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Abstract

Motivated by applications from computer vision to bioin-
formatics, the field of shape analysis deals with problems
where one wants to analyze geometric objects, such as
curves, while ignoring actions that preserve their shape,
such as translations, rotations, scalings, or reparametriza-
tions. Mathematical tools have been developed to define
notions of distances, averages, and optimal deformations
for geometric objects. One such framework, which has
proven to be successful in many applications, is based
on the square root velocity (SRV) transform, which al-
lows one to define a computable distance between spatial
curves regardless of how they are parametrized. This pa-
per introduces a supervised deep learning framework for
the direct computation of SRV distances between curves,
which usually requires an optimization over the group of
reparametrizations that act on the curves. The benefits of
our approach in terms of computational speed and accu-
racy are illustrated via several numerical experiments on
both synthetic and real data.

1. Introduction

Motivated by applications from computer vision to
bioinformatics, the field of elastic shape analysis deals with
problems where one needs to analyze the variability of ge-
ometric objects [17], [1], [18], [12], [5]. In this arti-
cle, we address the computation of elastic geodesic dis-
tances between geometric curves in one and higher di-
mensions. By geometric curves, we mean curves modulo
shape-preserving transformations, i.e., curves whose im-
ages are equal up to translations, rotations, scalings and
reparametrizations. Mathematically, we model the space of
all geometric curves as a quotient space of the set of ab-
solutely continuous curves. In Section 2, we discuss the
construction of this space, and how the square root velocity
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(SRV) transform allows us to define the so-called SRV dis-
tance between geometric curves. For additional details, we
refer interested readers to the the vast literature on elastic

metrics [17], [13], [19], [16], [2].
1.1. Background & Related Work

The SRV distance [17] quantifies dissimilarity between
geometric curves, and can be used for averaging, classify-
ing and clustering datasets of functions or curves, which
are prevalent tasks in fields such as computer vision and
medical imaging. However, computing SRV distances be-
tween pairs of geometric curves is a nontrivial endeavor, as
it typically necessitates solving an infinite dimensional opti-
mization problem over the set of reparametrizations that act
on the curves. These optimal reparametrizations are guar-
anteed to exist for certain classes of curves, such as C'-
curves [4], and piecewise linear curves [10]. The beauty of
the result in [10] lies in the fact that it not only provides an
existence result, but also describes an algorithm to explic-
itly construct optimal reparametrizations for piecewise lin-
ear curves. Although this algorithm allows one to compute
exact SRV distances, it has a high polynomial complexity,
rendering it impractical for large datasets that are typically
encountered in applications.

Consequently, faster approaches have emerged to com-
pute SRV distances in practical contexts [7], [17]. Several
such algorithms rely on dynamic programming (DP) to ap-
proximate optimal reparametrizations, operating by search-
ing over subsets of all possible reparametrizations. The
different DP-based approaches achieve runtimes of O(n)
to O(n?), where n is the number of samples used to dis-
cretize the curves, thus providing fast over-estimates of the
true SRV distance [3], [6], [17]. Nevertheless, DP also in-
curs a significant computational cost when working with
very large datasets, implying that there is a need to de-
velop increasingly efficient approaches for handling modern
datasets of shapes. Towards that end, deep learning (DL)
approaches have recently been introduced to estimate opti-
mal reparametrizations for functions and curves, including
supervised [ 1], [14] and unsupervised [9], [15] methods.



In particular, Nunez and Joshi train a convolutional neu-
ral network (CNN) on approximate reparametrizations ob-
tained from DP in order to estimate optimal reparametriza-
tions for functions and curves [14].

1.2. Contributions

In this paper, we propose a supervised DL framework for
directly estimating SRV distances between functions and
between spatial curves, without the need to estimate opti-
mal reparametrizations. More specifically, we train a deep
CNN to learn SRV distances, using training data consisting
of pairs of discretized functions or curves, together with the
SRV distance between them as labels.

As a theoretical contribution that is of interest on its own,
we extend the existence results for optimal reparametriza-
tions of [10, 4] to the space of closed curves, and to the
spaces of (open or closed) curves modulo rotations. These
results were previously only known for open curves, and
also did not consider the action of the rotation group. This
in turn allows us to directly generalize the algorithm of [10]
for calculating exact SRV distances for open or closed
curves modulo rotations.

Consequently, and in contrast to e.g. [14], we use these
exact SRV distances as training labels for our network,
rather than SRV distance over-estimates computed via DP.
This reduces bias in the network’s predictions. Another dis-
tinct feature of our framework is that unlike the aforemen-
tioned DP and DL approaches, we bypass the need to es-
timate optimal reparametrizations, instead directly estimat-
ing SRV distances. This is especially convenient for certain
unsupervised learning tasks involving datasets of shapes,
such as clustering applications with curves, where one only
needs rapidly-computed pairwise distances rather than op-
timal reparametrization maps between the shapes.

Moreover, using a neural network to predict a single
number (the SRV distance) rather than a full reparametriza-
tion map is an obviously less complex learning problem,
and can thus be achieved with a smaller training set, which
is advantageous in the context of shape analysis where vast
amounts of publicly available data are not as readily avail-
able as in e.g., the imaging sciences. Furthermore, a fun-
damental property of the SRV distance is its invariance to
parametrizations, which we leverage to introduce a shape-
preserving data augmentation training strategy, outlined in
Section 3. This training strategy allows us to augment the
size of our training set while also improving the variability
within training samples, which ultimately allows the trained
network to produce robust, parametrization-invariant SRV
distance estimates.

We are also providing an open-source version of
the code for our DL framework, which is pub-
licly available on github at https://github.com/emmanuel-
hartman/supervisedDL-SRVFdistances.

To illustrate our DL framework’s benefits, we show that
our trained CNN’s SRV distance estimates are comparable
to or even more accurate than DP distances, while also be-
ing orders of magnitude faster in terms of computation time.

2. The Shape Space and SRV Distance

We begin with a brief overview of the square root ve-
locity (SRV) framework for defining a computable elastic
distance between geometric curves. In this framework, we
start with parametrized curves, modelled as elements of the
space of vector-valued absolutely continuous functions, de-
noted AC(M,R?). We have open curves if the parameter
space M is the unit interval [0,1] C R, and closed curves
if M is the unit circle S'. When d = 1, we have one-
dimensional curves, which we call functions.

In shape analysis for curves, one is interested in the
space of all geometric curves, i.e., parametrized curves
whose images are equal up to translations, rotations and
reparametrizations. Note that the SRV framework, and thus
our DL approach, can easily be extended to handle curves
modulo scalings as well. We now briefly outline the con-
struction of the space of all geometric curves.

To identify parametrized curves that only differ by a
translation, we work with the space of absolutely contin-
uous curves such that ¢(0) = 0, denoted by ACq(M,R?).
We will later see that the SRV distance is naturally defined
on this linear subspace of all absolutely continuous curves.
Identifying curves that only differ by a reparametrization
or rotation is a more delicate matter and the main source
of complication in shape analysis. This is accomplished by
defining the following equivalence relation for parametrized
curves cj,ca € ACo(M,R?). For open curves, we de-
fine ¢; ~ co if and only if they have the same unit speed
parametrization after the application of an appropriate rota-
tion. For closed curves, we define ¢; ~ cy if and only if they
have the same unit speed parametrization after an appropri-
ate choice of “starting point” and an appropriate rotation. '
We denote the equivalence class of a curve c under this rela-
tion by [c]. We then define the space of all geometric curves
as the quotient space:

S(M,R%) = ACo(M,RY)/ ~ ,

and will refer to it as the shape space of curves, or simply
as the shape space for brevity when there is no ambiguity.
We now outline how the SRV transform allows us to de-
fine a distance function on this shape space. The SRV trans-
form is the mapping Q : ACo(M,R?) — L?(M,R?), de-

IFor functions, i.e., d = 1, the rotation group is trivial and thus the
equivalence relation reduces to factoring out the reparametrization action
only.
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Here, ¢’ denotes the first derivative of the parametrized
curve ¢ € ACo(M,R?). This transform allows us to de-
fine the SRV distance between parametrized curves ¢y, co €
ACo(M,R?) by pulling back the L? metric on L%(M,R?)
as follows:

do(cr, ) = [|Q(er) — Q(e2)lI7
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It is worth noting that in the case of open curves, this
distance can be interpreted as the geodesic distance induced
by a Riemannian metric. For closed curves, it is only a first
order approximation of a geodesic distance. The key prop-
erty of this distance is its invariance under both the action
of the group of rotations SO(d), and that of the group of
diffeomorphisms of the parameter space Diff (M). The lat-
ter can be seen by a simple change of variables in the above
integral. Thus, the SRV distance descends to a distance on
the quotient shape space S(M,R?), given by:

dt.

d = oo
3([01]7 [CQD ayeDl}}f(M)
0€eS0(d)

dg (c1,0%(c2079)). (D)

With a slight abuse of terminology, we henceforth refer
to the quotient space distance, namely ds(-, -), as the SRV
distance. It follows that computing the SRV distance be-
tween geometric curves involves solving a joint optimiza-
tion problem over the finite dimensional group SO(d) and
the infinite dimensional reparametrization group Diff (M).
The main challenge is the minimization over Diff(M),
which is usually accomplished by discretizing the group
into a finite dimensional approximation space, and solv-
ing the discretized problem via a dynamic programming ap-
proach.

It is important to note that in general, the existence of a
reparametrization v € Diff (M) attaining the infimum in (1)
is not guaranteed. However, under some additional regular-
ity assumptions on the curves cq, co, one can recover such
existence results. In the following, we discuss the existence
of optimal reparametrizations and rotations in (1), both for
the case of open curves (i.e., M = [0,1]) as well as closed
curves (i.e., M = Sh).

We first introduce the semi-group of generalized
reparametrizations for open curves:

['([0,1]) = {y € AC([0,1],[0,1]) : yis onto; 4/ > 0 ae.} .

To introduce the analogous construction for the case of
closed curves, we view St as R /Z. We then define the shift
operator on S via:

Sp: St — St A= A+0.
This allows us to define the semi-group of generalized
reparametrizations on S! via:

[(S") ={Spory*:60 €S andy* €T([0,1])}.

This allows us to formulate the following existence result,
which is the main theoretical contribution of the present ar-
ticle:

Theorem 1. Let ¢, co € AC(M,R?) such that either both
are of class C*, or at least one of them is piecewise linear.
Assume also that ¢ and ¢ are both nonzero a.e. on M.
Then there exists a pair of generalized reparametrization
functions (y1,72) € T(M) x T'(M) and a rotation O €
SO(d) such that:

ds([e1]; [e2]) = dg(c1 071, 0 * (c2 0 72)).

Previously this result was only known for the space of
open curves and did not consider the action of the rotation
group, see [10, 4]. The proof of Theorem 1, which builds
up on these results, is postponed to the appendix.

For piecewise linear curves ci,co € ACo(M,R%),
the results of [10] and Theorem 1 even lead to an al-
gorithm that allows us to explicitly construct these opti-
mal reparametrizations for calculating the precise quotient
space distance, see [10]. This algorithm plays a fundamen-
tal role in our proposed DL framework, as we use it to calcu-
late exact quotient SRV distances in order to generate labels
for our training data, as will be outlined in the next section.

3. Deep Learning of SRV Distances

While the algorithm in [10] allows us to compute exact
SRV distances, it is computationally expensive, making it
impractical for working with large datasets of shapes. Con-
sequently, there is a need to develop approaches that are
more computationally efficient in order to calculate SRV
distances. We address this need by introducing a supervised
DL framework that provides fast, accurate and robust SRV
distance estimates.

3.1. Network Architecture

We train a Siamese convolutional neural network (CNN)
to learn the SRV distance between geometric curves. We
use training data consisting of pairs of discretized R? val-
ued curves, together with their SRV distance as labels. Each
individual curve is sampled at n vertices and represented as
a flattened vector of length n x d, before being fed as in-
put to the network. Our Siamese CNN has a twin structure,
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Figure 1. Training step and network structure diagram for Shape Preserving Data Augmentation based training: Weights contained in the
red blocks are trainable and the Siamese convolutional nodes have shared weights. Specific parameter details of the network architecture
can be found in Section 3.1. The green blocks perform shape preserving data augmentation as described in Section 3.2.

consisting of two components which have identical archi-
tectures and use the same weights. To be more specific,
each component of the CNN operates on an individual dis-
cretized curve, which is passed through a series of convo-
lutional layers with kernels of size 5, followed each time
by batch normalization, a rectified linear unit (ReLU) ac-
tivation, and a max-pooling layer with pool size 2. This
produces two outputs, which are concatenated and passed
through four dense layers whose widths are proportional to
d, with ReLU activations being used in each dense layer.
The network then outputs a single real number: the SRV
distance between the two curves. We provide a schematic
description of the network architecture in Fig. 1.

3.2. Training Method

We create training and testing sets for our network by
randomly generating pairs of functions or curves, or by
picking them from an existing dataset, and labelling them
with their SRV distance. We use exact distances computed
with the algorithm of [10] as labels for functions and 2D
curves, but due to this algorithm’s high complexity, we in-
stead use DP distances as labels for 3D curves.

Computing these SRV distance labels using the exact al-
gorithm or DP may be very time consuming, which could
limit the size of our training set in practice. Thankfully,
from a base training set, one can easily generate more train-
ing samples at no extra cost by applying shape-preserving
transformations, such as resampling and rotations, to both
curves. Indeed, the quotient SRV distance is invariant to
reparametrizations (i.e., to resampling in the discrete situa-

O

Figure 2. Example of Shape Preserving Data Augmentation: The
top curve is an example of a parameterization of a curve from the
Swedish Leaf II dataset, see Section 4 for a description of this
dataset. The three curves on the bottom represent parameteriza-
tions and rotations of this curve as produced by the shape preserv-
ing data augmentation described in Section 3.2.

tion) and to rotations, implying that the distance between re-
sampled and/or rotated curves remains unchanged and need
not be recomputed. This data augmentation strategy allows
the network to see a wider variety of sampling patterns and



rotations for the same curve during training, which helps
it to learn and predict distances that are truly invariant to
reparametrizations and rotations. Moreover, since resam-
pling and rotating curves is computationally inexpensive,
this procedure can be performed at each iteration of the
training step, without incurring any additional storage for
new training samples. We empirically observed that this
shape-preserving data augmentation-based training method
reduced overfitting in the distance learned by the network.

The training itself is performed using an Adam op-
timization procedure [8]. We observed relatively fast
convergence in all cases, with convergence curves shown
in Fig. 3. We refer readers to the code documentation
on https://github.com/emmanuel-hartman/supervisedDL-
SRVFdistances for further training details, including
information on the exact training parameters such as the
batchsize for each epoch of training, and the parameters
involved in the shape-preserving data augmentation training
step.
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Figure 3. On both figures, the x-axis represents epochs, and on
the y-axis, we plot the mean squared error of the network on the
training data (blue), as well as on unseen testing data (red). Con-
vergence curves for network trained on open, real-valued functions
discretized at 90 points from our Synthetic I data set, trained for
500 epochs (left figure). Convergence curves for network trained
on closed, 2-dimensional curves discretized at 100 points from the
Kimia dataset, trained for 50 epochs (right figure). Descriptions of
the datasets are given in Section 4.

4. Numerical Experiments

We now present empirical results demonstrating the per-
formance of our DL approach for estimating SRV distances
on real-valued functions, and on curves in R? and R3. As
we shall see, the experiments show that when compared to
DP, our approach produces SRV distance estimates at a sig-
nificantly lower numerical cost, while being comparable,
and sometimes superior, in terms of accuracy.

4.1. Computation Method

To compute SRV distances using the exact algorithm and
DP, we used Martins Bruveris’ package’, which builds on
the DP code of FSU’s Statistical Shape Analysis and Model-
ing Group. Our network was implemented on TensorFlow.
All computation times using the different algorithms were
recorded on an Intel Xeon X5650 2.66 GHz CPU with a Gi-
gabyte GeForce GTX 1060 1582 MHz GPU. A comparision
of the computation times for the various algorithms can be
found in Table 1. One can clearly see that the trained net-
work is several orders of magnitude faster than both DP and
the exact algorithm.

’\ \ Exact DP DL (CPU) DL(GPU)H
ID[2x10°> 5x10° 5x1072 2x1072
2D | 2x10° 8x10%2 2x107! 3x10°2

Table 1. Computation time for one SRV distance using several differ-
ent algorithms, in milliseconds.

4.2. Evaluation Method

For functions and 2D curves: To evaluate the trained
network’s accuracy for functions and 2D curves, we use the
mean relative error (MRE) between its output and the true
SRV distances on a test set, computed via the exact algo-
rithm. As a secondary measure of estimation quality, we
use the Pearson correlation coefficient

N

> (i —9)(%i — 9)

i=1

Pyy = ~ ~ ~
\/;(yi -7)? ;(ZZ’ - 7)?

between the network’s output and exact distances on a test
set of functions or 2D curves. Here N is the number of
training samples, {y; }Y, are the exact distances, {7;}¥,
are the outputs of the network, with y = % Zi\;l y; and
U=+ Zfil ; being their respective sample means. A low
MRE and a strong positive correlation coefficient indicates
a good performance of the network.

For 3D curves: In addition to the results for functions
and planar curves, we present preliminary results for curves
in R3. As the computational complexity of the exact algo-
rithm is orders of magnitude higher for curves in R? when
compared to the case of functions and curves in R?, we only
label 3D curves with DP distances. Consequently we can
only evaluate the CNN’s performance for 3D curves via the
correlation coefficient between its output and DP distances.

To avoid bias in our results, elements of the test set are
never contained in the training set, which is used solely

Zhttps://github.com/martinsbruveris/libsrvf



for the purpose of calibrating the network. Furthermore, to
assess our network’s generalization capabilities, we make
sure that the trained network is tested on data that is sig-
nificantly different compared to the data used for train-
ing, c.f. Figures 4 and 5.

4.3. Experiments with functions

Datasets: First, we tested our network’s ability to pre-
dict SRV distances for functions, using both synthetic and
real data. The synthetic data was created by generating
functions sampled at 90 evenly spaced points on the unit
interval with random arc length. We note that the shape
class of a function modulo reparametrizations is entirely
determined by its local maxima and minima, as it is de-
termined by its constant speed parameterization which is
a linear interpolation between the local maxima and min-
ima. Thus, the synthetic function data is generated by
drawing the number of extrema for our function from a
N (u, o) distribution, randomly assigning values for these
extrema, and then randomly choosing a function with 90
breakpoints from the shape class determined by the gener-
ated extrema. We created two different synthetic datasets:
the first one with parameters (4, 0) = (18,6), and the sec-
ond with (u,0) = (30,10). These datasets, dubbed Syn-
thetic I and Synthetic II respectively, each contain 100,000
pairs of functions labelled with their exact distances, par-
titioned into 99,000 training cases and 1,000 testing cases.
For the real dataset, we use CPC Global Unified Precipita-
tion data from the NOAA/OAR/ESRL PSL, Boulder, Col-
orado, USA®, from which we extracted 90 days of precipi-
tation data across several locations and years. We randomly
selected 400 samples from this database, computed exact
pairwise distances, and partitioned them into a set of 89700
distances for training, and 9,900 for testing. See Fig. 4 for
examples from the different datasets.

Results: First, we highlight the difference in perfor-
mance between our trained network and DP, see Table 2
and Fig. 4. When trained and validated on the same type
of data, the network significantly outperforms DP across all
three datasets, both in terms of the MRE and correlation
coefficient with respect to the exact distances, see Table 2.

To demonstrate our network’s generalization capabili-
ties, we trained it on one type of data and tested it on a dif-
ferent dataset, e.g., we trained on synthetic data but tested
on CPC precipitation data. While this leads to a slight in-
crease in prediction error, the network still outperforms DP
on both measures by a large margin, see Table 3.

3https://psl.noaa.gov/

Figure 4. Five examples from Synthetic I (top-left) and the CPC
Precipitation dataset (top-right). Third and fourth figure: Com-
parison of DP (red) and Trained Network (blue). Scatter plot of
relative errors for 1000 testing cases from the CPC Precipitation
dataset, using a network trained on Synthetic I (bottom-left). Cor-
responding correlation plot for both methods, with exact distances
on the y-axis, and estimated distances on the x-axis, and the line
y = « in green (bottom-right).

MRE Corr.
Dataset
DP DL DP DL
Synthetic I | 0.44551 0.04346 | 0.84307 0.96770
Synthetic IT | 0.45949 0.03806 | 0.87123 0.97053
CPC Precip. | 0.45853 0.03722 | 0.85452 0.96090

Table 2. Comparison between DP and DL

Training Set ~ Testing Set MRE Corr.

SyntheticI ~ SyntheticII  0.05520 0.96782
SyntheticI ~ CPC Precip. 0.08088 0.95264
Synthetic I SyntheticI  0.05206 0.96110
Synthetic I CPC Precip.  0.07093  0.94888

Table 3. Generalization results across several testing sets

4.4. Experiments with curves in R?

Datasets: We used data from the MPEG-7* and Swedish
leaf datasets®, which contain images of objects whose
boundaries were extracted and treated as 2D curves, dis-
cretized with 100 points, see Fig. 5. To extract discretized
boundary curves from these datasets, we binarized each
image via Otsu’s algorithm, then extracted vertices on the
boundary using the Moore-Neighbor tracing algorithm, be-

“4https://dabi.temple.edu/external/shape/MPEG7/dataset.html
Shitps://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/



fore downsampling to 100 points.

We trained the network on 229162 distinct pairs of
curves labelled with exact distances from the MPEG-7
dataset, which contains a diverse array of 2D shapes from
many different shape classes, see Fig. 5. We tested the net-
work on two versions of the Swedish leaf dataset, called
Swedish Leaf I and II respectively. Swedish Leaf I contains
curves with arc length parametrizations, i.e., discretized
with n points that are uniformly distributed across the curve.
Swedish Leaf II contains “adversarial parametrizations”,
i.e., curves with n points that are far from uniformly dis-
tributed across the curve, with many points concentrated on
a small portion of the curve, see Fig. 6.
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Figure 5. Five examples from the MPEG-7 dataset (left). Five
examples from the Swedish leaf dataset (right).

R

Figure 6. Example of a curve from the Swedish Leaf I dataset,
where curves have arc length parametrization (left), and from the
Swedish Leaf II dataset with adversarial parametrizations (right).

Results: Due to the higher dimensionality and complex-
ity of the data, the network’s performance drops compared
to the case of functions. However, we still obtain a high
correlation coefficient with the exact distance across both
datasets, namely 0.924 for Swedish Leaf I, and 0.917 for
Swedish Leaf II. Meanwhile, the corresponding correlation
coefficient for DP distances is 0.996 for Swedish Leaf I, but
drops significantly to 0.899 for Swedish Leaf II. These ob-
servations show comparable performance between our DL
framework and DP, with DP being more accurate for curves
that are already well-aligned (e.g., for those in Swedish
Leaf 1), and DL being superior in terms of accuracy for
data requiring larger reparametrizations (e.g., for curves in
Swedish Leaf II).

As yet another proof of concept for our DL approach,
we perform an unsupervised clustering experiment using 40
curves taken from the Swedish Leaf I dataset. These curves
are evenly distributed across four categories of leaves. To
cluster the curves, we compute all pairwise SRV distances
using both our DL framework and the exact algorithm, and
apply classical multidimensional scaling (CMDS) to the re-
sulting pairwise distance matrices in order to obtain a 2D
projection of the dataset, see Fig. 7. While the resulting 2D
visualizations are slightly different, the clusters produced

are comparable.
&
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Figure 7. CMDS clusters of 40 curves selected from the Swedish
leaf dataset using exact distances (left) and DL distances (right).

4.5. Preliminary experiments for curves in R?

Datasets: Finally we present preliminary results for
curves in R3. We use two distinct datasets of open 3D
curves for the experiments: hurricane paths from the Na-
tional Hurricane Center Data Archive® and plant roots’
from which we only keep the taproots (i.e. main stem of
the roots). All curves were discretized with 100 points. We
trained the network on 284622 distinct pairs of hurricane
paths, labelled with distances computed with the DP algo-
rithm. We validated the network on either a different testing
set of hurricane paths, or on the dataset of taproots. The rea-
son for choosing DP distances instead of exact distances for
training the network is the high computational cost of cal-
culating exact distances in the situation of 3D curves.

Results: The correlation coefficient between the pre-
dicted DL and the DP distances on the test set of hurricane
paths is 0.977, but drops significantly to 0.823 when tested
on taproots. This drop-off in prediction quality can be most
likely explained by the lack of sufficiently diverse sam-
ples in the training set, which limits the network’s gener-
alization capabilities. We expect that enriching the training
set with 3D curves displaying more varied geometries will
help to improve the network’s performance. However, due
to the scarcity of publicly available datasets of 3D curves,
we leave it as future work to build a better training set for
3D curves and invest the required computational resources
to train our network using SRV distance labels computed

Shttps://www.nhc.noaa.gov/data/
Thtps://github.com/RS A-benchmarks/collaborative-comparison



via the exact algorithm, as was done for functions and 2D
curves.

5. Conclusion

We have introduced a supervised DL framework to com-
pute SRV distances for curves in R¢. The main advan-
tage of our approach is that our trained CNN provides
fast and accurate estimates of the SRV distance between
pairs of geometric curves, without the need to find optimal
reparametrizations. Moreover, we exploited the invariance
of the SRV distance to shape-preserving actions in order to
propose a shape-preserving data-augmentation based train-
ing strategy, which is a flexible and efficient procedure for
creating and augmenting our training set. Empirical obser-
vations show that this training strategy allows our network
to estimate SRV distances which are truly invariant to ro-
tations and reparametrizations, while also reducing overfit-
ting. Moreover, our experiments show that when compared
to DP, our approach produces SRV distance estimates at a
significantly lower numerical cost, while also being compa-
rable, and sometimes superior, in terms of accuracy.
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Appendix

Proof of Theorem 1. Not taking into account the action of
the group of rotations and considering only open curves,
this result was shown in [10], assuming that one of the
curves is piecewise linear, and in [4] under the assumptions
that both curves are of class C'!.

In the case where M = S, by the definition of T'(S?),
the existence of a pair of optimal (y1,72) € T'(S1) x T'(S1)
is equivalent to the existence of an optimal 7 € S*, an op-
timal O € SO(d) and a pair of optimal ~;,~5 € T'([0,1]).
Consider the function F' : ST x SO(d) — R given by

F(\0) = inf

f dg(ci1097,0 % (ca05x073)).
7173 €0((0,1])

We will first show that F is continuous. Let 7 € S, O €
SO(d) and € > 0. Since C(S*,R9) is dense in L?(S*, R%),
let g € C(S',RY) such that ||Q(c2) — gl|z2 < €/4. As g is
continuous on a compact domain it follows, by the Heine-
Cantor theorem, that it is uniformly continuous. Thus, there
exists & > 0 such that for each § € S! and each A\ € S*
such that |A| < §, we have |g(0) — g(SA(0))| < €/4. Thus,
for each A such that |A\| < d, we have

lg=g0Sill= = [ 1a(6) - g(Sa6)[d0
Sl

2 = (e 2.
</Sl(e/4) 0 = (e/4)

Pick this § and let A € S such that |7 — A| < 4. Thus,

l[goSr —goSillrz = [lg — g o Sa—r|lr2 < e/4.

By a change of variable argument, we can show for any
g1,92 € C(S',R) and § € S', we have

[lg1 © So — g2 0 Sp||L2 = ||lg1 — 92|L2-

Furthermore, it is easy to show that for any ¢ € AC(S!,R9)
and any 6 € S, we have Q(c o Sp) = Q(c) o Sp. On the
other hand, the action of the rotation group on curves in-
duces a corresponding action on their SRV transform which
we write for any O € SO(d) as Q(O*c) = O-Q(c), where
: 1 /
we have specifically that O-Q(c)(-) = mOc (+). Note
that this action on SRV transforms is by isometry for || - | 2.
Now, for any (A, 0’) € S! x SO(d) with |7 — A\| < &
and [|O — O'|| < ¢/(4]|Q(c2)]||12) (for the operator norm
on matrices), we can write

|F(\,0) — F(r,0")|
<0 -Q(ca08)) —O" - Q(ca o S;)||L2
=[|0-Q(c2) 0 Sx = O"- Q(c2) o Sr||r2
<[10-Q(c2) 0 Sx = O"- Q(c2) 0 S| 2
+ 110" - Q(e3) 08y — O - Q(c2) o Sr|| 12

For the first term on the right hand side, we can see that
|0-Q(c2)0Sx—0"-Q(c2)08x]|2 < ||O—=0'||.||Q(c2)oSA|| L2,

and since ||Q(c2) oS\ ||z = ||@(c2)||L2, we can bound this
term by €/4. On the other hand, we have

10" - Q(c2) 0 Sx — O" - Q(c2) © Sr|| 2
= [|Q(c2) 0 Sx — Q(c2) o S7|[ L2
<[Q(c2) 0 Sx —go Sillrz +[|lg o Sx — g o Sr|[2
+|lg oSy — Q(ca) 0 Sy ||L2
=1|Q(c2) — gllr2 +1lg o Sx — g o S|z + ||g — Qc2)|| 2
<e/d+e/d+e€/4=3e/4,

which finally leads to |F(A\,0) — F(1,0")] < e. Now,
since F is continuous on the compact set S* x SO(d), there
exists an optimal 7 € S! and an optimal O € SO(d) such
that F(7,0) = inf g x50(d) . Note that the curves ¢; and
O % (¢ 0 S;) belong to AC(S', R?) and thus in particular
to AC([0,1],R%), and that by assumption, they are either
both of class C'! or one of them is piecewise linear. By the
results of [4, 10], there exist optimal 77, ~3 € T'([0, 1]) such
that

ds([c1],[ca]) = dg(c1 07,0 % (c2 0 S 073)),

which concludes the proof for the case of closed curves.
The proof for open curves modulo reparametrizations and
rotations can be done exactly as above, by considering a
function F' that only depends on rotations. O
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