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Abstract

This paper studies a longitudinal shape transformation model in which shapes are deformed in

response to an internal growth potential that evolves according to an advection reaction diffusion

process. This model extends prior works that considered a static growth potential, i.e., the initial

growth potential is only advected by diffeomorphisms. We focus on the mathematical study of

the corresponding system of coupled PDEs describing the joint dynamics of the diffeomorphic

transformation together with the growth potential on the moving domain. Specifically, we prove

the uniqueness and long time existence of solutions to this system with reasonable initial and

boundary conditions as well as regularization on deformation fields. In addition, we provide a

few simple simulations of this model in the case of isotropic elastic materials in 2D.

1 Introduction

We study in this paper a system of coupled evolution equations describing shape changes (e.g.,

growth, or atrophy) for a free domain in Rd. A first equation, modeled as a diffusion-convection-

reaction equation, defines the evolution of a scalar function defined on the domain, this scalar

function being roughly interpreted as a “growth potential” that determines shape changes. The

second equation describes the relationship between this potential and a smooth Eulerian velocity

field and is modeled as a linear, typically high-order, partial differential equation (PDE). The free-

form evolution of the domain then follows the flow associated with this velocity field.

There is a significant amount of literature on growth models and shape changes, where the

dominant approach (in 3D) uses finite elasticity, modeling the strain tensor as a product of a

growth tensor (non necessarily achievable by a 3D motion) and a correction term that makes it

achievable, using this correction term as a replacement of the strain tensor in a hyper-elastic energy
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[Rodriguez et al., 1994]. Minimizing the energy of this residual stress then leads to PDEs describing

the displacement defined on the original domain (assumed to be at rest) into the final one. We refer

to several survey papers such as Menzel and Kuhl [2012], Humphrey [2003], Ambrosi et al. [2011]

for references.

In this paper, we tackle the shape change problem with a different approach. First, we use a

dynamical model of time-dependent shapes, which allows us to analyze each infinitesimal step using

linear models. Second, our model includes no residual stress but rather assumes that a new elastic

equilibrium is reached at each instant. Our focus is indeed on slow evolution of living tissues, in

which shape changes occur over several years and tissues can be assumed to remain constantly at

rest. More precisely, our model assumes that at each time, an infinitesimal force places the shape

into a new equilibrium, which becomes the new reference configuration. The force is assumed to

derive from a potential, itself associated to the solution of a reaction-convection-diffusion equation,

while the new equilibrium is obtained as the solution of a linear equation that characterizes the

minimizer of a regularized deformation energy. Figure 1 provides an example of such an evolution.

Figure 1: Example of shape change in two dimensions relative to a negative growth potential (to

be read from left to right and up to down). The potential is initialized locally, and spreads while

affecting the shape of the domain until reaching saturation.

In our main result (see Theorem 3), we will prove that the full system has solutions over arbitrary

time intervals, and that the shape domain evolves according to a diffeomorphic flow. This result

opens the possibility to formulate optimal control and inverse problems in which one determines

initial growth potentials (within a parametrized family) transforming a given initial shape into a

target shape. Such inverse problems were considered in the multiplicative strain tensor framework

and for thin-plate models in Lewicka et al. [2011], and for crystal growth control, albeit not in a

free-form setting, in Trifkovic et al. [2009], Bajcinca [2013]. The optimal control of free-form surfaces

modeling the interface between two phases was considered in Bernauer and Herzog [2011]. In Bressan

and Lewicka [2018], tissue growth is modeled through a control system evolving as an elastic body

experiencing local volume changes controlled by the concentration of a “morphogen”, which itself
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evolves according to a linear elliptic equation. Our model can be seen as a regularization of an

extension of the model in that paper (we make, in particular, non-isotropic assumptions and our

growth potential evolves according to a non-linear equation), our regularization allowing us to obtain

long term existence and uniqueness results, that were not available in Bressan and Lewicka [2018].

Finally, Kulason et al. [2020] introduce a reaction-diffusion model to analyze disease propagation

and thickness changes in brain cortical surfaces, where changes are happening (unlike the model

studied in our paper) within a fixed domain.

This paper follows and completes Hsieh et al. [2020] (see also Hsieh et al. [2019]), which adopts

a similar approach with a functional dependency of the growth potential on the diffeomorphic flow.

This assumption is relaxed here, since the potential follows its own PDE, with an evolution coupled

with that of the shape. This extension will, as we will see, significantly complicate the theoretical

study of the equations, as well as their numerical implementation.

2 General framework and main theorems.

2.1 Notation

Ambient space, vector fields and diffeomorphisms. We will work in the Euclidean space

Rd. For an integer s ≥ 0, and open subset U of Rd, we let Hs(U) be the Hilbert space of all real

functions on U of Sobolev class Hs = W 2,s. Recall that H0(U) = L2(U).

We denote by Cm0 (Rd,Rd) the set of all m-times continuously differentiable vector fields whose

k-th derivative Dkv go to zero at infinity for every k between 0 and m. It is a Banach space under

the usual norm

‖v‖m,∞ =

m∑
k=0

max
x∈Rd

|Dkv(x)|, v ∈ Cm0 (Rd,Rd).

For a generic function f : [0, T ]× Rd → Rd, we will use the notation f(t) : Rd → Rd defined by

f(t)(x) = f(t, x). We will use C to denote a generic constant and Ca to show a generic constant

depending on a. The value of such constants may change from equation to equation while keeping

the same notation.

Now, assume m ≥ 1. Let Diff m(Rd) be the space of Cm-diffeomorphisms of Rd that go to the

identity at infinity, that is, the space of all diffeomorphisms ϕ such that ϕ − idRd ∈ Cm0 (Rd,Rd),
with idRd : Rd → Rd the identity map idRd(x) = x. Do note that Diff m(Rd) is an open subset

of the Banach affine space idRd + Cm0 (Rd,Rd), with the induced topology. It is also known to

be a topological group for the law of composition [Bruveris and Vialard, 2016], so we also have

ϕ−1 ∈ Diff m(Rd). We can then define on Diff m(Rd) the distance dm,∞ by

dm,∞(ϕ,ψ) = max
(
‖ϕ− ψ‖m,∞, ‖ϕ−1 − ψ−1‖m,∞

)
, ϕ, ψ ∈ Diff m(Rd), (1)

whose open balls will be denoted Br(ϕ), r > 0, ϕ ∈ Diff m(Rd). This is easily checked to be a

complete distance, and it does not change the topology of Diff m(Rd). We introduce it because we

will often need to assume bounds on diffeomorphisms and their inverse at the same time.
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Operators and controlled curves in Banach spaces. If B and B̃ are separable Banach spaces,

L (B, B̃) will denote the vector space of bounded linear operators from B to B̃. Weak convergence

of sequences (xn) in B will be denoted by xn ⇀ x. Denoting the topological dual of B by B∗, we will

use the notation (µ | v) rather than µ(v) to denote the evaluation of µ ∈ B∗ at v ∈ B. We say that

a linear operator A ∈ L (B,B∗) is symmetric if the corresponding bilinear form (v, w) 7→ (Av | w)

is symmetric.

For a given T > 0 and open subset U of a Banach space B, we will denote by Lp([0, T ], U), p ∈
[1,+∞] the space of measurable maps f : [0, T ]→ U such that t 7→ ‖f(t)‖pB is integrable. One can

then define the Sobolev space W p,1([0, T ], U) whose elements f are differentiable almost everywhere,

i.e. the differential t 7→ df

dt
(t) = lim

t′→t

f(t′)− f(t)

t′ − t
exists almost everywhere and

∀t0, t1 ∈ [0, T ], f(t1)− f(t0) =

∫
[t0,t1]

df

dt
(t)dt.

For p = 2, we will simply write H1 instead of W 2,1.

Case in point, for a time-dependent vector field v ∈ L1([0, T ], Cm0 (Rd,Rd)), there is a unique

ϕ : t 7→ ϕ(t) in W 1,1([0, T ],Diff m(Rd)) that satisfies ϕ(0) = idRd and dϕ
dt (t) = v(t) ◦ ϕ(t) for almost

every t.

RKHS (Reproducing Kernel Hilbert Spaces) of vector fields. Throughout this paper, V

is a Hilbert space of vector fields on Rd that is continuously embedded in Cm0 (Rd,Rd) for some

m ≥ 1 (we will write V ↪→ Cm0 (Rd,Rd)), with inner product
〈
· , ·
〉
V

and norm ‖ · ‖V . Since

V ↪→ Cm0 (Rd,Rd), there exists a constant cV such that

‖v‖m,∞ ≤ cV ‖v‖V . (2)

The duality map LV : V → V ∗ is given by(
LV v |w

)
=
〈
v , w

〉
V

and provides an isometry from V onto V ∗. We denote the inverse of LV by KV ∈ L (V ∗, V ), which,

because of the embedding assumption, is a kernel operator [Aronszajn, 1950]. Note that

‖v‖2V = (LV v | v) = (K−1
V v | v).

As an example, the space V can be the reproducing kernel Hilbert space (RKHS) associated with a

Matérn kernel of some order s, and some width σ, which, in three dimensions, implies that V is a

Sobolev space Hs+2. For the specific value s = 3, which we will use in our experiments, the kernel

operator (when applied to a vector measure µ ∈ V ∗) takes the form

(KV µ)(x) =

∫
Rd

κ(|x− y|/σ) dµ(y)

with κ(t) = (1 + t+ 2t2/15 + t3/15)e−t.
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Weak derivatives for Hilbert-valued functions. Following [Lions and Magenes, 1972, Chap-

ter 1, Section 1.3], we define generalized derivatives of functions u : (0, T ) → H, where T is a

positive number and H a Hilbert space as follows. Let D
(
(0, T )

)
denote the Schwartz space of

compactly supported infinitely differentiable real-valued functions defined on (0, T ). The space of

H-valued distributions is

D∗
(
(0, T ), H

)
:= L (D

(
(0, T )

)
, H).

If u ∈ D∗
(
(0, T ), H

)
, its generalized derivative, denoted ∂tu, is the element of D∗

(
(0, T ), H

)
defined

by

∂tu(ϕ) := −u
(dϕ
dt

)
∈ H for all ϕ ∈ D

(
(0, T )

)
. (3)

We can identify any u ∈ L1
loc([0, T ], H) (i.e., u ∈ L1([a, b], H) for all [a, b] ⊂ (0, T )), with the

corresponding ũ ∈ D∗
(
(0, T ), H

)
given by

ũ(ϕ) :=

∫ T

0
u(t)ϕ(t) dt ∈ H for all ϕ ∈ D

(
(0, T )

)
and show that ũ ∈ D∗

(
(0, T ), H

)
. We can therefore see L1

loc([0, T ], H) as a subset of D∗
(
(0, T ), H

)
.

In what follows, we will use the following two results, both taken from Lions and Magenes [1972].

Theorem 1. Let T be a positive number and Ω an open subset of Rd. Assume that u ∈
L2([0, T ], H1(Ω)) and that ∂tu ∈ L2([0, T ], H1(Ω)∗). Then u ∈ C([0, T ], L2(Ω)). (See Lions and

Magenes [1972, Chapter 1, Proposition 2.1 and Theorem 3.1].)

We will also use the following general result on weak solutions of parabolic equations. A bounded

linear map L : L2([0, T ], H1(Ω)) → L2([0, T ], H1(Ω)∗) is coercive if there exists α > 0 such that

(Lu | u) ≥ α
∫ T

0 ‖u‖
2
H1(Ω) dt for all u ∈ L2([0, T ], H1(Ω)).

Theorem 2. Given a coercive bounded linear mapping L : L2([0, T ], H1(Ω))→ L2([0, T ], H1(Ω)∗),

a function f in L2([0, T ], H1(Ω)∗) and an initial condition u0 ∈ L2(Ω), there exists a unique solution

u ∈ L2([0, T ], H1(Ω)) of the parabolic initial value problem{
∂tu+ Lu = f

u(0) = u0 .
(4)

(See Lions and Magenes [1972, Chapter 3, Theorem 1.1, Section 4.3, and Remark 4.3].)

We will also need the following technical lemma. Its proof is a simple application of functional

approximation theorems in L2 and we shall omit it for brevity.

Lemma 1. Let H be a Banach space and suppose that w ∈ L2([0, T ],H) with ∂tw ∈ L2([0, T ],H∗).
Then the derivative in the sense of distributions ∂t‖w(·)‖2H is a function in L1([0, T ]) and equals to

t 7→ 2
(
(∂tw)(t) | w(t)

)
for almost every t.
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2.2 Control systems for shapes

We want to refine the system introduced in Hsieh et al. [2020], that was designed as a mathematical

model representing possibly pathological shape changes in human organs or tissues. The control

system starts with an initial volume, and exhibits a time-dependent deformation induced by a vector

field on the domain, where this vector field results from auxiliary variables defined on the volume

(e.g., a scalar field) that one can loosely interpret as a manifestation of a “disease”.

Mixed diffeomorphic-elastic model with fixed potential. We therefore start with an open

domain M0 of Rd and model a deformation t 7→Mt. We first introduce the “diffeomorphic” model,

which is the foundation of the LDDMM algorithm (for large deformation diffeomorphic metric

mapping [Beg et al., 2005]) in shape analysis. In this model, the deformation is tracked through

a time-dependent diffeomorphism ϕ(·) ∈ W 1,1([0, T ],Diff m(Rd)) which is also the flow of a time-

dependent vector field v(·) ∈ L1([0, 1], V ) that belongs to our RKHS V , so that for all t in [0, T ],

Mt = ϕ(t,M0), with

ϕ(0) = idRd and
d

dt
ϕ(t) = v(t) ◦ ϕ(t) almost everywhere. (5)

The vector field v is preferably represented in the form v(·) = KV u(·) for some u(·) ∈ L1([0, T ], V ∗),

which then acts as a control. This control can be left unspecified and estimated as part of an

optimal control problem (as done in Beg et al. [2005], Joshi and Miller [2000], Dupuis et al. [1998],

Trouvé [1995], Arguillere et al. [2014]), or modeled as an element of some parametrized class of

time-dependent linear forms on V [Younes, 2011, 2014, Gris et al., 2018, Younes et al., 2020]. We

note that the relation v(t) = KV u(t) is equivalent to the variational formulation

v(t) = arg min
v′ ∈V

1

2

(
LV v

′ | v′
)
− (u(t) | v′).

Alternatively, we may consider Mt as a deformable solid, with infinitesimal deformation energy

quantified by a linear tensor A (t) which is required to be a symmetric, positive semi-definite

operator in L (H1(Mt,Rd), H1(Mt,Rd)∗). Now, exert an infinitesimal force density j(t)dt on Mt

(j(t) is a time derivative of a force, also called a yank). Assuming this yank belongs to H1(Mt,Rd)∗,
the infinitesimal deformation v(t)dt that brings Mt to equilibrium is given, when it exists, by

v(t) = arg min
v′ ∈H1(Mt,Rd)

1

2
(A (t)v′ | v′)− (j(t) | v′).

In this paper, following Hsieh et al. [2020], we fix a weight ω > 0 to combine the LDDMM model

and the deformable solid model, and define

v(t) = arg min
v′ ∈V

ω

2

(
LV v

′ | v′
)

+
1

2
(A (t)v′ | v′)− (j(t) | v′), (6)

using j ∈ L1([0, T ], V ∗) as a control. Here, we make the abuse of notation identifying A (t)v with its

restriction to Mt, the assumption that V ↪→ Cm0 (Rd,Rd) ensuring that this restriction maps V into

H1(Mt,Rd). Here, the term (ω/2)
(
LV v

′ | v′
)

can be seen as an internal energy causing permanent
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change to the shape, or simply as a regularization term ensuring the existence of v(t) ∈ V . Indeed,

since A (t) is positive semi-definite, v(t) always exists, and belongs to L1([0, T ], V ), so that it

generates a well-defined flow ϕ(·) on Rd.
We point out important differences between the operators LV

.
= K−1

V (such that ‖v‖2V =(
LV v | v

)
) and A (t). The former, LV : V → V ∗, is defined on a fixed space of vector fields

(V ) themselves defined on the whole ambient space Rd. In contrast, A (t) is defined on H1(Mt,Rd),
and therefore applies to vector fields defined on Mt. It is, by definition shape dependent. The global

nature of LV (and higher-order assumption insuring the embedding of V in a space of differentiable

functions) is of course what makes possible the diffeomorphic property of the evolving flow over all

times intervals.

Although we will work with general assumptions on the deformation energy tensor A , the main

example of such a tensor in three dimensions comes from linear elasticity [Ciarlet, 1988, Marsden

and Hughes, 1994]. Generally, such a tensor A (t) ∈ L (H1(Mt,R3), H1(Mt,R3)∗) is defined so that

(A (t)v | w) =

∫
Mt

(
Et(x, εv(x))

∣∣ εw(x)
)
dx,

with εv = (Dv + DvT )/2. Here, GT is the transpose of a matrix G, and for every x, Et(x), is a

symmetric positive definite tensor on 3×3 symmetric matrices. In particular, one can favor at each

point x of Mt specific directions of deformations by appropriately choosing Et(x). Examples of such

tensors that could be used in applications of our model are those given in Hsieh et al. [2020, Section

4]. In the simplest situation, one can assume that the material is homogeneous, isotropic and that

its elastic properties are also constant in time, in which case for all x ∈Mt:(
Et(x, εv)

∣∣ εw) = λ tr(εu) tr(εv) + 2µ tr(εTu εv) (7)

where λ and µ are known as the Lamé parameters of the elastic material.

While not necessarily restricting to elasticity operators such as those above, we will make the

additional assumption that A (t) is fully specified by the transformation ϕ (defined by (5)) applied

to the initial volume. More precisely, we will assume that we are given a mapping

A : Diff m(Rd)→ L
(
H1(ϕ(M0),Rd), H1(ϕ(M0),Rd)∗

)
,

such that for every diffeomorphism ϕ, Aϕ is a deformation energy tensor on the domain ϕ(M0) and

take A (t) = Aϕ(t) in (6).

Yank model. It remains to model a yank j(·) that induces the deformation on Mt. The model

considered in Hsieh et al. [2020] starts with a fixed positive function g0 ∈ C1(M0,R), with negligible

values on the boundary ∂M0. In the diseased tissue analogy, this function may be thought of as

describing an initial physiological impact of a disease, for example the density of dying cells, or of

some protein responsible for tissue remodeling. Then, for a deformation ϕ ∈ Diff m(Rd), [Hsieh

et al., 2020] defines the corresponding yank jϕ along ϕ(M0) to be the negative gradient of a some

function Q : R+ → R+ of the transported function g0◦ϕ−1, so that the yank pulls the shape towards

places where g0 ◦ ϕ−1 is highest. Formally, this gives:

∀ v′ ∈ V, (jϕ | v′) =

∫
ϕ(M0)

∇
[
Q(g0 ◦ ϕ−1)

]T
v′ =

∫
ϕ(M0)

Q(g0 ◦ ϕ−1)(−div v′),
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where the boundary term is negligible thanks to our assumptions on g0.

The resulting dynamical system uses j(t) = jϕ(t), yielding

∂tϕ(t, x) = v(t, ϕ(t, x)), ϕ(0, x) = x,

v(t) = arg min
v′ ∈V

ω

2

(
LV v

′ | v′
)

+
1

2
(Aϕ(t)v

′ | v′)− (jϕ(t) | v′),

(jϕ(t) | v′) =

∫
Mt

Q(g0 ◦ ϕ−1(t))(−div v′), v′ ∈ V, Mt = ϕ(t)(M0).

(8)

It was studied in Hsieh et al. [2020] and proved to have solutions over arbitrary time intervals. In

the same paper, the issue of identifying g0 among a parametrized family of candidates given the

initial state M0 and a deformed state at time T , MT = ϕ(T,M0), was also considered.

The assumption that shape change is driven by a strict advection of the function g0 can be

seen as overly restrictive, as it does not allow for independent transformations and external factors

possibly affecting this function. In this paper, we consider a reaction-diffusion equation on the

moving domain Mt whose solution also controls the shape motion. This kind of coupling, as far as

we are aware, has not appeared in the literature.

Reaction-diffusion model. Let us start with a fixed domain U in Rd, and consider p : [0, T ]→
C2(U). One can think as p(t, x) as some measure of the “density of a disease” at time t and location

x with respect to the Lebesgue measure. A reaction-diffusion equation on p in the fixed domain U

is given by

∂tp(t, x) = div
(
S(t, x)∇p(t, x)

)
+R(p(t, x)), a.e. t ∈ [0, T ], x ∈ U, (9)

with given initial value p(0) = p0 : U → R, and the Neumann boundary condition S(t, x)∇p(t, x) = 0

for all time t and x in the boundary ∂U . It is understood that the gradient ∇ and the divergence

are taken with respect to the x coordinates.

On the right-hand side, S(t, x) is a 3-by-3 symmetric positive definite matrix for each t and

x. For example, for S(t, x) = S = I3, the identity matrix, we get div(S∇p(t, x)) = ∆p(t, x) the

Laplacian of p. More generally, for a diffusion at x with rate ri > 0 in an i-th direction, i = 1, 2, 3,

we have

S(t, x) = r1e1e
T
1 + r2e2e

T
2 + r3e3e

T
3 = diag(r1, r2, r3) = (e1 e2 e3)diag(r1, r2, r3)(e1 e2 e3)T

where ei is a unit vector pointing to the i-th direction and diag(r1, r2, r3) is the diagonal matrix

with corresponding entries. In this paper, we will work under the following general assumption on

S and how it is affected by shape change. We consider a time-dependent field of frames (t, x) ∈
[0, T ]× U 7→ F (t, x) ∈ GL3(R) of unit vectors, and let

S(t, x) = F (t, x) diag(r1, r2, r3)F (t, x)T .

Finally, R : R → R is the reaction function, and models external factors affecting the function

p. It typically satisfies R(0) = 0 so that p ≡ 0 is a solution of the PDE initialized with p0 ≡ 0. It

may have a sigmoidal shape (such that R(t) = 0 if t ≤ 0, and increases on [0,+∞) with a finite

limit at +∞), which results in a growth/atrophy model in which change accelerates until reaching
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a limit speed. Alternatively, in order to model a growth/atrophy phase over a finite time interval,

R on [0,+∞) may increase to maximal value before decreasing again to 0 (this is the model chosen

in Figure 1).

Integral formulation, and reaction-diffusion on a moving domain. Equation (9) can be

written in integral form leading to the weak formulation that we will study specifically. After

integrating the equation on a smaller domain, and using the divergence theorem, we can say that

the density (t, x) 7→ p(t, x) is a solution of Equation (9) if and only if, for every domain U ′ ⊂ U ,

d

dt

∫
U ′
p(t, x)dx =

∫
∂U ′

(S(t, x)∇p(t, x))Tn∂U ′(x)dσ∂U ′(x) +

∫
U ′
R(p(t, x))dx,

with n∂U ′ the outer normal to the boundary of U ′ and σ∂U ′ the surface measure on ∂U ′. In other

words, the total reduction of p within U ′ is equal to the flux of its gradient along the boundary,

modified by the diffusion tensor which takes into account the directions and speed of diffusion. To

this is added the total amount created in U ′ from the reaction R.

From our fixed initial volume M0, we can give a corresponding formulation for the evolution

of a density on a moving domain t 7→ Mt = ϕ(t)(M0), with ϕ ∈ H1([0, T ],Diff m(Rd)). We need,

however, to account for changes in the directions of diffusion as the shape is deformed.

First, we define along each deformation ϕ(M0) of M0, with ϕ ∈ Diff m(Rd), a frame Fϕ of unit

vectors along ϕ(M0). In other words, Fϕ is a mapping from ϕ(M0) onto GL3(R) whose columns

have constant length 1. We define a corresponding diffusion tensor Sϕ = Fϕ diag(r1, r2, r3)F Tϕ .

Then, we say that the time-dependent density p(t) : Mt = ϕ(t,M0) → R with respect to the

Lebesgue measure is a solution of the reaction-diffusion equation along the moving domain t 7→Mt

if, for every open subset U0 ⊂M0, and almost every t in [0, T ], the equation

d

dt

∫
ϕ(t,M0)

p(t, x)dx =

∫
ϕ(t,∂M0)

(Sϕ(t)(x)∇p(t, x))Tnϕ(t,∂M0)(x)dσϕ(t,∂M0)(x)

+

∫
ϕ(t,M0)

R(p(t, x))dx,

(10)

is satisfied with Neumann boundary conditions (Sϕ(t)(t, x)∇p(t, x))Tn∂ϕ(t,M0)(x) = 0 for every t in

[0, T ] and x in ∂Mt = ϕ(t, ∂M0).

Turning this integral formulation into a pointwise one is difficult, because the support of p(t)

changes as t increases. This results from considering p in spatial (i.e., Eulerian) coordinates. It

is easier to deduce the correct PDE for the corresponding density, denoted p, in material (i.e.,

Lagrangian) coordinates. This density is the pull-back ϕ(t)∗p(t) of p through ϕ(t):

∀f ∈ L1(M0),

∫
M0

p(t)fdx =

∫
M0

[ϕ(t)∗p(t)]fdx =

∫
ϕ(t)(M0)

p(t)f ◦ ϕ(t)−1dx.

In other words, p(t) = p(t) ◦ ϕJϕ(t), with Jϕ(t) = det(Dϕ(t)), the Jacobian of ϕ(t).

Note that we get

∇p(t) = dϕ(t)T∇p(t) ◦ ϕ(t) Jϕ(t) + p(t)
∇Jϕ(t)

Jϕ(t)
,
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so that

∇p(t) ◦ ϕ(t) = dϕ(t)−T
(
∇p(t)− p(t)

∇Jϕ(t)

Jϕ(t)

)
. (11)

Performing in Equation (10) the change of variable

x = ϕ(t, y),

so that

dx = Jϕ(t, y)dy, y ∈M0,

and

nϕ(t)(∂U0)(x)dσϕ(t)(∂U0)(x) = Jϕ(t, y)Dϕ(t, y)−Tn∂U0(y)dσ∂U0(y), y ∈ ∂M0,

we obtain an identity on the fixed domain U0:

d

dt

∫
U0

p(t) =

∫
∂U0

Jϕ(t)

[
Dϕ−1(t)Sϕ(t) ◦ ϕ(t)Dϕ(t)−T

(
∇p(t)− p

∇Jϕ(t)

Jϕ(t)

)]T
n∂U0dσU0

+

∫
U0

R

(
p(t)

Jϕ(t)

)
Jϕ(t).

Since the pull-back of a vector field v : x 7→ v(x) by ϕ(t) is ϕ(t)∗v : x 7→ Dϕ(t, x)−1v(ϕ(x)), the

pull-back of the frame field Fϕ(t) is Fϕ(t) = ϕ(t)∗Fϕ(t)Dϕ(t)−1Fϕ(t) ◦ ϕ(t), which means that the

pull-back of the diffusion tensor is Sϕ(t) = ϕ(t)∗Sϕ(t) and given by

Sϕ(t) = Dϕ−1(t)Sϕ(t) ◦ ϕ(t)Dϕ(t)−T .

Note that this formula is valid even when replacing ϕ(t) by any diffeomorphism φ ∈ Diff m(Rd).
With this new notation, the integral equation reads

d

dt

∫
M0

p(t) =

∫
∂M0

Jϕ(t)

[
Sϕ(t)

(
∇p(t)− p(t)

∇Jϕ(t)

Jϕ(t)

)]T
n∂U0dσU0 +

∫
M0

R

(
p(t)

Jϕ(t)

)
Jϕ(t).

The boundary conditions are then[
Sϕ(t)(x)

(
∇p(t)− p(t)

∇Jϕ(t)

Jϕ(t)

)]T
n∂M0(x) = 0, t ∈ [0, T ], x ∈ ∂M0.

From there, the divergence theorem yields

d

dt

∫
M0

p(t, x)dx =

∫
M0

div

(
Jϕ(t) Sϕ(t)

(
∇p(t)− p(t)

∇Jϕ(t)

Jϕ(t)

))
dx+

∫
M0

R

(
p(t)

Jϕ(t)

)
Jϕ(t)dx,

with boundary condition[
Sϕ(t)(t, x)∇p(t, x)

]T
n0(x) = 0, t ∈ [0, T ], x ∈ ∂M0.

Since this should be true for every open U0 ⊂M0, we get the PDE

d

dt
p(t, x) = div

(
Jϕ(t, x) Sϕ(t,x)

(
∇p(t, x)− p(t, x)

∇Jϕ(t, x)

Jϕ(t, x)

))
+R

(
p(t, x)

Jϕ(t, x)

)
Jϕ(t, x), (12)

with boundary condition[
Sϕ(t, x)

(
∇p(t, x)− p(t, x)

∇Jϕ(t, x)

Jϕ(t, x)

)]
n0(x) = 0, (t, x) ∈ [0, T ]× ∂M0.
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PDE-controlled diffeomorphic equation and main result. Combining the various para-

graphs of this section, we obtain a formulation of our model. We start by redefining our various

functions and operators.

We fix an initial domain M0 ⊂ Rd and diffusion speeds r1, r2, r3 > 0. For every ϕ ∈ Diff m(Rd),
we define

• A frame field of unit vectors Fϕ : ϕ(M0)→ GL3(R) along ϕ(M0), and the corresponding field

in spatial coordinates Fϕ = Dϕ−1Fϕ ◦ ϕ.

• A diffusion tensor Sϕ : ϕ(M0) → M3(R), with Sϕ(x) = Fϕdiag(r1, r2, r3)F Tϕ , a symmetric

positive definite matrix at each point. The corresponding operator in Lagrangian coordinates

is Sϕ = Dϕ−1S ◦ ϕDϕ−T .

• A symmetric, positive-definite tensor Aϕ ∈ L(H1(ϕ(M0),Rd), H1(ϕ(M0),Rd)∗).

The PDE-controlled diffeomorphic model with initial condition p0 : M0 → R is the system of coupled

equations on ϕ : [0, T ] 7→ Diff m(Rd) and p : [0, T ]×M0 → R that follows: for all (t, x) ∈ [0, T ]×M0,

d

dt
p(t, x) = div

(
Jϕ(t, x) Sϕ(t,x)

(
∇p(t, x)− p(t, x)

∇Jϕ(t, x)

Jϕ(t, x)

))
+R

(
p(t, x)

Jϕ(t, x)

)
Jϕ(t, x),

d

dt
ϕ(t, x) = v(t, ϕ(t, x)),

v(t) = arg min
v′ ∈V

ω

2

(
LV v

′ | v′
)

+
1

2
(Aϕ(t)v

′ | v′)− (j(t) | v′),

(j(t) | v′) =

∫
Mt

Q(p(t))(−div v′), v′ ∈ V, Mt = ϕ(t)(M0), t ∈ [0, T ],

(13)

where p(t) = p ◦ ϕ(t)−1/Jϕ(t), with boundary conditions

(
Sϕ(t, x)

(
∇p(t, x)− p(t, x)

∇Jϕ(t, x)

Jϕ(t, x)

))T
n0(x) = 0, (t, x) ∈ [0, T ]× ∂M0

p(0, x) = p(0, x) = p0(x) x ∈M0

ϕ(0, x) = x, x ∈M0

(14)

By a solution of the above system of differential equations and boundary conditions, we mean a

couple (ϕ,p) ∈ H1([0, T ],Diff m(Rd)) × L2([0, T ], H1(M0)) such that p is a weak solution of the

reaction-diffusion PDE (c.f., next section for the precise definition) with the two first boundary

conditions in (14) and, for almost all t ∈ [0, T ], ϕ verifies the last three equations in (13) with the

last boundary condition in (14). Our main result is the following existence and uniqueness of the

solution under adequate assumptions:

Theorem 3. Assume that V ↪→ Cm+1
0 (Rd,Rd) with m ≥ 2, that R and Q are Lipshitz and bounded,

and that on every bounded subset B of Diff m(Rd) for the distance dm,∞, we have:

1. The linear tensor ϕ 7→ Aϕ is Lipshitz on B.

2. ‖Fϕ‖∞ = supx∈ϕ(M0) ‖Fϕ(x)−1‖ is bounded on B.

11



Then, for every p0 in L2(M0), there is a unique solution (ϕ,p) ∈ H1([0, T ],Diff m(Rd))×L2([0, T ], H1(M0))

to (13).

Most of the rest of the paper is devoted to the proof of this result, decomposed into the following

steps. In section 3, we fix a time-dependent deformation t 7→ ϕ(t) and show the local weak existence

and uniqueness of solutions to the reaction-diffusion equation on the corresponding moving domain.

Then in section 4, we derive a number of necessary estimates on ϕ which, combined with section 3,

lead to the result of Theorem 3 by a fixed point argument.

3 Analysis with prescribed moving domain

Before studying the fully coupled system (13), we will first restrict to the simpler situation of a

reaction-diffusion equation on a moving domain but for which the deformation is fixed and prove

preliminary results of local and global existence of weak solutions for this case. Note that, in the

Lagrangian formulation we consider, this amounts in a system of reaction-diffusion equations with

time-dependent diffusion tensor and boundary condition for which several existence and regularity

results have been showed in the past, see e.g. Ladyženskaja et al. [1988], Burdzy et al. [2004],

Goudon and Vasseur [2010]. These are however derived with slightly different settings and sets of

assumptions than in the present work and thus, for the sake of completeness, we provide detailed

proofs of the weak existence results as well as bounds on the solutions that we will need for the

proof of our main theorem.

3.1 Weak existence for the reaction-diffusion PDE on a moving domain

In all this section, we assume that m ≥ 2 and we slightly extend our general notation. We let t0

denote the initial time and take η > 0, [t0, t0 + η] ⊂ [0, T ]. We assume that an initial deformation

ϕt0 ∈ Diff m(Rd) is given at t0, together with a time-dependent deformation ϕ ∈ H1([t0, t0 +

η],Diff m(Rd)) with ϕ(t0) = idRd (so that ϕt0 and ϕ(t0) denote different objects). Both ϕt0 and

ϕ are assumed to be fixed in this section. For convenience, we shift the reference domain to

Mt0 = ϕt0(M0). The diffusion tensor Sϕ is then fully specified and given by, for all t ∈ [t0, t0 + η]

and all x ∈Mt0 :

Sϕ(t, x) = (Dϕ(t, x))−1
(
Fϕ(t) ◦ϕt0

◦ ϕ(t, x)
)

diag(r1, r2, r3)
(
Fϕ(t) ◦ϕt0

◦ ϕ(t, x)
)T

Dϕ(t, x)−T

(15)

3.1.1 Preliminary results

As a first step we consider the simplified setting in which the reaction term is replaced by a time-

dependent function f(t), introducing the following system:

d

dt
p(t, x) = div

(
Jϕ(t, x)Sϕ(t)(t, x)

(
∇p(t, x)− p(t, x)

∇Jϕ(t, x)

Jϕ(t, x)

))
+ f(t)[

Sϕ(t, x)
(
∇p(t, x)− p(t, x)∇Jϕ(t,x)

Jϕ(t,x)

)]T
n0(x) = 0, (t, x) ∈ [t0, t0 + η]× ∂Mt0

p(t0, x) = pt0(x), x ∈Mt0

(16)
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We will assume that f ∈ L2([t0, t0 + η], H1(Mt0)∗) and rewrite (16) in a weak form. We will look

for a solution p ∈ L2([t0, t0 + η], H1(Mt0)). Introduce the operator

Lϕ, 0 : L2([t0, t0 + η], H1(Mt0))→ L2([t0, t0 + η], H1(Mt0)∗)

defined by

(Lϕ, 0h1 | h2) =

∫ t0+η

t0

(
〈Sϕ(t)∇h1(t),∇h2(t)〉L2 −

〈
h1(t) Sϕ(t)

∇Jϕ(t, x)

Jϕ(t, x)
,∇h2(t)

〉
L2

)
dt

With this notation, the first equation in (16) can be rewritten as ∂tp + Lϕ, 0 p = f (recall that

the notation ∂tp refers to the weak derivative of p with respect to time) and the second one is

automatically derived from identifying boundary terms after integration by parts. This yields the

new formulation {
∂tp + Lϕ, 0 p = f

p(t0, x) = pt0(x)
(17)

Note that the first equation implies, in particular, that ∂tp ∈ L2([t0, t0 + η], H1(Mt0)∗)), and The-

orem 1 ensures that prescribing an initial condition at t = t0 is meaningful. For technical reasons,

it will be convenient to make the change of function q(t, x) = e−λtp(t, x) (for some λ > 0 to be

specified later) and rewrite (17) in terms of q, yielding:{
∂tq(t, x) + Lϕ, λ q = e−λtf(t)

q(t0, x) = e−λt0pt0(x), x ∈Mt0

(18)

where Lϕ, λ : L2([t0, t0 +η], H1(Mt0))→ L2([t0, t0 +η], H1(Mt0)∗) is defined by Lϕ, λh = λh+Lϕ, 0h.

With this notation and these assumptions, we can now state the main result of this section:

Proposition 1. With the assumptions above, for all pt0 ∈ L2(Mt0), the system (18) has a unique

weak solution on [t0, t0 + η].

We first address the case of an homogeneous initial condition with the following lemma.

Lemma 2. Suppose that the frame field satisfies

sup
t∈ [t0, t0+η]

‖F−1
ϕ(t) ◦ϕt0

‖∞ <∞.

Then there exists λ(ϕ) > 0 such that for any g ∈ L2([t0, t0 + η], H1(Mt0)∗)), the problem{
∂tq + Lϕ, λq = g

q(t0) = 0

has a unique weak solution q that belongs to L2([t0, t0 + η], H1(Mt0)).

Proof. The proof is mainly an application of Theorem 2. We only need to choose λ > 0 such

that the operator Lϕ, λ is bounded and coercive. Since ϕ ∈ H1([t0, t0 + η],Diff m(Rd)), we have

ϕ ∈ C([t0, t0 + η],Diff m(Rd)) and as s ≥ 2

Bϕ := max

{
max

t∈ [t0, t0+η]
‖ϕ(t)− id‖2,∞, max

t∈ [t0, t0+η]
‖ϕ−1(t)− id‖1,∞

}
<∞.
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Recall also that

Sϕ(t, ·) = (Dϕ(t))−1
(
Fϕ(t) ◦ϕt0

◦ ϕ(t)
)

diag(r1, r2, r3)
(
Fϕ(t) ◦ϕt0

◦ ϕ(t)
)T

Dϕ(t)−T

and the columns of Fϕ(t) ◦ϕt0
(x) are unit vectors, so

‖Sϕ(t)‖∞ ≤ CB2
ϕ for all t ∈ [t0, t0 + η]

and

‖S−1
ϕ(t)‖∞ ≤ CB2

ϕ

(
sup

t∈ [t0, t0+η]
‖F−1

ϕ(t) ◦ϕt0
‖∞

)2

for all t ∈ [t0, t0 + η].

(Recall that C is our notation for a generic constant.) It follows that there exist two constants αϕ

and βϕ (depending on ϕ) such that αϕ|z|2 ≤ zTSϕz ≤ βϕ|z|2 for all t ∈ [t0, t0 + η] and z ∈ Rd and

therefore we have

|(Lϕ, λh1 | h2)|

=

∣∣∣∣∫ t0+η

t0

(
λ 〈h1(t), h2(t)〉L2 + 〈Sϕ(t)∇h1(t),∇h2(t)〉L2 −

〈
h1(t) Sϕ(t)

∇Jϕ(t, x)

Jϕ(t, x)
,∇h2(t)

〉
L2

)
dt

∣∣∣∣
≤ (λ+ Cϕ)

∫ t0+η

t0

(
‖h1(t)‖L2 ‖h2(t)‖L2 + ‖∇h1(t)‖L2 ‖∇h2(t)‖L2 + ‖h1(t)‖L2 ‖∇h2(t)‖L2

)
dt

≤ (λ+ Cϕ)

∫ t0+η

t0

3 ‖h1(t)‖H1 ‖h2(t)‖H1 dt

≤ 3 (λ+ Cϕ) ‖h1‖L2([t0, t0+η], H1(Mt0 )) ‖h2‖L2([t0, t0+η], H1(Mt0 ))

which shows the boundedness of the operator Lϕ, λ. Moreover, for any ε > 0:

(Lϕ, λh | h)

=

∫ t0+η

t0

(
λ ‖h(t)‖2L2 + 〈Sϕ(t)∇h(t),∇h(t)〉L2 −

〈
h(t) Sϕ(t)

∇Jϕ(t, x)

Jϕ(t, x)
,∇h(t)

〉
L2

)
dt

≥
∫ t0+η

t0

(
λ ‖h(t)‖2L2 + βϕ ‖∇h(t)‖2L2 − Cϕ ‖h(t)‖L2 ‖∇h(t)‖L2

)
dt

≥
∫ t0+η

t0

(
λ ‖h(t)‖2L2 + βϕ ‖∇h(t)‖2L2 − Cϕ

(
1

2ε
‖h(t)‖2L2 +

ε

2
‖∇h(t)‖2L2

))
dt

=

∫ t0+η

t0

((
λ− Cϕ

2ε

)
‖h(t)‖2L2 +

(
βϕ −

Cϕ ε

2

)
‖∇h(t)‖2L2

)
dt.

Now, choose ε(ϕ) > 0 and λ(ϕ) > 0 such that

βϕ −
Cϕ ε

2
> 0 and λ− Cϕ

2ε
> 0

and the above inequality leads to

(Lϕ, λh | h) ≥ min

{
λ− Cϕ

2ε
, βϕ −

Cϕ ε

2

}
‖h‖2L2([t0, t1], H1(Mt0 )).

This shows that of Lϕ, λ is coercive and concludes the proof of Lemma 2.
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Existence and uniqueness in the case of a non-homogeneous initial condition follows as a corol-

lary.

Corollary 1. Under the same assumptions as in Lemma 2, there exists λ(ϕ) > 0 such that for all

g ∈ L2([t0, t0 + η], H1(Mt0)∗) and qt0 ∈ L2(Mt0), the problem{
∂tq + Lϕ, λq = g

q(t0) = qt0
(19)

has a unique weak solution q ∈ L2([t0, t0 + η], H1(Mt0)) ∩ C([t0, t0 + η], L2(Mt0)).

Proof. According to Theorem 3.2, Chapter 1, in Lions and Magenes [1972], there exists w ∈
L2([t0, t0 + η], H1(Mt0)) such that ∂tw ∈ L2([t0, t0 + η], H1(Mt0)∗) and w(0) = qt0 . Using the

previous lemma, let q̃ be the solution to{
∂tq + Lϕ, λq = g − ∂tw − Lϕ, λw
q(t0) = 0

,

then q̃ +w is a solution to the original problem. Uniqueness is clear from the uniqueness in Lemma

2.

3.1.2 Existence of solutions on a moving domain

Still assuming that t 7→ ϕ(t) is given, we now consider general reaction-diffusions on the moving

domain, still using a weak formulation, which becomes, introducing the nonlinear operator Rϕ,0 :

p(t, x) 7→ JϕR
(
p(t, x)/Jϕ(t, x)

)
{
∂tp + Lϕ, 0 p = Rϕ,0(p)

p(t0, x) = pt0(x)
(20)

Theorem 4. Suppose that the reaction function R is Lipschitz continuous. Under the conditions

of Lemma 2, for all pt0 ∈ L2(Mt0), the system (20) has a unique weak solution on [t0, t0 + η].

Proof. Let us fix pt0 ∈ L2(Mt0). Relying again on the change of function q(t, x) = e−λtp(t, x), the

reaction-diffusion system (20) becomes:{
∂tq + Lϕ, λ q = Rϕ,λ(q)

q(t0, x) = qt0(x)
(21)

with qt0 = e−λt0pt0 and Rϕ,λ(q)(t, x) = e−λtRϕ,0(eλtq)(t, x).

Let 0 < δ ≤ η to be fixed later in the proof and consider the space X := C([t0, t0 + δ], L2(Mt0))

equipped with the norm

‖h‖X := max
t∈ [t0, t0+δ]

‖h(t)‖L2(Mt0 ).

Given h ∈ X, let

gλ, h(t) := e−λtR

(
eλth(t)

Jϕ(t)

)
Jϕ(t),

15



then gλ, h ∈ L2([t0, t0 + δ], L2(Mt0)), since Jϕ and 1/Jϕ are uniformly bounded on [t0, t0 + δ]×Mt0 ,

and |R(z)| ≤ C (1 + |z|) by Lipschitz continuity of R. From Corollary 1, we know that there exists

λ > 0 that may depend on ϕ but not on h such that{
∂tq + Lϕ, λq = gλ, h

q(t0) = e−λt0pt0

has a unique weak solution for all h ∈ X. Denote this weak solution by q = S(h) ∈ L2([t0, t0 +

δ], H1(Mt0)) ∩X.

We now show that S : X → X is a contraction when δ is chosen small enough. Let h1, h2 ∈ X
and q1 = S(h1), q2 = S(h2), so that

∂tq1 + Lϕ, λq1 = gλ, h1 ∈ L2([t0, t0 + δ], H1(Mt0)∗)

and

∂tq2 + Lϕ, λq2 = gλ, h2 ∈ L2([t0, t0 + δ], H1(Mt0)∗).

It follows that for almost all t ∈ [t0, t0 + δ](
∂t (q1 − q2)

)
(t) +

(
Lϕ, λ (q1 − q2)

)
(t) = (gλ, h1 − gλ, h2)(t) ∈ L2(Mt0) ⊂ H1(Mt0)∗.

Evaluating at (q1 − q2)(t) ∈ H1(Mt0) gives((
∂t (q1 − q2)

)
(t) (q1 − q2)(t)

)
+
((
Lϕ, λ (q1 − q2)

)
(t) (q1 − q2)(t)

)
=
(

(gλ, h1 − gλ, h2)(t) (q1 − q2)(t)
)
.

(22)

As a result of the coercivity of the operator Lϕ, λ shown earlier, for some constant Cϕ > 0:((
Lϕ, λ (u1 − u2)

)
(t) (q1 − q2)(t)

)
≥ Cϕ ‖(q1 − q2)(t)‖2H1 . (23)

We can now combine Lemma 1, (23), and (22) to obtain

1

2

(
∂t‖(q1 − q2)(·)‖2L2

)
(t) + Cϕ ‖(q1 − q2)(t)‖2H1

≤
((
∂t (q1 − q2)

)
(t) (q1 − q2)(t)

)
+
((
Lϕ, λ (q1 − q2)

)
(t) (q1 − q2)(t)

)
≤ ‖(gλ, h1 − gλ, h2)(t)‖L2 ‖(q1 − q2)(t)‖L2

≤ 1

2ε
‖(gλ, h1 − gλ, h2)(t)‖2L2 +

ε

2
‖(q1 − q2)(t)‖2H1

for any ε > 0. Choosing a small enough ε, we can get(
∂t‖(q1 − q2)(·)‖2L2

)
(t) ≤ Cϕ ‖(gλ, h1 − gλ, h2)(t)‖2L2

≤ Cϕ,R ‖(h1 − h2)(t)‖2L2 .
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Consequently, for all t ∈ [t0, t0 + δ],

‖(q1 − q2)(t)‖2L2 = ‖(q1 − q2)(t0)‖2L2 +

∫ t

t0

(∂t‖(q1 − q2)(·)‖2L2)(s) ds

≤ Cϕ,R

∫ t

t0

‖(h1 − h2)(s)‖2L2 ds

≤ Cϕ,R δ ‖h1 − h2‖2X ,

which further gives

‖q1 − q2‖X ≤
√
Cϕ,R δ ‖h1 − h2‖X .

Picking δ > 0 such that
√

Cϕ,R δ < 1 then makes the mapping S contractive and thus, by the

Banach fixed point theorem, there exists a unique weak solution q to (21) on [t0, t0 +δ], which leads

to the weak solution p(t, x) = eλtq(t, x) of (20) on the same interval. Furthermore, we see that δ

only depends on the deformation ϕ and not the initial condition pt0 . Therefore, applying the same

reasoning at t0 +δ with initial condition p(t0 +δ, ·), we can extend the solution to [t0, t0 +2δ] and by

extension to the whole interval [t0, t0 + η]. Then the uniqueness of p is an immediate consequence

of the uniqueness of the solution of (21) on each subinterval of length δ, thus completing the proof

of Theorem 4.

As a direct consequence of Theorem 4, we can finally obtain the following result of existence of

weak solutions to the reaction-diffusion PDE on the full time interval [0, T ]:

Corollary 2. Assume that m ≥ 2 and that R is Lipschitz. Let ϕ ∈ H1([0, T ],Diff m(Rd)) with

ϕ(0) = idRd such that supt∈ [0, T ] ‖F−1
ϕ(t)‖∞ < ∞. Then for all p0 ∈ L2(M0), there exists a unique

weak solution of (20) on [0, T ].

3.2 Bounds on the solutions

We now derive some control bounds on the solution of (21) with respect to the deformations ϕ

and ϕt0 that will be needed in the next section. Let us fix r > 0 and denote Br = B r(id), where

the closed ball is for the distance defined in (1). We consider deformations ϕ ∈ C([t0, t0 + η], Br)

i.e., such for all t ∈ [t0, t0 + η], ‖ϕ(t) − id‖m,∞ ≤ r and ‖ϕ(t)−1 − id‖m,∞ ≤ r. Note that it

follows from the results and proofs above that we can find λr > 0 and αr > 0 such that for all

ϕ ∈ C([t0, t0 + η], Br) and q ∈ L2([t0, t0 + η], H1(Mt0)):

((Lϕ, λr q)(t) | q(t)) ≥ αr ‖q(t)‖2H1(Mt0 ) (24)

and that we have a unique local solution which we shall rewrite pϕ,ϕt0
of (20) given by Theorem 4.

We also write qϕ,ϕt0
= e−λrtpϕ,ϕt0

.

Lemma 3. Let q ∈ L2([t0, t0 + η], H1(Mt0)) and ϕ,ψ ∈ C([t0, t0 + η], Br). For almost every

t ∈ [t0, t0 + η],

‖(Lϕ, λr q)(t)− (Lψ, λr q)(t)‖H1(Mt0 )∗ ≤ Cr ‖ϕ(t)− ψ(t)‖m,∞ ‖q(t)‖H1(Mt0 ).

17



Proof. A direct computation gives for all h ∈ H1(Mt0)∣∣∣((Lϕ, λr q)(t)− (Lψ, λr q)(t) h
)∣∣∣ ≤ ∣∣∣〈(Sϕ(t) − Sψ(t))∇q(t),∇h

〉
L2

∣∣∣
+

∣∣∣∣〈q(t)

(
Sϕ(t)

∇(Jϕ(t))

Jϕ(t)
− Sψ(t)

∇(Jψ(t))

Jψ(t)

)
,∇h

〉
L2

∣∣∣∣
Since, for all t ∈ [t0, t0 + η],

max{‖ϕ(t)− id‖m,∞, ‖ϕ(t)−1 − id‖m,∞, ‖ψ(t)− id‖m,∞, ‖ψ(t)−1 − id‖m,∞} ≤ r,

and m ≥ 2 we have

max

{
‖Sϕ(t)‖∞, ‖Sψ(t)‖∞,

∥∥∥∥∇(Jϕ(t))

Jϕ(t)

∥∥∥∥
∞
,

∥∥∥∥∇(Jψ(t))

Jψ(t)

∥∥∥∥
∞

}
≤ Cr

and ∥∥∥∥∇(Jϕ(t))

Jϕ(t)
− ∇(Jψ(t))

Jψ(t)

∥∥∥∥
∞
≤ Cr ‖ϕ(t)− ψ(t)‖2,∞.

The assumption made on the frame field further gives

‖Sϕ(t) − Sψ(t)‖∞ ≤ Cr ‖ϕ(t)− ψ(t)‖2,∞.

Combining the previous estimates and using the Cauchy-Schwarz inequality, we conclude that∣∣∣((Lϕ, λr q)(t)− (Lψ, λr q)(t) h
)∣∣∣ ≤ Cr ‖ϕ(t)− ψ(t)‖2,∞ ‖q(t)‖H1(Mt0 ) ‖h‖H1(Mt0 )

=⇒ ‖(Lϕ, λr q)(t)− (Lψ, λr q)(t)‖H1(Mt0 )∗ ≤ Cr ‖ϕ(t)− ψ(t)‖m,∞ ‖q(t)‖H1(Mt0 ) .

From this result, we get the following estimates for the solution qϕ,ϕt0
:

Lemma 4.

‖qϕ,ϕt0
(t)‖L2 ≤ Cr,ϕt0

for all t ∈ [t0, t0 + η] and

∫ t0+η

t0

‖qϕ,ϕt0
(t)‖2H1(Mt0 ) dt ≤ Cr,ϕt0

.

Proof. From the definition of qϕ,ϕt0
, we see that for almost all t ∈ [t0, t0 + η]:(

(∂tqϕ,ϕt0
)(t) | qϕ,ϕt0

(t)
)

+
(

(Lϕ, λr qϕ,ϕt0
)(t) | qϕ,ϕt0

(t)
)

=

∫
Mt0

e−λrtR

(
eλrt q(t)

Jϕ(t)

)
Jϕ(t) qϕ,ϕt0

(t) dx

≤ Cr
2
‖R‖2∞ vol(Mt0) +

1

2
‖qϕ,ϕt0

(t)‖2L2 . (25)

Using Lemma 1 and the coercivity of Lϕ, λr we then get

1

2

(
∂t‖qϕ,ϕt0

(·)‖2L2

)
(t) =

(
(∂tqϕ,ϕt0

)(t) | qϕ,ϕt0
(t)
)

≤ Cr
2
‖R‖2∞ vol(Mt0) +

1

2
‖qϕ,ϕt0

(t)‖2L2 . (26)
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It follows that

‖qϕ,ϕt0
(t)‖2L2 = ‖qϕ,ϕt0

(t0)‖2L2 +

∫ t

t0

(
∂t‖qϕ,ϕt0

(·)‖2L2

)
(s) ds

≤ ‖q(t0)‖2L2 + Cr T ‖R‖2∞ vol(Mt0) +

∫ t

t0

‖qϕ,ϕt0
(s)‖2L2 ds,

so Gronwall’s lemma gives

‖qϕ,ϕt0
(t)‖L2 ≤

(
‖q(t0)‖2L2 + Cr T ‖R‖2∞ vol(Mt0)

)
eT = Cr,ϕt0

, (27)

since Mt0 = ϕt0(M0).

Now, using (25) and (24), we obtain

αr ‖qϕ,ϕt0
(t)‖2H1(Mt0 ) ≤

Cr
2
‖R‖2∞ vol(Mt0) +

1

2
‖qϕ,ϕt0

(t)‖2L2 −
1

2

(
∂t‖qϕ,ϕt0

(·)‖2L2

)
(t).

Integrating on [t0, t0 + η], using Lemma 1 and (27), we obtain

αr

∫ t0+η

t0

‖qϕ,ϕt0
(t)‖2H1(Mt0 ) dt

≤ CrT

2
‖R‖2∞ vol(Mt0) +

1

2

∫ t0+η

t0

‖qϕ,ϕt0
(t)‖2L2 dt−

1

2

(
‖qϕ,ϕt0

(t0 + η)‖2L2 − ‖qϕ,ϕt0
(t0)‖2L2

)
≤ CrT

2
‖R‖2∞ vol(Mt0) +

(
T

2
+ 1

)
Cr,ϕt0

,

that is ∫ t0+η

t0

‖qϕ,ϕt0
(t)‖2H1(Mt0 ) dt ≤ Cr,ϕt0

.

This leads to the following Lipschitz regularity of pϕ,ϕt0
(t) with respect to ϕ.

Lemma 5. For almost all t ∈ [t0, t0 + η],

‖pϕ,ϕt0
(t)− pψ,ϕt0

(t)‖L2(Mt0 ) ≤ Cr,ϕt0
sup

s∈ [t0,t0+η]
‖ϕ(s)− ψ(s)‖m,∞

Proof. Since

‖pϕ,ϕt0
(t)− pψ,ϕt0

(t)‖L2(Mt0 ) =
∥∥∥eλrt qϕ,ϕt0

(t)− eλrt qψ,ϕt0
(t)
∥∥∥
L2(Mt0 )

,

it suffices to show that

‖qϕ,ϕt0
(t)− qψ,ϕt0

(t)‖L2(Mt0 ) ≤ Cr,ϕt0
sup

s∈ [t0,t0+η]
‖ϕ(s)− ψ(s)‖m,∞.

Recall that qϕ,ϕt0
and qψ,ϕt0

satisfy (∂tqϕ,ϕt0
)(t) + (Lϕ, λr qϕ,ϕt0

)(t) = e−λrtR

(
eλrt qϕ,ϕt0

(t)

Jϕ(t)

)
Jϕ(t) for almost every t

qϕ,ϕt0
(t0) = e−λrt0 pt0
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and (∂tqψ,ϕt0
)(t) + (Lψ, λr qψ,ϕt0

)(t) = e−λrtR

(
eλrt qψ,ϕt0

(t)

Jψ(t)

)
Jψ(t) for almost every t

qψ,ϕt0
(t0) = e−λrt0 pt0

.

Lemma 1 and coercivity of Lϕ, λr again give

1

2

(
∂t‖(qϕ,ϕt0

− qψ,ϕt0
)(·)‖2L2(Mt0 )

)
(t) + αr ‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2H1(Mt0 )

≤
((
∂t (qϕ,ϕt0

− qψ,ϕt0
)
)
(t) | (qϕ,ϕt0

− qψ,ϕt0
)(t)
)

+
((
Lϕ, λr (qϕ,ϕt0

− qψ,ϕt0
)
)
(t) | (qϕ,ϕt0

− qψ,ϕt0
)(t)
)

= −
((

(Lϕ, λr − Lψ, λr) qψ,ϕt0

)
(t) | (qϕ,ϕt0

− qψ,ϕt0
)(t)
)

+ e−λrt

〈
R

(
eλrt qϕ,ϕt0

(t)

Jϕ(t)

)
Jϕ(t)−R

(
eλrt qψ,ϕt0

(t)

Jψ(t)

)
Jψ(t), (qϕ,ϕt0

− qψ,ϕt0
)(t)

〉
L2(Mt0 )

and using Lemma 3, we find

1

2

(
∂t‖(qϕ,ϕt0

− qψ,ϕt0
)(·)‖2L2(Mt0 )

)
(t) + αr ‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2H1(Mt0 )

≤ Cr ‖ϕ(t)− ψ(t)‖m,∞ ‖qψ,ϕt0
(t)‖H1(Mt0 ) ‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖H1(Mt0 )

+ Cr

(
‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖L2(Mt0 ) + ‖ϕ(t)− ψ(t)‖m,∞

)
‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖L2(Mt0 )

≤ Cr

(
1

2ε
‖ϕ(t)− ψ(t)‖2m,∞ ‖qψ,ϕt0

(t)‖2H1(Mt0 ) +
ε

2
‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2H1(Mt0 )

)
+ Cr

(
‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2L2(Mt0 ) +

1

2
‖ϕ(t)− ψ(t)‖2m,∞ +

1

2
‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2L2(Mt0 )

)
.

By choosing ε > 0 such that Crε/2 < αr, we obtain(
∂t‖(qϕ,ϕt0

− qψ,ϕt0
)(·)‖2L2(Mt0 )

)
(t)

≤ ‖ϕ(t)− ψ(t)‖2m,∞
(
Cr +

Cr
ε
‖qψ,ϕt0

(t)‖2H1(Mt0 )

)
+ 3Cr ‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2L2(Mt0 )

≤ Cr

(
‖ϕ(t)− ψ(t)‖2m,∞

(
1 + ‖qψ,ϕt0

(t)‖2H1(Mt0 )

)
+ ‖(qϕ,ϕt0

− qψ,ϕt0
)(t)‖2L2(Mt0 )

)
.

Thus for almost all t ∈ [t0, t0 + η]

‖(qϕ,ϕt0
− qψ,ϕt0

)(t)‖2L2(Mt0 )

= ‖(qϕ,ϕt0
− qψ,ϕt0

)(t0)‖2L2(Mt0 ) +

∫ t

t0

(
∂t‖(qϕ,ϕt0

− qψ,ϕt0
)(·)‖2L2(Mt0 )

)
(s) ds

≤ 0 + Cr ‖ϕ− ψ‖2∞

(
η +

∫
[t0,t0+η]

‖qψ,ϕt0
(t)‖2H1(Mt0 ) dt

)
+ Cr

∫ t

t0

‖(qϕ,ϕt0
− qψ,ϕt0

)(s)‖2L2(Mt0 ) ds.

We conclude by Lemma 4 and Gronwall’s inequality that

‖(qϕ,ϕt0
− qψ,ϕt0

)(t)‖L2 ≤ Cr,ϕt0
‖ϕ− ψ‖∞.
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4 Proof of Theorem 3

We now move on to the proof of the main result. We will first prove that a unique solution to

(13) and (14) exists locally using again a fixed-point argument before finally showing that the

solution is defined on [0, T ]. As done in the previous section, let us again consider t0 ∈ [0, T ) and

ϕt0 ∈ Diff m(Rd), pt0 ∈ L2(Mt0). By the assumption on A, there exist r > 0 and `A > 0 both

depending on ϕt0 such that, letting Br = B r(id), we have {ϕ ◦ ϕt0 : ϕ ∈ B} ⊂ Diff m(Rd) and

‖Aϕ ◦ϕt0
−Aψ ◦ϕt0

‖L (V, V ∗) ≤ `A ‖ϕ ◦ ϕt0 − ψ ◦ ϕt0‖m,∞ for all ϕ,ψ ∈ Br.

Considering an arbitrary interval [t0, t0 + η] ⊂ [0, T ], let Sη, ϕt0
= C([t0, t0 + η], Br) and define

Γη : Sη, ϕt0
→ C([t0, t0 + η], id + Cm0 (Rd,Rd)) by

Γη(ϕ)(t) = id +

∫ t

t0

vϕ,ϕt0
(s) ◦ ϕ(s) ds, (28)

where 
vϕ,ϕt0

(s) = (ωK−1
V +Aϕ(s) ◦ϕt0

)−1 jϕ,ϕt0
(s)

(jϕ,ϕt0
(s) | v′) =

∫
ϕ(s, ϕt0 (M0))

χ Q(pϕ,ϕt0
(s) ◦ ϕ−1(s)) (−div v′) dx

.

and pϕ,ϕt0
is the solution of (20) given by Theorem 4.

For the mapping Γη to be well-defined, one needs to show that the integral in (28) is finite,

which is justified by Lemma 7 below. For the different proofs that follow, we shall recall first a few

results on vector fields, flows and diffeomorphisms.

Proposition 2. Let u, u′ ∈ V and ϕ,ψ ∈ C([t0, t0 + η], Br). For all t ∈ [t0, t0 + η], it holds that

(i) ‖u ◦ ϕ(t)‖m,∞ ≤ Cr‖u‖m,∞,

(ii) ‖u ◦ ϕ(t)− u ◦ ψ(t)‖m,∞ ≤ Cr‖u‖m+1,∞‖ϕ(t)− ψ(t)‖m,∞,

(iii) ‖u ◦ ϕ(t)− u′ ◦ ϕ(t)‖m,∞ ≤ Cr‖u− u′‖m,∞.

Proof. All these inequalities follow from the Faà di Bruno’s formula on higher order derivatives of

composition of two functions. They can be found e.g., in Younes [2019] section 7.1.

Furthermore, one has the following controls on jϕ,ϕt0
and vϕ,ϕt0

, which are simply the general-

ization of the estimates of section 6.2 in Hsieh et al. [2020] for m = 2:

Proposition 3. Let ϕ,ψ ∈ C([t0, t0 + η], Br). Then for all t ∈ [t0, t0 + η], we have

(i) ‖jϕ,ϕt0
(t)‖V ∗ ≤ cV ‖Q‖∞ ‖χ‖L1 := J

(ii) ‖vϕ,ϕt0
(t)‖m+1,∞ ≤ cV

ω ‖jϕ,ϕt0
(t)‖V ∗ ≤ cV

ω J

(iii) ‖vϕ,ϕt0
(t)− vψ,ϕt0

(t)‖m,∞ ≤ J
ω2 `A‖ϕ(t) ◦ ϕt0 − ψ(t) ◦ ϕt0‖m,∞ + cV

ω ‖jϕ,ϕt0
(s)− jψ,ϕt0

(s)‖V ∗

(The constant cV was introduced in Equation (2).)
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Proof. (i) For any v′ ∈ V , we see that:

|(jϕ,ϕt0
(t)|v′)| ≤

∫
ϕ(s, ϕt0 (M0))

|χ| ‖Q‖∞ |div v′|dx ≤ ‖Q‖∞‖v′‖1,∞

(∫
ϕ(s, ϕt0 (M0))

|χ|dx

)
≤ cV ‖Q‖∞‖v′‖V ‖χ‖L1 .

which thus leads to ‖jϕ,ϕt0
(t)‖V ∗ ≤ J .

(ii) We have vϕ,ϕt0
(t) = L−1jϕ,ϕt0

(t) where L := ωK−1
V +Aϕ(t) ◦ϕt0

so to prove (ii), we first show

that for all v ∈ V , ‖v‖V ≤ (1/ω) ‖Lv‖V ∗ . Indeed(
1

ω
‖Lv‖V ∗

)2

=

(
1

ω

∥∥∥KV

(
ωK−1

V +Aϕ(t) ◦ϕt0

)
v
∥∥∥
V

)2

=
1

ω2

∥∥∥ω v +KVAϕ(t) ◦ϕt0
v
∥∥∥2

V

= ‖v‖2V +
1

ω2
‖KVAϕ(t) ◦ϕt0

v‖2V +
2

ω
〈v,KVAϕ(t) ◦ϕt0

v〉V

= ‖v‖2V +
1

ω2
‖KVAϕ(t) ◦ϕt0

v‖2V +
2

ω
(Aϕ(t) ◦ϕt0

v | v) ≥ ‖v‖2V ,

where the last inequality follows from the positive definiteness of the operator Aϕ(s) ◦ϕt0
.

Together with the assumption that V ↪→ Cm+1
0 (Rd,Rd), it follows that:

‖vϕ,ϕt0
(t)‖m+1,∞ ≤ cV ‖vϕ,ϕt0

(t)‖V ≤
cV
ω
‖jϕ,ϕt0

(t)‖V ∗ ≤
cV
ω
J.

(iii) Writing now Lϕ := ωK−1
V +Aϕ(t) ◦ϕt0

and Lψ := ωK−1
V +Aψ(t) ◦ϕt0

, we have:

‖vϕ,ϕt0
(t)− vψ,ϕt0

(t)‖m,∞ = ‖L−1
ϕ jϕ,ϕt0

(t)− L−1
ψ jψ,ϕt0

(t)‖m,∞

≤ ‖L−1
ϕ

(
jϕ,ϕt0

(t)− jψ,ϕt0
(t)
)
‖m,∞ + ‖(L−1

ϕ − L−1
ψ )jψ,ϕt0

(t)‖m,∞.

Note that, from the proof of (ii), we obtain in particular ‖L−1
ϕ ‖L (V ∗, V ) ≤ 1/ω and therefore:

‖L−1
ϕ

(
jϕ,ϕt0

(t)− jψ,ϕt0
(t)
)
‖m,∞ ≤ ‖L−1

ϕ

(
jϕ,ϕt0

(t)− jψ,ϕt0
(t)
)
‖m+1,∞

≤ cV ‖L−1
ϕ

(
jϕ,ϕt0

(t)− jψ,ϕt0
(t)
)
‖V

≤ cV
ω
‖jϕ,ϕt0

(s)− jψ,ϕt0
(s)‖V ∗

Moreover, using (i), ‖(L−1
ϕ − L−1

ψ )jψ,ϕt0
(t)‖m,∞ ≤ ‖L−1

ϕ − L−1
ψ ‖L (V ∗, V ) J and we also have:

‖L−1
ϕ − L−1

ψ ‖L (V ∗, V ) =
∥∥∥L−1

ϕ (Lψ − Lϕ)L−1
ψ

∥∥∥
L (V ∗, V )

=
∥∥∥L−1

ϕ

(
Aψ(t) ◦ϕt0

−Aϕ(t) ◦ϕt0

)
L−1
ψ

∥∥∥
L (V ∗, V )

≤ ‖L−1
ϕ ‖L (V ∗, V ) ‖Aψ(t) ◦ϕt0

−Aϕ(t) ◦ϕt0
‖L (V, V ∗) ‖L−1

ψ ‖L (V ∗, V )

≤ 1

ω2
‖Aψ(t) ◦ϕt0

−Aϕ(t) ◦ϕt0
‖L (V, V ∗)

≤ `A
ω2
‖ϕ(t) ◦ ϕt0 − ψ(t) ◦ ϕt0‖m,∞

where the last inequality follows from the Lipschitz assumption on the operator A.
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Using the estimates of the previous section, we can in addition show the following Lispchitz

property of jϕ,ϕt0
.

Lemma 6. For all t ∈ [t0, t0 + η],

‖jϕ,ϕt0
(t)− jψ,ϕt0

(t)‖V ∗ ≤ Cϕt0
sup

s∈ [t0,t0+η]
‖ϕ(s)− ψ(s)‖2,∞ = Cr,ϕt0

‖ϕ− ψ‖∞.

Proof. From the definition of j, we make a change of variables to obtain∣∣∣(jϕ,ϕt0
(t)− jψ,ϕt0

(t) | v′
)∣∣∣

=
∣∣∣ ∫

ϕ(t)(Mt0 )
χ Q(pϕ,ϕt0

(t) ◦ ϕ−1(t)) (−div v′) dx

−
∫
ψ(t)(Mt0 )

χ Q(pψ,ϕt0
(t) ◦ ψ−1(t)) (−div v′) dx

∣∣∣
≤
∫
Mt0

∣∣∣χ ◦ ϕ(t) Q(pϕ,ϕt0
(t)) (−div v′ ◦ ϕ(t)) Jϕ(t)

− χ ◦ ψ(t) Q(pψ,ϕt0
(t)) (−div v′ ◦ ψ(t)) Jψ(t)

∣∣∣dx
≤ ‖∇χ‖∞ ‖ϕ(t)− ψ(t)‖∞ ‖Q‖∞ ‖v′‖1,∞ ‖Jϕ(t)‖∞ vol(Mt0)

+ Cr,ϕt0
sup

s∈ [t0,t0+η]
‖ϕ(s)− ψ(s)‖2,∞ ‖v′‖1,∞ ‖Jϕ(t)‖∞ vol(Mt0)

+ ‖Q‖∞ ‖v′‖2,∞ ‖ϕ(t)− ψ(t)‖∞ ‖Jϕ(t)‖∞ vol(Mt0)

+ Cr ‖Q‖∞ ‖v′‖1,∞ ‖ϕ(t)− ψ(t)‖∞ vol(Mt0)

≤ Cr,ϕt0
‖ϕ− ψ‖∞ ‖v′‖V ,

where we have estimated term by term and used Lipschitz continuity of Q together with Lemma 5.

We can now go back to the definition of the mapping Γη.

Lemma 7. For all ϕ ∈ C([t0, t0 + η], Br), ϕt0 ∈ Diff m(Rd) and pt0 ∈ L2(ϕt0(M0)), the Bochner

integral in (28) is uniformly bounded for t ∈ [t0, t0 + η].

Proof. Using Proposition 2, we find that for all s ∈ [t0, t0 + η]:

‖vϕ,ϕt0
(s)‖m,∞ ≤ ‖vϕ,ϕt0

(s)‖m+1,∞ ≤
cV J

ω

which gives for all t ∈ [t0, t0 + η]:∫ t

t0

‖vϕ,ϕt0
(s) ◦ ϕ(s)‖m,∞ ds ≤

∫ t

t0

Cr ‖vϕ,ϕt0
(s)‖m,∞ ≤

Cr cV
ω

J η <∞.

where the first inequality follows from Proposition 3 (i).
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Note that in addition, if η is taken small enough such that Cr cV
ω J η ≤ r then Γη maps Sη, ϕt0

to itself. The goal is now to show that Γη is a contractive mapping on Sη, ϕt0
. Indeed, for any

ϕ,ψ ∈ Sη, ϕt0
:

‖Γη(ϕ)− Γη(ψ)‖∞ = sup
t∈ [t0,t0+η]

‖Γη(ϕ)(t)− Γη(ψ)(t)‖m,∞

≤ sup
t∈ [t0,t0+η]

∫ t

t0

‖vϕ,ϕt0
(s) ◦ ϕ(s)− vψ,ϕt0

(s) ◦ ψ(s)‖m,∞ ds

≤
∫ t0+η

t0

(
‖vϕ,ϕt0

(s) ◦ ϕ(s)− vϕ,ϕt0
(s) ◦ ψ(s)‖m,∞ + ‖vϕ,ϕt0

(s) ◦ ψ(s)− vψ,ϕt0
(s) ◦ ψ(s)‖m,∞

)
ds

Using Proposition 2 (ii) and (iii), we get:

‖Γη(ϕ)− Γη(ψ)‖∞

≤ Cr

∫ t0+η

t0

(
‖vϕ,ϕt0

(s)‖m+1,∞ ‖ϕ(s)− ψ(s)‖m,∞ + ‖vϕ,ϕt0
(s)− vψ,ϕt0

(s)‖m,∞
)
ds

≤ Cr

∫ t0+η

t0

(
cV
ω
J ‖ϕ(s)− ψ(s)‖m,∞

+ cV

(
J

ω2
`A ‖ϕ(s) ◦ ϕt0 − ψ(s) ◦ ϕt0‖m,∞ +

1

ω
‖jϕ,ϕt0

(s)− jψ,ϕt0
(s)‖V ∗

))
ds

Now using Lemma 6 above, we obtain the following inequalities:

‖Γη(ϕ)− Γη(ψ)‖∞

≤ Cr

∫ t0+η

t0

((
cV J

ω
+
cV J

ω2
`A Cϕt0

)
‖ϕ(s)− ψ(s)‖m,∞ +

cV
ω

Cr,ϕt0
sup

s∈ [t0,t0+η]
‖ϕ(s)− ψ(s)‖m,∞

)
ds

(29)

≤ Cr,ϕt0
η ‖ϕ− ψ‖∞,

It follows that there exists a small enough η > 0 depending on ϕt0 and r such that Γη is a well-

defined contraction on Sη, ϕt0
and, by Banach fixed point theorem, we get the local existence and

uniqueness of a solution on [t0, t0 + η].

By concatenating local solutions, we can construct a unique maximal solution ϕ defined on a

maximal interval Imax, and either Imax = [0, T ′) for some T ′ < T or Imax = [0, T ]. To show that the

solution is defined over the entire interval [0, T ], we first prove that ‖ϕ(t)− id‖m,∞ is bounded on

Imax. For all t ∈ Imax, a solution ϕ satisfies

ϕ(t, x) = x+

∫ t

0
vϕ(s, ϕ(s, x)) ds,

which gives for all x ∈ Rd:

|ϕ(t, x)− x| ≤
∫ t

0
‖vϕ(s)‖∞ ds ≤

∫ t

0

cV
ω
‖jϕ(s)‖V ∗ ds ≤

cV
ω
JT. (30)
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Moreover, we have:

Dϕ(t, x) = Id +

∫ t

0
Dvϕ(s, ϕ(s, x))Dϕ(s, x) ds,

where Id denotes the dim-by-dim identity matrix which leads to

|Dϕ(t, x)− Id| =
∣∣∣∣∫ t

0

(
Dvϕ(s, ϕ(s, x)) +Dvϕ(s, ϕ(s, x))(Dϕ(s, x)− Id)

)
ds

∣∣∣∣
≤ cV

ω
JT +

∫ t

0

cV
ω
J |Dϕ(s, x)− Id| ds.

By Grönwall’s inequality

|Dϕ(t, x)− Id| ≤
cV
ω
JT exp

(cV
ω
JT
)
. (31)

For the second order derivatives, we see that:

|D2ϕ(t, x)| ≤
∫ t

0

(
|D2vϕ(s, ϕ(s, x))| |Dϕ(s, x)|2

+ |Dvϕ(s, ϕ(s, x))| |D2ϕ(s, x)|
)
ds,

and inserting the bound (31) into the above, we obtain

|D2ϕ(t, x)| ≤ (1 +BJ)2
(cV
ω
JT
)

+

∫ t

0

cV
ω
J |D2ϕ(s, x)| ds.

Using again Grönwall’s inequality, we get that |D2ϕ(t, x)| is bounded by a constant dependent on

J uniformly in t and x. Then by a simple recursive argument, we show similarly that there exists

a constant BJ such that for any 2 ≤ k ≤ m:

|Dkϕ(t, x)| ≤ BJ , ∀t ∈ [0, T ′), ∀x ∈ Rd. (32)

Finally, with (30), (31), and (32), we conclude that

‖ϕ(t)− id‖m,∞ ≤ CJ .

The same inequality holds for ϕ−1(t) for T ∈ [0, T ′). Indeed, from standard results on flows (c.f.

for instance Younes [2019] Chap. 7), one has that for t ∈ [0, T ′), the inverse map ψ(t) := ϕ(t)−1

is obtained as the flow of the ODE dz/ds = ṽ(t)(s, z), with ṽ(t)(s) = −vϕ(t−s), and one can repeat

the analysis above with ṽ in place of v. Importantly, this tells us that we can choose r = CJ

independently of T ′.

Now we can show that ϕ(t) has a limit in Diff m(Rd) as t ↑ T ′ by the Cauchy criterion. Let

(tk)
∞
k=1 ⊂ Imax be a sequence such that tk ↑ T ′. For k < l, we have

‖ϕ(tk)− ϕ(tl)‖m,∞ ≤
∫ tl

tk

‖vϕ(s) ◦ ϕ(s)‖m,∞ ds

≤
∫ tl

tk

CJ cV ‖vϕ(s)‖V ds

≤
∫ tl

tk

CJ
cV
ω
‖jϕ(s)‖V ∗ ds

≤ CJ cV
ω

J (tk − tl),
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which shows that (ϕ(tn))∞n=1 is a Cauchy sequence in Diff m(Rd) for ‖·‖m,∞. It follows that t 7→ ϕ(t)

has a limit ϕ(T ′) as t ↑ T ′ in the complete space idRd + Cm0 (Rd,Rd). Similarly, replacing v by ṽ, we

find that ϕ(t)−1 also has a limit at T ′, which is necessarily ϕ(T ′)−1. This shows that ϕ(T ′) ∈ Br, so

that the solution can be continued at t = T ′, which contradicts that [0, T ′) is the maximal interval

of existence.

From the above analysis, we also obtain that t 7→ ϕ(t) is bounded on [0, T ] for dm,∞ and

therefore we have supt∈ [0, T ] ‖F−1
ϕ(t)‖∞ < ∞. Thus Corollary 2 applies and it follows that we get a

weak solution p to the reaction-diffusion PDE that is also well-defined on [0, T ], which concludes

the proof of Theorem 3.

5 Discussion

We introduced a new general longitudinal model to describe the shape of a material deforming

through the action of an internal growth potential which itself evolves according to an advection-

reaction-diffusion process. This model extends our previous work in Hsieh et al. [2020], which did

not include any dynamics on the growth potential beyond pure advection. The present paper was

mainly dedicated to proving the long time existence of solutions to the resulting system of coupled

PDEs on moving domains. In contrast with other related reaction-diffusion systems on moving

domains which often only yield short-time existence, the global existence is here made possible in

part thanks to the use of a particular regularization energy on the deformation.

(a) Mesh of the initial shape. (b) Initial potential centered at (−0.5, 0.3).

Figure 2: Synthetic initial shape and growth potential used in the numerical simulations.

Although this paper focuses on mathematical aspects, simple numerical simulations of the evo-

lution equations given by (13) and (14) can further illustrate the potential interest of this model in

future applications to the study of growth or atrophy of biological tissues, which was the original

motivation behind our work. We present a few such preliminary simulations using the simple syn-

thetic 2D domain shown in Figure 2 (a) as initial shape M0. We choose the tensor Aϕ to be the

isotropic elastic tensor given by (7) with Lamé parameters λ = 0 and µ = 1 on ϕ(M0) as described

earlier in Section 2.2. The initial potential p0 is a shifted radial function compactly supported in a

ball centered at ctrue = (−0.5, 0.3) as shown in Figure 2 (b). Specifically, it takes the form

p0(x; c, r, h) = h

(
|x− c|2

r2
− 1

)2

1B(c,r)(x). (33)
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with c ∈M0, r > 0 and h > 0 being the center, radius and height of the potential function respec-

tively. We also adopt simple reaction-diffusion and yank models for the purpose of illustration. For

the reaction-diffusion model, we let the diffusion tensor be a constant Sϕ(t, x) = diag(0.025, 0.005),

which diffuses five times faster along the x-direction than along the y-direction. The reaction and

yank functions R and Q are both C2 piecewise polynomial supported on [pmin, pmax] = [0.01, 1].

Their plots are displayed in Figure 3.

Figure 3: Plots of the functions R and Q used for the reaction and yank expressions in the simula-

tions.

With the above selection of parameters and initial conditions, the evolution of the growth

potential and the resulting deformation of the domain’s shape are shown in Figure 1. We note that

the potential eventually becomes constant over the whole domain after which the deformation stops.

One of our main future subject of investigation will be to tackle the inverse problem associated to

this longitudinal model, generalizing the work done in Hsieh et al. [2020]. In other words, if we

observe the initial and final (plus possibly some intermediate) domain’s shapes and if a parametric

representation of the initial growth potential as e.g. (33) is given, is it possible to recover this initial

potential, in particular its location? This issue relates to a long-term goal, in medical imaging,

to infer the early impact of neuro-degenerative diseases based on later observations, allowing for a

better understanding of their pathogenesis.

To give a hint at the feasibility of such an inverse problem in a simple controlled setting, we

consider the deformed domains obtained with the simulation of Figure 1 at different times T ′ and

for each T ′, we run our evolution model up to T ′ but by varying the center c of the initial growth

potential in (33) (all other parameters in the model being kept the same). The shape of the domain’s

boundary at T ′ for the different choices of c is then compared to the ground truth (i.e. the one

obtained for c = ctrue). To quantify this difference between two boundary curves, we evaluate their

distance for the varifold metric introduced in Charon and Trouvé [2013] that is known to provide

a robust measure of proximity between curves. The results are shown in Figure 4 in which the left

column displays the ground truth domains for the different T ′ while the middle and right columns are

plots of the varifold energy with respect to the two coordinates of c with bright colors corresponding

to lower values of the varifold distance i.e., closer proximity to the ground truth domain. As can

be seen and expected, for each time T ′, we obtain a minimum distance of 0 at c = ctrue but one

can further notice that the energy is relatively well behaved around that minimum: for instance we

do not observe empirically the presence of additional local minimums. We also note that the global
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(a) T ′ = 10

(b) T ′ = 15

(c) T ′ = 20

(d) T ′ = 25

Figure 4: Effect of the growth potential’s center c on the deformed domain at different times T ′.

On the left column are the ground truth domains obtained with c = ctrue = (−0.5, 0.3). The middle

and right column are plots of the varifold distance to this ground truth domain when varying c.
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minimums appear more pronounced at intermediate times than at early or late times.

Although very preliminary, those results suggest that formulating the inverse problem as the

minimization of the varifold distance to the observed final domain over the parameters of the initial

potential is an a priori viable approach for this problem. In future work, we therefore plan to analyze

the well-posedness of such a minimization problem and investigate efficient methods for numerical

optimization, in particular to evaluate the gradient of the energy.
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optimal control. ESAIM: Proceedings and Surveys, 45:300–307, 2014. Publisher: EDP Sciences.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical

society, 68(3):337–404, 1950.

Naim Bajcinca. Analytic solutions to optimal control problems in crystal growth processes. Journal

of Process Control, 23(2):224–241, February 2013.

M Faisal Beg, Michael I Miller, Alain Trouvé, and Laurent Younes. Computing large deformation

metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision,

61(2):139–157, 2005.

Martin K. Bernauer and Roland Herzog. Optimal Control of the Classical Two-Phase Stefan Prob-

lem in Level Set Formulation. SIAM Journal on Scientific Computing, 33(1):342–363, January

2011.

Alberto Bressan and Marta Lewicka. A Model of Controlled Growth. Archive for Rational Mechanics

and Analysis, 227(3):1223–1266, March 2018.

Martins Bruveris and François-Xavier Vialard. On Completeness of Groups of Diffeomorphisms.

arXiv:1403.2089 [math], January 2016.

Chris Burdzy, Zhen-Qing Chen, and John Sylvester. The heat equation in time dependent domains

with insulated boundaries. Journal of mathematical analysis and applications, 294(2):581–595,

2004.

29
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Diffeomorphism-Based Analysis of Shape Ensembles. SIAM Journal on Imaging Sciences, 11(1):

802–833, January 2018.

Dai-Ni Hsieh, Sylvain Arguillère, Nicolas Charon, Michael I. Miller, and Laurent Younes. A model

for elastic evolution on foliated shapes. In Albert C. S. Chung, James C. Gee, Paul A. Yushke-

vich, and Siqi Bao, editors, Information Processing in Medical Imaging, pages 644–655. Springer

International Publishing, 2019.

Dai-Ni Hsieh, Sylvain Arguillère, Nicolas Charon, and Laurent Younes. Mechanistic Modeling

of Longitudinal Shape Changes: equations of motion and inverse problems. arXiv:2003.05512

[math], March 2020.

J.d. Humphrey. Review Paper: Continuum biomechanics of soft biological tissues. Proceedings of

the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459

(2029):3–46, January 2003. Publisher: Royal Society.

S. Joshi and M. Miller. Landmark matching via large deformation diffeomorphisms. IEEE trans-

actions in Image Processing, 9(8):1357–1370, 2000.
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