2000 lm), bilaterally symmetrical, meta-

zoans, which exhibits a global distribution (Wallace

et al. 2015). Although the community of benthic

rotifers that reside in interstitial spaces of sediments

has been known for a long time (Wiszniewski 1934;

Pennak 1940), we still do not completely understand

this distinctive community (Majdi et al. 2017) (Fig. 1).

The quintessential feature of benthic rotifers is that

they lie on the surface of aquatic sediments or inhabit

the space between small particles in aquatic and

terrestrial sediments and also between the debris of

decaying Sphagnum in bogs and peatlands (Błędzki

and Ellison 2003; Bielańska-Grajner et al. 2011, 2017;

Dražina et al. 2017). In these realms, rotifers are

generally within one or two orders of magnitude of the

size of the particles (Pennak 1940). When sand is the

dominant material comprising the matrix, the organ-

isms of this habitat are termed psammon (G. psammus,

sand). Psammobiotic species are present only in the

sand, and psammophilic species may also be found

swimming in the water. On the other hand, psammox-

ene species seem alien to the benthos; they may have

been washed into the sand as adults or perhaps as

neonates (Pennak 1940; Ejsmont-Karabin 2004). For

example, Bērziņš (1951) reported sessile species on

the surface of sediments of lakes in Sweden (see also

Ejsmont-Karabin 2003). The fate of an individual

considered to be a psammoxene is unknown. No

equivalent terms are available for systems dominated

by high organic content (i.e., benthic muds or peat). In

lentic systems, the interstitial habitat extends from

above the water’s edge (euarenal), into the wave-

washed zone (hygroarenal), down into the littoral of

lakes (hydroarenal) (Ejsmont-Karabin 2003; Kali-

nowska and Ejsmont-Karabin 2012). Some species

are found deeper still, in the profundal zone (Moore

1939). In lotic systems, rotifers are present at or near

the benthos and within the sediments of the riparian

and hyporheic zones (Pacioglu 2009). In soils they

tend to occupy the upper levels (Pourriot 1979;

Devetter 2010; Devetter and Frouz 2011; Devetter

et al. 2017). A few species have been found in

subterranean habitats (Pejler 1995).

While abiotic factors of the interstitial realm may

differ from other habitats, the biotic challenges for

species in all habitats are essentially the same: besting

competitors, avoiding parasites and predators, secur-

ing sufficient food for survival and reproduction, and

Fig. 1 Four representatives

the rotifers reported in the

literature as present in the

benthos (consult

Supplemental Table S1).

Representative bdelloid:

a Philodina roseola.

Representative

monogononts: b Proales
halophila, c Dicranophorus
sigmoides, and

d Taphrocampa annulosa.

Insets are the corresponding

trophi. All

photomicrographs courtesy

of Michael Plewka: www.

plingfactory.de. Scale bars:

Animals, 50 lm; trophi,

20 lm
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finding mates. Because benthic habitats vary spatially

and temporally and the rotifers that inhabit them are

diverse, it is difficult to make meaningful generaliza-

tion about their communities. While we have known

for many years that lake productivity accounts for the

abundance of planktonic rotifers (Yoshida et al. 2003),

we have gained relatively little understanding of how

lake productivity affects the community structure of

benthic species. Ejsmont-Karabin (2003) addressed

this by examining the hypothesis that lakes with higher

trophic states would have psammon rotifer communi-

ties with higher diversity. However, she found no

support for this hypothesis and noted that the hyper-

trophic lakes examined had lower species richness (S).

Ejsmont-Karabin (2003) concluded that there are

several factors that govern the structure of benthic

rotifer communities, with lake trophic status being

only one.

Rotifers use their trophi to process food, with some

species exhibiting strong specificity for certain food

types (Edmondson 1965). Chang et al. (2010) used this

knowledge to assign taxa to specific feeding groups

and Obertegger et al. (2011), Špoljar et al. (2011), and

Schöll et al. (2012) employed it to track changes in

rotifer community structure. The purpose of this short

communication was twofold: (1) We expanded the

inventory of species that researchers have reported in

benthic samples. That dataset should be useful in

assessing the composition of feeding groups in

different regions of aquatic habitats. (2) We re-

examine the dataset from Ejsmont-Karabin (2003) to

re-examine her conclusion that higher trophic state has

a negative impact on the community structure of

benthic rotifers. Specifically, we tested the simple

hypotheses that (1) the community structure of benthic

rotifers and (2) the array of trophi possessed by these

species vary among lakes of different trophic states

from a selected group of studies.

Review of case studies

Inventory of benthic species

This analysis of 21 studies adds an additional 258

species belonging to a total of 54 genera in 24 families

that were not reported in the review by Ricci and

Balsamo (2000) of rotifers reported from interstitial

lotic habitats. Our compilation adds seven additional

families to the list of taxa identified from benthic

samples: Asplanchnidae, Collothecidae, Conochili-

dae, Epiphanidae, Flosculariidae, Microcodidae, and

Trochosphaeridae (Supplemental Table S1). Thus,

including data from Ricci and Balsamo (2000), the

total number of benthic taxa is[ 415 species—

* 23% of all rotifers—most of these are in order

Ploima. We note from this list that there is still a lack

of information on bdelloid rotifers.

Influence of trophic state

Since its inception the trophic state index (TSI), with

subsequent modifications, has been a useful proxy to

assess lake trophic state (LTS) (Carlson 1991) and by

extension to assess the trophic state of the lake on its

biota. For example, Slugocki and Czerniawski (2018)

found that an increase in TSI led to shifts in

zooplankton taxonomy and had negative effect on

zooplankton diversity in 79 temperate lakes. Ejsmont-

Karabin (2003) used the TSI to examine benthic

rotifers in 18 lakes ranging in trophic state from

mesotrophic to hypertrophic. In our reanalysis of that

dataset we found that S decreased as a function of a

lake’s TSI, but that S rose as a function of Secchi disk

depth before leveling off in eu- and hypereutrophic

lakes (Fig. 2).

To explore the distinctiveness of benthic taxa

further, we re-examined data of rotifers from two

other closely opposed and well-studied lakes located

in the Great Masurian Lake District (northeastern

Poland): one mesotrophic (Kuc) and one eutrophic
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Fig. 2 Species richness (S) of rotifers from the benthos as a

function of the trophic state. These data come from 18 lakes in

the Great Masurian Lake District of northeastern Poland

(Ejsmont-Karabin 2003). TSI trophic state index; insert = S as

a function Secchi disk depth (Zsd)
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(Mikolajskie). These data include all taxa identified to

species in the Appendix of Muirhead et al. (2006). We

categorized these taxa as either (1) specimens col-

lected from cores taken from the benthos or (2)

specimens collected by 30-lm net in open water

pelagic sites and open water sites in the littoral, and

also sessile species. In analyzing the rotifer species

composition, we found that the frequency of benthic

taxa differed in these two lakes: 17.8% were present

only in the benthos of Lake Kuc and 37.0% were

present only in the benthos of Lake Mikolajskie. Using

a 2 9 2 test of independence (G test, with Williams’

correction; Sokal and Rohlf 1981) we rejected the null

hypothesis that relative occurrence of rotifers in the

benthos versus the other collection sites was indepen-

dent of lake (Gadj = 8.41; df = 1; p\ 0.005).

Mesotrophic (n=4)

Cardate (4%)

Fulcrate (14%)

Malleate (48%)

Malleoramate (3%)

Uncinate (1%)

Virgate (30%)

Meso-eutrophic (n=5)

Cardate (4%)

Fulcrate (12%)

Malleate (49%)

Malleoramate (3%)

Uncinate (1%)

Virgate (31%)

Hypertrophic (n=4)

Cardate (6%)

Fulcrate
(9%)

Malleate (50%)

Malleoramate (4%)

Uncinate (2%)

Virgate (29%)

Eutrophic (n=5)

Cardate (4%)

Fulcrate (15%)

Malleate (46%)

Malleoramate (1%)

Uncinate (3%)

Virgate (31%)

Fig. 3 Comparison of trophi types found in benthic, monogonont rotifers from 18 lakes categorized by their trophic state: mesotrophic

(n = 4), meso-eutrophic (n = 5), eutrophic (n = 5), and hypertrophic (n = 4). Data from Table 7 of Ejsmont-Karabin (2003)
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To further investigate the construct that LTS has an

influence on the rotifer benthic community, we

examined the distribution of the trophi types of

benthic rotifers in lakes of the four trophic states

defined by Ejsmont-Karabin (2003): mesotrophic,

meso-eutrophic, eutrophic, and hypertrophic. While

they appear similar (Fig. 3), we tested the null

hypothesis that frequency occurrence of rotifer trophi

types is independent of LTS. To do this we categorized

benthic rotifers according to their trophi types, i.e.,

cardate, forcipate, malleate ? malleoramate, incud-

ate ? uncinate, and virgate. We combined the trophi

types (malleate ? malleoramate and incudate ? un-

cinate) to assure that all cells in the matrix were[ 0.

While recognizing that collapsing trophi types may

introduce taxonomic and/or phylogenetic biases, our

Table 1 Knowledge gaps in the community composition and function of benthic rotifers

Knowledge gap Potential approaches Selected

references*

1. Too few studies include bdelloids in their analyses Train more students in classical taxonomy, but in concert

with modern techniques of molecular species

identification

A

2. Do species of rotifers present in the benthos possess

cosmopolitan distributions?

Use a combination of classical taxonomy and DNA bar

coding and environmental DNA (eDNA) to assess the

distributional patterns

B

3. Lack of experimental research limits our ability to test

effects of sediment composition, e.g., depth, grain size,

temperature, pH, water chemistry, toxins, and/or organic

load on the assemblage of benthic rotifer communities

Establish mesocosms (with natural or artificial sediments),

subjecting them to various environmental factors and/or

to diverse disturbances (e.g., dose–response

relationships)

C

4. We have not fully resolved the influence of the trophic

state of a lake on benthic population levels or

community structure

Undertake wide-ranging surveys of the benthos of lakes

possessing varying trophic state from oligo- to

hypertrophic, as well as lakes in desert, tropical, and

tundra regions

D

5. Can the gut contents of invertebrate predators (e.g.,

protozoans, flatworms, insects) reveal the presence of

rare rotifer taxa?

Use established microscopical techniques and emerging

eDNA technology to analyze gut contents of predators

that may prey on benthic rotifers

E

6. Are benthic rotifer communities (assemblages and

population levels) controlled by bottom-up or top-down

forces?

Initiate studies of systems with different trophic states to

generate testable hypotheses about food web dynamics

and the contribution of rotifers to benthic production

F

7. After disturbances (e.g., prolonged drought) are

populations of benthic rotifers resupplied from adult

colonists (pelagic–benthic coupling) or hatchlings from

diapausing embryos?

Monitor the repopulation of systems after natural

disturbance and develop mesocosm experiments

G

8. What is the relative importance of in situ reproduction

versus population increase via immigration in the

benthic rotifer community? Is there a seasonal reset to

community structure?

Use mesocosms to perform controlled experiments

pursuing conditions conductive to asexual reproduction.

See also the potential approach noted in knowledge gap

#2

H

9. Do psammoxene species (i.e., members of several

genera: Asplanchna, Collotheca, Limnias, Notholca, and
Synchaeta) reproduce and are they an important

component to nutrient cycling?

Use mesocosms to perform controlled experiments using

conditions favorable for survival and reproduction

I

10. Does mixis occur in monogononts that inhabit

interstitial habitats?

Use mesocosms to perform controlled experiments under

conditions favorable to mixis

J

We do not consider this list to be exhaustive, either in identifying knowledge gaps nor in presenting potential approaches that may

lead to their solutions. Selected references represent studies that partially address the gaps: See also Majdi et al. (2020)

*A—Fontaneto et al. (2007). B—Curini-Galletti et al. (2012), Fontaneto (2019), Fontaneto et al. (2015) and Gansfort et al. (2020).

C—Friedrich et al. (2017). D—Ejsmont-Karabin (2012). E—Nandini et al. (2011); Schmid-Araya and Schmid (2000). F—Nandini

and Sarma (2005); Schmid-Araya and Schmid (1995); Schmid-Araya and Schmid (2000). G—Górski et al. (2013); Maazouzi et al.

(2017). H—Ejsmont-Karabin (2005). I—Ejsmont-Karabin (2005). J—Walsh et al. (2017)
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purpose was not to look for these signatures in the

data. The purpose of this analysis was simply to

determine whether rotifers with different types of

trophi were present in lakes differing in trophic status.

Thus, we used a RxC test of independence (G test, with

Williams’ correction), and we found that rotifer trophi

type was independent of LTS (Gadj = 3.12; df = 15;

p[ 0.05). Thus, trophic state does not affect the

composition of rotifer trophi types present in the

benthos, at least in these systems.

Remarks and conclusions

Although application of the trophic state index has

been criticized (Megard et al. 1980), it has proven to

be useful in explaining the abundance of rotifers as a

function of lake trophic state (Macêdo et al. 2020). As

illustrated in Fig. 2, our simple analysis supports

Ejsmont-Karabin’s (2003) conclusion that species

richness decreased as a function of increasing trophic

state index. We also determined that a trait-based

characteristic (trophi type) did not vary depending on

lake trophic state, i.e., trophi type was similar across

LTS. These results may seem incongruous as

researchers such as Yoshida et al. (2003) have shown

that rotifer abundance and biomass are related to food

supply. However, the factors that drive zooplankton

richness are more complex than simply lake produc-

tivity. In their study of 41 lakes Hoffmann and Dodson

(2005) found that zooplankton species richness exhib-

ited a positive linear relationship with productivity in

pristine lakes (n = 15), but in developed lakes

(n = 26) the relationship was negative.

In the studies of temperate lakes that we reviewed

here, we found that lake trophic state shows a negative

relationship with species richness of benthic rotifers.

However, this analysis is disadvantaged by a lack of

data from oligotrophic lakes. We also found that

rotifer trophi types are not influenced by lake trophic

state. While many factors probably influence species

richness in benthic rotifers, we suggest that a missing

component is food diversity (Edmondson 1965).

Overall, we conclude that our current understanding

of the community assembly of benthic rotifers is still

inadequate and a number of knowledge gaps remain

(Gansfort et al. 2020). To fill these gaps, we need

questions that can develop into testable hypotheses

that inform both general ecological and evolutionary

theories. In Table 1 we detail ten specific challenges

and offer potential approaches that should help clarify

our understanding of benthic rotifers.
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