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Abstract. This paper introduces an extension of diffeomorphic registra-
tion to enable the morphological analysis of data structures with inherent
density variations and imbalances. Building on the framework of Large
Diffeomorphic Metric Matching (LDDMM) registration and measure rep-
resentations of shapes, we propose to augment previous measure defor-
mation approaches with an additional density (or mass) transformation
process. We then derive a variational formulation for the joint estimation
of optimal deformation and density change between two measures. Based
on the obtained optimality conditions, we deduce a shooting algorithm
to numerically estimate solutions and illustrate the practical interest of
this model for several types of geometric data such as fiber bundles with
inconsistent fiber densities or incomplete surfaces.

Keywords: Shape analysis · Diffeomorphic registration · Generalized
measures · Density variations

1 Introduction

The field known as computational anatomy [7] has come a long way since its
inception several decades ago. Being primarily focused on the development of
computational and statistical tools for the analysis of anatomy and its variability,
the discipline has thus thrived by benefiting on the one hand from the increas-
ing availability of efficient imaging techniques that can generate large amount of
anatomical data and on the other hand from the mathematical advances made in
shape analysis that provide the adequate theoretical frameworks and numerical
methods for morphological analysis. One of these important theoretical mile-
stones came from the representation of shape spaces as infinite-dimensional Rie-
mannian manifolds which provides the foundations not only to construct relevant
families of metrics between geometric structures but also to extend many clas-
sical statistics and machine learning tools to those shape spaces.
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Among the different Riemannian shape analysis frameworks which have been
introduced, deformation-based models [1,12] have found many applications to
biomedical data. These are usually referred to as extrinsic (our outer) shape
metrics since the distance between two shapes is induced by a metric on the
deformation group and measured by how much deformation is needed to map
one on the other, which involves solving a registration problem. In particular, the
model known as Large Deformation Diffeomorphic Metric Mapping (LDDMM)
[1] allows to formulate such a problem as finding an optimal flow map between
the two shapes and has been successfully applied to objects such as landmarks,
images as well as curves and surfaces. In the latter cases, one additional difficulty
is the absence of predefined point to point correspondences between the vertices
of the two shapes. Addressing this particular issue motivated new connections
with the area of geometric measure theory beginning with the work of [5] and
later pursued in e.g. [2–4,9]. These works all share the same guiding principle
that shapes such as curves and surfaces are better viewed as elements in certain
spaces of measures, which allows to build correspondence free divergences that
can be nicely embedded in diffeomorphic registration formulations.

So far, those measure representations have rarely been exploited in shape
analysis beyond the pure diffeomorphic transformation setting described above.
However, there are important limitations to those methods when dealing with
registration of what we term generically as imbalanced shapes, namely in the
situation where the representing measures display significant variations of mass
or density. A motivating example is the case of white matter fiber bundles in
which one can expect not only variations in the overall geometry of the bundle
but also changes in the number (i.e. density) of fiber curves in each bundle.
Diffeomorphic registration of fiber bundles [6] thus typically rely on an ad hoc
renormalization/simplification step to compensate for fiber density inconsisten-
cies. Another quite common situation is when a shape, for instance an anatomical
surface, is only partially or sparsely known due to acquisition or segmentation
issues. We propose to take further advantage of the flexibility of the measure
setting by augmenting the diffeomorphic component of LDDMM with a global
or local change of density of the source measure to account for potential mass
imbalance. We then introduce a generalized registration model in which defor-
mation and density change are estimated jointly. Our model differs from the
metamorphosis setting of [10] in that we consider a more general class of mea-
sures better adapted to curves and surfaces but also restrict to transformations
of the density only, thus avoiding the singularity issues described in [10].

The paper is organized as follows. In Sect. 2, we review the necessary back-
ground on diffeomorphic registration and measure representation of shapes.
Section 3 introduces our generalized model for diffeomorphic registration with
density variations as well as the proposed optimization algorithm. Numerical
results on real and synthetic data are presented in Sect. 4.

2 Diffeomorphic Registration of Geometric Measures

The model that we develop in Sect. 3 draws from the concepts of diffeomorphic
flows for the modelling of deformations on the one hand and of generalized
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measures for the representation of shapes on the other. In this section, we give a
brief overview of these two mathematical building blocks underlying our paper.

2.1 Diffeomorphisms and Registration

The construction of deformations as flows of vector fields goes back to works
such as [1] and [12]. In this paper, we adopt the LDDMM setting of [1]. Let
n ∈ N with n ≥ 2 and R

n be the embedding space of the considered shapes.
We will typically have n = 2 or n = 3 in our examples as we shall primarily
be interested in 2D and 3D shapes. We will denote by V a Hilbert space of
vector fields of Rn that is embedded in the space C1

0 (Rn,Rn) of C1 vector fields
that vanish at infinity. Then let L2([0, 1], V ) be the space of time-varying vector
fields such that for all t ∈ [0, 1], v(t) ∈ V and

∫ 1

0
‖v(t)‖2V dt < +∞. The flow of

v ∈ L2([0, 1], V ) at time t ∈ [0, 1] is defined as the mapping ϕv
t : Rn → R

n such
that for all x ∈ R

n, ϕv
t (x) = x +

∫ t

0
v(s) ◦ ϕv

s(x)ds. It follows from the results
of [14] (Chap. 7) that ϕv

t belongs to the set Diff1(Rn) of C1-diffeomorphisms of
R

n, namely the bijective maps such that both ϕv
t and its inverse (ϕv

t )−1 are
C1. Moreover, the term

∫ 1

0
‖v(t)‖2V dt where ‖ · ‖V is the norm of the Hilbert

space V provides a measure of the energy of the deformation path t �→ ϕv
t which

is related to a right-invariant metric on the diffeomorphism group and is thus
often used as a regularization energy for registration problems as we will see next.
Furthermore, the embedding assumption on V implies that it is a Reproducing
Kernel Hilbert Space (RKHS) of vector fields on R

n. In all this paper, we shall
make the additional (and quite common) assumption that the associated matrix
kernel is of the form KV (x, y) = kV (x, y)Idn×n where kV :Rn × R

n → R is a
positive definite scalar kernel on R

n.
Shapes can be then transformed by diffeomorphisms by specifying a group

action: for instance, the action of a diffeomorphism φ ∈ Diff1(Rn) on a set q =
(xi)i=1,...,N of N points of Rn is typically defined by transporting each point by
φ i.e. φ ·q = (φ(xi))i=1,...,N . Registering two such point sets q and q′ can be then
formulated in this framework as the minimization over all v ∈ L2([0, 1], V ) of a
functional like 1

2

∫ 1

0
‖v(t)‖2V dt+λ

∑N
i=1 |ϕv

1(xi)−x′
i|2 that is a weighted sum of the

deformation energy and the squared distances between the corresponding points
in φ · q and q′. This is the problem known as (inexact) landmark registration.

2.2 Geometric Measure Representation of Shapes

In many problems of interest however, shapes cannot be directly described as
landmarks. For instance, datasets of triangulated surfaces usually exhibit dif-
ferences in sampling or do not come automatically with point correspondences
across all the dataset. This has motivated the exploration of shape representa-
tions from geometric measure theory which allow the comparison and registra-
tion of geometric structures without the need for such correspondences. Measure
frameworks such as currents or varifolds [5,9] provide a general setting to encode
geometric shapes as unlabelled points in R

n that carry some information of local
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tangent plane as well. In this paper, we will specifically consider as our shape
space S the set of all objects represented by a discrete measure of the form
μ =

∑N
i=1 riδ(xi,Ti) for N ≥ 1. In this representation, each Dirac riδ(xi,Ti) can

be interpreted as an unlabelled particle of mass ri > 0 (which we shall also refer
to as the density of μ at xi in a discrete sense) located at the position xi ∈ R

n

and carrying an oriented d-dimensional subspace Ti. Note that here 0 ≤ d ≤ n is
fixed and we will be mostly interested in the cases d = 1 and d = 2 in practice,
i.e. the Ti’s are oriented lines or planes. Mathematically, μ is a positive measure
on the product of Rn and the oriented d-dimensional Grassmannian of Rn, and
is usually called a d-current or an oriented d-varifold following the definitions
and terminology of [8,9]. In practice, it will be more convenient to represent
each oriented subspace Ti by an oriented frame of d linearly independent vectors
(u(k)

i )k=1,...,d. Although such a frame is not unique, this will not constitute an
issue for the applications considered in this work.

The above space S of discrete measures provides an effective setting to embed
a variety of geometric structures. In particular, curves and surfaces can always
be approximated by elements of S [3,9]. For instance a polygonal curve with
edges [e1i , e

2
i ] for i = 1, . . . , N can be approximated by the measure of S (with

d = 1) μ =
∑N

i=1 riδ(xi,Ti) where ri is the edge length, xi = (e1i + e2i )/2 its

midpoint and Ti the oriented line directed by
−−→
e1i e

2
i . Triangulated surfaces can be

similarly approached by a 2-dimensional measure in which case ri is the area of
the face, xi the barycenter of its three points and Ti the oriented plane containing
the triangular face. Beyond curves and surfaces, S is a versatile class of objects
represented fundamentally as a distribution of tangent spaces spread at different
locations in R

n. One of the key advantage of such measure representations of
shapes is that one can easily equip S with a metric. Among the different classes of
metrics between measures that one may choose from, kernel norms (also known
as maximum mean discrepancy) are particularly well-suited in our context as
they lead to relatively simple and explicit expression of the distance between two
measures in S. Specifically, given a positive-definite kernel KS on the product of
R

n and the set of all oriented d-planes of Rn (or more simply the set of all oriented
d- frames), the associated Hilbert inner product between any μ =

∑N
i=1 riδ(xi,Ti)

and μ′ =
∑N ′

j=1 r′
jδ(x′

j ,T ′
j)

in S is given by:

〈μ, μ′〉S =
N∑

i=1

N ′
∑

j=1

rir
′
jKS(xi, Ti, x

′
j , T

′
j). (1)

Then the computation of the distance on S is just obtained from ‖μ − μ′‖2S =
‖μ‖2S − 2〈μ, μ′〉S + ‖μ′‖2S and reduces to evaluations of the kernel function. Note
that this provides a notion of distance that does not rely on any correspondence
between the Diracs of μ and μ′ (and that actually remains well-defined even
when the number of Diracs in μ and μ′ are different). The properties of these
metrics have been studied extensively in [5,8,9] and they provide a convenient
notion of discrepancy on our space S for adequate choices of the kernel KS , such
as the one we will specify and use in Sect. 4 for our simulations.
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To arrive at a formulation of the LDDMM registration problem for measures
in S, the only missing element is the group action of Diff(Rn) on S. A standard
action is by measure pushforward [5,8] which is given for any φ ∈ Diff(Rn) and
any μ =

∑N
i=1 riδ(xi,Ti) ∈ S by

φ · μ =
N∑

i=1

|JTi
xi

φ|.ri δ(φ(xi),dxi
φ(Ti)) ∈ S (2)

where dxi
φ denotes the differential of φ at xi, dxi

φ(Ti) the subspace spanned
by the transported frame vectors (dxi

φ(u(k)
i ))k=1,...,d and |JTi

xi
φ| is the abso-

lute value of the Jacobian determinant of φ along Ti at xi given explicitly by√
det(dxi

φ(u(k)
i ) · dxi

φ(u(l)
i ))k,l. This group action happens to be consistent with

the usual action of diffeomorphisms on d-dimensional submanifolds of Rn in the
sense that if μ ∈ S is a discrete approximation of a submanifold M then φ · μ is
typically an approximation of the submanifold φ(M), c.f. [8] for rigorous state-
ments. This is the main reason for the presence of the mass changes |JTi

xi
φ| in

(2) that represent the local change in d-volume induced by φ.
Finally the registration of a given source measure μ0 ∈ S to a target μ′ ∈ S

can be framed as minimizing the functional 1
2

∫ 1

0
‖v(t)‖2V dt + λ‖ϕv

1 · μ0 − μ′‖2S .
This class of optimal control problems includes as particular cases the curve
and surface registration approaches of [2,5]. We will elaborate on the numerical
aspects for the more general framework that we present in the following section.

3 Diffeomorphic Registration with Density Changes

Although the action of diffeomorphisms on S does allow to transform the mass of
measures through the Jacobian determinant of the deformation, registering mea-
sures with important inconsistencies or density variations may lead to unnatural
or even degenerate optimal deformations as we will show in some of the exam-
ples of Sect. 4. Our goal is thus to augment (2) with a complementary process
to simultaneously modify the density of the measure. The main focus will be
on a global model with a single common density rescaling factor but we will
also briefly introduce a preliminary extension of the approach to deal with local
changes in density as well.

3.1 An Augmented Optimal Control Problem

Adopting the notations of the previous section, we introduce a complementary
rescaling factor α ∈ R

+, which is a nonnegative number acting as a global
multiplicative factor on the measure μ which we write α.μ. Under this extended
setting, we formulate the registration of a source μ0 to a target μ′ as the following
new optimization problem:

min
v,α

E(v, α) .=
1
2

∫ 1

0

‖v(t)‖2V dt +
τ

2
(α − 1)2 + λ‖α.μ(1) − μ′‖2S (3)
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subject to μ(t) .= (ϕv
t ) ·μ0. The rescaling factor α is here penalized by the simple

squared difference with α = 1 weighted by a fixed coefficient τ > 0 and one can
see formally that letting τ → +∞ imposes α = 1 and (3) then reduces to the
previous LDDMM registration problem.

From now on, let (v, α) be a minimizer of (3) and q(t) the associated opti-
mal trajectory. We shall derive some necessary conditions satisfied by such a
minimizer. We write μ0 =

∑N
i=1 riδ(xi,Ti) and, using the representation of the

subspaces Ti by frames of d vectors as explained above, we can alternatively view
the state variable of the optimal control problem as q = ((xi, u

(k)
i )1≤i≤N,1≤k≤d),

where Span(u(1)
i , . . . , u

(d)
i ) = Ti and |u(1)

i ∧ · · · ∧ u
(d)
i | =

√
det(u(k)

i · u
(l)
i ) = ri.

We first notice that, as a function of α with v and μ(t) being fixed, E is
quadratic and solving for ∂E

∂α = 0 shows that the optimal α can be expressed
with respect to the final measure μ(1) as:

α∗ =
τ
2 + λ〈μ(1), μ′〉S

τ
2 + λ‖μ(1)‖2S

. (4)

where the Hilbert product on S is given by (1). Inserting into (3), this now
allows to reduce the problem to an optimal control problem with control v. The
optimality conditions on v can be derived similarly to [8,11,13], by introducing
the Hamiltonian of the problem which is given by:

H(p, q, v) .=
N∑

i=1

〈px
i , v(xi)〉 +

N∑

i=1

d∑

k=1

〈puk
i , dxi

v(u(k)
i )〉 − 1

2
‖v‖2V ,

where px
i , puk

i ∈ R
n denote the costates of the position x and frame vectors

u
(k)
i . By applying the Pontryagin maximum principle, we find that any optimal

trajectory (xi(t), u
(k)
i (t)) must satisfy the following Hamiltonian equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi(t) = v(t)(xi(t))
u̇
(k)
i (t) = dxi(t)v(t)(u(k)

i (t))
ṗx

i (t) = −dxi(t)v(t)T px
i (t) − ∑d

k=1 d
(2)
xi(t)

v(t)(·, u(k)
i (t))T puk

i (t)
ṗuk

i (t) = −dxi(t)v(t)T puk
i (t)

(5)

and, using the RKHS property of V , the optimal control v is given by:

v(t)(·) =
N∑

i=1

kV (xi(t), ·)px
i (t) +

d∑

k=1

∂1kV (xi(t), ·)(u(k)
i (t), puk

i (t)). (6)

Thus, from the above equations, we obtain that the full energy functional to be
minimized can be written as a function of the initial costates, namely

E(pxi (0), p
uk
i (0)) =

1

2

N∑

i=1

〈pxi (0), v(0)(xi(0))〉 + 1

2

N∑

i=1

d∑

k=1

〈puk
i (0), dxi(0)

v(0)(u
(k)
i (0))〉 (7)

+
τ

2
(α∗ − 1)2 + λ‖α∗.μ(1) − μ′‖2S ,

where α∗.μ(1) =
∑N

i=1 α∗ri(1)δ(xi(1),Ti(1)) and Ti(1) = Span({u
(k)
i (1)}) is

obtained from the Hamiltonian equations (5) and (6).
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3.2 Numerical Implementation

The numerical minimization of the energy (7) can be tackled based on an
iterative shooting scheme similar to other LDDMM approaches [8,13]. Specif-
ically, given the initial costates (px

i (0), (puk
i (0))d

k=1) at the current iteration
of the algorithm together with the known and fixed initial state variables
(xi(0), (u(k)

i (0))d
k=1), we start by integrating the Hamiltonian equations (5) and

(6) based on an RK4 scheme to obtain the measure μ(1) at the final time. We
then compute α∗ with (4) from which we obtain the value of the energy (7). In
order to update the initial costates, we also need the gradient of E which we
can directly compute using automatic differentiation. More precisely, our Python
implementation leverages the Pytorch library together with the recently devel-
oped KeOps library1. The latter allows to generate efficient CUDA subroutines
for the computation and automatic differentiation of expressions involving posi-
tive definite kernels such as the ones appearing in the Hamiltonian equations and
in the inner product of S given by (1). Finally, with E and ∇E being obtained
as just explained, the optimization itself is done using the L-BFGS algorithm of
the SciPy library.

In what follows, we will refer to this registration algorithm with global density
rescaling by the acronym LDDMM+GD. The parameters that need to be set by
the user are the kernels kV and KS as well as the weighing coefficients λ and τ .
The latter controls the relative importance of deformation and mass rescaling in
the overall change of density. We illustrate the effect of τ on the simplest example
of two single Diracs in Fig. 1 (with n = 2 and d = 1). The optimal diffeomorphism
ϕv
1 pictured here via the resulting deformed grid shows a combination of a local

rotation effect (in order to match the directions of the frame vectors) and of a
local compression (to compensate for the difference in mass). The case τ = ∞
corresponds to the pure diffeomorphic registration setting of the previous section.
In sharp contrast, when τ = 0, the deformation reduces to only rotating the
directional component of the source Dirac while the transformation of mass is
entirely done by the rescaling variable α∗. Intermediate values of τ lead to both
ϕv
1 and α∗ contributing to the change in density.

3.3 Local Density Changes

The model presented in the previous sections is well-suited when a common and
global density rescaling effect is expected as the results of Sect. 4 will illustrate
but is typically not adapted to the situation of local mass imbalances such as
in the case of particular missing parts on the target shape. To tackle this more
general case, we briefly discuss a preliminary approach that can be derived as
a localized version of the above model. Instead of the single density rescaling
variable α, one can introduce N controls αi ∈ R+ associated to each Dirac in
μ0. Writing now α = (α1, . . . , αN ) and defining the measure mass rescaling as

1 https://www.kernel-operations.io/.

https://www.kernel-operations.io/
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(a) τ = ∞ (b) τ = 50 (c) τ = 0

Fig. 1. Registration between the two Diracs μ = r0δ(x0,T0) and μ′ = r′δ(x′,T ′) with
r0 = 2, r′ = 4/5, x0 = x′ = (0, 0) ∈ R

2 and T , T ′ are the lines spanned by u0 = (1, 0)
and u′ = (cos(π/3), sin(π/3)). The plotted arrows vectors here represent r0u0 and r′u′

respectively. The figure illustrates the effect of the choice of τ on the registration, with
τ = ∞ corresponding to the pure deformation case (i.e. α∗ = 1). The optimal density
rescaling factors in (b) and (c) are α∗ = 0.6773 and α∗ = 0.4074 respectively.

α·μ =
∑N

i=1 αiriδ(xi,Ti), we formulate the registration problem with local density
changes as follows:

min
v,α∈R

N
+

E(v, α) .=
1
2

∫ 1

0

‖v(t)‖2V dt +
τ

2

N∑

i=1

ri(αi − 1)2 + λ‖α · μ(1) − μ′‖2S (8)

in which the penalty on the density rescaling vector α is now the distance to
(1, . . . , 1) for the L2 metric weighed by the density of the initial μ0. Note that
this is only one simple choice of penalty that directly extends (3) but we plan,
in future work, to examine other relevant regularizers that would for instance
constrain the local variations of the αi’s.

Problem (8) can be solved in similar fashion as in Sect. 3.2. Indeed, the Hamil-
tonian equations (5) and (6) still hold although the optimality equations on the
αi’s are not as straightforward to exploit as (4). In practice, we instead jointly
optimize over the initial costates (px

i (0), (puk
i (0))d

k=1) together with α = (αi)
using L-BFGS, with the gradient of the energy with respect to each αi being
computed by automatic differentiation. We will denote this diffeomorphic regis-
tration under local density changes by the acronym LDDMM+LD.

4 Results

As proof-of-concept, we present a few results of the above LDDMM+GD and
LDDMM+LD algorithms applied to 3D shapes (n = 3), specifically discrete
curves (d = 1) or surfaces (d = 2). Those shapes are converted to elements of S as
explained in Sect. 2.2. For the purpose of visualization however, we shall plot the
shapes rather than their associated measures in S and display the source shape’s
time evolution along the estimated deformation path ϕv

t . In all experiments, the
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deformation kernel kV is a Gaussian and the kernel KS defining the metric on
S is chosen among the class of kernels discussed in [9], specifically as the tensor
product of a Gaussian kernel on R

n and the Binet kernel between d-dimensional
subspaces, i.e. for T = Span(u(k)) and T ′ = Span(u′(k)) the positive kernel given
by det((u(k) · u′(l))k,l)2. We also set τ to a small value so as to put only minimal
constraints on the estimation of α.

L
D
D
M
M

L
D
D
M
M
+
G
D

t = 0 t = 1/3 t = 2/3 t = 1

Fig. 2. Registration of single curve to CP fiber bundle (365 curves). The second row
shows the deformation at intermediate times for the proposed LDDMM+GD algorithm
where the estimated density rescaling is α∗ = 348.80.

t = 0 t = 1/3 t = 2/3 t = 1

Fig. 3. Registration of CA fiber bundle (431 curves) to Fornix fiber bundle (2151
curves). The estimated α∗ is 4.18, close to the fiber density ratio of the bundles.

Fiber Bundles. For our first set of simulations, we consider white matter fiber
tracts taken from the publicly available ISMRM 2015 Tractography Challenge
repository2. In Fig. 2, we show the result of registering a single template curve
onto the posterior commissure (CP) bundle containing 365 distinct curves. As
can be seen on the first row, regular LDDMM registration generates a folding of
the source curve in an attempt to compensate for the difference in total mass.
2 http://www.tractometer.org/ismrm 2015 challenge/.

http://www.tractometer.org/ismrm_2015_challenge/
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30
%

sp
ar
se

5%
sp
ar
se

source/target LDDMM LDDMM+GD

Fig. 4. Registration between two hippocampus surfaces: source (in blue) and target
(in red) which has been randomly subsampled to 30% (first row) and 5% (second row)
of its total number of triangles. The resulting deformed surface at t = 1 obtained with
LDDMM (second column) and LDDMM+GD (third column) is compared to the fully
sampled target surface. For LDDMM+GD, we obtain α∗ = 0.29 and α∗ = 0.049. (Color
figure online)

The LDDMM+GD algorithm on the other hand leads to a deformed curve that
matches the average geometry of the bundle with an estimated α∗ = 348.80 con-
sistent with the density of curves in the target. Note that α∗ is in fact smaller
than 365 which accounts for the spatial spreading and fanning of the bundle.
We also consider the registration between two different fiber tracts: the anterior
commissure (CA) and fornix which are made of respectively 431 and 2151 indi-
vidual curves. Once again, standard diffeomorphic registration (not shown here
for the sake of space) induces important artifactual folding effects in contrast
with the LDDMM+GD registration result of Fig. 3.

Sparse Shapes. Another feature of the LDDMM+GD approach is its robust-
ness under sparse and incomplete observation of the target surface. This is illus-
trated on the example of hippocampi surfaces (data provided with the Keops
library) in Fig. 4 where sparse targets are synthetically generated by keeping only
a small number of random faces from the full ground truth target mesh. This
mass imbalance results in severe shrinking and twisting of the registered surface
estimated with standard LDDMM while LDDMM+GD recovers a surface close
to the ground truth and automatically estimates (through α∗) the sparsity rate
with good accuracy.
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L
D
D
M
M
+
L
D

L
D
D
M
M

Source/Target t = 1/3 t = 2/3 t = 1

Fig. 5. Registration of two hippocampi surfaces with a missing subregion obtained
with the LDDMM+LD and standard LDDMM approach. The colors on the first row
correspond to the values of the mass rescaling αi at each location. One can notice
small differences in terms of overlap between the final shape and the ground truth
target around that subregion. The Hausdorff distance to the ground truth is 1.5714
(LDDMM+LD) versus 1.9789 (LDDMM). (Color figure online)

Partial Matching. This approach is however not well-suited in the situation
where an isolated part of the target shape is locally missing, as with the simulated
example of Fig. 5 in which we artificially remove a subregion of the hippocam-
pus surface. In such a case, the LDDMM+LD algorithm allows for local mass
changes and is able to estimate, alongside the deformation, the corresponding
missing region on the source shape as shown on the first row, where the colors
represent the values of the αi’s at the different locations. In contrast, such miss-
ing regions can adversely affect registration under the standard LDDMM model.
This is evidenced quantitatively by the closer proximity (measured for the usual
Hausdorff distance) of the matched surface to the ground truth (i.e. complete)
target for our proposed LDDMM+LD approach.

5 Conclusion

We introduced novel frameworks and algorithms for the registration of shapes
modelled as discrete measures in which the deformation is coupled with a global
or local transformation of the density. The Python implementation will be made
openly available in the future and can be currently shared upon request. Our pre-
liminary experiments hint at the potential of those models for the morphological
analysis of partial shapes, a recurring issue of deformation models in computa-
tional anatomy, and for applications to shape completion. It is also well suited
for registration or template estimation of fiber bundle data and could be used
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in conjunction with other numerical methods in the field, such as the stream-
line approximation schemes of [6]. Future work will focus on pushing further
those applications and on a more thorough analysis of the LDDMM+LD model,
by investigating other possible regularizers on the density change and exploring
connections with related unbalanced frameworks in optimal transport [4].
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