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AN \bfith -BOX METHOD FOR SHALLOW WATER EQUATIONS
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Abstract. The shallow water equations provide the basic modeling equations for a number of
coastal flooding hazards, such as tsunamis and storm surge. In realistic scenarios, there are often
structures important to these flows that have a large extent but small width, including sea walls,
berms, and harbor barriers. Explicit time stepping schemes, most often used for the shallow water
equations, can then suffer from time step restrictions due to the CFL condition. In this article, we
introduce an approach that side-steps these issues by allowing a barrier to have zero-width and to
cut a cell arbitrarily without suffering from CFL restrictions. This is done by supplementing existing
Riemann solvers and leveraging h-box and large time stepping methods. These methods preserve
the properties of the Riemann solver and add negligible cost to the original solvers.
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1. Introduction. Coastal flooding events constitute a major threat to com-
munities along the coastlines throughout the world. Although rare, tsunamis can
devastate coastal areas and threaten people and property. The Tohoku tsunami, for
instance, caused 15,894 confirmed deaths in 2011. Another threat along the coast is
storm surge, produced by water being pushed toward the shore by a storm. Hurricane
Sandy in 2012 caused $67.6 billion in direct damage, and in 2013 Typhoon Haiyan
claimed over 6,000 lives in the Philippines (see [23, 19]). As the planet warms, global
sea level has also risen and is predicted to be 1 meter in the world-wide mean by the
end of the century [20, 24]. Higher sea levels also can cause previously minor floods
to become disasters, raising the frequency and severity of the threat from coastal
flooding.

Computational modeling of these events as efficiently and as accurately as possible
is clearly needed. In this article, we present a method for modeling barriers, such as
sea walls, without fully resolving them in the context of the shallow water equations
defined in one dimension by

ht + (hu)x = 0,

(hu)t +

\biggl( 
hu2 +

1

2
gh2
\biggr) 

x

=  - ghbx,
(1.1)

where h is the depth of water, u the depth-averaged velocity, g the gravitational
acceleration, and b the bathymetry or topography. The barriers that are being con-
sidered are one tool of many that may be used as possible coastal protection strategies.
The motivation for the approach presented arrives from the need to run thousands
of scenarios so that probabilistic statements can be generated, optimization can be
used, and uncertainty due to the climate can be handled. One of the primary issues
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with accomplishing this is the length scales of common coastal protective barriers
commonly considered. These barriers tend to have significant length, stretching over
kilometers of the coastline, while being a meter or two across in width. This width
makes it difficult, if not intractable, to fully resolve given the aforementioned needs
for large ensemble calculations. Instead, the basic premise here is that the barrier will
be represented by a set of line segments that can arbitrarily cross the computational
grid (see Figure 1a) with widths that are infinitely thin. This leads to a number of
problems, such as CFL time step constraints, accurately representing the barrier as a
barrier (i.e., the barrier should not be leaky), and conservation.

(a) (b)

Fig. 1. (a) A two-dimensional example of a barrier (in red) crossing a computational grid arbi-
trarily. Note the small, nonquadrilateral grid cells that are produced by this. (b) A one-dimensional
example of a barrier (in red) crossing a computational grid with grid cells denoted by dashed lines
and water columns as blue. This will be the case on which we will concentrate in this article. Color
is available online only.

There are a number of alternative choices in the literature for addressing this
problem. The most common choice is the use of unstructured grids, which can align
with barriers, allowing for simpler flux conditions. Here we maintain that problems
such as optimization of a barrier's location would be artificially constrained by an
unstructured grid unless such grids were recomputed every optimization step, some-
thing that could be extremely costly. Another approach would be to use adaptive
mesh refinement (AMR). This would allow the flexibility to place the barriers where
needed in an optimization context and allow resolution to be placed dynamically.
Fundamentally, however, AMR still requires the resolution of the barrier itself. While
this may be feasible in some instances, we still seek an additional approach that may
be able to supplement or remove the need to fully resolve these barriers.

We therefore present an approach based primarily on h-box methods and modi-
fications to Riemann solvers that will avoid the difficulties above. The h-box method
was originally proposed in a set of papers by Berger and LeVeque (see [4, 5, 7, 8]) that
describe a Cartesian grid method for time-accurate solutions of the Euler equations in
complex geometries. The primary ideas laid out in these articles center around gen-
erating grids that do not follow solid boundaries without special treatment. Instead,
these boundaries are embedded into the grid, with no regard for matching grid lines to
the body. The h-box method successfully calculates stable fluxes for the resulting cut
cells avoiding CFL constrained small cut cells. Later, Berger and Helzel [3] described
a simplified h-box method with the perspective of reconstructing larger numerical do-
mains of dependence on a face in such a way that the conservative update on a small
cell is formed by fluxes that nearly cancel. All of this work was done in the context of
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boundaries that were assumed to be reflecting wall boundary conditions, something
that we will need to extend.

In this paper, we present a set of extensions to an existing Riemann solver [15]
and numerical techniques for the representation of a barrier that acts as both a re-
flecting wall boundary condition until it is overtopped and acts as a flux-limiting
boundary. Important properties, such as mass and momentum conservation, the bar-
rier preventing flow unless being overtopped, and robustness at the wet-dry interface,
need to be preserved. Given the complexity of the problem, this paper will solely
focus on the one-dimensional problem. First, the Riemann solver will be extended to
handle zero-width barriers at grid cell edges while retaining the desirable properties
of the solver. The method will then also be extended to problems where the barrier
is not aligned with grid-cell interfaces, taking care to not restrict the time-step due to
small cells. This is accomplished by extending existing h-box methods. In section 2,
we introduce the form of the finite volume methods used, namely wave propagation
algorithms, that will be applied to solve the hyperbolic conservation laws, the basic
formulation, and properties of the h-box method and provide a background on sub-
grid modeling, as well as emphasis on the difficulties that motivate later numerical
techniques. Section 3 contains the extensions needed for allowing a zero-width barrier
to be used while maintaining key properties of the Riemann solver and extensions
to the h-box method that better handle the possibility of water on either side of the
barrier. In section 4, numerical results are provided to validate the mathematical
methods described. We finally conclude in section 5 with a summary of the results
and suggested future directions.

2. Wave propagation and \bfith -box methods. Consider the one-dimensional
conservation law

qt(x, t) + f(q(x, t))x = 0, x \in \BbbR ,(2.1)

with initial values q(x, 0) = q0(x). For a uniform mesh, the finite volume scheme has
the form

Qn+1
i = Qn

i  - \Delta t

\Delta x

\biggl[ 
Fn
i+1/2  - Fn

i - 1/2

\biggr] 
,(2.2)

where Qn
i is the cell-average in cell i and time tn and Fn

i\pm 1/2 are the numerical flux
approximations to the fluxes at the grid cell boundaries. Standard Godunov methods
are flux differencing methods (2.2) where exact or approximate solvers are used to
determine the numerical flux. The numerical fluxes in a wave propagation method
are composed of a set of waves \scrW that can also be directly viewed as updating the
cell that a wave enters. These waves split up the jump in the solution quantities such
that

Qi  - Qi - 1 =

Mw\sum 
p=1

\scrW p
i - 1/2,(2.3)

along with a set of corresponding wave speeds spi - 1/2, p = 1, . . . ,Mw. Note that for

linear PDEs and approximate Riemann solvers the waves can be defined as scalar
multiples of the approximate eigenvectors rp with \scrW p = \alpha prp or simply a projection
of the jump onto the eigenspace. Re-averaging these waves onto the adjacent grid
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cells, the change of the average value to the right is written as

Qn+1
i  - Qn

i =  - \Delta t

\Delta x

\sum 
\{ p:sp

i - 1/2
>0\} 

spi - 1/2\scrW 
p
i - 1/2(2.4)

and to the left as

Qn+1
i - 1  - Qn

i - 1 =  - \Delta t

\Delta x

\sum 
\{ p:sp

i - 1/2
<0\} 

spi - 1/2\scrW 
p
i - 1/2.(2.5)

The net effect in cell \scrC i is then

Qn+1
i = Qn

i  - \Delta t

\Delta x

\Biggl[ \sum 
\{ p:sp

i - 1/2
>0\} 

spi - 1/2\scrW 
p
i - 1/2 +

\sum 
\{ p:sp

i+1/2
<0\} 

spi+1/2\scrW 
p
i+1/2

\Biggr] 
.(2.6)

As a shorthand notation, we define

\scrA  - \Delta Qi - 1/2 =
\sum 

\{ p:sp
i - 1/2

<0\} 

spi - 1/2\scrW 
p
i - 1/2,

\scrA +\Delta Qi - 1/2 =
\sum 

\{ p:sp
i - 1/2

>0\} 

spi - 1/2\scrW 
p
i - 1/2,

(2.7)

so the update (2.6) can then be written as

Qn+1
i = Qn

i  - \Delta t

\Delta x
(\scrA +\Delta Qi - 1/2 +\scrA  - \Delta Qi+1/2).(2.8)

Note that (2.8) is a more generally applicable approach than the flux differencing
approach (2.2), as it can be used in the context of nonconservative hyperbolic PDEs.
In the case of a conservation law, if

f(Qi) - f(Qi - 1) = \scrA  - \Delta Qi - 1/2 +\scrA +\Delta Qi - 1/2,(2.9)

then the method is conservative. We can also define the fluctuations in terms of the
interface fluxes as

\scrA +\Delta Qi - 1/2 = f(Qi) - Fi - 1/2,

\scrA  - \Delta Qi+1/2 = Fi+1/2  - f(Qi).
(2.10)

Adopting the notation described above, (2.9) is equivalent to the requirement

f(Qi) - f(Qi - 1) =

Mw\sum 
p=1

spi - 1/2\scrW 
p
i - 1/2.(2.11)

2.1. The \bfitf -wave method. The f -wave method is an alternative way to specify
the solution to a Riemann problem. Instead of carrying jumps in the solution Q, we
define f -waves \scrZ p as carrying jumps in the fluxes such that

f(Qi) - f(Qi - 1) =

Mw\sum 
p=1

\scrZ p
i - 1/2 =

Mw\sum 
p=1

\beta p
i - 1/2r

p
i - 1/2,(2.12)
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where the latter is again for a linear problem or the result of using an approximate
Riemann solver (see [1]). We can also write the relationship between \scrW p

i - 1/2 and

\scrZ p
i - 1/2 if spi - 1/2 \not = 0 as

\scrW p
i - 1/2 =

\scrZ p
i - 1/2

spi - 1/2

.(2.13)

As before, some set of speeds spi - 1/2, p = 1, . . . ,Mw, are associated with the waves.

The fluctuations can then be defined by

\scrA  - \Delta Qi - 1/2 =
\sum 

\{ p:sp
i - 1/2

<0\} 

\scrZ p
i - 1/2, \scrA +\Delta Qi - 1/2 =

\sum 
\{ p:sp

i - 1/2
>0\} 

\scrZ p
i - 1/2.(2.14)

2.2. Source terms. The shallow water equations over nonconstant bathymetry
(1.1) require treatment of the source term on the right-hand side of the momentum
equation. For convenience, we will write the shallow water equations in the form

qt(x, t) + f(q(x, t))x = \psi (q, x),(2.15)

where q = [h, hu]T , f =
\bigl[ 
hu, hu2 + 1/2gh2

\bigr] T
, and the source terms are

\psi (q, x) =

\biggl[ 
0

 - ghbx

\biggr] 
.(2.16)

We can modify the homogeneous f -wave method described above by incorporating
the source term into the flux difference before decomposing it such that

f(Qi) - f(Qi - 1) - \Delta x\Psi i - 1/2 =

Mw\sum 
p=1

\scrZ p
i - 1/2 =

Mw\sum 
p=1

\beta p
i - 1/2r

p
i - 1/2,(2.17)

where \Delta x\Psi i - 1/2 is some approximation to
\int xi+1

xi - 1
\psi (q, x)dx. The fluctuations at grid

cell interfaces are then defined in the standard way (2.14) where the standard updating
formula (2.8) can then be used. For the shallow water equations with bathymetry, it is
natural to approximate the source term \Delta xghBx at xi - 1/2 by

1
2g(hi - 1+hi)(Bi - Bi - 1),

resulting in the vector f(Qi) - f(Qi - 1) - \Delta x\Psi i - 1/2 taking the form

(2.18)

\biggl[ 
hiui  - hi - 1ui - 1

(hiu
2
i +

1
2gh

2
i ) - (hi - 1u

2
i - 1 +

1
2gh

2
i - 1) +

1
2g(hi - 1 + hi)(Bi  - Bi - 1)

\biggr] 
.

This vector is decomposed into f -waves, for example, by writing it as a linear combi-
nation of the eigenvectors rpi - 1/2.

2.3. The \bfith -box method. Allowing the representation of barriers to cut arbi-
trarily through a grid cell brings with it additional challenges. In one dimension, this
intersection forms two cells of arbitrary width relative to the rest of the grid. The
critical problem then becomes the resulting restriction due to the CFL condition. In
the context of our previous definitions, this amounts to the condition

(2.19) \Delta tmax
i

\biggl( 
max(maxp(s

p
i - 1/2, 0), | minp(s

p
i+1/2, 0)| )

\Delta xi

\biggr) 
\leq 1,
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where \Delta xi is the length of the ith grid cell \scrC i = [xi - 1/2, xi+1/2]. This can lead to
severe restrictions of the time step due to CFL constraints even though only a small
handful of cells may have a small effective area.

To combat this restriction one approach is to merge neighboring small cells to-
gether, but it has the drawback that this becomes difficult to implement in more
complex or higher-dimensional situations [2, 10, 13, 22, 25]. Another alternative is to
redistribute the fluxes computed on the edges of the cells that are cut by the barrier.
The small cells receive proportionally less flux than a full cell would, and the remain-
ing flux is redistributed to the surrounding cells [9, 11, 21]. In practice, this approach
appears to be globally second order accurate but is only first order at the barrier. A
broad class of methods that are interpolation based, such as ghost cell schemes, are
also possible [12, 14]. Instead, we will utilize the h-box approach to avoid significant
CFL restrictions.

Fig. 2. The model problem in one space dimension has one small cell in the middle of the
domain with mesh width \alpha \Delta x, 0 \leq \alpha \leq 1. The boxes below the axis indicate the h-boxes used to
compute the flux at the left interface of the small cell.

In this case, consider the one-dimensional case where the mesh is uniform of width
\Delta x except for one small cell with mesh width \alpha \Delta x, where 0 < \alpha < 1 (see Figure 2).
Due to the small cell, the numerical method must be modified in order to satisfy the
stability condition (2.19), which may cause limitations on the time steps \Delta t. Similar
in flavor to the merging of small neighboring cells together, we will instead only merge
these cells to perform the calculation of the waves. Berger and LeVeque [7] define new
left and right states over boxes of length \Delta x at the edges of the small cell. The basic
idea of the h-box method is to approximate the numerical fluxes at the interfaces
of a small cell based on states over a region of length \Delta x, where \Delta x is chosen as a
regular cell size. By construction, the numerical method would remain stable with
time steps based on a CFL condition for the regular cells. For the advection equation
qt + uqx = 0, it is easy to prove that the fluxes satisfy a cancellation property [3],
such that

(2.20) \scrF (QL
i+1/2, Q

R
i+1/2) - \scrF (QL

i - 1/2, Q
R
i - 1/2) \sim \scrO (\alpha \Delta x),

where \scrF (QL, QR) is the numerical flux function. Extending this to nonlinear systems,
we use a method of the form

(2.21)
d

dt
Qi(t) =  - 1

\alpha \Delta x
(\scrF (QL

i+1/2(t), Q
R
i+1/2(t)) - \scrF (QL

i - 1/2(t), Q
R
i - 1/2(t))),
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where the states QL, QR are averages over boxes of length \Delta x extending to the left
and right from the cut cell's interfaces. These boxes QL

i - 1
2

, QR
i - 1

2

are indicated at the

bottom of Figure 2 for the cell edge i - 1
2 to the left of the small cell.

We can then define the solution value of the h-box QR
i - 1/2 as the integral average

over a box of length \Delta x,

QR
i - 1/2 =

1

\Delta x

\int xi - 1/2+\Delta x

xi - 1/2

Q(x)dx

= \alpha Qi + (1 - \alpha )

\biggl( 
Qi+1  - 

\alpha \Delta x

2
\nabla Qi+1

\biggr) 
= \alpha Qi + (1 - \alpha )(Qi+1 + (\=x - xi+1)\nabla Qi+1),(2.22)

where the point \=x = xi+
\Delta x
2 = xi+1 - \alpha \Delta x

2 is the centroid of the portion of the integral
overlapping cell i+ 1.

For the first order scheme, setting the gradient \nabla Qk+1 = 0 reduces to

QR
i - 1/2 = \alpha Qi + (1 - \alpha )Qi+1,

QL
i+1/2 = \alpha Qi + (1 - \alpha )Qi - 1.

(2.23)

The other two boxes QL
i - 1/2 and QR

i+1/2 overlap exactly with a single mesh cell, and
the h-box values are simply the cell average for the regular cells. In order to achieve a
higher order scheme, we construct QR

i - 1/2 using linear interpolation on the grid cells

overlapped by the h-box. Applying a backward difference \nabla Qi+1 = Qi+1 - Qi

xi+1 - xi
, the

resulting formulas are

QR
i - 1/2 =

2\alpha Qi + (1 - \alpha )Qi+1

1 + \alpha 
,

QL
i+1/2 =

2\alpha Qi + (1 - \alpha )Qi - 1

1 + \alpha 
.

(2.24)

We write the h-box values in a general form

QR
i - 1/2 = \lambda Qi + (1 - \lambda )Qi+1,

QL
i+1/2 = \lambda Qi + (1 - \lambda )Qi - 1,

(2.25)

where \lambda = \alpha for the first order scheme and \lambda = 2\alpha 
1+\alpha for the second order scheme. The

resulting method with a second order (2.24) Lax--Wendroff flux function has been
shown in [6] to be second order. In addition, according to the theory in [16], the
scheme with the cut cell is stable as \alpha \rightarrow 0.

Although the h-box method solves part of our problem, it was primarily designed
for cases where only one side of a barrier is being considered and a reflective boundary
is desired, i.e., a wall. Unfortunately, as we will see in section 3, we need to modify
the h-box method to accommodate more than just a reflecting barrier and use another
method to assist in the most complex cases, as the h-box average state that should
be used is unknown.

3. A barrier-aware solver for the shallow water equations. In this section,
we describe the method proposed for the shallow water equations in the presence of a
barrier. The organization of this section starts with the basic method for the simplest
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case, one where the barrier is not overtopped and waves are purely reflected off of the
barrier. This first case is most similar to the original h-box method and is described
in subsection 3.1. The next complexity develops the basics of a barrier that is aligned
with the grid and has zero-width but is overtopped by the water on only one side of
the barrier so that there is no contrary flow over the barrier (subsection 3.2). The
next extension of the solver allows for the barrier to be overtopped from both sides,
and therefore the fluid interacts from both sides of the barrier. This is handled by a
``ghost fluid"" that provides an interaction term between the two fluids on either side
of the barrier, detailed in subsection 3.3. Finally, we again consider a barrier that is
not aligned with the grid, including all forms of overtopping. Unfortunately, at this
point the approach for specifying the ghost fluid is currently unknown, as the states
needed are ambiguous, so we instead supplement the h-box approach with a large
time-stepping (LTS) method. The advantage of the LTS method is that it does not
require the direct use of the ghost fluid outside of what has already been presented,
as detailed in subsection 3.4. The final method is therefore a hierarchy of adaptations
to the original h-box, which includes the LTS method. This set of modifications and
methods is detailed for the reader in Table 1 to help with the admittedly complex
hierarchy of methods being described.

Table 1
Description of the method presented here along with each step in the process's validity and

capabilities.

Name of method Grid aligned Overtopping Section
barrier

Augmented h-box No No 3.1
Wave redistribution (WD) Yes Yes, 1-sided 3.2
WD + ghost fluid (GF) Yes Yes, 2-sided 3.3
WD + large time-stepping No Yes, 2-sided 3.4

3.1. Augmented \bfith -box method. Consider the model problem shown in Fig-
ure 3. A zero-width wall separates the cell into two parts with mesh width \alpha \Delta x and
(1  - \alpha )\Delta x, respectively. We suppose that the wall is high enough to keep the water
from overtopping the barrier, and the wall reflects water without mass loss. Then we
have

(3.1)

QL
i - 1/2 = Qi - 1, QR

i - 1/2 = \alpha Qi + (1 - \alpha )Q\dagger 
i+1,

QL
i+1/2 =

(1 - \alpha )Qi - 1 + 2\alpha Qi

1 + \alpha 
, QR

i+1/2 =
(2 - 2\alpha )Qi+1 + \alpha Qi+2

2 - \alpha 
,

QL
i+3/2 = \alpha Q\dagger 

i + (1 - \alpha )Qi+1, QR
i+3/2 = Qi+2,

where

Q\dagger 
i =

\biggl[ 
hi+1

 - hi+1ui+1

\biggr] 
, Q\dagger 

i+1 =

\biggl[ 
hi

 - hiui

\biggr] 
(3.2)

represents the ghost cell values used to represent a reflecting boundary, in this case
the wall.

Discretizing (2.21) using the f -wave algorithm and notation, the update in the
small cell can be written in the form
(3.3)

Qn+1
i = Qn

i  - \Delta t

\alpha \Delta x

\bigl( 
\scrA +\Delta \^Qi - 1

2
 - f(QR

i - 1
2
) - \Psi R

i - 1
2
+\scrA  - \Delta \^Qi+ 1

2
+ f(QL

i+ 1
2
) + \Psi L

i+ 1
2

\bigr) 
,
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Fig. 3. The model problem in one space dimension has a barrier (solid bold line) separating
a cell into two parts with mesh widths \alpha \Delta x and (1  - \alpha )\Delta x. The boxes below the axis indicate the
h-boxes used to compute the flux at the interfaces i - 1/2, i+ 1/2, and i+ 3/2, respectively.

where \Biggl\{ 
\Delta \^Qi - 1

2
= QR

i - 1
2

 - QL
i - 1

2

,

\Delta \^Qi+ 1
2
= QR

i+ 1
2

 - QL
i+ 1

2

(3.4)

and \Biggl\{ 
\Psi L

i+ 1
2

= 1
2g(h

L
i+ 1

2

+ hR
i - 1

2

)bL
i+ 1

2

,

\Psi R
i - 1

2

= 1
2g(h

L
i+ 1

2

+ hR
i - 1

2

)bR
i - 1

2

.
(3.5)

In the limiting case \alpha = 1, we have QR
i - 1

2

= QL
i+ 1

2

and (3.3) reduces to the first

order accurate f -wave algorithm that is valid in the regular parts of the grid. For a
system without source terms, \Psi L

i+ 1
2

and \Psi R
i - 1

2

can be removed and (3.3) reduces to

the first order accurate wave propagation algorithm. The formula is valid for linear
and nonlinear equations as well as systems of conservation laws, assuming we have
a Riemann solver that provides us a decomposition of QR  - QL. If the wall is not
high enough to prevent water from passing over, then we resort to other approaches
as discussed in subsection 3.2.

3.2. Wave redistribution. In this section, we will first formulate the numerical
method that allows water to overcome a barrier. We will also simplify our discussion
for the time being to the case where the barrier is aligned with the grid (see Figure 4).
This approach also provides a basis for a comparison between a zero-width wall and
a wall that has a finite width and in an ideal sense would limit to a zero-width wall.
The method also extends the one from subsection 2.3, as it allows water to flow over
the barrier and therefore is an extension to the original wall boundary conditions of
the h-box method as presented previously. Consequently, properties such as mass and
momentum conservation are preserved when appropriate, as well as the well-balancing
property and robustness of the wet-dry interfaces.
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Fig. 4. The model problem in one space dimension has a wall (solid bold line) placed at the
edge i+ 1/2.

Now that we are allowing water to pass from one side of the barrier to the other,
we need to ensure that a Riemann solver handles this eventuality correctly. We can do
this by solving additional Riemann problems and modifying the updates the solvers
suggest. To enable this, we will employ ghost cells and solve additional Riemann
problems using special states that we specify in each of the ghost cells (see Figure 5).
These ghost cells will in essence solve a problem as if a finite width barrier was
actually present. The resulting solution, however, will result in too many waves. We
will redistribute these waves, similar to how other similar methods redistribute fluxes,
such that they will impact the original cells on either side of the wall. If carefully
done, this will maintain conservation and ensure that water flows from one side of the
barrier to the other as determined by the given Riemann solver.

Given the data QL
i+1/2 and bLi+1/2 in cell i and QR

i+1/2 and bRi+1/2 in cell i + 1,

two ghost cells are constructed to compute the waves \scrZ 1
i+1/2 and \scrZ 2

i+1/2 shown in

Figure 5. A ghost cell with bR - 
i+1/2 and QR - 

i+1/2 is placed at the right of the barrier.

The waves \scrZ 1 - 
i+1/2 and \scrZ 2 - 

i+1/2 are computed using the f -wave method. Similarly, a

ghost cell with bL+
i+1/2 and QL+

i+1/2 is placed at the left of the barrier and waves \scrZ 1 - 
i+1/2

and \scrZ 2 - 
i+1/2 are computed. The proper setting of bR - 

i+1/2, Q
R - 
i+1/2, b

L+
i+1/2, and Q

L+
i+1/2

will be discussed later. Given the four waves represented by the eigenvectors rp and
scalar wave strengths \beta p, we write the waves computed using an f -wave method
associated with ghost cells as

(3.6)
\scrZ 1 - 

i+1/2 = \beta 1
i+1/2r

1, \scrZ 2 - 
i+1/2 = \beta 2

i+1/2r
2,

\scrZ 1+
i+1/2 = \beta 3

i+1/2r
3, \scrZ 2+

i+1/2 = \beta 4
i+1/2r

4

and the vector R and corresponding coefficient vector \bfitbeta as

(3.7) R = [r1, r2, r3, r4], \bfitbeta = [\beta 1, \beta 2, \beta 3, \beta 4].

To derive the redistributed waves as presented in Figure 5, a vector of new coef-
ficients is constructed by adding corrections to the coefficients \beta 1 and \beta 4 and setting
\beta 2 and \beta 3 to zero. Therefore, the waves that we need to redistribute correspond to
the second and third eigenvectors leading to the new expression

(3.8) \widehat \bfitbeta = [\beta 1 + \gamma 1, 0, 0, \beta 4 + \gamma 2],

effectively redistributing the waves that are traveling through the ghost cell. Fur-
thermore, given the importance of maintaining conservation, the redistribution of
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(a)

(b)

(c)

(d)

Fig. 5. (a) is a diagram of wave redistribution along the zero-width barrier at the grid cell edge
i+ 1/2. Due to the representation of the barrier, the Riemann solver splits into a new left (b) and
right (c) Riemann problem, which are then recombined back into a single Riemann problem in (d)
by redistributing the waves as presented in (3.11).

the waves uses conservation to determine the redistribution. This then requires the
solution of the system

(3.9) R \cdot \widehat \bfitbeta T
= R \cdot \bfitbeta T .

Solving this system leads to the redistribution

(3.10)

\left\{   \gamma 
1 = (s4 - s2)\beta 2+(s4 - s3)\beta 3

s4 - s1 ,

\gamma 2 = (s2 - s1)\beta 2+(s3 - s1)\beta 3

s4 - s1 ,

where sp are the speeds of the corresponding waves. We write \scrZ 1
i+1/2 and \scrZ 2

i+1/2 in
Figure 5 as

(3.11) \scrZ 1
i+1/2 = (\beta 1 + \gamma 1)r1, \scrZ 2

i+1/2 = (\beta 4 + \gamma 2)r4.

3.3. Ghost fluid. The wave redistribution method is predicated on the desire
that we maintain conservation. Up until now, however, we have ignored a couple of
critical cases that arise that require setting bR - 

i+1/2, Q
R - 
i+1/2, b

L+
i+1/2, and QL+

i+1/2. We

denote (\cdot )L+
i+1/2 ((\cdot )R - 

i+1/2) as the quantity of the ghost cell on the left (right) to the

barrier placed at edge i + 1/2. We require that the redistribution is equivalent to
the conventional method without the barrier in this limit as the barrier's height goes
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to zero. A similar argument for this ghost fluid can also stem from the desire for a
well-balanced method but does not cover all cases that we will need.

From (2.17), we can solve the \beta 's to find

(3.12)

\biggl[ 
\beta 1

\beta 2

\biggr] 
=

1

s2  - s1

\biggl[ 
s2\delta 1  - \delta 2
 - s1\delta 1 + \delta 2

\biggr] 
,

where \Biggl\{ 
\delta 1 = (hu)R  - (hu)L,

\delta 2 = (hu2)R + 1
2gh

2
R  - (hu2)L  - 1

2gh
2
L + 1

2g(hL + hR)(bR  - bL).

(a) (b) (c)

Fig. 6. (a) is a diagram of the conventional f-wave method along the left and right states with
bathymetry at the grid cell edge. For the wave redistribution method, the Riemann solver resorts
to the left and right sides of the edge in (a) with insertion of a ghost cell as (b) and (c). The
superscripts with w represent the ghost cell values placed on the wall.

In this section, we study how the bathymetry impacts the methods being de-
scribed. The source term is incorporated into the flux difference before decomposing
into waves. For Figure 6a, we have

(3.13)

\biggl[ 
\beta 1
\ast 
\beta 2
\ast 

\biggr] 
=

1

s2  - s1

\biggl[ 
s2\delta \ast 1  - \delta \ast 2
 - s1\delta \ast 1 + \delta \ast 2

\biggr] 
,

where \Biggl\{ 
\delta \ast 1 = (hu)R  - (hu)L,

\delta \ast 2 = (hu2)R + 1
2gh

2
R  - (hu2)L  - 1

2gh
2
L + 1

2g(hL + hR)(bR  - bL).

For Figures 6b and 6c, we have

(3.14)

\biggl[ 
\beta 1

\beta 2

\biggr] 
=

1

s2  - s1

\biggl[ 
s2\delta L1  - \delta L2
 - s1\delta L1 + \delta L2

\biggr] 
,

(3.15)

\biggl[ 
\beta 3

\beta 4

\biggr] 
=

1

s4  - s3

\biggl[ 
s4\delta R1  - \delta R2
 - s3\delta R1 + \delta R2

\biggr] 
,
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where \left\{         
\delta L1 = (hu)wR  - (hu)L,

\delta L2 = (hu2)wR + 1
2gh

w
R
2  - (hu2)L  - 1

2gh
2
L + 1

2g(hL + hwR)(b
w
R  - bL),

\delta R1 = (hu)R  - (hu)wL ,

\delta R2 = (hu2)R + 1
2gh

2
R  - (hu2)wL  - 1

2gh
w
L
2 + 1

2g(h
w
L + hR)(bR  - bwL),

and sp are the speeds and (\cdot )w stands for the quantity in the ghost cell. By using
(3.10), we get

(3.16)

\biggl[ 
\beta 1 + \gamma 1

\beta 4 + \gamma 2

\biggr] 
=

1

s4  - s1

\biggl[ 
s4(\delta R1 + \delta L1 ) - (\delta R2 + \delta L2 )
 - s1(\delta R1 + \delta L1 ) + (\delta R2 + \delta L2 )

\biggr] 
.

From (3.13) and (3.16), to have \biggl[ 
\beta 1 + \gamma 1

\beta 4 + \gamma 2

\biggr] 
=

\biggl[ 
\beta 1
\ast 
\beta 2
\ast 

\biggr] 
,

we need to ensure

(3.17)

\left[  hwL
(hu2)wL + 1

2gh
w
L
2

(hL + hwR)(b
w
R  - bL) + (hwL + hR)(bR  - bwL)

\right]  =

\left[  hwR
(hu2)wR + 1

2gh
w
R
2

(hL + hR)(bR  - bL)

\right]  .
One approximation is to set the ghost cell state to

(3.18)

\left[    
hwL

(hu)wL
uwL
bwL

\right]    =

\left[    
hwR

(hu)wR
uwR
bwR

\right]    =

\left[    
1
2 (hL + hR)

1
2 ((hu)L + (hu)R)

(hu)L+(hu)R
hL+hR

1
2 (bL + bR)

\right]    .
It is not hard to verify that (3.18) holds as
(3.19)

\beta 1 + \gamma 1 =
1

s4  - s1
[\beta 1(s4  - s1) + \beta 2(s4  - s2) + \beta 3(s4  - s3)]

=
1

s4  - s1

\biggl[ 
s4  - s1

s2  - s1
(s2\delta L1  - \delta L2 ) +

s4  - s2

s2  - s1
( - s1\delta L1 + \delta L2 ) +

s4  - s3

s4  - s3
(s4\delta R1  - \delta R2 )

\biggr] 
=

1

s4  - s1
[s4(\delta R1 + \delta L1 ) - (\delta R2 + \delta L2 )]

and
(3.20)

\beta 4 + \gamma 2 =
1

s4  - s1
[\beta 2(s2  - s1) + \beta 3(s3  - s1) + \beta 4(s4  - s1)]

=
1

s4  - s1

\biggl[ 
s2  - s1

s2  - s1
( - s1\delta L1  - \delta L2 ) +

s3  - s1

s4  - s3
(s4\delta R1  - \delta R2 ) +

s4  - s1

s4  - s3
( - s3\delta R1 + \delta R2 )

\biggr] 
=

1

s4  - s1
[ - s1(\delta R1 + \delta L1 ) + (\delta R2 + \delta L2 )].

Note that these averages will preserve the lake at rest case as long as a well-balanced
Riemann solver is being used.
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3.4. The general case: Interaction from both sides of the barrier. This
section combines all of the methods above with a new one, the large time-stepping
(LTS) method, to address the most general case of a barrier being overtopped from
both sides and the barrier not being aligned with the grid. Unfortunately, the previous
methods as designed up until now do not provide a full specification for the averages
needed for the h-box method and therefore are insufficient. Instead, we will introduce
the LTS method as a means for providing these averages.

The first LTS methods were proposed by LeVeque in a series of papers [17, 18]
that generalized the Godunov method to arbitrary Courant numbers. One of the LTS
schemes described uses exact or approximate Riemann solvers and wave tracking. It is
natural to extend the LTS to our case and add proper approximate wave interactions.

The barrier within a grid cell shown in Figure 7 divides a regular cell into two
small cells. The h-box averages QL

i+1/2 and QR
i+1/2 at edge i+1/2 are calculated, and

the two waves \scrZ 1
i+1/2 and \scrZ 2

i+1/2 correspondingly are solved using wave redistribution.

However, the waves from edges i  - 1/2 and i + 1/2 may reach the barrier before a
full time step is taken and must take into account the barrier's effect. One possible
solution to the problem is to keep tracking the waves from these edges, solving for the
interaction of the waves with the barrier at each collision. To simplify the computation
of these waves that reach the barrier, we will update the h-box cells QL

i+1/2 and Q
R
i+1/2

and the original wave that reached the barrier will be replaced by two new waves
propagating from i+ 1/2 over the remaining time.

To better present the process, an example is provided in Figure 7. Assume sub-
critical conditions at each edge at the beginning of the time step. The model problem
in one space dimension has a wall (solid bold line) separating a cell into two parts
with mesh widths \alpha \Delta x and (1  - \alpha )\Delta x. One important property of this method is
that as \alpha \rightarrow 0 the method again limits to the uniform grid case with a barrier at a
grid cell edge. Here is an outline of the proposed method in one dimension with the
details in Appendix A:

Fig. 7. Step 1: Calculate h-boxes QL
i+1/2

and QR
i+1/2

. The model problem in one space

dimension has a wall (solid bold line) separating a cell into two parts with mesh widths \alpha \Delta x and
(1  - \alpha )\Delta x. The boxes below the axis indicate the h-boxes used to compute the flux at the interface
i+ 1/2.

1. Compute the cell averages QL
i+1/2 and QR

i+1/2 in the h-boxes adjoining each
cell interface xi+1/2. This is done using weighted sums of the reconstructed
values on the underlying nonuniform grid.
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Fig. 8. Step 2: at \Delta t1, the wave \scrZ 2
i - 1/2

reaches the barrier. Update QL
i+1/2

and QR
i+1/2

.

2. Compute the first arrival time \Delta t1.
1 Update QL

i+1/2 and QR
i+1/2 using (A.2)

and (A.3), respectively.

Fig. 9. Step 3: at \Delta t1, replace \scrZ 2
i - 1/2

with \scrZ 1,\Delta t1
i+1/2

and \scrZ 2,\Delta t1
i+1/2

at interface i + 1/2 using

updated QL,\Delta t1
i+1/2

and QR,\Delta t1
i+1/2

.

3. Determine waves \scrZ L,\Delta t1
i+1/2 and \scrZ R,\Delta t1

i+1/2 at xi+1/2 based on the cell averages

QL,\Delta t1
i+1/2 and QR,\Delta t1

i+1/2 as in Figure 9.

Fig. 10. Step 4: at \Delta t2, the wave \scrZ 1
i+3/2

reaches the barrier. Update QL,\Delta t1
i+1/2

and QR,\Delta t1
i+1/2

.

4. Compute the second arrival time \Delta t2. Update QL,\Delta t1
i+1/2 and QR,\Delta t1

i+1/2 using (A.4)

and (A.5).

5. Determine waves \scrZ L,\Delta t2
i+1/2 and \scrZ R,\Delta t2

i+1/2 at xi+1/2 based on the cell averages

QL,\Delta t2
i+1/2 and QR,\Delta t2

i+1/2 as in Figure 11.

1Under the setting of this example, \Delta t1 = min
\bigl( 

\alpha \Delta x
s2
i - 1/2

, - (1 - \alpha )\Delta x

s1
i+1/2

\bigr) 
. For more details about the

time step updates, we refer the reader to the PyClaw library https://github.com/jillelee/pyclaw.
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Fig. 11. Step 5: at \Delta t2, replace \scrZ 1
i+3/2

with \scrZ 1,\Delta t2
i+1/2

and \scrZ 2,\Delta t2
i+1/2

at interface i + 1/2 using

updated QL,\Delta t2
i+1/2

and QR,\Delta t2
i+1/2

.

Fig. 12. Step 6: at \Delta t, update Q\Delta t
i - 1, Q

\Delta t
i , Q\Delta t

i+1, and Q\Delta t
i+2 accordingly.

6. Update Q\Delta t
i - 1, Q

\Delta t
i , Q\Delta t

i+1, and Q
\Delta t
i+2 using (A.6), (A.7), (A.8) and (A.9).

4. Numerical results. This section details numerical results that test the meth-
ods described above for conservation and robustness, including the dynamics of the
wet-dry interfaces along with the flexibility of placing a barrier that is not aligned
with the grid. In all these cases, the value of \Delta t is constrained by the large grid
cells rather than the cells containing the barriers. The code that has implemented
these results is available online from https://github.com/jillelee/hbox-examples us-
ing PyClaw https://github.com/jillelee/pyclaw. For all the examples, variable time
steps were taken, constrained by the global CFL condition multiplied by 0.8. Spatial
resolution was set to 50 cells, resulting in \Delta x = 0.04.

4.1. Well-balancing and the ghost fluid. Given the importance of well-
balancing, the first test case aims to demonstrate that well-balancing is retained.
For this test case, the bathymetry is set to

b(x) =  - 0.6 + 0.2x,  - 1 \leq x \leq 1,(4.1)

with the depth set to h(x) =  - b(x) corresponding to a flat surface. The wall is
at x = 0.0 with a height of 0.35. The initial velocity is zero everywhere so that the
surface should remain undisturbed. We present the results of two different approaches
to setting the ghost cell. Adopting the notation in subsection 3.3, one approach is
represented by (3.18) (see Figures 13a and 13b), while an alternative approach is
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obtained by setting the ghost cell to

(4.2)

\left[    
hwL

(hu)wL
uwL
bwL

\right]    =

\left[    
0
0
0
bR

\right]    ,
\left[    

hwR
(hu)wR
uwR
bwR

\right]    =

\left[    
0
0
0
bL

\right]    ,
resulting in Figures 13c and 13d. As seen in Figure 13c, a disturbance appears around
the barrier despite a steady state being maintained. This leads us to believe that (3.18)
leads to more robust results.

4.2. High barriers. This test case demonstrates that the barrier does indeed
keep water from flowing past it provided that the barrier is high enough. The initial
conditions are\Biggl\{ 

h(x, 0) = 1.2 if x \leq  - 0.2,

h(x, 0) = 0.8 otherwise,
hu(x, 0) = 0.0, b(x) =  - 0.8,  - 1 \leq x \leq 1,(4.3)

and the boundary conditions at x = \pm 1 are wall boundaries. The wall is placed at
x =  - 0.024 within a cell, and the wall height is 1.5. In Figure 14, the left panel
presents the entire domain and the right panel shows zoomed-in plots. For each
subplot in Figure 14a, the upper plot is the plot of depth (h(x, t)) and the lower
is the plot of momentum (hu(x, t)). As shown in the right panel of Figure 14, the
barrier separates a regular cell into two parts with sizes \alpha \Delta x and (1  - \alpha )\Delta x, where
\alpha = 0.4. With a zero momentum initially, there is a jump in the depth of the fluid at
x =  - 0.2 as shown in Figure 14a. At t = 0.1s, Figure 14c shows a wave that cannot
overcome the barrier and reflects off of the barrier instead. The right side of the
barrier shows no perturbation for all time, demonstrating that no water overcomes
the barrier. Since the maintenance of the steady state at any given grid resolution
and barrier placement is critical for modeling, this case is presented to show that the
Riemann solver maintains this property.

4.3. An overtopped barrier on a sloping beach. The final test case matches
a more realistic setting for coastal flood modeling. In this case, an incoming wave has
enough momentum so that the wave overtops the barrier and leads to flooding on the
other side of the barrier. Figure 15 presents an example with a sloping bathymetry
and wet-dry interface. The bathymetry is a simple idealization of a near-shore ocean
basin with initial conditions\left\{     

h(x, 0) = 0.4 - b(x) if x \leq  - 0.2,

h(x, 0) =  - b(x) if  - 0.2 < x \leq  - 0.024,

h(x, 0) = 0.0 otherwise,

(4.4)

and

hu(x, 0) = 0.0, b(x) =  - 0.6 + 0.2x,  - 1 \leq x \leq 1,

with wall boundary conditions at x = \pm 1. The wall is placed at x =  - 0.024 within a
cell, and the wall height is 0.8. As shown in Figure 15a, the right side to the barrier
is initially dry and the jump in the depth of the fluid is located at x =  - 0.2. The
first numerical challenge of this problem is how to robustly and accurately simulate
the fluid overcoming the barrier and flooding to the right. Furthermore, the Riemann
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Fig. 13. Comparisons between different settings of the ghost cell. Top: Simulation results
with setting (3.18). Bottom: Simulation results with setting (4.2). The initial condition is b(x) =
 - 0.6 + 0.2x with the flat surface h(x) =  - b(x). The height of the wall (marked as the red line) is
0.35 at x = 0. The initial velocity is zero so that the surface should remain undisturbed. The right
panel is the zoom-in region near the barrier. Color is available online only.

solver needs to deal with the wet-dry interface that represents the moving shoreline
during inundation. In Figure 15c, at t = 0.15s, the water overtops the barrier and
cascades into a dry cell. Eventually, it reaches a steady state in Figure 15e as expected.
Mass conservation is maintained to machine precision throughout the simulation.

5. Conclusions and future work. The methods presented and demonstrated
provide a means for applying existing shallow water Riemann solvers to scenarios
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Fig. 14. The initial condition is shown in (a): \alpha = 0.4, h(x, 0) = 1.2 if x <  - 0.2 and
h(x, 0) = 0.8 otherwise, u(x, 0) = 0. Wall height is 1.5 and the wave cannot over-top the barrier
marked as the red line. The wave is reflected by the barrier after hitting it. The right panel is the
zoom-in region near the barrier. Color is available online only.

where a barrier may exist that may not be computationally feasible to resolve. These
extensions maintain important properties of the original Riemann solver, such as con-
servation and well-balancedness, while removing the spatial discretization and result-
ing CFL constraints. These extensions should also extend to not only other shallow
water solvers of a similar flavor but also to other similar systems of conservation laws
with similar constraints. Note that the h-box method itself is not just useful in the
case of a solid wall embedded in the interior of a domain but rather anytime when

D
ow

nl
oa

de
d 

04
/0

5/
21

 to
 6

9.
19

3.
20

8.
43

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

B450 JIAO LI AND KYLE T. MANDLI

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Water Depth at time t =     0.00000000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Momentum at time t =     0.00000000

(a)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Water Depth at time t =     0.00000000

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Momentum at time t =     0.00000000

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Water Depth at time t =     0.15000000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Momentum at time t =     0.15000000

(c)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Water Depth at time t =     0.15000000

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Momentum at time t =     0.15000000

(d)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Water Depth at time t =    10.00000000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Momentum at time t =    10.00000000

(e)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Water Depth at time t =    10.00000000

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Momentum at time t =    10.00000000

(f)

Fig. 15. Simulation of a wave that can overtop the barrier, causing the water to cascade into a
dry cell. The piecewise constant plots of h and b present the average value over each cell. The initial
condition is shown in (a): bathymetry slope is from  - 0.8 to  - 0.4, and u(x, 0) = 0. \eta (x, 0) = 0.4
if x \leq  - 0.2; \eta (x, 0) = 0.0 if  - 0.2 < x \leq  - 0.024 and \eta (x, 0) = b(x), where \eta (x, t) = h(x, t) + b(x).
Wall height is 0.8 (marked as the red line). The right panel is the zoom-in region near the barrier.
Color is available online only.
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there is an advantage to having a small cell computationally. These methods demon-
strate that with minimal computational effort the CFL constraint can be mitigated
and additional effects introduced.

The highest barrier to the use of the methods described for more general use, in
particular higher dimensions, is the complexity of the most general case as described
and the use of the LTS method. Because of this, finding a way to either reduce the
complexity of the LTS method or to find an alternative to the LTS method is the
highest priority for future work. Other future directions include the full extension
to two dimensions, continued analysis of the convergence properties of the proposed
method, the addition of adaptive mesh refinement, and exploration into extending h-
boxes to the multi-h-box case, possibly alleviating the CFL condition in other cases,
such as spatially localized, fast wave speeds or other CFL constraints.

Appendix A. Modified \bfith -box intermediate quantities. In this section, we
provide the details of the intermediate quantity updates under the setting in subsec-
tion 3.4. In step 2 shown as Figure 8, \Delta t1 is the earlier arrival time of the waves,
which are the right-moving wave from edge i  - 1/2 and the left-moving wave from
edge i+ 1/2. Therefore,

\Delta t1 = min

\Biggl( 
\alpha \Delta x

s2i - 1/2

, - (1 - \alpha )\Delta x

s1i+1/2

\Biggr) 
.(A.1)

At the first arrival time, \Delta t1, Q
L
i+1/2, and Q

R
i+1/2 are updated as

QL,\Delta t1
i+1/2 = QL

i+1/2  - 
\Delta t1
\Delta x

(\scrZ 2
i - 1/2 + \scrZ 1

i+1/2)

 - \Delta t1
\Delta x

\biggl( 
min\{  - s1i - 1/2\Delta t1, (1 - \alpha )\Delta x\} 

 - s1i - 1/2\Delta t1
\scrZ 1

i - 1/2

+
max\{ 0, s2i - 3/2\Delta t1  - \alpha \Delta x\} 

s2i - 3/2\Delta t1
\scrZ 2

i - 3/2

\biggr) 
,

(A.2)

QR,\Delta t1
i+1/2 = QR

i+1/2  - 
\Delta t1
\Delta x

(\scrZ 2
i+1/2 + \scrZ 1

i+3/2)

 - \Delta t1
\Delta x

\biggl( 
min\{ s2i+3/2\Delta t1, \alpha \Delta x\} 

s2i+3/2\Delta t1
\scrZ 2

i+3/2

+
max\{ 0, - s2i+5/2\Delta t1  - (1 - \alpha )\Delta x\} 

 - s2i+5/2\Delta t1
\scrZ 1

i+5/2

\biggr) 
.

(A.3)

Similarly, at the second arrival time \Delta t2 (see Figure 10), update QL,\Delta t1
i+1/2 and QR,\Delta t1

i+1/2
as

QL,\Delta t2
i+1/2 = QL

i+1/2  - 
\Delta t1
\Delta x

(\scrZ 2
i - 1/2) - 

\Delta t2
\Delta x

(\scrZ 1
i+1/2) - 

\Delta t2  - \Delta t1
\Delta x

(\scrZ 1,\Delta t1
i+1/2)

 - \Delta t2
\Delta x

\biggl( 
min\{  - s1i - 1/2\Delta t2, (1 - \alpha )\Delta x\} 

 - s1i - 1/2\Delta t2
\scrZ 1

i - 1/2

+
max\{ 0, s2i - 3/2\Delta t2  - \alpha \Delta x\} 

s2i - 3/2\Delta t2
\scrZ 2

i - 3/2

\biggr) 
,

(A.4)
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QR,\Delta t2
i+1/2 = QR

i+1/2  - 
\Delta t2
\Delta x

(\scrZ 2
i+1/2 + \scrZ 1

i+3/2) - 
\Delta t2  - \Delta t1

\Delta x
(\scrZ 2,\Delta t1

i+1/2)

 - \Delta t2
\Delta x

\biggl( 
min\{ s2i+3/2\Delta t2, \alpha \Delta x\} 

s2i+3/2\Delta t2
\scrZ 2

i+3/2

+
max\{ 0, - s2i+5/2\Delta t2  - (1 - \alpha )\Delta x\} 

 - s2i+5/2\Delta t2
\scrZ 1

i+5/2

\biggr) 
.

(A.5)

At last, update all of the cells Q\Delta t
i - 1, Q

\Delta t
i , Qi+1,

\Delta t and Q\Delta t
i+2 in Figure 12 as

Q\Delta t
i - 1 = Qi - 1  - 

\Delta t

\Delta x

\biggl( 
\scrZ 2

i - 3/2 + \scrZ 1
i - 1/2 +

max\{ 0, - s1i+1/2\Delta t - \alpha \Delta x\} 
 - s1i+1/2\Delta t

\scrZ 1
i+1/2

\biggr) 

 - \Delta t - \Delta t1
\Delta x

\biggl( 
max\{ 0, - s1,\Delta t1

i+1/2(\Delta t - \Delta t1) - \alpha \Delta x\} 

 - s1,\Delta t1
i+1/2(\Delta t - \Delta t1)

\scrZ 1,\Delta t1
i+1/2

\biggr) 

 - \Delta t - \Delta t2
\Delta x

\biggl( 
max\{ 0, - s1,\Delta t2

i+1/2(\Delta t - \Delta t2) - \alpha \Delta x\} 

 - s1,\Delta t2
i+1/2(\Delta t - \Delta t2)

\scrZ 1,\Delta t2
i+1/2

\biggr) 
,

(A.6)

Q\Delta t
i = Qi  - 

\Delta t1
\alpha \Delta x

(\scrZ 2
i - 1/2) - 

\Delta t

\alpha \Delta x

\biggl( 
min\{  - s1i+1/2\Delta t, \alpha \Delta x\} 

 - s1i+1/2\Delta t
\scrZ 1

i+1/2

\biggr) 

 - \Delta t - \Delta t1
\alpha \Delta x

\biggl( 
min\{  - s1,\Delta t1

i+1/2(\Delta t - \Delta t1), \alpha \Delta x\} 

 - s1,\Delta t1
i+1/2(\Delta t - \Delta t1)

\scrZ 1,\Delta t1
i+1/2

\biggr) 

 - \Delta t - \Delta t2
\alpha \Delta x

\biggl( 
min\{  - s1,\Delta t2

i+1/2(\Delta t - \Delta t2), \alpha \Delta x\} 

 - s1,\Delta t2
i+1/2(\Delta t - \Delta t2)

\scrZ 1,\Delta t2
i+1/2

\biggr) 
,

(A.7)

Q\Delta t
i+1 = Qi+1  - 

\Delta t2
(1 - \alpha )\Delta x

(\scrZ 1
i+3/2)

 - \Delta t

(1 - \alpha )\Delta x

\biggl( 
min\{ s2i+1/2\Delta t, (1 - \alpha )\Delta x\} 

s2i+1/2\Delta t
\scrZ 2

i+1/2

\biggr) 

 - \Delta t - \Delta t1
(1 - \alpha )\Delta x

\biggl( 
min\{ s2,\Delta t1

i+1/2(\Delta t - \Delta t1), (1 - \alpha )\Delta x\} 

s2,\Delta t1
i+1/2(\Delta t - \Delta t1)

\scrZ 2,\Delta t1
i+1/2

\biggr) 

 - \Delta t - \Delta t2
(1 - \alpha )\Delta x

\biggl( 
min\{ s2,\Delta t2

i+1/2(\Delta t - \Delta t2), (1 - \alpha )\Delta x\} 

s2,\Delta t2
i+1/2(\Delta t - \Delta t2)

\scrZ 2,\Delta t2
i+1/2

\biggr) 
,

(A.8)

Q\Delta t
i+2 = Qi+2  - 

\Delta t

\Delta x

\biggl( 
\scrZ 2

i+3/2 + \scrZ 1
i+5/2

+
max\{ 0, s2i+1/2\Delta t - (1 - \alpha )\Delta x\} 

s2i+1/2\Delta t
\scrZ 2

i+1/2

\biggr) 

 - \Delta t - \Delta t1
\Delta x

\biggl( 
max\{ 0, s2,\Delta t1

i+1/2(\Delta t - \Delta t1) - (1 - \alpha )\Delta x\} 

s2,\Delta t1
i+1/2(\Delta t - \Delta t1)

\scrZ 2,\Delta t1
i+1/2

\biggr) 

 - \Delta t - \Delta t2
\Delta x

\biggl( 
max\{ 0, s2,\Delta t2

i+1/2(\Delta t - \Delta t2) - (1 - \alpha )\Delta x\} 

s2,\Delta t2
i+1/2(\Delta t - \Delta t2)

\scrZ 2,\Delta t2
i+1/2

\biggr) 
.

(A.9)
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