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Abstract
We investigate energy transfer of air–water interactions and develop a numerical
method that captures its temporal variability and generates and tracks the short waves
that form in the water surface as a result of the air–water turbulence. We solve a
novel system of balance equations derived from the Navier–Stokes equations known
as moment field equations. The main advantage of our approach is that we do not
assume a priori that the stochastic random variables that quantify the turbulent energy
transfer between air and water are Gaussian. We generate non-conservative multifrac-
tal measures of turbulent energy transfer using a recursive integration process and a
self-affine velocity kernel. The kernel exactly satisfies the (duration limited) kinetic
equation for waves as well as invariant scaling properties of the Navier–Stokes equa-
tions. This allows us to derive source terms for the moment field equations using a
turbulent diffusion operator. The operator quantifies energy transfer along a space time
path associated with pressure instabilities in the air–sea interface and transfers the sta-
tistical shape (or fractal dimension) of the atmosphere to the wind-sea. Because we use
observational data to begin the recursive integration process, the ocean–atmosphere
interaction is inherently built into the model. Numerical results from application of
our methods to air–sea turbulence off the coast of New Jersey and New York indicate
that our methods produce measures of turbulent energy transfer that match theory and
observation, and, correspondingly, significant wave heights and average wave periods
predicted by our model qualitatively match buoy data.
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1 Introduction

In our companion paper [8], we introduce a mathematical framework to quantify air–
water turbulence using recursive integration and moment field equations. The moment
field equations are derived from the Navier–Stokes equations and preserve spectral
moments of gravity waves of high wave number (waves with a period between 1 s and
30 s) generated by air–water turbulence. When we speak of air–water turbulence we
refer to the transfer of energy between the wind and water by pressure pulsations over
a duration (T < 30 s) that is shorter than the peak period of the waves that comprise
the wind-sea (waves with a non-dimensional frequency ν = fmU10/g > 0.14). The
transfer can occur from air-to-water or from water-to-air depending on the dynamics
of the boundary layer.

The mathematical framework developed in [8] coalesces probability theory and
observations of air–water interactions into a wave model that belongs to a class of
models known as phase-averaging models; rather than attempt to quantify each indi-
vidualwave train thatmakes up thewater surface, phase-averagingmodels quantify the
water surface in a statistical sense and predict the expected wave momentum, energy,
etc., based on the physical conditions at a given geographic location. The expected
wave properties are then used to predict statistical quantities of interest such as sig-
nificant wave height (Hs , the average of the highest one-third of all individual waves
measured during a 30 min period, see [16]), average wave period, etc., which are used
in wave forecasting and by engineers in design of ships and marine constructions.

The development of phase-averaged wave models is in some respects a mature
field. For a concise history of our current understanding of wind-generated waves and
the mathematical apparatus developed to quantify the generation and propagation of
these waves, we refer the reader to [16,17]. While our collective knowledge in terms
of wind-generated waves has grown over the past 60 years, the development of new
algorithms that make use of this knowledge that reduce computational time in terms
of computing the wave solution while still retaining accuracy has not kept pace (aside
from the authors’ previous work [7] and the work of Mellor et al. [29]). This is an
important issue because coastal hazardmanagement is seeking tomove to an ensemble-
based approach to develop resilient coastal communities in the face of an uncertain
future due to climate change. Short waves that form on top of the tides (waves with
a period of 12 h or 24 h) and the long waves created by the pressure drop associated
with a strong storm (waves with a period greater than 2.5 min) can increase storm
surge heights by up to 35% and is an important component to include when examining
the risk of damage to coastal communities by storm surge [9]. However, due to the
computational expense of calculating the short wave component (see [10,29]), the
short waves are routinely either disregarded from ensemble simulations [24] or the
convergence criteria of the solution are weakened to speed up run times [32].

Further, phase-averaged wave models typically have trouble accurately predicting
peak wave period and peak wave heights in strong storms without the use of tunable
parameters that modify the rate of energy transfer between the wind and water [5].
This is in part due to the fact that Mile’s generation mechanism is insufficient in strong
storms [5] and the calculation of nonlinear wave–wave interactions in spectral energy
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space broadens the spectrum too quickly (see [5,36] for further details). This results
in a reduction of energy transfer from the atmosphere to the water [5].

Rather than attempt to explicitly resolve the energy transfer between the air and
water in spectral space, we quantify the likelihood that energy transfer will occur
between the air and water using a conditional probability that satisfies invariant prop-
erties of the Navier–Stokes equations and is a solution of the energy balance equation
for the short waves. We pair this conditional probability with a recursive integration
method (similar to the cascade model of Meneveau et al. [30] and the curdling model
of Mandelbrot [25]) to determine how energy transfer is distributed in time. We show
in [8] that using this method as input to a system of moment field equations predicts
significant wave heights with similar RMS errors as compared to a third generation
(phase averaging) wave model while running almost 40 times as fast. In this investi-
gation, we show that our recursive integration methods are able to resolve peak wave
heights and peak wave periods of a growing wind-sea without the use of any tunable
parameters.

More specifically, what makes our approach to modeling the wind-sea unique is
that the mathematical model is derived from the Navier–Stokes equations and air–
water interactions are quantified using non-Gaussian measures of turbulent energy.
This allows energy transfer between the air and water to occur in pulses rather than in
a smooth linear fashion.

Beginning from a set of hourly averaged observational data that includes wind
speed, direction, and pressure, we quantify the probability of turbulent energy transfer
between thewind andwater surface using a hyperbolic distribution and a recursive inte-
gration method that produces a multifractal representation of energy transfer between
wind andwater. The energymeasure of the parameterization is intermittent, and energy
dissipation on relatively small time scales (periods < 30.0 s as compared to hourly
periods) is non-Gaussian (events in the tails of the distribution play a role in the
process).

The multifractal representation of the energy transfer between the wind and water
serve as input to the moment field equations using a turbulent diffusion operator. The
diffusion operator is temporal rather than spatial, and quantifies the probability that
the wave energy at a geographic coordinate, x0, will go from a state, �n , at time tn , to a
state, �n+1, at time tn+1. The diffusion operator is a function of the speed and direction
of a pulsation in the wind as well as the group velocity of the energy pulsation in the
air–water interface (created by the pulsation in the wind), and the peak phase speed
of the wave group that energy is being transferred to (see Sect. 2.2 for the details).

The moment field equations are a system of hyperbolic equations that generate
and track short gravity wave energy on the surface of a hydrodynamic domain. The
number of moments preserved in the system depends on the wave dynamics under
consideration. In our initial investigation, we preserve the first two moments of the
wave field which correspond to the variance of the wind-sea at a given geographic
coordinate, x0, and the first-order perturbation from the variance, which is a measure
of the characteristic wave number.

We discretize the moment field equations with a discontinuous Galerkin (DG)
finite element method that puts weak constraints on the continuity of the moment
field. This allows the discontinuous nature of the energy transfer between the air and
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water interface to be readily captured by the model. Our choice of the DG method is
particularly advantageous because it allows the wind-wave model to use unstructured
grids as well as local polynomial approximations of varying degree. The latter detail is
particularly important when trying to resolve the peak period of a growingwind-sea. In
fact, phased averaged wave models typically do not quantify the average wave period
as accurately as significant wave height [16] and numerical results in Sect. 6.2.1 show
that varying spatial resolution and (local) high-degree polynomial approximations are
necessary to capture changes in the spectral peak wave period of a growing wind-sea.

The remainder of this paper is organized as follows: in Sect. 2, we summarize
the moment field equations and discretize them in Sect. 3 with DG finite element
methods. We close the resulting system of equations and outline the solution method
to parameterize the atmospheric input in Sect. 4. In Sect. 5, we explore methods to
generate limit distributions of thewind velocity and pressure andwe present numerical
results in Sect. 6. Finally, in Sect. 7, we discuss some conclusions and future work.

2 Mathematical Model

Let � be a bounded domain in R
3. We track energy associated with short gravity

waves generated by air–water interactions within � by solving a set of moment field
equations,

∂mn

∂t
+ ∇xy ·

(
mnc0 +

n∑
i=0

mn−ici+1

)
= μn �xy mn, n = 0, 1, . . . , N ,

(1)
where ∇xy = ∂/∂x î + ∂/∂ y ĵ , �xy = ∂2/∂x2 + ∂2/∂ y2 and n corresponds to the
order of the moment, mn , of the one-dimensional density (F(x0, k, t)) of the short
gravity waves at the geographic point, x0,

mn =
∫ k f

ki
kn F(x0, k, t) dk, n = 0, 1, . . . , N . (2)

In the expression above, k = ||k|| is the magnitude of the wave number vector with
mean direction, θ̄ , and ki and k f are the low and high wavenumber cut-offs of the
wind-sea. The mean direction satisfies the differential equation,

∂θ̄

∂t
= f

(
∂θ̄

∂x
; D(x, t)

)
, (3)

where D(x, t) parameterizes the inhomogeneities of the medium of propagation, see
[38] for example. It can be noted that D incorporates atmospheric input, fluid depths,
etc.; the ci are coefficients that represent the velocity, acceleration, etc., of the wave
group (see Appendix A in [8]), and are functions of a dispersion relation,

G
(
k̄n+1, ω̄n+1

) = 0, (4)
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which relates the angular frequencies (ω̄n+1 = 2π f̄n+1) to the characteristic wave
numbers, k̄n+1, defined as

k̄n+1 =
∫
kn+1 F(x0, k, t) dk∫
kn F(x0, k, t) dk

= mn+1

mn
, (5)

where the bounds of integration in (5) are from ki to k f . The number of moments pre-
served in (1) is a function of the wave dynamics under consideration. In this numerical
investigation, we set N = 1 while neglecting the effect of currents (c0) and the high-
order acceleration term (c2), and solve the system of equations,

∂m0

∂t
+ ∇xy ·

(
c1 m0

)
= dE0

dt
,

∂m1

∂t
+ ∇xy ·

(
c1 m1

)
=
(∣∣∣∣cg f

∣∣∣∣∣∣∣∣cp∣∣∣∣
)
dE1
dt

,

∂θ̄

∂t
= D(θ̄ , θw, Ė0), (6)

where dE0/dt and dE1/dt are duration-limited energy pulsations created in the water
surface (that travel with a peak phase speed denoted by

∣∣∣∣cp f

∣∣∣∣ and a group speed
denoted by

∣∣∣∣cg f

∣∣∣∣), created by pressure pulsations in the wind;
∣∣∣∣cp∣∣∣∣ is the peak

phase speed of the waves that the atmosphere is interacting with, Ė0 is the energy
supplied to the waves from the atmosphere, θw is the mean direction of the wind, θ̄

is the mean wave direction, and m0 and m1 represent the characteristic energy and
the representative wave number of the wind-sea, respectively. Qualitatively, the term∣∣∣∣cg f

∣∣∣∣ / ∣∣∣∣cp∣∣∣∣ is similar to the inverse of the wave age χ10 = cp/U10. However, the
main difference between the two terms involves the fact that the term in Eq. (6) utilizes
the group speed of the energy pulsation in the water surface created by a pulsation in
the wind rather than the speed of the wind itself.

It can be noted that the time derivative terms (of the energy pulse supplied by the
wind to the water) on the right-hand side of (6) are derived from the second-order
(diffusion) term in Eq. (1) by making use of the wave equation (see [1] for example),
and by applying analytical probability theory introduced by Kolmogorov [20]. More
specifically, the general result we use from [20] examines the probability of a stochastic
process of countable states going from a state �1 at time t = t1 to the state �2 at time
t = t1+dtl (where dtl is the length of durationof the transition).Kolmogorov’s theorem
essentially states that a n + 1-order derivative of the probability matrix of a locally
continuous and homogeneous process (the process only depends on the separation in
time) is equivalent to the convolution of a transition matrix and an n-order derivative
of the probability matrix. In application of the theorem to our work, the transition
matrix of the waves is dependent on: (1) the conservative quantity being preserved
(momentum, energy, etc.) and (2) the flow of energy within the wave spectrum, which
we parameterize with Hasselmann’s nonlinear energy transfer mechanism [13]. The
details of the derivation can be found in our companion paper [8].
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It can be emphasized that the form of the moment field equations given by (6)
quantifies the short wave energy of the water surface, however, the moment field
equations can be used to quantify other properties of interest of the waves, such as,
the wave momentum or energy flux. In this case the source term for m0 is modified
depending on the quantity being preserved. For example, in our companion paper [8],
we use the energy flux form of the moment field equations to generate and propagate
short gravity waves created by wind over Lake Erie.

2.1 Calculation of MeanWave Direction

Aside from initial wind-wave generation, the direction of the wind velocity rarely
coincides with the wind-sea direction, and thus, only a portion of the atmospheric
turbulence will transfer energy to the short waves [16]. The rate of energy transfer is,

Ė0 = dE0
dt

cos
(
θw − θ̄

) = S0, (7)

and

Ė1 =
(∣∣∣∣c f

∣∣∣∣∣∣∣∣cp∣∣∣∣
)
dE1
dt

cos
(
θw − θ̄

) = S1. (8)

The portion of the turbulent energy that does not actively grow the wind-sea works to
turn its direction. If we integrate (7) the total amount of moment mass imparted to the
wind-sea in the time interval (t f − ti ) is,

Ē0 =
∫ t f

ti
Ė0 dt,

which we add to the variance to determine the change in mean wave direction, i.e.,

δθ = tan−1

(
δm0 sin θ̄ + Ē0 sin θw

)
(
δm0 cos θ̄ + Ē0 cos θw

) ,
where δm0 = m0(t f ) − m0(ti ) and θ̄ (t f ) = θ̄ (ti ) + δθ .

2.2 Elucidation of the Source Terms

The source terms presented in the previous subsections quantify the energy resonance
of the wind-sea; a pulsation in the energy of the wind creates a corresponding pulsation
of energy in the water surface. Whether or not this pulsation grows into a longer wave
depends on the speed and direction of the wind pulsation relative to the water surface
coupled with the duration of the pulse. This resonance mechanism was originally
posited independently by both Phillips [35] and Miles [31], however, our resonance
mechanism differs in the following respects: (1) we quantify the resonancemechanism
in terms of a moving frame of reference like the work of Phillips [35], however, rather
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than define this frame of reference in terms of a speed moving with the wind stress we
define our frame of reference in terms of the wind speed associated with the flow of
energy in the wave spectrum (see Sects. 4.1.1 and 4.1.2), and (2) we do not explicitly
resolve the shear instability that instigates the formation of the wave in the water
surface as in the work of Miles [31], but rather, we use a conditional probability to
measure the likeliness that an instability (and subsequent energy transfer) will occur
at the air–water interface given the current and past physical state of the wind-sea (see
Sect. 4.1.1).

In fact, our parameterization of the air–water turbulence connects each state to a
previous state which can be traced back in time to a generating event. In the case of air–
water turbulence, the generator of thewind turbulence could be due to thewind flowing
over rough topography and a rough coastline before interacting with the water surface.
The distribution of eddies (or regions of energy dissipation) created by interactions
with these rough boundaries does not occur everywhere within a fluid but only occurs
within a fraction of it. The dimension of the space where this energy transfer occurs is
known as the fractal dimension. Each interaction injects a different statistical pattern
(or fractal dimension) of energy transfer into the fluid flow. The result is that the fluid
flow contains a spectrum of fractal dimensions of energy transfer and the flow is said
to be multifractal [12].

Because we are interested in small-scale turbulence (turbulence with a period
smaller than the peak period of the waves), we utilize a recursive integration method
(see Sect. 5.2) to create a refined temporal distribution of the wind (from hourly aver-
aged observational data) that is multifractal. The recursive integration proceeds in a
similar fashion to other cascade models such as the p model [30], β model ([12,25]),
and multifractal model ([12,25]), however, rather than use a priori considerations (in
terms of the refinement weights) to refine the spatial distribution of the energy transfer
our recursive integration methods make use of the current and past states of the flow
field to determine how to refine the temporal distribution of the kinetic energy (see
Sect. 4.2).

This is made possible by the fact that for fluid flowswith small viscosity theNavier–
Stokes equations are invariant under scaling transformations in the form of self-affine
power laws (see Sect. 4 and [12]).We leverage this fact andmodel thewind andwater as
an inviscid fluid that contains singularities (which is where the initial energy transfer
occurs), and we incorporate viscous effects (dissipation) via a closure scheme that
has been verified by direct numerical simulations (DNS). More specifically, the exact
quantitative relationship between the probability of energy transfer and subsequent
growth of the wave is based on the original energy transfer mechanism of Hasselmann
[13] which takes into account atmospheric input, nonlinear wave interactions, and
dissipation and was verified by the DNS of Tanaka [39] (see Sect. 4.1.2).

3 Numerical Discretization of Moment Field Equations

Our mathematical model consists of a system of balance equations that preserve the
spectral moments of wave properties (momentum, energy, or energy flux) of the wind-
sea. Rather than discretize the strong form of these equations, we recast them into
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a weak form that admits discontinuous solutions—a necessary measure due to the
intermittent nature of air–water interactions—see Fig. 3 for example.

3.1 Weak Forms and Subspaces

Given a two-dimensional partition of the air–water interface (of the hydrodynamic
domain �) into a set of non-overlapping elements (or cells) �e denoted by, Th , we
obtain a weak form of the moment field equations if we first multiply (6) by a suitable
smooth test function υ ∈ V, integrate over each element �e ∈ Th , and integrate the
flux term by parts to obtain,∫

�e

∂mn

∂t
υ d�e −

∫
�e

f (mn) · ∇υ d�e +
∫

∂�e

(
f (mn) · ê) υ dS =

∫
�e

Sn d�e,

(9)
where ê is the outward unit normal of the element boundary ∂�e and n = 0, 1. Setting
υ = 1 in (9) gives the standard weak form of the monotone finite volume method∫

�e

∂mn

∂t
d�e +

∫
∂�e

f (mn) · ê dS =
∫

�e

Sn d�e, (10)

where a large amount of literature exists in terms of numerical solution methods, see
[23] for example. In this initial investigation we utilize a discontinuous Galerkin (DG)
method [6], and set the finite-dimensional space of test and trial functions to

Vhp = {
υ : υ

∣∣
�e ∈ Pp (�e) ,∀�e

}
, (11)

where Pp demarcates the space of polynomials of at most degree p. Now, rather
than solve (9) directly, we search for trial solutions from the finite-dimensional space
of test functions defined by (11). Specifically, given a set of basis functions φ =
[φ0, φ1, . . . , φκ ]T , we express the trial solutions as

mnh

∣∣
�e = mn

(e) · φ, ∈ Vhp,

θh
∣∣
�e = θ (e) · φ, ∈ Vhp,

wheremn = [
m(1)

n ,m(2)
n , . . . ,m(κ)

n
]
, θ = [

θ(1), θ (2), . . . , θ (κ)
]
are the time dependent

degrees of freedom of the finite element solution. It can be noted that we use products
of Jacobi polynomials of degree κ ,

{
Pp
}κ
p=0, as our basis for Vhp. The orthogonal

triangular basis is defined in terms of a “collapsed coordinate” system and results in
a matrix free implementation of the method, see [21] for more details.

3.2 Numerical Flux and DiscreteWeak Form

The finite element space defined by (11) does not explicitly enforce continuity across
element boundaries, and therefore, to ensure a consistent flow of information through-
out the spatial domainwe replace the dual-valued flux in (9) with a so-called numerical
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flux that is a function of left and right limits of the trial solution. For example, given
an arbitrary function υh ∈ Vhp at an element boundary point, xi , we set the left and
right limits of the function to υ−

h ≡ υh(x
−
i ) and υ+

h ≡ υh(x
+
i ), respectively. In this

particular work we replace the dual-valued boundary flux with a local Lax–Friedrichs
(LLF) flux, namely,

f̂ = 1

2

(
f (mnh )

+ + f (mnh )
−
)

− 1

2
|λmax|

(
m+

nh − m−
nh

)
,

where λmax = max(c1+, c1−) is the maximum peak phase speed of the short waves
and n = 0, 1. The discrete weak form of the problem is then: find mnh ∈ Vhp such
that for all test functions υh ∈ Vhp the expression,

∫
�e

∂mnh

∂t
υh d�e −

∫
�e

f (mnh) · ∇υh d�e +
∫

∂�e

(
f̂ · ê

)
υh dS =

∫
�e

Sn d�e,

(12)
holds over each�e ∈ Th with n = 0, 1. Application of the DG spatial operator results
in a system of ODEs

dmn

dt
= Lh

(
mnh

)
,

dθ

dt
= L̄h (�h) , (13)

where Lh corresponds to the DG spatial operator and L̄h is a function of the inho-
mogeneities of the medium which reduce to simple vector additions in the case of
the wind-sea, see Sect. 2.1. We evaluate the integrals in Eq. (12) using numerical
integration rules of sufficiently high degree, and discretize (13) with so-called strong-
stability-preserving (SSP) Runge–Kutta (RK) methods [22], where for each time step
(from tk to tk+1) we have,

1. Set U(0)
h ← U(k)

h .
2. For each stage i = 1, 2, . . . , s, set

U(i)
h ← �h

⎛
⎝ i∑

j=1

αi jw
i j
h

⎞
⎠ , wi j

h = U( j−1)
h + βi j

αi j
�t Lh

(
U( j−1)
h , tk + δ j�t

)
.

(14)

3. Finally, set U(k+1)
h ← U(s)

h .

It can be noted thatUh = [mn, θ]T and�h is a slope limiter that stabilizes the method
when sharp gradients form in the numerical solution for p > 0, δ j�t is a sub-time
step of the time step �t , and the αi j and βi j are coefficients that define the order of
the time stepper, see [22] for more details.
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4 Numerical Parameterizations

To close the discrete DG system of Eq. (12), we need to determine the characteristic
constants that define the air–water turbulence over a given temporal region denoted
byR j (which is defined in the next section).

4.1 Quantifying Atmospheric Velocity and Pressure

To quantify the temporal distribution of small-scale wind turbulence that generates
the wind-sea, we consider the Navier–Stokes equations,

∂u
∂t

+ (u · ∇)u = − 1

ρa
∇ p + μ � u, (15)

where p is the pressure, ρa is the density of air, andμ is the kinematic viscosity. Frisch
[12] has shown that in the limitμ → 0 theNavier–Stokes equations are invariant under
scaling transformations

u → λhu, t → λ1−ht, r → λr , λ > 0. (16)

The scaling also holds for small viscosity if [12],

μ = λh−1μ.

This implies that the dissipation (or energy transfer), defined as ε = μ〈(∇u)2〉 (〈·〉
denotes ensemble averages), scales as [12]

ε → λ3h−1ε.

From this it follows that the absolute probability of encountering an active region of
turbulence is,

δu ∼
( r
L

)h
, (17)

for �η < r << L , where �η is an inner cut-off scale and L is the integral length scale,
see [3,12] for more details.

Kolmogorov’s seminal 1941 paper [19] (one of the most influential papers in terms
of scaling laws and turbulence) assumes that nonlinear interactions are local inmomen-
tum space (k-space). This implies that energy dissipation occurs everywhere within
the fluid and corresponds to a universal value of h = 1/3. However, experimental data
and observations suggest that h is not a universal constant (particularly for geophysical
flows), but varies within a given fluid domain ([4,12]). A number of theories account
for this fluctuation in h, one being the notion ofmultifractal turbulence ([12,25]). How-
ever, this theory, for all of its merits is mostly phenomenological. It generally lacks a
sufficient way to generate the distributions of h aside from a priori considerations. The
interpolation method we present in Sect. 5, while multifractal, naturally generates the
distributions of h by preserving large-scale averages and end point relations defined
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over a set of temporal local regions
{
Rn

j

} j=1,M

n=0,N
that pave a given space-time curve

fixed at the geographic point x j . Application of the method to observational wind
data collected by the National Data Buoy Center ([33,34]) results in scaling exponents
h ∈ [1/3, 0.42], see Sect. 5 and [8] for the details.

4.1.1 Conditional Probability and Self-Affine Velocity Kernel

Rather than utilize the absolute probability (17) that is highly dependent on L , we
utilize a conditional probability to generate measures of the velocity and energy trans-
fer connected to air–water interactions [8]. That is, given the condition that an active
region of turbulence occurs within the period ldη << ldε < tl < l0 << LT (where ldη

is the molecular length scale, ldε ≈ 1 × 10−6 and LT is the temporal integral length
scale), we assume that the local distribution of the atmospheric velocity at the spatial
point x0 is temporally hyperbolic, with magnitude [8],

||u|| = ||u0||
[

g

||u0|| (tl)

]q
, (18)

and direction,

θw = θ0

[
ωθ

θ0
(tl)

]ϒ

, (19)

where tl is the local time, g is acceleration due to gravity, (||u0|| , θ0) are local con-
stants, andωθ is theminimum turning frequency of the characteristic reference velocity
(u0),

u0 = ||u0|| eiθ0 ,
i.e., the non-pulsating component of the large-scale flow field of the space-time region
under consideration. It can be noted that the exponents (q, ϒ) quantify the velocity
pulsation, u, over the time interval l0 − ldε from the reference velocity field u0 (if
q = 0 and ϒ = 0 then u = u0). The union of all the local regions used to pave the
temporal velocity curve gives the global distribution of the wind velocity. For a given
time series we have,

ul =
N⋃
j=1

u( j) =
N⋃
j=1

{∣∣∣∣∣∣u( j)
∣∣∣∣∣∣ eiθ( j)

w

}
,

where the magnitude (
∣∣∣∣u( j)

∣∣∣∣) and direction (θ( j)
w ) are functions of the spatial coordi-

nate, x0, and global time t . It can be noted thatN is the total number of local regions
used to pave the temporal wind velocity curve and the l attached to ul indicates that
the continuity of the temporal representation of the distribution of the wind velocity
depends on the inner cut-off of the local distribution. In particular, we define a temporal
region R( j) located at the geographical coordinate x0 with height,

uε (x0, l0) = sup
l∈Lε(l)

∣∣∣∣∣∣u( j)
∣∣∣∣∣∣− inf

l∈Lε(l)

∣∣∣∣∣∣u( j)
∣∣∣∣∣∣ , (20)
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u(j)
0 , p

(j)
0

u(j) (l), p
(j)
f (l)

space-time path

dynamical

fluctuation from long wave path

of long wave

region R(j)

lld
t

u(j)

Fig. 1 Illustration of space-time region R j . Each R j is a local reference frame for the
dynamical region under consideration, and is characterized by a set of characteristic constants{∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ , q( j), θ
( j)
0 , ϒ( j), p( j)

0

}

and length,
Lε = [

ldε , l0
]
. (21)

EachR( j) is a local reference frame (moving with the constant speed ||u0||) that con-
tains the dynamic fluctuations of the flow field in the time interval l0 (at the point x0).
Embedded within eachR( j) is a cut-out region ]ldε , ld [where functions (18) and (19)
are ill defined, see Fig. 1. This region corresponds to a measure of uncertainty in terms
of the measure of the turbulent velocity on the length scale l0 (a singularity occurs
within this region). Numerically, the requirement for a consistent (and stable) integra-
tion of (13) is that ldε < dt (where dt is the time step of the numerical integration).
This ensures that the turbulent energy transfer occurs over a period that is less than
the period of the waves. We examine this issue in more detail in Sect. 5.

The total pressure distribution (p( j)
T = p0− p

′
) associated with (4.1.1) over a given

R( j) written in terms of the average pressure, p̄, over a given duration, is derived in
[8] as,

p( j)
T = p̄( j) + ρa

2

⎡
⎢⎣

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣2(
2q( j) + 1

)
⎛
⎝ g(l0)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

2q( j)+1

−
ρa

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣2
2
(
2q( j) + 1

)
⎛
⎝ g(ldε )∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

2q( j)+1
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−
∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣2
⎛
⎝ g(tl)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

2q( j)⎤⎥⎦ ,

where the global distribution of the total pressure is the union of the pressure kernels
associated with each R( j),

pl =
N⋃
j=1

p( j)
T , (22)

see [8] for the details.

4.1.2 Duration-Limited Solution to Wave Energy Balance

To close the moment field equations, we need to quantify the energy resonance of
the wind-sea. In this work, we leverage the fact that closed form solutions exist to
a parameterized form of the energy balance equation for waves when the magnitude
of the wind can be represented locally by (18). In other words, by representing the
wind turbulence as a series of pulses (given by (18)), we immediately have access to
mathematical relations that quantify the corresponding pulse of energy that forms in
the water surface. More specifically, Hasselmann [13] derived a rigorous parametriza-
tion of wind-sea growth based on observational and experimental data that takes into
account wave growth via atmospheric input, nonlinear wave–wave interactions, and
dissipation. The energy transfer mechanism and the corresponding flow of energy
in the wave spectrum has been verified by the DNS of Tanaka [39]. The parame-
terized energy balance equation Hasselmann developed typically must be integrated
numerically, however, when short gravity waves are duration-limited (as the turbu-
lent pulsations in our model are), then the non-dimensional representative frequency
(ν = fmU10/g) and non-dimensional energy (ε = Eg2/U 4

10) of the corresponding
wind-sea can be expressed solely in terms of the characteristic constants (see [13] for
details),

ν( j) = a( j)

⎡
⎣ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ (tl)

⎤
⎦

ϕ( j)

, ϕ( j) = 3/7
(
q( j) − 1

)
,

ε( j) = d( j)(ν( j))−10/3, (23)

where ⎧⎪⎪⎨
⎪⎪⎩
a( j) = 16.8

(
1 + 1.51q( j)

)3/7
,

b( j) = 0.031
(
1+1.33q( j)

1+1.51q( j)

)1/2
,

(24)

and
d( j) = b( j)Λ.
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The shape parameter,Λ, relates the non-dimensional energy, frequency and dissipation
parameter, α( j), via

Λ = ε( j)(ν( j))4

α( j)
= constant, (25)

where Λ = 1.60(±0.02)(10−4) arises from wind-sea observations [13]. The measure

of the high-frequency cut-off, α( j), is expressed in terms of
∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ and q( j) as,

α( j) = b( j)(ν( j))2/3, (26)

where b( j) is given by (24), and ν( j) by (23). It can be noted that the high-frequency
cut-off is related to the high wave number cut-off via the dispersion relation (4). The
global distributions of the non-dimensional frequency and energy of the duration-
limited wind-sea are,

νl =
N⋃
j=1

ν( j),

and

εl =
N⋃
j=1

ε( j). (27)

Because the wave pulsations that form in the water surface are of a much shorter wave
length than the depth of the water, the magnitude of the group velocity, ||cg f || , of the
wave pulsation is,

||cg f ||l =
N⋃
j=1

g

4π f ( j)
m

, (28)

and the peak phase velocity is,

||cp f ||l =
N⋃
j=1

g

2π f ( j)
m

. (29)

We use (23) to determine the dE ( j)
0 /dt and dE ( j)

1 /dt terms in the moment field equa-
tions. Making use of (23) and differentiating with respect to time yields,

dE( j)
0

dt

=
C0Λ

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣4 Q( j)
(
9q( j) + 5

) (
151q( j) + 100

)3/7 ( g∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣ (tl )

)(31/7)q( j)−3/7

g2 (tl)

⎡
⎣(151q( j) + 100

)3/7 ( g∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣ (tl)

)(3/7)q( j)−3/7
⎤
⎦
13/3 ,
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and

dE( j)
1

dt

=
C1Λ

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣3 Q( j)
(
2q( j) + 1

) (
151q( j) + 100

)6/7 ( g∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣ (tl )

)(27/7)q( j)−6/7

g (tl)

⎡
⎣(151q( j) + 100

)3/7 ( g∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣ (tl)

)(3/7)q( j)−3/7
⎤
⎦
13/3 ,

(30)

where

Q( j) =
(
133q( j) + 100

151q( j) + 100

)1/2

,

and C0 = 5.25
(
10−4

)
and C1 = 4.20

(
10−3

)
. It can be noted that in some instances

(e.g., in the absence of appreciable advection) Eq. (23) can be used solely with our
recursive integration schemes (to be defined in the next section) to capture the variance
of the wind-sea to predict significant wave height. In this particular case, the variance
of the water surface can be calculated via (27) and we define the significant wave
height as,

Hs ≈ 4(EH ), (31)

where H is the Hurst exponent and is equal to H = 2 − DG , where DG is the graph
dimension calculated via the variation method. (In practice, an approximation of H
can be obtained by setting H = 1/D where D is the dimension of the support of
the energy transfer, see Sect. 5 and [8].) In the wave literature, H is set equal to 1/2
because the distribution of small amplitude short waves is close to Gaussian, see [16]
for instance.

4.2 Determination of the Characteristic Constants

We determine the set of constants {||u0|| , θ0, q, ϒ} that characterize the local
distributionof thewindvelocity throughpreservationof large-scale averages combined
with some reconstruction of the end point values of a given R( j), see Fig. 2. More
specifically, for a givenR( j) fixed at given geographic coordinate, x0, of length l0 the
initial and final values of the magnitude of the velocity are,

||u( j)(tl = ldε )|| =
∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎛
⎝ g

(
ldε

)∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠

q( j)

= u( j)
i ,

||u( j)(tl = l0)|| =
∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎛
⎝ g (l0)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

q( j)

= u( j)
f . (32)
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Fig. 2 Generation of the distribution of the magnitude of the wind velocity ||u||. Black dots represent
large-scale averages while black x’s correspond to reconstructed end point values. The gray dashed lines
represent the preserved area, and the red line is the resulting distribution

Solving for q( j) we have,

q( j) = log

⎛
⎝ u( j)

i∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠ / log

⎛
⎝ g

(
ldε

)∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠

q( j) = log

⎛
⎝ u( j)

f∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠ / log

⎛
⎝ g (l0)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠ . (33)

Setting these equations equal to one another and simplifying leads to an expression

that can be solved for
∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣,

log

⎛
⎝ u( j)

i∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠ log

⎛
⎝ g (l0)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠− log

⎛
⎝ u( j)

f∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠ log

⎛
⎝ g

(
ldε

)∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠ = 0. (34)

The exponent q( j) is determined through the preservation of large-scale averages of
observational wind data, i.e., the area. In particular, the integral of (18) is

∫ l0

ldε

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎛
⎝ g (tl)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

q( j)

dtl

︸ ︷︷ ︸
=
(∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣)2
g
(
q( j) + 1

)
⎛
⎝ g (t�)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

q( j)+1 ∣∣∣∣
l0

ldε

,
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ū( j) (l0 − ldε

) =
⎡
⎢⎣
(∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣)2
g
(
q( j) + 1

)
⎛
⎝ g (l0)∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣
⎞
⎠

q( j)+1

−

(∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣)2
g
(
q( j) + 1

)
⎛
⎝ g

(
ldε

)∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎞
⎠

q( j)+1
⎤
⎥⎦ , (35)

where tl is the local time, ū( j) is the average wind speed over the regionR( j). We solve
(34) and (35) simultaneously with the help of a Newton solver [1]. More specifically,
given a system of equations of the form

fi (xi ) = 0, i = 1 . . . n, (36)

with an initial iterate in the neighborhood of the true solution x̄, i.e., x̄ = x(0) + �x,
we can expand (36) about x(0) using a multidimensional Taylor series,

fi (xi ) ≈ fi
(
x(0)

)
+

n∑
j=1

∂ fi
∂x j

(
x(0)

)
�x j , (37)

and reduce the nonlinear system to a linear system that can be solved for �x [1]. In
matrix form the solution iteration becomes

x(v+1) = x(v) − J −1
(
x(v)

)
f
(
x(v)

)
,

where J −1 is the inverse of the Jacobian matrix,

J (x) =
(

∂ fi
∂x j

(x)
)

.

Because the velocity kernel is analytic we can evaluate the Jacobian and its inverse
exactly,

J−1
11 = −(q − 1)(q + 1)(

log
(

dtg
||u0||

)
+ q log

(
dtg

||u0||
)

− 1
) (

log
(

dtg
||u0||

)
− log

(
gld||u0||

)
− log

(
ui||u0||
)

+ log
(

u f
||u0||

)) ,

J−1
12 = (q + 1)2

dt ||u0||
(

dt g
||u0||

)q (
log
(

dt g
||u0||

)
+ q log

(
dt g
||u0||

)
− 1

) ,

J−1
21 = − ||u0||

log
(

dt g
||u0||

)
− log

(
g ld||u0||

)
− log

(
ui||u0||
)

+ log
(

u f
||u0||

) ,

J−1
22 = 0,

where dt = l0−ld . In some instances ui or u f can take on a value close to zero causing
the Jacobian matrix to become singular. In order to circumvent this issue we utilize a
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shift constant on the end point relations of the velocity, i.e., we set ui = ui + Cs and
u f = u f + Cs where Cs = 1.

5 Limit Distributions of Atmospheric Input

We now apply the nonlinear solution method outlined in the previous section to obser-
vational wind data obtained from NDBC buoy 45005 in Lake Erie [34] and examine
the nuances of canonical versus microcanonical recursive refinement. The goal is to
produce a fractal representation of the wind velocity whose dimension matches the
observations of Syu et. al. [39] and Richardson [37] (as analyzed by Hentschel and
Procaccia [14]), which place the graph dimension of the atmospheric turbulence at
DG = 1.60 ± 0.03.

The graph dimension is directly related to the self-similar fractal dimension, D, in
the unifractal case [26]. More specifically we have,

D = 1/H with H = 2 − DG,

so that a graph dimension value of 1.60 gives a self-similar fractal dimension of
D = 2.50. In the expression above, H is the Hurst exponent, and is important in a
statistical context because it gives a measure of the memory of an observable process
whose average is zero. For instance, say wewant to observe themovement of a particle
in time (denoted by BH (t) [26]) and the generator of the particle’s motion is unknown
to us. If we observe that the average movement of the particle’s motion measured in
reference to a zero datum is null, and the energy is finite, then the expected variance
of the particle’s motion over a duration of time T can be expressed in terms of the
Hurst exponent, [26],

V[BH (t + T ) − BH (t)] = T 2H ,

whereV[·] is the expected variance and 0 < H < 1 [26]. Setting t = 0, the correlation
between a past duration (−BH (−T )) and a future duration (BH (T )) is also expressed
in terms of H [26],

〈−BH (−T )BH (T )〉
= 1

2

(
〈[BH (T ) − BH (−T )]2〉 − 2〈[BH (T )]2〉

)
= 1

2
(2T )2H − T 2H . (38)

Dividing the above result by the variance (T 2H ) gives the correlation [26],

22H−1 − 1.

If H > 1/2 the correlation is positive and the motion of the particle is persistent; a
given trend in the motion of the particle will persist for long periods of time [26]. If
H < 1/2, then the correlation is negative and the motion of the particle is said to be
anti-persistent; the motion of the particle has a tendency to return to some past state
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in time [26]. In the case that H = 1/2 the motion is “memoryless”, and the variance
is connected to the standard deviation via the square root operator [26]. It is in this
case, and this case only, that the motion truly can be deemed as random; in the case of
either persistent or anti-persistent motion the movement of the particle is not random,
but rather, the generator of the motion is opaque to the observer.

It can be noted that the Hurst exponent (H ) is related to the scaling exponent (h)
of the Navier Stokes equation via,

H = 1

3h + 2
.

For example, Kolmogorov’s 1941 theory of turbulence assumes h = 1/3. The Hurst
exponent equals 1/3 and the motion of the turbulent fluctuations is anti-persistent. The
self-similar dimension of the energy transfer is D = 1/(1/3) = 3 and occurs nearly
everywherewithin thefluid,while the graphdimensionof the turbulence is DG = 1.67.
As stated previously, however, atmospheric observations tend to show that the graph
dimension of thewind is less than 1.67 [39]. The turbulence is intermittent and does not
occur everywhere within the fluid. Further, H is not a constant but varies over a given
range of values where each value corresponds to a different generator of turbulent
energy transfer within the fluid, see Tables 3, 4, 5, 6 where H = 2− DG , for instance.
The fact that H < 1/2 for turbulent flow is a result of the vortexes created by the
generator of the turbulence.

To study the graph dimension of our parameterization of the wind velocity, we first
use the methods presented in Sect. 4.2 to parameterize the wind velocity with a local
reference frame (the R( j)) that are the length (or duration) of the hourly averaged
wind data, i.e., l0 = 3600 s. We then calculate the resulting graph dimension of the
velocity distribution of the wind using the variation method [11].

5.1 TheVariationMethod

We follow the discussion in Dubuc et al. [11] and Syu et al. [39]. Let f (t) be a graph,
and let it be covered with N equally spaced regions of length,

l = �t = 2ε,

with height,

V (t, ε) = sup f
(
t̄
) − inf f

(
t̄
)
, t̄ ∈ [t − ε, t + ε] . (39)

The total variation of f (t) is defined in [11] as,

V (ε, f ) =
∑
j=1

V(t, ε) �t︸︷︷︸
2ε

, (40)

which is the total area of the regions required to cover f (t). In other words, V is a
measure of the variation of the space-time region under consideration—the rate of the
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Table 1 Inner cut-off of hourly
averaged data and graph
dimension generated using data
from NDBC buoy 45005, 2010

Month ld (secs) Graph dimension

May 38.82 1.600

June 36.45 1.602

July 56.25 1.608

August 48.50 1.605

September 37.48 1.603

October 24.90 1.601

Table 2 Inner cut-off of hourly
averaged data and graph
dimension generated using data
from NDBC buoy 45005, 2015

Month ld (secs) Graph dimension

May 58.0 1.601

June 56.4 1.601

July 45.2 1.603

August 44.2 1.601

September 23.6 1.601

October 17.2 1.601

growth of which is directly related to the graph dimension via [11]

DG = max

[
1, lim

ε → 0

(
2 − log V (ε, f )

log ε

)]
, (41)

In practice, DG can be calculated through a least squares approximation of the points

(
log (1/ε) , log

(
1/ε2V (ε, f )

))
, (42)

as ε → 0, see [11,39] for more details.
Using the variation method we calculate the inner cut-off of the wind velocity

necessary to produce a graph dimension DG ≈ 1.60 for NDBC buoy 45005 [34] for
the years 2010 and 2015. It can be noted that the inner cut-off in this case corresponds
to a relative zero for the variational method. The results are shown in Tables 1-2 where
the salient points to make note of are: i. in both 2010 and 2015 the inner cut-off of
the turbulence appears to be a seasonal phenomenon and ii. the inner cut-off of the
turbulence (for hourly averaged data) ranges from 56 s down to 17 s, values that can
be too large to consistently integrate the moment field equations with explicit SSP
Runge–Kutta time steppers (due to the fact that the time step is limited by a CFL
condition).

We remedy this issue by using a recursive integration process to shrink the region
of uncertainty associated with each velocity distribution u( j) in a manner such that
]ldε , ld [ << dt . We proceed by first subdividing eachR( j) into two subregionsR( j)

1

and R( j)
2 ; we then calculate the expected velocity of each subregion and pair these

values with the nonlinear solution method described in Sect. 4.2 to create a new set of
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velocity kernels. This new set is composed of twice as many R( j) as the original set
and adds cut-outs along the space time path while shrinking the region of uncertainty
]ldε , ldi [ associated with these cut-outs toward zero.

5.2 Recursive Integration andVelocity Measure

Consider the discrete sequence of lengths associated with a given R( j),

li = l0 2
−i , i = 0, 1, 2, . . . M . (43)

The average, or expected speed of each subregion of level i + 1 is connected to the
expectation of level i via

ū( j)
i = 1

Ci+1

Ci+1∑
s=1

w
( j)
s ū( j)

s , (44)

where Ci+1 is the number of subregions of level i + 1 and the w
( j)
s correspond to the

measure (or weights) of each subregion s, which are defined as,

w
( j)
s = ū( j)

i

ū( j)
s

. (45)

The expectation of the parent kernel ū( j)
i is

ū( j)
i = 1(

li − ldε

) ∫ li

ldε

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎛
⎝ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ tl
⎞
⎠

q( j)

dtl .

The offspring, ū( j)
s , corresponds to the expected speed of the turbulent velocity over

an interior time interval, ldε < (ls+1 − ls) < li ,

ū( j)
s = 1

(ls+1 − ls)

∫ ls+1

ls

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎛
⎝ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ tl
⎞
⎠

q( j)

dtl ,

=
⎡
⎢⎣

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣2
g (ls+1 − ls)

(
q( j) + 1

)
⎛
⎝ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ ls+1

⎞
⎠

q( j)+1

−

||u0||2
g (ls+1 − ls)

(
q( j) + 1

)
⎛
⎝ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ ls
⎞
⎠

q( j)+1
⎤
⎥⎦ .
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Table 3 Inner cut-off and graph
dimension using 4 conservative
recursions generated with data
from NDBC buoy 45005, 2010

Month ld (secs) Graph dimension

May 9.69 (10−4) 1.610

June 4.23 (10−4) 1.645

July 4.23 (10−4) 1.658

August 4.23 (10−4) 1.638

September 4.23 (10−4) 1.641

October 4.23 (10−4) 1.630

When dyadic intervals serve as the refinementmechanism, the averages used to initiate
the next level of integration are,

ū( j)
1 = 1(

li/2 − ldi
) ∫ li /2

ldi

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎛
⎝ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ tl
⎞
⎠

q( j)

dtl ,

and

ū( j)
2 = 1

(li − li/2)

∫ li

li /2

∣∣∣∣∣∣u( j)
0

∣∣∣∣∣∣
⎛
⎝ g∣∣∣∣∣∣u( j)

0

∣∣∣∣∣∣ tl
⎞
⎠

q( j)

dtl .

It can be noted that the interval ]ldε , ldi [ is cut-out of the integration. The manner
in which this interval is handled during the recursive integration leads to markedly
different measures and dimensions of the support.

5.3 Conservative Recursion

In the microcanonical approach, we set the cut-out lengths to ]ldε , ldi [ = 1 × 10−7

and hold them constant with each level of integration. The sum of the weights in
(45) equals Ci+1 and the refinement cascade is said to be conservative [25]. In this
case ]ldε , ldi [ is always less than dt , however, the graph dimension of the resulting
velocity distribution will not be in a range that matches theory and observation until
after five levels of recursive integration. The dimension of the support in this case
is approximately equal to the embedding dimension E (the resulting measure of the
turbulence is E-filling). In this case, the recursive integration does not dissipate any
velocity to the background flow. The resulting graph dimension is DG = 1.64± 0.03
(D = 2.78), a similar value to many studies of fully developed turbulence (D = 2.75)
as well as Kolmogorov’s 1941 theory (DG = 1.67).
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Table 4 Inner cut-off and graph
dimension using 4 conservative
recursions generated with data
from NDBC buoy 45005, 2015

Month ld (secs) Graph dimension

May 8.85 (10−4) 1.620

June 1.41 (10−4) 1.655

July 4.23 (10−4) 1.641

August 1.41 (10−4) 1.643

September 4.23 (10−4) 1.622

October 6.25 (10−4) 1.610

Table 5 Inner cut-off and graph
dimension after performing 4
non-conservative recursions to
data obtained from NDBC Buoy
45005, 2010

Month ld (secs) Graph dimension

May 7.81 (10−4) 1.617

June 6.36 (10−4) 1.609

July 4.23 (10−4) 1.630

August 4.03 (10−4) 1.609

September 2.86 (10−4) 1.608

October 4.23 (10−4) 1.597

5.4 Non-conservative Recursion

In the non-conservative approach, we allow the cut-out ]ldε , ldi [ to vary in length
(more specifically to shrink or become thinner) with each integration. In this case the
sum of the weights only equals Ci+1 on average, local conservation is not maintained
and the recursion is said to be canonical [25]. In this scenario, the graph dimension of
the velocity distribution is in the range of observations and theory with each recursion
and we can re-write (44) as

ū( j)
i = 1

Ci+1

Ci+1∑
s=1

ū( j)
s + ū( j)

ε̄ ,

where ū( j)
ε̄ is the value of velocity cut-out from the refinement of level i . Numeri-

cal experiments reveal that once the initial inner cut-off is established for the longest
R( j) (in this caseR( j) = 3600 secs), then subsequent inner cut-offs for each recursion
follow the relation ldi+1 ≈ ldi /14.We choose the initial inner cut-off so that the normal-
ized structure functions of the velocity distribution of the boundary layer turbulence
match theory and experiment, see [8] for more details. The resulting graph dimension
of the wind velocity calculated for different months in the years 2010 and 2015 are
shown in Tables 5 and 6 where the values range from DG = 1.57 to DG = 1.63.
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Table 6 Inner cut-off and graph
dimension after performing 4
non-conservative recursions to
data obtained from NDBC Buoy
45005, 2015

Month ld (secs) graph dimension

May 1.50 (10−3) 1.594

June 1.53 (10−3) 1.607

July 6.36 (10−4) 1.607

August 6.24 (10−4) 1.607

September 4.23 (10−4) 1.590

October 3.46 (10−4) 1.574

5.5 Variation Past the Inner Cut-off

If one examines the variation of the distribution of the boundary layer turbulence inside
the local inner cut-off ldε it vanishes. This was predicted by Mandelbrot [25] and is
reflected in our numerical experiments. Once the length of the sampling regions (2ε)
of the variation method are smaller than the length scale of the inner cut-off, the fractal
dimension goes to a value of 1 (as ε → 10−7), or in other words, the variation about
the fixed points goes to zero and the energy associated with the fluctuations becomes
null.

6 Numerical Results

We evaluate our recursive integrationmethods and themoment field equations in terms
of generating and propagating short gravity waves in the water surface. In particular,
we apply our recursive integration method to data collected from NDBC Buoy 44065
[33] located off the coasts of Long Island and New Jersey and model significant wave
height during the later days of October 2012 during the post-tropical cyclone event
known as Superstorm Sandy [2]. We also verify our DG numerical solution method
against an analytic test problem put forth by Hasselmann et. al. [13], and examine
the numerical recipe necessary to properly resolve the peak wave period of a growing
wind-sea.

6.1 Superstorm Sandy SignificantWave Height

At the end of October 2012, a large post-tropical cyclone known as Superstorm Sandy
made landfall in parts of New Jersey and New York. Storm surge reached as high as
2.74 meters in Staten Island and Manhattan and caused an estimated 70 billion US
dollars in damages [2]. Because the storm was one of the costliest in U.S. history, we
apply our recursive integration methods to observational data obtained from NDBC
Buoy 44065 for the dates corresponding to the storm, and hindcast significant wave
height using relation (31). Figure 3 shows the distribution of themagnitude of the wind
velocity (the red line) generated from the hourly averaged data recorded at Buoy 44065
(represented by the blue dots). It can be noted that 4 non-conservative recursions were
used to generate the velocity distribution. The dimension of the self-similar spatial trail
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Fig. 3 Distribution of the magnitude of the wind velocity (red line) generated from hourly averaged obser-
vational data (blue dots) using 4 recursive integrations (left) and zoom in (right). Note the intricate details
the recursion is able to create as compared to linear interpolation (color figure online)

corresponding to DG (i.e., the support of the energy measure, see [8]) is D = 2.66
and the maximum and minimum values of q (which is a measure of energy transfer) in
(18) are 0.0341 and −0.0217, respectively, while the mean value of q is 4.86× 10−4.
The max and min q values are 20 and 13 times greater than the standard deviation
of q (0.0017), signaling that they are statistically rare events, see Fig. 4. Finally, Fig.
5 displays modeled significant wave height using our recursive integration method
coupled with relation (31) versus observed significant wave height. It can be noted
that the numerical results are averaged over a 60-min window and match the NDBC
buoy observations qualitatively well when wave advection is negligible in the short
wave field (which occurs approximately from the 25th of October to the 29th of
October). Figure 6 shows numerical results for the average wave period generated
from our recursive integration methods using (23) and setting the average wave period
(T̄wave) equal to,

T̄wave = 1

H

[
1

( fm)2

]H
. (46)

Results in Fig. 6 also match observations qualitatively well within the days 25 to 29th

when the waves are mostly wind generated. However, outside this period, numerical
results for mean wave period deviate more from observations than for significant
wave height, indicating the presence of combined sea and swell, and demonstrating
the need to take into account wave advection in order to properly resolve the short
wave dynamics.

6.2 Hasselmann’s IdealizedWind-Sea

Weverify ourDGnumerical solutionmethod of themoment field equations against the
steady-state solutions of Hasselmann et al. [13]. The test case consists of an idealized
wind field blowing over a large open body of water. The wind field varies spatially
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Fig. 5 Significant wave height at NDBC Buoy 44065. Dashed black line is recorded observational data
while the solid red line was generated using our recursive integration methods coupled with Eq. (31) (color
figure online)

according to the power law,

||u|| = ∣∣∣∣uχ

∣∣∣∣ ( g∣∣∣∣uχ

∣∣∣∣2χ

)p

, (47)

where χ is the fetch coordinate, χ ∈ [0, Lχ ], Lχ is the fetch length,
∣∣∣∣uχ

∣∣∣∣ is a
constant wind speed, and p is a growth/decay factor of the wind speed over the fetch.
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Fig. 6 Average wave period at NDBC Buoy 44065. Dashed black line is recorded observational data while
the solid red line was generated using our recursive integration methods coupled with Eq. (23) (color figure
online)

Exact solutions exist for the non-dimensional representative frequency, variance, and
dissipation cut-off of the short gravity waves (see [13]),

ν = A

[
g∣∣∣∣uχ

∣∣∣∣2χ

]n
, n = 3/7 (p − 1) , (48)

ε = Cν−10/3,

α = Bν2/3, (49)

with ⎧⎪⎨
⎪⎩

A = 2.84 (1 + 1.63p)3/10 ,

B = 0.033
(
1+1.50p
1+1.63p

)1/2
,

and
C = B�,

where once again the shape parameter is

� = εν4

α
= constant = 1.60 × 10−4.

At χ = 0 the solutions satisfy an initial condition of vanishing energy, i.e., ε =
E ||u||4 /g2 = 0. Note that the wind field is a homogeneous function of χ , i.e., it only
depends on the separation χ

′ − χ .
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Fig. 7 Wind speed, ||u||, for Hasselman et al. test case corresponding to Eq. (47). The red line is analytic
solution, the blue line is numerical interpolation using P

4 polynomials. The blue line corresponds to the
numerical solution over each element and the blue dots correspond to the solution at the element nodes. It
can be noted that there is a small jump in the numerical solution at around χ = 2500m (one dot corresponds
to the node of the left element and the other to the node of the right element) (color figure online)

We utilize the methods of Sect. 4.2 to construct a wind speed representation that
corresponds to (47) spatially, where we initially set

∣∣∣∣uχ

∣∣∣∣ = 2.0 m/s and p = 0.10
in Eq. (47). This corresponds to a nonuniform wind velocity that grows with fetch
length, see Fig. 7.

Results are shown in Figs. 8, 9, where we set m0 = E and m1 = fmm0. It can be
noted that using P4 polynomials with 2 elements (10 degrees of freedom (dof)) gives
a lower L2-error measure (||m0 − m0h ||2 = 7.4

(
10−4

)
) than using P

1 polynomials
with 16 elements (32 dof, ||m0 − m0h ||2 = 0.0022), which demonstrates a potential
benefit of using high-order local approximations in the wind-sea (lower errors via
fewer degrees of freedom). It can be noted that the L2-error measure is defined as,

|| · ||2 =
(∫

�e

(
mn − mnh

)2
d�e

)1/2

,

where mn is the known solution and mnh is the numerical solution. Finally, regardless
of the polynomial approximation utilized in (12) the numerical solution is first-order
accurate, and is most likely due to incongruities in the wind interpolation.

An important nuance of this particular test case worth drawing attention to involves
the fact thatwemust timemarch the numerical solution froman initial condition of zero
energy at t = 0 to the steady-state solution that occurs at t = Ts . More specifically,
when t = Ts , then q = 0 in Eq. (18) and ||u|| = ||u0(x)||, and the moment field
source terms no longer depend on time. This is implemented numerically by setting
tl in Eqs. (7) and (8) to tl = Ts for t ≥ Ts , where Ts is defined so that Eq. (23) equals
Eq. (49), see Appendix A for the details.
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Fig. 8 Steady-state solution of Eq. (1) for the idealized wind test case presented in Hasselman et. al. [13]
corresponding to Eqs. (47)–(49). The red line is the analytic solution and the blue line is the numerical
solution using P

1 polynomials and 16 elements
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Fig. 9 Steady-state solution of Eq. (1) for the idealized wind test case presented in Hasselman et. al. [13]
corresponding to Eqs. (47)–(49) as in Fig. 8, with numerical solution using P

4 polynomials and only 2
elements. The red line is the analytic solution while the blue line is the numerical solution

6.2.1 Frequency Calculations

Historically, short gravity wave models have had trouble calculating the representative
frequency (or period) of the sea-surface [9,18]. A number of conjectures exist as to
why this problem persists and ideas range from a misrepresentation of wind-sea-swell
interactions to error in atmospheric input. In hopes of shedding light on this issue, we
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Fig. 10 Steady-state solution of Eq. (1) for the idealized wind test case presented in Hasselman et. al. [13]
corresponding to Eqs. (47)–(49). The red line is the analytic solution and the blue line is the numerical
solution using P

5 polynomials and 16 elements

now re-examine the test case above and focus on the calculation of the representative
frequency.

We begin by setting
∣∣∣∣uχ

∣∣∣∣ = 10 m/s and p = 0.05, which once again corresponds
to a wind-sea that grows with fetch. Examination of the results shown in Fig. 10
immediately reveals that even though we capture the zeroth order moment well, we
have trouble capturing the frequency in the spatial regionwhere the wind-sea is rapidly
growing. In fact, when we use P5 polynomials with 16 elements we still significantly
miss the frequency, fm = m1/m0, (

∣∣∣∣ fm − fmh

∣∣∣∣
2 = 1.955) even though we capture

the variance well (
∣∣∣∣m0 − m0h

∣∣∣∣
2 = 3.93

(
10−5

)
). In an effort to remedy this situation

we switch from a uniform distribution of elements to a geometric distribution, where
�x j = γ j x0, and try to resolve the spatial region where the peak wave frequency is
rapidly changing. We initially set γ = 83/80 and x0 = 50 and utilize P1 polynomials
to calculate solutions for the variance and frequency. As seen in Fig. 11 the numerical
approximation significantly overshoots the frequency near χ = 0 even though we
use a minimum element size of 50 meters and 63 elements to discretize the domain.
In fact, it is very difficult to find values for x0 and γ that allow the frequency to be
accurately captured with P

1 polynomials near χ = 0.
The situation becomes even worse if we increase the value of p in (47) (the L2-error

measure in terms of frequency increases from a value of 2.133 to a value of 4.208
when p = 0.10). This is due to the fact that the exponent p controls the growth of the
frequency nearχ = 0, i.e., the larger the value of p the larger the jump in the frequency.
However, we can remedy this situation if we couple the geometric distribution with
a high-degree polynomial basis. In particular, if we set γ = 4, x0 = 50, and utilize
P
5 polynomials we can accurately resolve the sharp change in the frequency near

χ = 0 with only 3 elements, see Fig. 12, which demonstrates the power of using a
nonuniform mesh with high-order polynomials.
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Fig. 11 Steady-state solution of Eq. (1) for the idealized wind test case presented in Hasselman et. al. [13]
corresponding to Eqs. (47)–(49). The red line is the analytic solution while the blue line is the numerical
solution using P

1 polynomials and geometric distribution for the element spacing with γ = 83/80 (color
figure online)

000510000100050
0

0.02

0.04

0.06

0.08

0.1
  Analytic solution
  DG, p = 5

000510000100050
0

0.5

1

1.5

2

2.5

3

3.5
  Analytic solution
  DG, p = 5

Fig. 12 Steady-state solution of Eq. (1) for the idealized wind test case presented in Hasselman et. al. [13]
corresponding to Eqs. (47)–(49). The red line is the analytic solution while the blue line is the numerical
solution using P5 polynomials and a geometric distribution for the element spacing with γ = 4 (color figure
online)

These test results indicate that even if the error in the atmospheric input is low,
large errors can still accumulate in the frequency calculation if adequate resolution
is not utilized in regions where the atmospheric velocity is rapidly changing. This
applies in terms of both the spatial discretization and numerical discretization. These
results are in accordance with Cavaleri [5] who has shown that phase-averaged wave
models typically underpredict peak wave heights and peak wave periods in strong
storms unless “strong, but effective tuning” is used.
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Another point worth drawing attention to is the connection between the p parameter
in Eq. (47) and the q parameter in the velocity kernel (18). In particular, both measure
the strength of the energy transfer between the water and atmosphere. (In the case of
the wind-sea test case the maximum q value when p = 0.05 is q = 0.1823.) Knowing
that the q parameter is an indicator of the strength of the energy transfer, we can
perhaps leverage this information to better resolve large changes in the wind velocity
(which is a function of q and ϒ). For instance, when either of the exponents q or ϒ

in Eqs. (18) and (19) take on values greater than a prescribed value then we can use
adaptivemesh refinement (h refinement) and polynomial enrichment (p refinement) to
dynamically resolve these spatial regions where the wind velocity is rapidly changing.
This could be implemented in practice by setting a threshold for triggering h and/or
p refinement in terms of the standard deviation of q or ϒ .

7 Conclusions

We have detailed the numerical considerations necessary to quantify air–water turbu-
lence with moment field equations and recursive integration. Our methods decompose
air–water turbulence into a series of pulsations and quantify the probability that energy
transfer will occur between the wind and water surface (during the pulsation) via a
conditional probability. More specifically, given the condition that energy transfer
occurs during the pulsation, the magnitude of the energy transfer is measured by the
power law exponent q. The larger the absolute value of q the greater the probability
for the transfer of energy between the wind and water surface during the turbulent
wind pulsation.

It is easy to identify these regions of energy transfer in the graphs of q and the wind
speed as shown in Figs. 3 and 4, where the shape of the pulse (or the distribution) of
the velocity over a given local duration, ldε < tl < l0, can be thought of as follows; if
someone samples the value of the wind velocity over the period, ldε < tl < l0, most of
the change in the velocity will occur over a brief period of time and remain relatively
steady before and after this change (the change in the velocity in time will not be
constant as in a linear approximation). Further, the sampled velocity values will be
near the average value of the velocity of the duration and the distribution of the velocity
values about this average will be nearly Gaussian (especially when q is close to a value
of zero), however, it should be emphasized that near Gaussian is not synonymous with
Gaussian (see Frisch [12] for a discussion of this point with respect to turbulence and
Table [40] for some statistical consequences of using Gaussian approximations for
near Gaussian phenomena). In the case of air–water interactions, linear interpolation
of the wind speed will not properly discretize the geometry of the energy transfer
between the wind and water especially when interpolating to smaller scales where the
energy transfer becomes intermittent. Of course linear interpolation can be used along
with an appropriate “fix” (usually some tunable parameter that is problem dependent)
that adjusts the energy transfer between wind and water, however, we believe it should
be the goal of the mathematical sciences to move away from these “fixes” whenever
possible. (This, in large part, is why machine learning is so valuable because it allows
for nonlinear interpolation of data.)
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Interestingly, observations of water surface heights indicate that the water surface
height distribution is near Gaussian, just like the wind velocity, and is a reason why
the typical stochastic methods (see [16], for instance) used to fully discretize spectral
space in third generationwavemodels have been successful.However, because of some
of the simplifying assumptions necessary to make the computations more tractable,
there can be amisrepresentation of the flow of energywithin thewave energy spectrum
(for example, the discrete interaction approximation (DIA) typically used to quantify
nonlinear wave interactions forces the wave spectrum away from its true equilibrium
form [36], while the use of the phase-amplitude model and the Gaussian assumption
of stationarity imply that individual waves do not interact with other waves [16]).
Resio et al. bring attention to this issue in [36] and they develop a list of tests that
phase-averaging wave models should meet in terms of energy transfer. This is in part
why we choose to use the k-space version of Hasselmann’s spectral energy transfer
scheme [13] because it has been verified by direct numerical simulation [39] and
tightly couples the moment field source terms to the wind velocity.

One can think of the moment field source terms in the following fashion; rather
than attempt to model and discretize the flow of energy in the full wave spectrum using
simplifying approximations, we quantify the flow of energy in terms of the moments
of the energy density via a nonlinear parameterization. The parameterization calcu-
lates the probability of encountering a region of turbulence (and energy transfer) in the
air–water surface via a conditional probability that satisfies invariant properties of the
Navier–Stokes equation and the nonlinear energy balance equation of the short gravity
waves. Because we assume that the energy transfer occurs via a resonancemechanism,
the source terms are functions of the exponent, q, as well as the parameterized wind
speed, ||u0||. The source terms quantify the rate of change of energy within the wave
spectrum due to atmospheric input, nonlinear wave–wave interactions and dissipation
and are based on the original energy transfer mechanism of Hasselmann which has
been verified by the DNS of Tanaka [39]. It can be noted, however, that the source
terms developed in [8] and this work are not synonymous with the source terms of
Hasselmann presented in [13]. While our formulation does collapse down to Hassel-
mann’s in the purely (steady) fetch-limited case, the source input into themoment field
equations is inherently different due to the way that we decompose energy transfer
between the wind and water into turbulent pulsations, as well as due to the fact that
we include a pseudo-wave age term in the formulation.

Further, while we have made use of Hasselmann’s energy parameterization [13]
for the model closure, the mathematical structure of the moment field equations is
general enough that alternative closure schemes can be used, such as, for instance, the
Zakharov–Resio–Pushkarev (ZRP) wind input source term (Zakharov et al. [40]). The
key difference between the two closure schemes involves the fact that the ZRP terms
do not include the parameter, q. This means that the characteristic wind speed, u0,
simply corresponds to the average wind speed over the observational period (the wind
speed over a given pulsation is steady (q is a measure of the unsteadiness over a given
pulsation)), and thus, to refine the distribution of the wind speed to smaller scales
the recursive integration algorithm in Sect. 5.2 would need to be slightly modified. In
this case an additional measure would need to be introduced to take the place of q,
say, a function that measures the difference between the current wind speed and the
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previous wind speed (which to some extent is what q measures). A drawback of the
ZRP closure scheme lies in the fact that it requires a nonlinear solve (i.e., a Newton
iteration) to balance the flow of energy in the wave spectrum, however, the scheme is
more general in the sense that it can be used in a phase-averaging model that explicitly
models the flow of energy in the wave spectrum via the action balance equation. In this
case, one can use the recursive integration method presented here to interpolate U10
to smaller time scales and couple this with the ZRP input source term to capture the
non-Gaussian behavior of the energy transfer in a fully spectral, third generation wave
model. This would proceed in the following fashion; first U10 would be interpolated
to small time scales using 4–7 cycles of the recursive integration, and then this result
would be averaged over a timewindow corresponding to the time step of the numerical
integrator of the action balance equation, where the average values associated with the
time step dt corresponds to the expected value of the wind velocity on this time scale.

Results from Sect. 6.1 indicate that the recursive integration methods detailed in
Sect. 5.2 produce significant wave heights that match observational data qualitatively
well when wave advection is negligible. When the full system of moment field equa-
tions must be solved (because wave advection is non-negligible), an attractive feature
of the structure of the equations is that they are hyperbolic, and are amenable to
advanced numerical discretization techniques such as the discontinuousGalerkin (DG)
method (which allows for the use of locally high-order polynomial approximations)
and adaptivemesh refinement. Results fromSect. 6 indicate that both high-order (local)
polynomial approximations and varying spatial resolution are necessary to accurately
quantify the wave period of a growing wind-sea.

Future work will focus on integrating adaptive p and h refinement as well as incor-
porating wind-sea-swell interactions, swell dissipation, and coastal effects into the
moment field equations. Swell dissipation, in particular, remains a large source of
error in phase-averaging wave models (this is in part due to a lack of physical under-
standing of the mechanism that leads to swell dissipation), and we plan to work with
physical oceanographers to better quantify this process as well as incorporate coastal
effects potentially using source terms similar to Holthuijsen et al. [15].
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Appendix A: Steady Energy Matching Condition for Duration- and
Fetch-LimitedWaves

In the case of a purely steady wind (q ≡ 0) blowing over a fetch-limited body of water,
we ensure the duration-limited source terms supply a consistent amount of energy to

https://www.ndbc.noaa.gov
https://github.com/coltonjconroy
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the moment field by setting Eq. (23) equal to (48), and solve for tl , which yields,

ν(tl) = ν(χ),

a

[
g

||u0|| (tl)

]−3/7

= A

[
g∣∣∣∣uχ

∣∣∣∣2χ

]3/7(p−1)

,

tl =
( ||u0||

g

)(
A

a

)−7/3
[

g∣∣∣∣uχ

∣∣∣∣2χ

](1−p)

. (50)

We then set t = tl in the source terms in Eqs. (7) and (8). There are two important
points to make note of i. tl is a function of the fetch coordinate, χ ∈ [0, Lχ ], where Lχ

is the total fetch length, and ii. in Hasselmann’s parameterization, the energy of the
water waves is a function of thewave frequency, and this is whywe choose tomatch the
frequency of the duration- and fetch-limited solutions (this also conveniently ensures
that the first-order moments will match as well). It can be noted that in simulations of
physical wave records, q is rarely (if ever) exactly equal to 0. In fact, in our companion
paper [8] we model surface wave heights over the fetch-limited domain of Lake Erie
and q never equals a true zero and model results match observations quantitatively
well.
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