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Abstract

This paper studies a longitudinal shape transformation model in which shapes are deformed in
response to an internal growth potential that evolves according to an advection reaction diffusion
process. This model extends prior works that considered a static growth potential, i.e., the initial
growth potential is only advected by diffeomorphisms. We focus on the mathematical study of
the corresponding system of coupled PDEs describing the joint dynamics of the diffeomorphic
transformation together with the growth potential on the moving domain. Specifically, we prove
the uniqueness and long time existence of solutions to this system with reasonable initial and
boundary conditions as well as regularization on deformation fields. In addition, we provide a
few simple simulations of this model in the case of isotropic elastic materials in 2D.

1 Introduction

We study in this paper a system of coupled evolution equations describing shape changes (e.g.,
growth, or atrophy) for a free domain in R?. A first equation, modeled as a diffusion-convection-
reaction equation, defines the evolution of a scalar function defined on the domain, this scalar
function being roughly interpreted as a “growth potential” that determines shape changes. The
second equation describes the relationship between this potential and a smooth Eulerian velocity
field and is modeled as a linear, typically high-order, partial differential equation (PDE). The free-
form evolution of the domain then follows the flow associated with this velocity field.

There is a significant amount of literature on growth models and shape changes, where the
dominant approach (in 3D) uses finite elasticity, modeling the strain tensor as a product of a
growth tensor (non necessarily achievable by a 3D motion) and a correction term that makes it

achievable, using this correction term as a replacement of the strain tensor in a hyper-elastic energy
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[Rodriguez et al., 1994]. Minimizing the energy of this residual stress then leads to PDEs describing
the displacement defined on the original domain (assumed to be at rest) into the final one. We refer
to several survey papers such as Menzel and Kuhl [2012], Humphrey [2003], Ambrosi et al. [2011]
for references.

In this paper, we tackle the shape change problem with a different approach. First, we use a
dynamical model of time-dependent shapes, which allows us to analyze each infinitesimal step using
linear models. Second, our model includes no residual stress but rather assumes that a new elastic
equilibrium is reached at each instant. Our focus is indeed on slow evolution of living tissues, in
which shape changes occur over several years and tissues can be assumed to remain constantly at
rest. More precisely, our model assumes that at each time, an infinitesimal force places the shape
into a new equilibrium, which becomes the new reference configuration. The force is assumed to
derive from a potential, itself associated to the solution of a reaction-convection-diffusion equation,
while the new equilibrium is obtained as the solution of a linear equation that characterizes the

minimizer of a regularized deformation energy. Figure 1 provides an example of such an evolution.

Figure 1: Example of shape change in two dimensions relative to a negative growth potential (to

be read from left to right and up to down). The potential is initialized locally, and spreads while
affecting the shape of the domain until reaching saturation.

In our main result (see Theorem 3), we will prove that the full system has solutions over arbitrary
time intervals, and that the shape domain evolves according to a diffeomorphic flow. This result
opens the possibility to formulate optimal control and inverse problems in which one determines
initial growth potentials (within a parametrized family) transforming a given initial shape into a
target shape. Such inverse problems were considered in the multiplicative strain tensor framework
and for thin-plate models in Lewicka et al. [2011], and for crystal growth control, albeit not in a
free-form setting, in Trifkovic et al. [2009], Bajcinca [2013]. The optimal control of free-form surfaces
modeling the interface between two phases was considered in Bernauer and Herzog [2011]. In Bressan
and Lewicka [2018], tissue growth is modeled through a control system evolving as an elastic body

¢

experiencing local volume changes controlled by the concentration of a “morphogen”, which itself



evolves according to a linear elliptic equation. Our model can be seen as a regularization of an
extension of the model in that paper (we make, in particular, non-isotropic assumptions and our
growth potential evolves according to a non-linear equation), our regularization allowing us to obtain
long term existence and uniqueness results, that were not available in Bressan and Lewicka [2018].
Finally, Kulason et al. [2020] introduce a reaction-diffusion model to analyze disease propagation
and thickness changes in brain cortical surfaces, where changes are happening (unlike the model
studied in our paper) within a fixed domain.

This paper follows and completes Hsieh et al. [2020] (see also Hsieh et al. [2019]), which adopts
a similar approach with a functional dependency of the growth potential on the diffeomorphic flow.
This assumption is relaxed here, since the potential follows its own PDE, with an evolution coupled
with that of the shape. This extension will, as we will see, significantly complicate the theoretical

study of the equations, as well as their numerical implementation.

2 General framework and main theorems.

2.1 Notation

Ambient space, vector fields and diffeomorphisms. We will work in the Euclidean space
R?. For an integer s > 0, and open subset U of R%, we let H*® (U) be the Hilbert space of all real
functions on U of Sobolev class H* = W%*. Recall that H*(U) = L*(U).

We denote by C7*(R% R?) the set of all m-times continuously differentiable vector fields whose
k-th derivative D*v go to zero at infinity for every k between 0 and m. It is a Banach space under
the usual norm .

[0llm,c0 = ];0;%% |D*u()], v e g RY,RY).

For a generic function f : [0,7] x R? — R?, we will use the notation f(¢) : R* — R? defined by
f(t)(x) = f(t,z). We will use € to denote a generic constant and €, to show a generic constant
depending on a. The value of such constants may change from equation to equation while keeping
the same notation.

Now, assume m > 1. Let Dz’ﬁ‘m(Rd) be the space of C™-diffeomorphisms of R% that go to the
identity at infinity, that is, the space of all diffeomorphisms ¢ such that ¢ — idga € C{)”(Rd,]Rd),
with idgas : RY — R? the identity map idga(z) = 2. Do note that Diff™(R?) is an open subset
of the Banach affine space idra + CS”(Rd,Rd), with the induced topology. It is also known to
be a topological group for the law of composition [Bruveris and Vialard, 2016], so we also have
o~ € Diff™(R%). We can then define on Diff ™ (R?) the distance dy, oo by

din oo (0, 9) = maxX ([l = Yllm,oos |07 =¥ o), @9 € Diff™(RY), (1)

whose open balls will be denoted B,(¢), r > 0, ¢ € Diff™(R?). This is easily checked to be a
complete distance, and it does not change the topology of Diff ™(R%). We introduce it because we
will often need to assume bounds on diffeomorphisms and their inverse at the same time.



Operators and controlled curves in Banach spaces. If B and B are separable Banach spaces,
Z(B, E) will denote the vector space of bounded linear operators from B to B. Weak convergence
of sequences (z,,) in B will be denoted by z,, — x. Denoting the topological dual of B by B*, we will
use the notation (u | v) rather than p(v) to denote the evaluation of u € B* at v € B.  We say that
a linear operator A € £ (B, B*) is symmetric if the corresponding bilinear form (v, w) — (Av | w)
is symmetric.

For a given T' > 0 and open subset U of a Banach space B, we will denote by LP([0,T],U), p €
1, +00] the space of measurable maps f : [0,7] — U such that ¢ — || f(¢)||%; is integrable. One can
then define the Sobolev space WP1([0,T],U) whose elements f are differentiable almost everywhere,

d t) — f(t
i.e. the differential ¢ — —f(t) = lim S = Jt) exists almost everywhere and
dt =t =1
df
Vio, t1 € 0, 7], f(t1) — f(to) = —(t)dt.
[to,t1] dt

For p = 2, we will simply write H' instead of W21,
Case in point, for a time-dependent vector field v € L'([0,T],C5 (R4, R?)), there is a unique
@ 1t o(t) in WHL([0, T], Diff ™(R?)) that satisfies ¢(0) = idgas and Cfi—f(t) = v(t) o p(t) for almost

every t.

RKHS (Reproducing Kernel Hilbert Spaces) of vector fields. Throughout this paper, V'
is a Hilbert space of vector fields on R that is continuously embedded in C§*(R%,R9) for some
m > 1 (we will write V. — Cj"(R% R?)), with inner product (-, )y and norm || - [[y. Since
V — CI*(R%, RY), there exists a constant ¢y such that

[ollmc0 < cvloflv. (2)
The duality map Ly : V — V* is given by
(Lvolw) = (v, w),

and provides an isometry from V onto V*. We denote the inverse of Ly by Ky € Z(V*, V), which,
because of the embedding assumption, is a kernel operator [Aronszajn, 1950]. Note that

ol = (Lvv | v) = (Ky'v | v).

As an example, the space V' can be the reproducing kernel Hilbert space (RKHS) associated with a
Matérn kernel of some order s, and some width o, which, in three dimensions, implies that V is a
Sobolev space H*T2. For the specific value s = 3, which we will use in our experiments, the kernel

operator (when applied to a vector measure p € V*) takes the form
(v )(e) = | wle=ul/o) duty)

with k(t) = (14t + 2t2/15 4+ t3/15)e~".



Weak derivatives for Hilbert-valued functions. Following [Lions and Magenes, 1972, Chap-
ter 1, Section 1.3, we define generalized derivatives of functions w : (0,7) — H, where T is a
positive number and H a Hilbert space as follows. Let & ((O,T)) denote the Schwartz space of
compactly supported infinitely differentiable real-valued functions defined on (0,7"). The space of
H-valued distributions is

2°((0,7),H) :=2(2((0,1)),H).

Ifue2* ((O, T), H), its generalized derivative, denoted Ou, is the element of Z* ((O, T), H) defined
by

d
dru(yp) == —u(?f) € H forallpe 2((0,T)). (3)
We can identify any u € L ([0,7],H) (i.e., u € L*([a,b], H) for all [a,b] C (0,T)), with the

corresponding u € 2*((0,T), H) given by

T
u(yp) = /o u(t) p(t)dt € H for all p € 2((0,T))

and show that @ € 2*((0,T), H). We can therefore see L{ ([0, T], H) as a subset of 2*((0,T), H).
In what follows, we will use the following two results, both taken from Lions and Magenes [1972].

Theorem 1. Let T be a positive number and Q an open subset of R%. Assume that u €
L3([0,T], HY(Q)) and that du € L%([0,T], H'(Q)*). Then u € C([0,T], L*(£2)). (See Lions and
Magenes [1972, Chapter 1, Proposition 2.1 and Theorem 3.1].)

We will also use the following general result on weak solutions of parabolic equations. A bounded
linear map £ : L2([0,T], H(Q)) — L2([0,T], H*(Q)*) is coercive if there exists a > 0 such that
(Lu|u)>a fOT Hu||]2ql(9) dt for all u € L2([0,T], H(Q2)).

Theorem 2. Given a coercive bounded linear mapping £ : L2([0,T], H'(R2)) — L?([0,T], H(2)*),
a function f in L2([0, 7], H*(Q)*) and an initial condition ug € L?(£2), there exists a unique solution
u € L2([0,T], H'(2)) of the parabolic initial value problem

{ ou+ Lu=f (4)

u(0) = ug .
(See Lions and Magenes [1972, Chapter 3, Theorem 1.1, Section 4.3, and Remark 4.3].)

We will also need the following technical lemma. Its proof is a simple application of functional
approximation theorems in L? and we shall omit it for brevity.

Lemma 1. Let H be a Banach space and suppose that w € L2([0,T],H) with 0,w € L?([0,T], H*).
Then the derivative in the sense of distributions & |jw(-)||3, is a function in L'([0,T]) and equals to
t— 2 ((yw)(t) | w(t)) for almost every ¢.



2.2 Control systems for shapes

We want to refine the system introduced in Hsieh et al. [2020], that was designed as a mathematical
model representing possibly pathological shape changes in human organs or tissues. The control
system starts with an initial volume, and exhibits a time-dependent deformation induced by a vector
field on the domain, where this vector field results from auxiliary variables defined on the volume

(e.g., a scalar field) that one can loosely interpret as a manifestation of a “disease”.

Mixed diffeomorphic-elastic model with fixed potential. We therefore start with an open
domain M, of R* and model a deformation ¢ — M;. We first introduce the “diffeomorphic” model,
which is the foundation of the LDDMM algorithm (for large deformation diffeomorphic metric
mapping [Beg et al., 2005]) in shape analysis. In this model, the deformation is tracked through
a time-dependent diffeomorphism ¢(-) € WH([0, T], Diff ™(R%)) which is also the flow of a time-
dependent vector field v(-) € L'([0,1],V) that belongs to our RKHS V, so that for all ¢ in [0, T],
M, = ¢(t, My), with

©(0) = idga and %(p(t) = v(t) o ¢(t) almost everywhere. (5)
The vector field v is preferably represented in the form v(-) = Kyu(-) for some u(-) € L' ([0, T], V*),
which then acts as a control. This control can be left unspecified and estimated as part of an
optimal control problem (as done in Beg et al. [2005], Joshi and Miller [2000], Dupuis et al. [1998],
Trouvé [1995], Arguillere et al. [2014]), or modeled as an element of some parametrized class of
time-dependent linear forms on V' [Younes, 2011, 2014, Gris et al., 2018, Younes et al., 2020]. We
note that the relation v(t) = Kyu(t) is equivalent to the variational formulation

v(t) = arg min %(va' |0") = (u(t) | V).
v eV
Alternatively, we may consider M; as a deformable solid, with infinitesimal deformation energy
quantified by a linear tensor <7 (t) which is required to be a symmetric, positive semi-definite
operator in .Z(H(M;,RY), H'(M;,R%)*). Now, exert an infinitesimal force density j(t)dt on M,
(j(t) is a time derivative of a force, also called a yank). Assuming this yank belongs to H*(M;, R%)*,
the infinitesimal deformation v(¢)dt that brings M; to equilibrium is given, when it exists, by

. 1 .
o) = argmin (00 | 0) - () | o).
v’ € HY(M;,R%)
In this paper, following Hsieh et al. [2020], we fix a weight w > 0 to combine the LDDMM model
and the deformable solid model, and define

v(t) = arg min %(va/ ] v') + %(;zi(t)v' | ") = (G(t) | V), (6)
v ev

using j € L1([0,T],V*) as a control. Here, we make the abuse of notation identifying <7 (t)v with its
restriction to M;, the assumption that V' — C{)”(Rd, R?) ensuring that this restriction maps V into
HY (M, Rd). Here, the term (w/2) (va’ | v’) can be seen as an internal energy causing permanent



change to the shape, or simply as a regularization term ensuring the existence of v(t) € V. Indeed,
since @/ (t) is positive semi-definite, v(t) always exists, and belongs to L'([0,T],V), so that it
generates a well-defined flow ¢(-) on R,

We point out important differences between the operators Ly = K ;' (such that |[v[|? =
(Lvv|v)) and «/(t). The former, Ly : V — V* is defined on a fixed space of vector fields
(V) themselves defined on the whole ambient space R%. In contrast, <7 (t) is defined on H*(M;, R%),
and therefore applies to vector fields defined on M;. It is, by definition shape dependent. The global
nature of Ly (and higher-order assumption insuring the embedding of V' in a space of differentiable
functions) is of course what makes possible the diffeomorphic property of the evolving flow over all
times intervals.

Although we will work with general assumptions on the deformation energy tensor 7, the main
example of such a tensor in three dimensions comes from linear elasticity [Ciarlet, 1988, Marsden
and Hughes, 1994]. Generally, such a tensor <7 (t) € £ (H'(M;,R3), H'(M;,R?)*) is defined so that
@t |w) = [ (Glreofe))] cula))da,

M,

with €, = (Dv + DvT)/2. Here, GT is the transpose of a matrix G, and for every x, &(z), is a
symmetric positive definite tensor on 3 X 3 symmetric matrices. In particular, one can favor at each
point z of M, specific directions of deformations by appropriately choosing &;(x). Examples of such
tensors that could be used in applications of our model are those given in Hsieh et al. [2020, Section
4]. In the simplest situation, one can assume that the material is homogeneous, isotropic and that

its elastic properties are also constant in time, in which case for all x € Mj;:
(é@(m, €) | ew) = Mr(ey) tr(ey) + 2utr(ele,) (7)

where A and p are known as the Lamé parameters of the elastic material.

While not necessarily restricting to elasticity operators such as those above, we will make the
additional assumption that o7 (t) is fully specified by the transformation ¢ (defined by (5)) applied
to the initial volume. More precisely, we will assume that we are given a mapping

A:Diff"(RY) = £ (Hl(w(Mo),Rd), Hl(«p(Mo),Rd)*) :

such that for every diffecomorphism ¢, A, is a deformation energy tensor on the domain ¢(Mp) and
take o/ (t) = A, in (6).

Yank model. It remains to model a yank j(-) that induces the deformation on M;. The model
considered in Hsieh et al. [2020] starts with a fixed positive function go € C!(Mp, R), with negligible
values on the boundary 0Mjy. In the diseased tissue analogy, this function may be thought of as
describing an initial physiological impact of a disease, for example the density of dying cells, or of
some protein responsible for tissue remodeling. Then, for a deformation ¢ € Diff™(R?), [Hsieh
et al., 2020] defines the corresponding yank j, along ¢(Mj) to be the negative gradient of a some

function @ : R, — R of the transported function ggop ™!

1

, so that the yank pulls the shape towards

places where gg o o~ is highest. Formally, this gives:

VeV, Gol)= [ IRCTRTS / oy Qoo™ (v,
(Mo o(Mo

7



where the boundary term is negligible thanks to our assumptions on gg.

The resulting dynamical system uses j(t) = j, (), yielding

at@(ta ‘T) = v(t’ Sa(t’x))v 90(0756) =Z,

Lw 1 )
v(t) = azg;énvm 5 (LVU' ] v') + 3 (Aw(t) v [ v) — (]w(t) | v'), (8)
Gty 1) = /M Qg o™ (1) (—dive!), o/ €V, M, = p(t)(Mp).

It was studied in Hsieh et al. [2020] and proved to have solutions over arbitrary time intervals. In
the same paper, the issue of identifying gy among a parametrized family of candidates given the
initial state My and a deformed state at time 7', M = (T, Mp), was also considered.

The assumption that shape change is driven by a strict advection of the function gy can be
seen as overly restrictive, as it does not allow for independent transformations and external factors
possibly affecting this function. In this paper, we consider a reaction-diffusion equation on the
moving domain M; whose solution also controls the shape motion. This kind of coupling, as far as
we are aware, has not appeared in the literature.

Reaction-diffusion model. Let us start with a fixed domain U in R?, and consider p : [0, T] —
C2(U). One can think as p(t, z) as some measure of the “density of a disease” at time ¢ and location
x with respect to the Lebesgue measure. A reaction-diffusion equation on p in the fixed domain U
is given by

Op(t,x) = div(S(t,)Vp(t,z)) + R(p(t,x)), ae. t€[0,T], z €U, 9)

with given initial value p(0) = po : U — R, and the Neumann boundary condition S(¢, z)Vp(t,z) = 0
for all time ¢ and z in the boundary dU. It is understood that the gradient V and the divergence
are taken with respect to the x coordinates.

On the right-hand side, S(¢,x) is a 3-by-3 symmetric positive definite matrix for each ¢ and
x. For example, for S(t,z) = S = I3, the identity matrix, we get div(SVp(t,x)) = Ap(t,x) the
Laplacian of p. More generally, for a diffusion at = with rate r; > 0 in an ¢-th direction, i = 1,2, 3,

we have
S(t,x) = rlelelT + rgegeg + rgegeg = diag(r1,re,73) = (€1 ez eg)diag(ri,r2,r3)(e1 €2 63)T

where e; is a unit vector pointing to the i-th direction and diag(ri,r2,73) is the diagonal matrix
with corresponding entries. In this paper, we will work under the following general assumption on
S and how it is affected by shape change. We consider a time-dependent field of frames (t,z) €
[0,T] x U — F(t,x) € GL3(R) of unit vectors, and let

S(tvx) = F(t,.’E) dia'g(rla 7“2,7“3) F(tvx)T

Finally, R : R — R is the reaction function, and models external factors affecting the function
p. It typically satisfies R(0) = 0 so that p = 0 is a solution of the PDE initialized with py = 0. It
may have a sigmoidal shape (such that R(¢) = 0 if ¢ < 0, and increases on [0,4o00) with a finite
limit at 4+00), which results in a growth/atrophy model in which change accelerates until reaching



a limit speed. Alternatively, in order to model a growth/atrophy phase over a finite time interval,
R on [0, +00) may increase to maximal value before decreasing again to 0 (this is the model chosen
in Figure 1).

Integral formulation, and reaction-diffusion on a moving domain. Equation (9) can be
written in integral form leading to the weak formulation that we will study specifically. After
integrating the equation on a smaller domain, and using the divergence theorem, we can say that
the density (¢, z) — p(t,x) is a solution of Equation (9) if and only if, for every domain U’ C U,

d

G | pteoris = [ (50.2)900.0) nau (@)oo () + | Rp(r.))as,

U
with ngy the outer normal to the boundary of U’ and oy the surface measure on OU’. In other
words, the total reduction of p within U’ is equal to the flux of its gradient along the boundary,
modified by the diffusion tensor which takes into account the directions and speed of diffusion. To
this is added the total amount created in U’ from the reaction R.

From our fixed initial volume My, we can give a corresponding formulation for the evolution
of a density on a moving domain t — M; = o(t)(My), with ¢ € H'([0,T], Diff ™(R?)). We need,
however, to account for changes in the directions of diffusion as the shape is deformed.

First, we define along each deformation (M) of My, with ¢ € Diff ™(R%), a frame F, of unit
vectors along ¢(My). In other words, F, is a mapping from ¢(Mp) onto GL3(R) whose columns
have constant length 1. We define a corresponding diffusion tensor S, = F, diag(r1, 72, T3)Fg .

Then, we say that the time-dependent density p(t) : M; = @(t, My) — R with respect to the
Lebesgue measure is a solution of the reaction-diffusion equation along the moving domain ¢ — M;
if, for every open subset Uy C My, and almost every ¢ in [0, 7], the equation

d

p p(t,z)dr = / (S(y (@) V(t, ) M1, 0010) () dO o1, 0016) ()
b J o (t,Mo) (t,0Mo)

(10)
+ /cp(t,Mo) R(p(t,z))dz,

is satisfied with Neumann boundary conditions (Sy)(t, ) Vp(t, ) ngp ae) (z) = 0 for every ¢ in
[0,T] and = in OM; = p(t, 0My).

Turning this integral formulation into a pointwise one is difficult, because the support of p(t)
changes as t increases. This results from considering p in spatial (i.e., Eulerian) coordinates. It
is easier to deduce the correct PDE for the corresponding density, denoted p, in material (i.e.,
Lagrangian) coordinates. This density is the pull-back ¢(¢)*p(t) of p through ¢(t):

[p(t)"p(t)] fdx = / p(t)f o o(t) ‘da.

¢(t)(Mo)

vf € L}(Mo), /MO p(0)fds = [

My

In other words, p(t) = p(t) o ¢ Jp(t), with Jp(t) = det(Dep(t)), the Jacobian of ¢(t).
Note that we get

Vp(t) = de(t)TVp(t) o o(t) Jo(t) + p(t)~




so that

VJW)) .

vm00¢@)=d¢@VT<VP“y‘p“)de

Performing in Equation (10) the change of variable

z = p(t,y),
so that
dx = Jo(t,y)dy, ye Mo,
and
Np(t) (0U0) () A0 o2y 000 (€) = Jo(t, y) Dep(t, )™ nov, (y)doau, (y), v € OMo,
we obtain an identity on the fixed domain Up:

4
dt Jy,

T
o) = [ el [Dso*(t)&a(t)oso(t)Dso(t)—T (Vp@)—pw*p“))] novedot,

Jo(t)
*lﬁ%i%)“w

Since the pull-back of a vector field v : x — v(z) by ¢(t) is p(t)*v : z — Dp(t, z) " v(p(z)), the
pull-back of the frame field F is Fyp) = @(t)*FuDe(t) Fu 0 (t), which means that the
pull-back of the diffusion tensor is S,y = ¢(t)*S, ) and given by

Sut) = Do (£)S ) 0 @(t)Dep(t) 7.

Note that this formula is valid even when replacing ¢(t) by any diffeomorphism ¢ € Diff ™(R%).
With this new notation, the integral equation reads

] ww= [ et [0 (900001 ZED) ] vy, + [ 1 (Y st

The boundary conditions are then

{Sw(t) () <Vp(t) —p() VJ*;‘!ES)

From there, the divergence theorem yields

T
)] nam,(z) =0, t€l0,T], x € OMy.

g [ pte= [ i (1208, (Ve - pO 55D ) st [ r () settn

with boundary condition

S (t,2)Vp(t,2)] no(z) =0, te€[0,T), = € M.

Since this should be true for every open Uy C My, we get the PDE

d . VJp(t, x) p(t, )
%p(t, x) = div <Jg0(t,a:) So(t,2) (Vp(t,m) — p(t,x)w>> +R (Jgo(t,:r)) Jo(t,z), (12)

with boundary condition

{Sw(t,m) (Vp(t,x) — p(t, x)%)] no(x) =0, (t,x) € [0,T] x IMp.

10



PDE-controlled diffeomorphic equation and main result. Combining the various para-
graphs of this section, we obtain a formulation of our model. We start by redefining our various
functions and operators.

We fix an initial domain My C R? and diffusion speeds r1, 79,73 > 0. For every ¢ € Diff™(R?),
we define

e A frame field of unit vectors F, : ¢(Mp) — GL3(R) along ¢(Mp), and the corresponding field
in spatial coordinates F, = Dgo_lF(p 0.

e A diffusion tensor S, : p(My) — M3(R), with S,(z) = F¢diag(r1,r2,T3)F¢T, a symmetric

positive definite matrix at each point. The corresponding operator in Lagrangian coordinates
is S, = Dp 1S o DpT.
e A symmetric, positive-definite tensor A, € L(H(p(Mp), RY), H' (p(Mp), R%)*).

The PDE-controlled diffeomorphic model with initial condition pg : My — R is the system of coupled
equations on ¢ : [0, T] — Diff ™(R?) and p : [0, T] x My — R that follows: for all (¢, z) € [0,T] x Mo,

(

%p(t, x) = div <J<p(t, ) Sy (t.2) (Vp(t, z) = p(t, x)m» +R <2§8%> Jolt.z),

%W,m) = v(t, p(t,2)),

1
o(t) = argmin = (Lyv' |0) + 5 (Ayn o [ V) = (5(8) | V),
eV

() [ V) = - Q(p(t) (—dive’), o' eV, M =(t)(Mo), tel0,T],

(13)
where p(t) = p o p(t)~!/Jp(t), with boundary conditions
T
(S¢(t,x) <Vp(t,a:) — p(t, x)%)) no(z) =0, (t,x) € [0,T] x My
p(0,2) = p(0,2) = po(a) veny Y
©0(0,2) =z, z € My

By a solution of the above system of differential equations and boundary conditions, we mean a
couple (¢,p) € HY([0,T], Diff ™(R?)) x L2([0,T], H'(My)) such that p is a weak solution of the
reaction-diffusion PDE (c.f., next section for the precise definition) with the two first boundary
conditions in (14) and, for almost all ¢ € [0,T], ¢ verifies the last three equations in (13) with the
last boundary condition in (14). Our main result is the following existence and uniqueness of the
solution under adequate assumptions:

Theorem 3. Assume that V — CS”H(Rd, R?) with m > 2, that R and @ are Lipshitz and bounded,
and that on every bounded subset B of Diff ™(R?) for the distance d, ~, we have:

1. The linear tensor ¢ — A, is Lipshitz on B.

2. [Folloo = Supgep(asg) | Fy(z)!| is bounded on B.

11



Then, for every pg in L?(My), there is a unique solution (p, p) € H* ([0, T], Diff ™(R?))x L2([0, T], H'(My))
to (13).

Most of the rest of the paper is devoted to the proof of this result, decomposed into the following
steps. In section 3, we fix a time-dependent deformation ¢ — ¢(t) and show the local weak existence
and uniqueness of solutions to the reaction-diffusion equation on the corresponding moving domain.
Then in section 4, we derive a number of necessary estimates on ¢ which, combined with section 3,
lead to the result of Theorem 3 by a fixed point argument.

3 Analysis with prescribed moving domain

Before studying the fully coupled system (13), we will first restrict to the simpler situation of a
reaction-diffusion equation on a moving domain but for which the deformation is fixed and prove
preliminary results of local and global existence of weak solutions for this case. Note that, in the
Lagrangian formulation we consider, this amounts in a system of reaction-diffusion equations with
time-dependent diffusion tensor and boundary condition for which several existence and regularity
results have been showed in the past, see e.g. Ladyzenskaja et al. [1988], Burdzy et al. [2004],
Goudon and Vasseur [2010]. These are however derived with slightly different settings and sets of
assumptions than in the present work and thus, for the sake of completeness, we provide detailed
proofs of the weak existence results as well as bounds on the solutions that we will need for the

proof of our main theorem.

3.1 Weak existence for the reaction-diffusion PDE on a moving domain

In all this section, we assume that m > 2 and we slightly extend our general notation. We let ¢
denote the initial time and take n > 0, [to,to + 1] C [0,7]. We assume that an initial deformation
o1, € Diff "(R?) is given at tg, together with a time-dependent deformation ¢ € H'([to,to +
n], Diff ™(RY)) with ¢(tg) = idga (so that ¢z, and ¢(tp) denote different objects). Both ¢, and
@ are assumed to be fixed in this section. For convenience, we shift the reference domain to
My, = ¢1,(Mp). The diffusion tensor S, is then fully specified and given by, for all ¢ € [to, o + 7]
and all x € My,:

T
Su(t,2) = (De(t, )™ (Faop, © 9(t,2) ) diag(ri, r2,3) (Fowop,, o ¢(ta)) Delt,a) ™"
(15)
3.1.1 Preliminary results

As a first step we consider the simplified setting in which the reaction term is replaced by a time-

dependent function f(t), introducing the following system:

d . VJe(t, x)
ap(t,x) = div <Jg0(t, 7)Sy 1) (t, T) (Vp(t,x) — p(t,x)w)> + f(t)

[So(t.2) (Vp(t2) - p(t,2) T )| Cno@) =0, (1,2) € [to,to + 1] x DM, (16)

p(to,x) = pi,(x), x € My,

12



We will assume that f € L%([to,to + 1], H1(My,)*) and rewrite (16) in a weak form. We will look
for a solution p € L?([tg,to + 1], H1(My,)). Introduce the operator

L0+ L*([to, to +n), H (My,)) = L*([to. to + 0], H' (My,)")
defined by

to+ Y
Lo ) = /t " <<S¢(t) Vhi(t), Vho(t)) 2 — <h1(t) Set) %,th(t)>m> dt

With this notation, the first equation in (16) can be rewritten as dip + L, op = [ (recall that
the notation O;p refers to the weak derivative of p with respect to time) and the second one is
automatically derived from identifying boundary terms after integration by parts. This yields the

new formulation

{atp+£<p,0p—f (17)

p(t(), ‘73) = Pty (x)
Note that the first equation implies, in particular, that &;p € L?([to,to + 1], H1(My,)*)), and The-
orem 1 ensures that prescribing an initial condition at ¢ = ¢y is meaningful. For technical reasons,

it will be convenient to make the change of function q(¢,z) = e *p(t,z) (for some A\ > 0 to be
specified later) and rewrite (17) in terms of q, yielding:

{ oalt,x) + Lo ra=e f(t)

(18)
q(to, r) = e Mopy (z), x € My,

where L, » : L*([to, to+n], H (M, )) = L*([to, to+n)], H' (My,)*) is defined by L, xh = A+ Ly oh.
With this notation and these assumptions, we can now state the main result of this section:

Proposition 1. With the assumptions above, for all p;, € L?(Mj,), the system (18) has a unique
weak solution on [tg, to + 7).
We first address the case of an homogeneous initial condition with the following lemma.

Lemma 2. Suppose that the frame field satisfies

sup } HF_(1 oo < 0.

t)owt
t € [to, to+n #lt) o e

Then there exists A(¢) > 0 such that for any g € L?([to,to + 1], H'(My,)*)), the problem

oq+L,a=g
q(to) =0

has a unique weak solution q that belongs to L?([to, to + 1], H*(My,)).

Proof. The proof is mainly an application of Theorem 2. We only need to choose A > 0 such
that the operator Ly, is bounded and coercive. Since ¢ € H'([to, to + 1], Diff "(R?)), we have
¢ € C([to, to + 1], Diff ™" (R?)) and as s > 2

B, = max{ max _||¢(t) — id|[200, max ng_l(t) — idHl,oo} < 00.
t € [to, to+mn] t € [to, to+7]
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Recall also that
T
Sy(t:7) = (De(t) ™ (Fawop, o (1)) diag(ri,ra,3) (Fawop, o (1)) De(t)™"
and the columns of Fi, ), () are unit vectors, so
ISt llos < € B2 for all t € [to, to + 1]

and )

ISl < €B3 <t€[ts01’1g+ | IF, own Hoo> for all t € [to, to + 7).
(Recall that € is our notation for a generic constant.) It follows that there exist two constants o,
and S, (depending on ¢) such that ay|z|? < 27S,2 < B,z for all t € [to, to + 1] and z € R? and
therefore we have

(Lo nha | 2]

to+ T
[ (A (ha(8). ha(D)) 12 + (S ) Vha(8), Vha(t)) 12 — <h1<t> S, 2if§f;)) , th<t>>L2) dt\

to+
<€) [ (IO Wralolle + 1902 ka2 + Wia Ol [ Vh®)]12)

to+n
<(r+e,) / 311 () ar1 ([ (8)]| 1t
to

< 3 A+ €) [|hallzz (o, torn), 1 (M) 1h2llL2((t0, to+n), 11 (011,))

which shows the boundedness of the operator L, x. Moreover, for any ¢ > 0:
(ﬁso,kh | h)

to+

-/ ! (A IR(OIZ2 + (S, Vh(E), Vh(E)) 12 — <h<t> S ) ,Vh<t>>L2) dt
to+

> / "B + B IVAO)22 — € ()] 12 VA 12) di

to+n 1
L7 (MR + 8, 19001 ~ € (5 013 + 5 VAR ) ) at

_ W’((A 52 ) IOl + (3, - 55°) 1912 ) ar

Now, choose £(¢) > 0 and A(¢) > 0 such that

Coe ¢
6@—T>0 and A—?:>0

and the above inequality leads to

. Cpe
(ot 1) 2 min {3~ 32,8, = 25 Wil 0 can,

This shows that of L, ) is coercive and concludes the proof of Lemma 2. O
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Existence and uniqueness in the case of a non-homogeneous initial condition follows as a corol-

lary.

Corollary 1. Under the same assumptions as in Lemma 2, there exists A(¢) > 0 such that for all
g € L([to,to +n), H(My,)*) and ¢, € L?(My,), the problem

q(to) = qto
has a unique weak solution q € L?([to,to + 1], H'(My,)) N C([to, to + 1], L*(My,)).

Proof. According to Theorem 3.2, Chapter 1, in Lions and Magenes [1972], there exists w €
L?([to, to + n], H'(My,)) such that d;w € L*([to,to + 1], H'(My,)*) and w(0) = ¢q4,. Using the
previous lemma, let q be the solution to

Y

Orq+Lyrq=9g— 0w — L, \w
q(to) =0

then q 4 w is a solution to the original problem. Uniqueness is clear from the uniqueness in Lemma
2. O

3.1.2 Existence of solutions on a moving domain

Still assuming that t — ¢(t) is given, we now consider general reaction-diffusions on the moving
domain, still using a weak formulation, which becomes, introducing the nonlinear operator R, :

p(t.2) = Jo R(p(t,2)/J(t,7))

{(%p + Ly 0P =Ryo(p) (20)

P(t0, z) = Pty ()

Theorem 4. Suppose that the reaction function R is Lipschitz continuous. Under the conditions
of Lemma 2, for all p,, € L?(M,,), the system (20) has a unique weak solution on [tg, g + 7].

Proof. Let us fix py, € L?(My,). Relying again on the change of function q(t,z) = e *p(t,z), the
reaction-diffusion system (20) becomes:

{@q + Lo xa=Rpa(q) (21)

q(to, r) = qge ()

with q¢, = e*/\topt0 and Ry A (q)(t,z) = e*’\tR%o(e)‘tq)(t, x).
Let 0 < 6 <7 to be fixed later in the proof and consider the space X := C([to, o + 6], L2(Mj,))
equipped with the norm

hllx = h(t .
Ihllx = ,_max W@z

Given h € X, let

e)\t
gan(t) = MR ( Jgf(g)) Jo0),
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then gy, € L%([to, to + 6], L*>(My,)), since Jo and 1/Jip are uniformly bounded on [to, to + 8] x My,
and |R(z)| < C (1 + |z|) by Lipschitz continuity of R. From Corollary 1, we know that there exists
A > 0 that may depend on ¢ but not on A such that

O+ Lo ad =g n
a(te) = e Mopy,

has a unique weak solution for all h € X. Denote this weak solution by q = S(h) € L*([to,to +
8], HY(My,)) N X.

We now show that S : X — X is a contraction when § is chosen small enough. Let hy, ho € X
and q; = S(h1), g2 = S(h2), so that

a1 + Lo adr = gany, € L*([to, to + 6], H' (My,)*)

and
Ohdo + Lo adz = gr ny € L*([to, to + 6], H' (My,)*).

It follows that for almost all ¢ € [tg, to + ]
(9 (@ = a2)) (1) + (Lor (a1 — @) ) (1) = (910 = 90.0) (1) € L¥ (M) € H' (M)

Evaluating at (q1 — q2)(t) € H'(M,,) gives

((9r(ar = a2)) ()| (a1 = a)(®)) + ((£o7 (a1 — a2) ) O) | (a1 = az)(1))

(22)
= ((9rm = 90m)®) | (@1 — a2)(®))
As a result of the coercivity of the operator £, x shown earlier, for some constant &, > 0:
((£ortur =u2))(®) ] (a1 = a2)(t)) = € ll(ar — a2) (O3 (23)

We can now combine Lemma 1, (23), and (22) to obtain
(@:ll(ar — a2)()IZ2) (1) + €, [l (a1 — a2) ()17

< (9 (ar = a2)) ] (@ = a2)®) + ((Lor (a1 = @) )| (@ — a2)(1))

N | =

< [(gx, n = 9xn2) Ol 22 [[(a1 — a2) (t)]| 22
g

- @ — a0l

1
< — lgan — 9 n) ()72 +

for any € > 0. Choosing a small enough e, we can get

(Ol (ar — a2)()172) (1) < €o (g, my — 9, ma) (D) 172
< € rll(h1 — ho) ()72
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Consequently, for all ¢ € [tg, to + 4],

(a1 — a2) ()72 = [l(ar — a2)(to)]|7 +/ (Ocll(a1 — a2)(-)[I72)(s) ds

to
t
<e,n / 1 — ha)(s)|22 ds
to

< Cur 6 ||h1 — ha|%,

which further gives
lar — az2llx < \/€ur6||h1 — hof x.

Picking 6 > 0 such that \/W < 1 then makes the mapping S contractive and thus, by the
Banach fixed point theorem, there exists a unique weak solution q to (21) on [tg, tg 4 d], which leads
to the weak solution p(t,z) = e*q(t,z) of (20) on the same interval. Furthermore, we see that d
only depends on the deformation ¢ and not the initial condition p;,. Therefore, applying the same
reasoning at to+ ¢ with initial condition p(to+9, ), we can extend the solution to [tg, to+2J] and by
extension to the whole interval [to, %o + n]. Then the uniqueness of p is an immediate consequence
of the uniqueness of the solution of (21) on each subinterval of length ¢, thus completing the proof
of Theorem 4. O

As a direct consequence of Theorem 4, we can finally obtain the following result of existence of
weak solutions to the reaction-diffusion PDE on the full time interval [0, T

Corollary 2. Assume that m > 2 and that R is Lipschitz. Let ¢ € H'([0,7T], Diff ™(R?)) with
¢(0) = idga such that sup;cpo 7 ”Fg(i)noo < 00. Then for all pg € L?(My), there exists a unique
weak solution of (20) on [0, 7.

3.2 Bounds on the solutions

We now derive some control bounds on the solution of (21) with respect to the deformations ¢
and ¢y, that will be needed in the next section. Let us fix » > 0 and denote B, = B (id), where
the closed ball is for the distance defined in (1). We consider deformations ¢ € C([to,to + 1], Br)
i.e., such for all t € [to,to + 7, le(t) — id||meo < r and ||o(t)™ — id|lmoo < r. Note that it
follows from the results and proofs above that we can find A, > 0 and «, > 0 such that for all
¢ € C([to, to +n), By) and q € L*([to, to + n], H'(My,)):

(Loor )(®) | ) = ar [a®) s, (24)

and that we have a unique local solution which we shall rewrite py, ,,, of (20) given by Theorem 4.
We also write qg, o, = € "'y ;. -

Lemma 3. Let q € L*([to,to + 1], H(My,)) and ¢,v € C([to,to + 1], Br). For almost every
te [t()ato +77]7

(Lo, @) () = (Ly, 2, Q)| 1(a1)= < Cr lp(8) = P llmoo [|a) 11211,
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Proof. A direct computation gives for all h € H'(M,)

(Lo @)®) = (Lo @) | 2)] < [((Sea) = Suw) Valt), Vi) .
[0 25 %2) ),

Since, for all t € [to,to + 1],

max{[[(t) = id|lm,o0; lo(t) ™ = idllimcos 1¥(E) = idllm,oor (1) = id]lm,oc} <1,

and m > 2 we have

max{us@muoo, 1ol

E2n Rl on BEL

and

Jo(t) J(t) < & fle(t) = (E)l2,00-

The assumption made on the frame field further gives

‘V(Jw(t)) V(Jp(t))

.

1Se) = Syt lloe < & ll(t) = 9 (#)]]2,00-

Combining the previous estimates and using the Cauchy-Schwarz inequality, we conclude that

((Cor@® = (Lo a)®) | h)] < € llot) v(2)

Ol aseg Wl (aty

= (L2, @) @) = (Lo x DOl m1(a1)+ < G 1) = D) llimco A 1 (a1 -

From this result, we get the following estimates for the solution qg, ¢,

Lemma 4.
to+n 9
lla, QOtO(t)HLQ <&y, forallte [to,to +m] and /t llae, o (t)”Hl(MtO) dt <&,
0
Proof. From the definition of qy, 4, , we see that for almost all ¢ € [to, to + n):

(0,01 )(0) | Gy (1)) + (Lo Gy O | Gy (1))

/Mto e MR < ei\fr;((lt()t) > Jo(t) ap, o, (1) d

&
2

1

< " I RIIZ, vol(My,) + EHQ%wO(t)H%% (25)

Using Lemma 1 and the coercivity of L, , we then get

1
) (&t lag, et ( ”L2 ( Ay, o1, ) t) | ay, Pty (t)>

<,
<5 - || RIIZ, vol(My,) + Hq%wto Ol (26)
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It follows that

t
||qcp,sato (t)H%? = ||Qs0730t0 (tO)H%Z +/t (8t||Q<p,sato(‘)H%2) (s)ds
0

t
< lla(to)lI72 + € T [|RI3, vol(My,) +/t laig, g1 () 1172 ds,
0
so Gronwall’s lemma gives

leg, o, ®)llz2 < (la(to) 172 + & T | RIIZ, vol(Myy)) e = €, (27)

since My, = ¢, (Mo).
Now, using (25) and (24), we obtain

¢, 1 1
ar i, ey O (01, ) < 5 IR|1Z, vol(My,) + 5 lge,er, ()72 — 3 (O llag, o, (DN172) (2.

Integrating on [to, to + 7], using Lemma 1 and (27), we obtain

to+n 9
o / leteerg (01301,
0

¢ T 2 1 [t 2 1 2 2
5 IRIZ vl (M) £ 5 | g, (D13 dt = 5 (g (o +0)IEa — g,y (10 2
0

& T T
< ST IR ol + (5 +1) €,

IN

A

that is
to+n 9
L 10 Ol a2 < ey
0

This leads to the following Lipschitz regularity of py, ¢, (t) with respect to .

Lemma 5. For almost all ¢ € [ty, to + 7],

1Pe. o1y (1) = Py (Dl L2(0r) < Crpry  sUp [[0(8) = ¥(5)[lm,00
s€ [t07t0+7ﬂ

Proof. Since

Ar Ar
1Pty (8) = Pty (Ollz200) = 7 g, = v,
(Mt())

it suffices to show that

lag, ®tg (t) — Qy, o1, (t)HLQ(MtO) < Q:mpto sup  [lo(s) = ¥(8)[lm,c0-
s€ [t07t0+77]

Recall that gy, 4, and qy, o, satisfy

Mt e, o1, (t)

(Drap, 010 ) (1) + (L, A, A, 00 ) (E) = e R( Jo(t)

Ao, o1 (tO) = el Pt

) Jp(t) for almost every ¢
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and

Art
(Or Ay, g1y ) (1) + (Lo, 2, Ao, 00 ) (1) = e Mt R(W) J(t) for almost every ¢ .

Ay, ¢, (to) = e o Pio

Lemma 1 and coercivity of L, ), again give

1
) (at ”(Q%%O - qﬂ%@to)(')”%Q(Mto)> (t) + ar [|(qy, Prg qucpto)(t)||12ql(Mt0)
< (0@ 1y = B ) D) | (Gipty = g )O) + (Liprr (@iprg = i) B | (g = ) (D))

= = (((Lon = Lo2) iy () | (g — U, (1)

or ] ) g, (1)
+e A <R<J;(f)> J‘P(t) - R((M(%) J¢(t)v (qso,@to - q1/1,<,0t0)(t)>

and using Lemma 3, we find

L2(My,)

1
5 (001, = Qo) OBar)) O+ 0 1@ty = ) O

<& [lp(t) —(t)]
+e, (

myo0 168, or (D1 E1 (010) (G, 00 = Qw010 ) (|1 (111,

(e, 0ty = Qo1 ) (D) L2(01,) + [ 0(2) = w(t)llm,oo) 1(Qg, 0, = Ao, 1) (D) | 22 (211

1 €
< € (G2 1000 = VO 100,00 Oty + 5 10— G2 ) Oy

1 1
e, (H(qw,% = OB at) + 5 160) — B0 + 5 N — qw,%xt)u%z(MtO)) '
By choosing € > 0 such that €,¢/2 < «,, we obtain
(1 tp = i) O 2a1,)) @
¢,
< 160) = 5O Broe (& + Z 1000 Oy ) + 3 1602, = i) O,
2

<& (Ilp®) =¥ W1no0 (14 1w,y OFr1(a1,)) + 1@y = Do) Ol ) -
Thus for almost all ¢ € [tg, to + 7]

H (q% SOtO - ql/h @to )(t) ||%2 (Mto)

t
= ooy — @) 1) o+ / (011t 4y = A0 ) V320, ) (5)
0

t

et ey D13 dt) € [ 1@y = ) o,
0

<0+e ool (n+/
t

[to,to+n]

We conclude by Lemma 4 and Gronwall’s inequality that

H(q<p,<pt0 - qw,@to)(t)HL? < Coy, o — oo

20



4 Proof of Theorem 3

We now move on to the proof of the main result. We will first prove that a unique solution to

(13) and (14) exists locally using again a fixed-point argument before finally showing that the

solution is defined on [0,7]. As done in the previous section, let us again consider to € [0,7") and

o1, € Diff "(RY), py, € L?(My,). By the assumption on A, there exist » > 0 and £4 > 0 both

depending on ¢y, such that, letting B, = B..(id), we have {¢ o ¢y, : ¢ € B} C Diff™(R%) and
[Agopi, = Apogy lzv,ve) S Lallpo vy, = opilme forall ¢ € B,.

Considering an arbitrary interval [to,to +n] C [0,T], let Sy o, = C([to,to + 1], Br) and define
Ly Sy oy = Cl[to, to + 1), id + Ci* (R, R?)) by

y(0)(t) = id + / Ve () 0 () ds, (28)

to

where .
Vo, o1, (5) = (w K‘; + Acp(s) 0 ¥t )_1j<,0, Ptg (5)

U, g (5) | V1) = / o X Qi () 097 6 (vt o
(s, ot (Mo

and Py, o, is the solution of (20) given by Theorem 4.

For the mapping I3, to be well-defined, one needs to show that the integral in (28) is finite,
which is justified by Lemma 7 below. For the different proofs that follow, we shall recall first a few
results on vector fields, flows and diffeomorphisms.

Proposition 2. Let u,u € V and ¢, € C([to,to + 0], By). For all ¢ € [to, to + 1], it holds that
(i) [luo@(®)llmoo < € llullm,oo;
(i) [luop(t) —uo(t)|lmoo < Crlltllmt1,oolle(t) = U (E)|m,c0,
(ifi) [Juop(t) = u' 0 o(t)[lmoc < Cpllt = | 00-

Proof. All these inequalities follow from the Faa di Bruno’s formula on higher order derivatives of
composition of two functions. They can be found e.g., in Younes [2019] section 7.1. O]

Furthermore, one has the following controls on ji, o, and vy, o, , which are simply the general-
ization of the estimates of section 6.2 in Hsieh et al. [2020] for m = 2:

Proposition 3. Let ¢,1 € C([to,to + 1], By). Then for all ¢ € [to, to + 1], we have
(1) [, 0o Ollve < ev Qoo [IxlIL1 == 7
(1) (v, ory (Dllmt1,00 < Sl 0y (Bl < DT
(1) ([0, 010 (F) = Vg, i (Dm0 < Z2Call@(t) 0 0rg = (E) © Dty llm,oo + X g, 010 (8) = Gt g (8) v

(The constant ¢y was introduced in Equation (2).)
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Proof. (i) For any v' € V, we see that:

(G g (D)) < / ] 1@Qlloe Idiv o/]dz < 1|Qllsolol1.00 ( / |x|dx>
(s, pty (Mo)) (s, ot (Mo))

< ev[|QllsollVlIv Xl 1

which thus leads to ||, g, (t)[lv+ < J.

(ii) We have vy, o, (t) = L1, ¢1o (1) Where L := w K‘;l + A
that for all v € V, ||v||v < (1/w) [|L ||y «. Indeed

1 > 1 i
(Geeiv) = (Gl (o + s o)

f

oy, SO to prove (ii), we first show

1
= E va + KVALp(t)ocptO'U v

1 2
= [|v[f + —3 [V Aty 0 i, ol + = U BV Ap(n) o, V)V

1 2
= [olli + =5 1Ky Ao, vIE + = (Ao, v 1 0) 2 (I

where the last inequality follows from the positive definiteness of the operator A,
Together with the assumption that V < CJ'™(R%,R?), it follows that:

(S)O(Pto'
Cy . Cy
Wty Ollmt oo < evlltg, iy (Vv < lljgugny e < .

(iii) Writing now Ly, = w K;,' + Aptyopy, and Ly = wK, 4 Ay(t)o gy, » We have:
|’v<P74PtO (t) - ,Uw7 SOtO (t)Hm,oo = HL;IjSDa ipto (t) - L’Llljzpvsoto (t)Hm,oo
<UL (Girorg (1) = Gisony () Ibmoo + (L5 = L Vs g (8)

Note that, from the proof of (ii), we obtain in particular HLQIH‘Z(V*, v) < 1/w and therefore:
125" (Geotg ) = g () e < 125" (g (1) = g (8)) Nt 1.0
< 25" (oo () = Gy ) Iv
< Wl (5) = Gy ()

Moreover, using (i), [|(L," — L;1>j¢,wo ()]lm,oo < 1L — qulf\z(v*, vy J and we also have:

~1 -1 -1 B —1
HLap _Lw ||$(V*,V) - HL<p (LZZJ LSO) Lqp HX(V*,V)

5 (= Ao 2

IN

1L 2o vy 1Ap@y o, — Apyo o llzv,vey 1L5 2+ vy

IN

1
2 [ 001, = Apt)opr, l2(v,ve)

la
< o2 ng(t) © Pty — ¢(t) © (ptOHm,OO

where the last inequality follows from the Lipschitz assumption on the operator A.
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Using the estimates of the previous section, we can in addition show the following Lispchitz

property of jy o, -

Lemma 6. For all ¢ € [ty, to + 7],

T, 0t (8) = Gy prg @l < € sup lp(5) = P(8)l2,00 = Ty [19 = Ylloo-
sE [t[),t()—‘r'lﬂ

Proof. From the definition of j, we make a change of variables to obtain
‘(j%soto (t) — jw,wto () | U’)‘
| X, (06 () (~dive)da
@(t) (M)

X QPh ()06 () (~dive!)daf
Y (t)(Myg)
</,

< [Vxllse () = ¥(®)llse 1 Qlloo 1V l1.00 1T0()loc vOL(My,)

+ Q:’V’,<Pto sup  le(s) — ¥(s) 2,00 10" 11,00 [1Jp(t) I vOL(Mz,)
s € [to,to+n]

+[1Qllso [1V'll2,00 ll9(t) = ¥(B)lloo 170() oo vOL(My,)
+ & [[Qllso 1V'll100 6(t) = ¢(B)lloc vol(My,)

X0 @(t) QP (1) (—dive'op(t)) Jo(t)

=X B(t) QP (1) (~dive 0 (1) Jp(t)|da

0

< Gy o = Yllo 101l

where we have estimated term by term and used Lipschitz continuity of ) together with Lemma 5.
O

We can now go back to the definition of the mapping I5,.

Lemma 7. For all ¢ € C([to,to + 1], Br), ¢1, € Diff ™(R?) and py, € L?(¢1,(Mp)), the Bochner
integral in (28) is uniformly bounded for ¢ € [to, to + 7].

Proof. Using Proposition 2, we find that for all s € [tg,to + 7):

CvJ
[[ve, ©to ($)llm,o0 < HUso,ng (8)lm+1,00 < o

which gives for all ¢ € [to, to + n):

t ¢
¢ .cy
[ Wi (90 @6 ds < [ €l (3)noo < 25T <
0 0
where the first inequality follows from Proposition 3 (i). O
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Note that in addition, if n is taken small enough such that cr% Jn < r then I maps Sy ¢,
to itself. The goal is now to show that I3 is a contractive mapping on Sy o, . Indeed, for any

P, € Sy, gpy:

1T0(0) = Iy(¥)llo = sup ([ T()(t) — Tp(¥0) (£) llm,co
t € [to,to+n]

t

< sup [V, 010 (8) © P(8) — Vy, oy, (8) © Y (8)lm,00 d
t € [to,to+n] Jto

to+n
< [ (I (51 005) = iy (9 9 05 e + [ty (5) 0 5) = 0y () 0 005 ) s

to
Using Proposition 2 (ii) and (iii), we get:
115(0) = I(¥)

to+n
<& [ (10 Mo 190 = (5o + 11y 5) = 0y ) ) s
0

to+n cv
<& [T (L T106) 6
to w
J 1. .
+cy EKA H(,D(S) O Pty — ¢(8) © SOtOHm,oo + a ”]%soto (8) - J¢',‘Pt0 (S)HV* ds
Now using Lemma 6 above, we obtain the following inequalities:
115 (2) = I ()l oo

to+n cvd cyJ c
<c | ((V # a, )1906) = 0+ L iy b el) - w<s>||m,oo> ds
0

w w s € [to,to+7)
(29)

< g M e — ¥lloos
It follows that there exists a small enough n > 0 depending on ¢y, and r such that I, is a well-
defined contraction on Sy o, and, by Banach fixed point theorem, we get the local existence and
uniqueness of a solution on [tg, to + 7).

By concatenating local solutions, we can construct a unique maximal solution ¢ defined on a
maximal interval Iiax, and either Iy = [0,7”) for some 77 < T or Iyax = [0,7]. To show that the

solution is defined over the entire interval [0, 7], we first prove that ||¢(t) — id||;m,c0 is bounded on
Inmax. For all t € Iy, a solution ¢ satisfies

o(t,x) ==z +/0 Ve (s, (s, )) ds,

which gives for all z € R%:

t t c . c
olt,z) — o] < / o (5)llso ds < / Vi)l ds < T, (30)
0 0 w w
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Moreover, we have:
t
Dot z) = Iy + / Dug (s, p(s, x)) Dg(s, z) ds,
0

where I; denotes the dim-by-dim identity matrix which leads to

|Do(t,x) — 1| = /0 (D%(s, @(s,x)) + Duy(s, ¢(s,x))(Dp(s, z) — Id)) ds

IN

t
YT+ / Y J |Do(s,x) — I,| ds.
w 0o W
By Gronwall’s inequality
9% 9%
|Dp(t,z) — I < — JTexp(— JT) ) (31)
w w

For the second order derivatives, we see that:

t
D2e(ta) < [ (10000 p(s.0) Do)
+ [ Dvg(s, (s, 2))|[D%e(s, )] ) ds.

and inserting the bound (31) into the above, we obtain
t
Dp(t0)] < (14 B (L) + [ % [DPp(s,2)] ds.
w 0o W

Using again Gronwall’s inequality, we get that |D?¢(t, x)| is bounded by a constant dependent on
J uniformly in ¢ and x. Then by a simple recursive argument, we show similarly that there exists
a constant Bj such that for any 2 < k < m:

|D¥p(t,z)| < By, Vt € [0,T"), Yo € R% (32)

Finally, with (30), (31), and (32), we conclude that
le(t) = id|lm,ecc < €.

The same inequality holds for ¢~1(¢) for T € [0,T"). Indeed, from standard results on flows (c.f.
for instance Younes [2019] Chap. 7), one has that for ¢t € [0,T”), the inverse map (t) := ¢(t)~*
is obtained as the flow of the ODE dz/ds = #()(s, z), with 5(!)(s) = —Ug(t—s); and one can repeat
the analysis above with ¥ in place of v. Importantly, this tells us that we can choose r = €;
independently of T".

Now we can show that o(t) has a limit in Diff™(R?) as ¢ 1+ T’ by the Cauchy criterion. Let
(tr)721 C Imax be a sequence such that ¢, 1 T". For k < I, we have

lo(ti) — o(t) oo < / 06(5) © 9(5) oo ds

t
< [T evlolvs

ti

g cy o .

< / & Y lp(s)llv- ds
tr w

¢
< IV 7 (4 — 1),
w
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which shows that (o(t,))32; is a Cauchy sequence in Diff ™(R%) for |||/, co- It follows that ¢ — (t)
has a limit ¢(7") as ¢ + 7" in the complete space idga + C5*(R?, RY). Similarly, replacing v by @, we
find that ((t)~! also has a limit at 7", which is necessarily ¢(7")~!. This shows that o(T") € B, so
that the solution can be continued at ¢ = 7", which contradicts that [0,7”) is the maximal interval
of existence.

From the above analysis, we also obtain that ¢t — ¢(t) is bounded on [0,7] for dy,~ and
therefore we have sup, ¢ o, 7] HF;(;HOO < 00. Thus Corollary 2 applies and it follows that we get a
weak solution p to the reaction-diffusion PDE that is also well-defined on [0, 7], which concludes
the proof of Theorem 3.

5 Discussion

We introduced a new general longitudinal model to describe the shape of a material deforming
through the action of an internal growth potential which itself evolves according to an advection-
reaction-diffusion process. This model extends our previous work in Hsieh et al. [2020], which did
not include any dynamics on the growth potential beyond pure advection. The present paper was
mainly dedicated to proving the long time existence of solutions to the resulting system of coupled
PDEs on moving domains. In contrast with other related reaction-diffusion systems on moving
domains which often only yield short-time existence, the global existence is here made possible in
part thanks to the use of a particular regularization energy on the deformation.

1 1
0.3
—1 -1
9 9 9 0.5 2
(a) Mesh of the initial shape. (b) Initial potential centered at (—0.5,0.3).

Figure 2: Synthetic initial shape and growth potential used in the numerical simulations.

Although this paper focuses on mathematical aspects, simple numerical simulations of the evo-
lution equations given by (13) and (14) can further illustrate the potential interest of this model in
future applications to the study of growth or atrophy of biological tissues, which was the original
motivation behind our work. We present a few such preliminary simulations using the simple syn-
thetic 2D domain shown in Figure 2 (a) as initial shape M. We choose the tensor A, to be the
isotropic elastic tensor given by (7) with Lamé parameters A = 0 and = 1 on (M) as described
earlier in Section 2.2. The initial potential pg is a shifted radial function compactly supported in a
ball centered at ctrye = (—0.5,0.3) as shown in Figure 2 (b). Specifically, it takes the form

|z — cf”

2
po(x;c,r,h) =h < R 1> L (). (33)
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with ¢ € My, r > 0 and h > 0 being the center, radius and height of the potential function respec-
tively. We also adopt simple reaction-diffusion and yank models for the purpose of illustration. For
the reaction-diffusion model, we let the diffusion tensor be a constant S, (¢, z) = diag(0.025,0.005),
which diffuses five times faster along the x-direction than along the y-direction. The reaction and
yank functions R and @ are both C? piecewise polynomial supported on [pmin, Pmax] = [0.01,1].
Their plots are displayed in Figure 3.

0.15| | 0.15}
= =
~ e
0 0
0.01 1 0.01 1
p p

Figure 3: Plots of the functions R and @ used for the reaction and yank expressions in the simula-

tions.

With the above selection of parameters and initial conditions, the evolution of the growth
potential and the resulting deformation of the domain’s shape are shown in Figure 1. We note that
the potential eventually becomes constant over the whole domain after which the deformation stops.
One of our main future subject of investigation will be to tackle the inverse problem associated to
this longitudinal model, generalizing the work done in Hsieh et al. [2020]. In other words, if we
observe the initial and final (plus possibly some intermediate) domain’s shapes and if a parametric
representation of the initial growth potential as e.g. (33) is given, is it possible to recover this initial
potential, in particular its location? This issue relates to a long-term goal, in medical imaging,
to infer the early impact of neuro-degenerative diseases based on later observations, allowing for a
better understanding of their pathogenesis.

To give a hint at the feasibility of such an inverse problem in a simple controlled setting, we
consider the deformed domains obtained with the simulation of Figure 1 at different times 7" and
for each T”, we run our evolution model up to 7" but by varying the center ¢ of the initial growth
potential in (33) (all other parameters in the model being kept the same). The shape of the domain’s
boundary at 7" for the different choices of ¢ is then compared to the ground truth (i.e. the one
obtained for ¢ = ¢4ye). To quantify this difference between two boundary curves, we evaluate their
distance for the varifold metric introduced in Charon and Trouvé [2013] that is known to provide
a robust measure of proximity between curves. The results are shown in Figure 4 in which the left
column displays the ground truth domains for the different 7”7 while the middle and right columns are
plots of the varifold energy with respect to the two coordinates of ¢ with bright colors corresponding
to lower values of the varifold distance i.e., closer proximity to the ground truth domain. As can
be seen and expected, for each time 7T”, we obtain a minimum distance of 0 at ¢ = c¢ye but one
can further notice that the energy is relatively well behaved around that minimum: for instance we
do not observe empirically the presence of additional local minimums. We also note that the global
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d) T’ = 25

Figure 4: Effect of the growth potential’s center ¢ on the deformed domain at different times 7”.
On the left column are the ground truth domains obtained with ¢ = ¢yye = (—0.5,0.3). The middle
and right column are plots of the varifold distance to this ground truth domain when varying c.
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minimums appear more pronounced at intermediate times than at early or late times.

Although very preliminary, those results suggest that formulating the inverse problem as the
minimization of the varifold distance to the observed final domain over the parameters of the initial
potential is an a priori viable approach for this problem. In future work, we therefore plan to analyze
the well-posedness of such a minimization problem and investigate efficient methods for numerical
optimization, in particular to evaluate the gradient of the energy.
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