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Abstract

In this paper, we revisit the notion of length measures associated to planar closed curves.
These are a special case of area measures of hypersurfaces which were introduced early
on in the field of convex geometry. The length measure of a curve is a measure on the
circle S' that intuitively represents the length of the portion of curve which tangent vector
points in a certain direction. While a planar closed curve is not characterized by its length
measure, the fundamental Minkowski—Fenchel-Jessen theorem states that length measures
fully characterize convex curves modulo translations, making it a particularly useful tool
in the study of geometric properties of convex objects. The present work, that was initially
motivated by problems in shape analysis, introduces length measures for the general class
of Lipschitz immersed and oriented planar closed curves, and derives some of the basic
properties of the length measure map on this class of curves. We then focus specifically on
the case of convex shapes and present several new results. First, we prove an isoperimetric
characterization of the unique convex curve associated to some length measure given by
the Minkowski—Fenchel-Jessen theorem, namely that it maximizes the signed area among
all the curves sharing the same length measure. Second, we address the problem of con-
structing a distance with associated geodesic paths between convex planar curves. For that
purpose, we introduce and study a new distance on the space of length measures that corre-
sponds to a constrained variant of the Wasserstein metric of optimal transport, from which
we can induce a distance between convex curves. We also propose a primal-dual algorithm
to numerically compute those distances and geodesics, and show a few simple simulations
to illustrate the approach.
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1 Introduction

There is a long history of interactions between geometric analysis and measure theory that
goes back to the early twentieth century alongside the development of convex geometry [2,
23] and later on, in the 1960s, with the emergence of a whole new field known as geomet-
ric measure theory [22] from the works of Federer, Fleming and their students. Since then,
ideas from geometric measure theory have found their way into applied mathematics most
notably in areas such as computational geometry [1, 10, 16, 32] and shape analysis [14, 26,
30, 43] with applications in physics, image analysis and reconstruction or computer vision
among many others.

A key element explaining the success of measure representations in geometric analy-
sis and processing is their ability to encompass geometric structures of various regulari-
ties including smooth immersed or embedded manifolds but also discrete objects such as
polytopes, polyhedra or simplicial complexes. They usually provide a comprehensive and
efficient framework to capture the most essential geometric features in those objects. One
of the earliest and most illuminating example is the use of the concept of area measures
[2] in convex geometry which has proved instrumental to the theory of mixed volumes
and the derivation of a multitude of geometric inequalities, in particular of isoperimet-
ric or Brunn—Minkowski types [24, 44]. Area measures are typically defined for convex
domains in R” through the classical notion of support function of a convex set and can then
be interpreted as a measure on the sphere $"~! that represents the distribution of area of the
domain’s boundary along its different normal directions. A fundamental property of the
area measure, that resulted from a series of works by Minkowski, Alexandrov, Fenchel and
Jessen, is that there is a one-to-one correspondence between convex sets (modulo transla-
tions) and area measures: in particular the area measure characterizes a convex set up to
translation and therefore fully encodes its geometry.

In this paper, we are interested in area measures in the special and simplest case of pla-
nar curves. These are more commonly referred to as length measures and are finite meas-
ures on the unit circle S' that represents the distribution of length of the curve along its dif-
ferent tangent directions in the plane. Yet, unlike most previous works such as [35] which
are mainly focused on convex objects, one of our purpose is to first introduce and investi-
gate length measures of general rectifiable closed curves in the plane. Our objective is also
to provide as elementary and self-contained of an introduction as possible to these notions
from the point of view and framework of shape analysis without requiring preliminary con-
cepts from convex geometry. Although, in sharp contrast to the convex case, there are infi-
nitely many rectifiable curves that share the same length measure, we will emphasize some
simple geometric properties of the underlying curve that can be recovered or connected
to those of its length measure. Furthermore, this approach will allow us to formulate and
prove a new characterization of the unique convex curve associated to a fixed measure on
S! given by the Minkowski—Fenchel-Jessen theorem in the form of an isoperimetric ine-
quality. Specifically, we show that this convex curve is the unique maximizer of the signed
area among all the rectifiable curves with the same length measure. This extends some pre-
viously known results about polygons [8] from the field of discrete geometry.

One of the fundamental problem of shape analysis is the construction of relevant met-
rics on spaces of shapes such as curves, surfaces, images... which is often the first and
crucial step to subsequently extend statistical methods on those highly nonlinear and infi-
nite dimensional spaces. Considering the shape space of convex curves, the one-to-one
representation provided by the length measure can be particularly advantageous in that

@ Springer



Annals of Global Analysis and Geometry (2021) 60:863-901 865

regard. Indeed, various types of generalized measure representations of shapes such as cur-
rents [19, 27], varifolds [14, 33] or normal cycles [43] have been used in the recent past to
define notions of distances between geometric shapes from corresponding metrics on those
measure spaces. A common downside of all these frameworks however is that the mapping
that associates a shape to its measure is only injective but not surjective. This typically
prevents those metrics to be directly associated to geodesics on the shape space without
adding more constraints and/or exterior regularization, for example through deformation
models. In contrast, the bijectivity of the length measure map from the space of convex
curves modulo translations to the space of all measures on S' satisfying only a simple lin-
ear closure constraint hints at the possibility of constructing a geodesic distance based on
the length measure. In this paper, we propose an approach that relies on a constrained vari-
ant of the Wasserstein metric of optimal transport for probability measures on S' which,
as we show, turns the set of convex curves of length 1 modulo translations into a geodesic
space. We also adapt and implement a primal-dual algorithm to numerically estimate the
distance and geodesics.

The paper is organized as follows. In Sect. 2, we define the length measure of a Lip-
schitz regular closed oriented curve of the plane and provide a few general geometric and
approximation properties. In Sect. 3, we discuss specifically the case of convex curves and
recap some of the fundamental connections between convex geometry and length meas-
ures, in particular the Minkowski—Fenchel-Jessen theorem. Section 4 is dedicated to the
statement and proof of an isoperimetric inequality for curves of prescribed length measure,
from which we can also find again the classical isoperimetric inequality for planar curves.
Section 5 focuses on the construction of geodesic distances on the space of convex curves
and in particular on our proposed constrained Wasserstein distance and its numerical com-
putation. We also present and compare a few examples of estimated geodesics. Finally,
Sect. 6 concludes the paper by discussing some current limitations of this work and poten-
tial avenues for future improvements and extensions.

2 Length measures of Lipschitz closed curves
2.1 Definitions

In all the paper, we will identify the 2D plane with the space of complex numbers C. We
start by introducing the space of closed, immersed oriented Lipschitz parametrized curves
in the plane which we define by:

C={ceLip(S',C)| 'O £0forae. 0 cS'}.

Depending on the context, we will identify S! either with the interval [0,27) C R or the
circle {€? | € R} C C. We recall that Lipschitz continuous curves are indeed differenti-
able almost everywhere and that the derivative is integrable on S!, which implies that the
length L(c) = fgl |c'(6)]d0 is always finite. Note that we do not assume a priori that curves
are simple. In anticipation to what follows, we also introduce the space of unparametrized
oriented curves up to translations which we define as the quotient space

c=¢C/~
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the equivalence relation being that for ¢,,c, € C, ¢; ~ ¢, if and only if there exists z, € C
such that ¢,(S!) = ¢;(S!) + z, and the orientations of the curves ¢, and ¢, + z, coincide.
This will constitute the actual space of shapes, i.e., the space of oriented rectifiable closed
curves modulo translations in the plane. Note that for simple curves, this is equivalent to
considering parametrization functions S! — C modulo positive reparametrizations and
translations consistent with the definition of curve space introduced in works such as [38].
However, these two equivalence relations are not necessarily the same for curves with
self-intersections.

For any parametrization ¢ of a curve in C or C, we let T, : S! — S! be the Gauss map,
i.e., for all 8, T.(0) = ¢'(9)/|c' ()| which is well-defined for almost all § € S. Lastly, we
will write ds,. = |c’(0)|d@ the arc-length measure of ¢, which is a positive measure on S'.
In all this paper, we will denote by M*(S') the set of all positive finite Radon measures
on S! and M(S!) the set of signed finite Radon measures on S'. Also, we recall that the
pushforward of a measure y € M*(S!) by a mapping 7 : S! — S!is the measure denoted
7,4 such that (z,u)(B) = u(z~'(B)) for all Borel subset B C S'. Finally, we will denote by
A" the Lebesgue measure on R”. We can now introduce the notion of length measure which
is the focus of this work.

Definition 2.1 (Length measure of a curve) For ¢ € C, we define the length measure of ¢
that we write y,, as the positive Radon measure on S' obtained by taking the pushforward
of ds, by the Gauss map 7, i.e., u, = (T.),ds,. In other words, for all Borel set B of S!:

H(B) = ds (T (B)) = / |c'(6)]d6. (1)

T-1(B)

For any c,, ¢, such that [¢,] = [c,] in C, one has He, = M, leading to the well-defined map-

ping M : ¢ — pu, from C to the space of positive measures on S'.

The invariance of u, to the equivalence relation ~ in Definition 2.1 is immediate from
the fact that the arclength measure and Gauss map both only depend on the geometric
image of the curve and are invariant to translations in the plane. In fact, the length measure
of [¢] € C can be also interpreted as the pushforward of the Hausdorff measure ' on the
plane by the mapping T : c¢(S') — S' such that for any x € ¢(S"), T(x) is the direction of
the tangent vector of the curve at x. Note however that y. does depend on the orientation
of ¢: more specifically, if the orientation is reversed, the associated length measure of the
resulting ¢ is the reflection of yu, that is u.(B) = u(—B) for all Borel set B of S! (or equiva-
lently if S! is identified with [0, 27x), .(B) = u((B + ) mod 2x)). Thus p, is a geometric
quantity associated to unparametrized oriented curves modulo translations of the plane.
For simplicity, we will still write u. to denote the length measure associated to whole
equivalence class [c] € C.

Remark 2.2 The measure u, can be intuitively understood as the distribution of length
along the different directions of tangents to the curve c, as we will further illustrate below.
We point out that our definition of length measure departs slightly from the traditional con-
cept of length measure (or perimetric measure as it is sometimes called) introduced initially
for convex objects by Alexandrov, Fenchel and Jessen [2, 23], in that we consider here the
direction of unit tangent vectors rather than unit normal vectors to the planar curve. Note
that these two definitions only differ by a simple global rotation of the measure by an angle
of z/2 and so have a straightforward relation to one another. The reason for choosing this
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alternative convention is that this work focuses on length measures of planar curves and
not area measures for general hypersurfaces, and our presentation will become a little sim-
pler in this setting.

Lastly, thanks to the classical Riesz-Markov-Kakutani representation theorem, we also
recall that signed measures on S' can be alternatively interpreted as elements of the dual
to the space of continuous functions on S'. In the case of a length measure, the measure y,
acts on any f € C(S') as follows:

QOB
(elf) /Slf(|c/<e)|>'c( l @

By straightforward extension, we can also consider the action of y. on continuous com-
plex-valued functions given by the same expression as in (2). Before looking into the prop-
erties of length measures, we add a final remark on the definition itself.

Remark 2.3 Length measures can be also connected to some other concept of geometric
measure theory, namely the 1-varifolds as introduced in [3] and more precisely the oriented
varifold representation of curves which is discussed and analyzed for instance in [33].
Indeed, the oriented varifold V, associated to a curve ¢ € C is by definition the positive
Radon measure on the product space R? x S' given for all continuous compactly supported
function @ on R? x S' by:

) O\,
i = [ ofco. 52 oo,

and V, is once again independent of the choice of ¢ in the equivalence class [c] € C. By
comparison to (2), the 1-varifold V, can be thought as a spatially localized version of the
length measure y,, that is a distribution of unit directions at different positions in the plane.
Equivalently, the length measure is obtained by marginalizing V, with respect to its spatial
component. This loss in spatial localization explains the lack of injectivity of the length
measure representation (even after quotienting out translations) that we shall discuss below.

2.2 Basic geometric properties
Let us now examine more closely the most immediate properties of the length measure,
in particular how it relates to various geometric quantities and transformations of the
underlying curve. For a general smooth mapping ¢ : C — C, we will write ¢ - ¢ the curve
0 €S!— ¢(c(d)).
Proposition 2.4 Letc € C and . its length measure. Then
1. Forall9,,0, €S'=[0,2x):

#(101,6,]) = Length({c(6) | 6, < angle(c'(6)) < 6, }).

In particular, the total length of c is L(c) = u(S").
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2. For any rotation R, € SO(2) of angle § € S, HRye = (Ry),.u, namely for all B C S!,
Hg,.«(B) = p (B — 6) mod 27).
3. Forany A> 0, u;. = Au, where Ac denotes the rescaling of c by a factorA.

Note that property (1) above implies in particular that the length measures of curves
of length one are probability measures on S'. Combined with property (3) on the action
of scalings, one could further define a mapping from C/Scal, the space of curves modulo
translation and scaling, into the space of probability measures on S! by essentially renor-
malizing curves to have length one. In all cases, by identifying S! with [0, 27), a convenient
way to represent and visualize y,. is through its cumulative distribution function (cdf):

F, 110,27) — [0,L,)
6 — u.([0,60])
which is always a non-decreasing and right-continuous function.

There are some further constraints that length measures must satisfy. Most notably,
since the curve c is closed, we obtain from (2) that:

(mele”) = / ¢ du,(0) = / O 0)]d0 = / ¢'(6)d6 = 0.
s! st st
In other words, all length measures are such that the expectation of ¢ on S! vanishes.

Together with the above, this leads us to introduce the following subset of M*(S!):

Definition 2.5 We denote by M (S") (resp. M(S")) the space of all positive (resp.
signed) Radon measures ¢ on S' which are such that:

/ e%du0) =0 / cos(9)du(0) = / sin(8)du(9) = 0.
S! S! St

We then define the mapping M : C — Mar by M([c]) = p, which does not depend on the
choice of c in the equivalence class [c].

Again, we will often replace an element of the quotient [c] € C by one of its representa-
tive ¢ € C and then write M(c) instead of M([c]).

Remark 2.6 Note that any positive measure x4 on S' such that y(—B) = u(B) for all Borel
subsets of S! belongs to /\/I(J)r Indeed the assumption implies that:

2z ) T T T T
/ e?du(9) = / ePdu(0) + / e?du(9) = / e?du() - / e?du(0) =0
0 0 O+ 0 0

where the third equality follows from the change of variable 6 < 6 + = and the fact that
du(@ + ) = du(#) by assumption. As a consequence, given any positive measure g on S!,
one can always symmetrize it by defining ji(B) = u(B) + u(—B) and obtain a measure of
/\/l(J)r . As a side note, convex curves for which the length measure satisty u.(—B) = u.(B)
are called central-symmetric and are an important class of objects in convex geometry.

It is obvious that the mapping M in Definition 2.5 cannot be injective on C. For instance,
given a polygon as in Example 2.8 below, one can permute the ordering of its edges to
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obtain a different polygon with the same length measure. In fact, given any ¢ € C, there
are infinitely many other curves that share the same length measure as c. In Fig. 1, we
show several examples of curves having the same length measure which c.d.f is plotted
underneath. On the other hand, M is surjective as we shall see in the next section. For now,
we will just illustrate a few different possible types of length measures depending on the
nature of the underlying curve through a few examples.

Example 2.7 Assume that c(9) = " for @ € [0, 2x) is the unit circle in C. Then ds,.(8) =
and T,.(0) = 0 thus y,. = d is the uniform measure on S'.

Example 2.8 Consider a closed polygon with n vertices z;,2,...,2, and the n faces
[z, 2], [z25 23], -+ (2,5 20)- For all j=1,....n, let a; = angle(z;,; — z)), ; = |z;4, — 7| (by
convention z,,,; = z,) and L = Z;L b Then one can construct a parametrlzatlon c€Cof
the polygon as follows. We define 6, = 2z(j — 1)/nfor j = 1,. n + 1. Then, on [6,,6,,,],
j=1,...,n, take c(0) = (6 — 9)"_ le”’ It follows that ¢ (6) 2 le’“ for 0 € [6], 0411
and one can easily check that it leads to pu, = Z 16 io;. The length measure of a polygon

J7e
is thus always a sum of Dirac masses, c.f Fig. 2 for an illustration.

Example 2.9 Lastly, we consider an example of a singular continuous length measure. To
construct it, let’s introduce the standard Cantor distribution that we rescale to the interval
[0,27] and denote it by o. Its support is the Cantor set and its cumulative distribution func-
tion F is the well-known devil’s staircase function on [0, 2z]. The measure o is not in ./\/lg
but following Remark 2.6, we can consider instead its symmetrization 6 € M, which c.d.f
is given by F(6) = F(0) + ¢(([0, 8] + ) mod 2x). Now, letting F( b being the pseudo-
inverse of F;, such that for all # € [0, 2] by F( D(6) = inf{0’ | F”(G’) > 0}, we define the
curvec : [0,27) - C:

Fig. 1 Three planar curves with the same length measure y, which c.d.f is plotted on the second row
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(#)

F

Fig.2 Examples of closed curves (left) with their corresponding c.d.f (right)

0
0

which is C! and satisfies |¢'(8)| = 1 and T,.(9) = eF 5 As we will show more in details
and in general in the proof of Theorem 3.2, it follows that we have F,, = F; and therefore
u, = & is the above symmetrized Cantor distribution 6. We simulated such a curve using an
approximation at level 12 of the Cantor measure, which is shown in Fig. 2.

Those examples show that length measures of curves in C may have density with respect
to the Lebesgue measure on S!, be singular discrete measures but also singular continu-
ous measures as the last example shows. Furthermore, we have the following connection
between the length measure density of a sufficiently regular curve and its curvature:

Proposition 2.10 [fc € C is in addition twice differentiable with bounded and a.e non-
vanishing curvature then . = p(0)d0 where the density p(0) is given for a.e 6 € S! by:

1
p(0) = Z @) 3)

ueT-1(10)) K¢
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where k. is the curvature of c.

Proof First, we notice that 7/(6) = |c(6)] fTC(G) = |(0)|x(0). Now, let f be a continuous

test function S' — R. By definition, we have:

(Mclf)=/fOTC(G)IC'(9)|d9=/f°T(9)—Té(9)d9
s! 0

Since T, is a Lipschitz function, by the coarea formula ([4] Theorem 2.93), the above inte-
gral can be rewritten as:

(k1) = / / FO)——dH(w) )6 = / / —L_ar0w )rora0.
st \ Juer-1((o}) K (u) st \ Juer-1(oy) K1)

and furthermore for almost all @ € S', TC‘1 ({#}) is a finite set so we obtain:

wh=/[1 ¥ F0)30.
' \uer-1on & ( )
N

=p(6)

|

A consequence is that the c.d.f of the length measure of a curve satisfying the assump-
tions of Proposition 2.10 is given by F M((G) /0 p(0")d9’ and thus does not have any
jumps. Such jumps can only occur with the presence of flat faces in the curve, in particular
for polygons as in Example 2.8. Note also that if the curve is smooth and strictly convex,
the curvature is non-vanishing everywhere and the mapping 7, is a bijection which implies

in this case that p(0) = m-

2.3 Convergence of length measures

It will be useful for the rest of the paper to examine the topological properties of the map-
ping M : ¢ — p,. Specifically, we want to determine under what notion of convergence in
the space of curves, we can recover convergence of the corresponding length measures. We
remind that a sequence of measures y, € M(S!)is said to converge weakly to u € M(S!),
which will be written g, — y, when for all £ € C(S'), (u,|f) = (ulf) as n - +co.

First, it is clear that uniform convergence ¢, — ¢ in C (or equivalently convergence in
Hausdorff distance of the unparametrized curves in C) does not imply that y, converges to
u. even weakly. Indeed it suffices to consider a sequence of staircase curves as the one dis-
played in Fig. 3 which converges in Hausdorff distance to the diamond curve in blue; how-
ever, for all n, the length measure is identical and equal to y, = 2(6) + 6,5 + 6, + 03,/2)
whereas p, = \/5(6,,/4 +6_pja + 6354 F Os5,74)-

However, assuming in addition some convergence of the derivatives, we have the
following:

Proposition 2.11 Let (c,) be a sequence of C with uniformly bounded Lipschitz constant
such that there exists ¢ € C for which c!(8) — c'() for almost every 6 € SL Then (ue,)
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Fig.3 Two curves close in Haus- 1
dorff distance but for which the
length measures are, respectively

2(ya +0_zja 63574+ 657/4) 0.5
(blue curve) and
2(68) + 0,/ + 6, + 63,5) (red
curve) 0

converges weakly to yu,. and for all Borel set B C S' with u_(0B) = 0 one has ,uCn(B) - u.(B)

Proof Let fbe a continuous real-valued function on S,

) O\
(ue If) = [ foT, (Olc,(O)d0 = [ f| — |c, (0)]d6.
" st SN A

By the assumptions above, outside a set of measure 0 in S!, we have cﬁl () — ¢'(0) with
¢'(0) # 0 and ¢/ (0) # 0 for all n. Thus for almost all 8 in S', ¢/ (8)/|c/(6)] = ¢'(8)/|<' ()]

and thus
@)\ c'(0) ) ,
0)| —— 0
f<|c;(0)|>|cn( )] p— f<|c,(9)| |c"(0)]

since f is continuous. Furthermore, as f is bounded, there exists a > 0, such that
f(c(0)/]c,(®)]) < a for all n and by assumption, there also exists f> 0 such that
|c;(0)| < p. It results from Lebesgue dominated convergence theorem that:

o\,
0)|do = .
Gt [ (S )i @10 =

and so y. — p.. The second statement is a classical consequence of weak convergence of
Radon measures (see [20] Theorem 1.40). O

Another important question is whether polygonal approximation of a curve leads to con-
sistent length measures which we answer in the particular case of piecewise smooth curves:

Proposition 2.12 Let ¢ be a curve of C which is assumed in addition to be piecewise twice
differentiable with bounded second derivative. If (c,) is a sequence of polygonal curves
with k, vertices given by c(6,),c(0, ), ..., c(0,; ) with0=0,,<0,, <...<0,;, =2n
and max;{0,,,, —0;,} — 0asn — +oo, then (u, ) converges weakly to ..

Proof Using Proposition 2.11, we simply need to show that ¢/ converges pointwise to ¢’ a.e

and bound the Lipschitz constant of ¢, uniformly. As c is piecewise smooth, we can treat
each of the intervals separately and fix § € S! with ¢ being twice differentiable at 8. For
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n 2 1, let us denote i, = max,{0,,, , — 6,,}. For n large enough, let9;, < 6 < 9@7“)" with ¢
twice differentiable on [6; 5 ). Then we have by definition ¢ (0) M

Jin /
= (&)

jin

) by Taylor’s theorem which, using the boundedness of the sec-

j+1 n
for a certain & € (6,0, ,
ond derivative of c, gives

|6, 0) = O] < MIc"ll=1& = 61 < NIl By ——— 0

Thus ¢! converges to ¢’ pointwise except maybe on the finite set of points where
¢ is not twice differentiable. Furthermore, the above equation also implies that
Lip(c,) < |l¢" || ;=h,, + Lip(c) which is uniformly bounded in n and therefore Proposition
2.11 leads to the conclusion. a

Note that the above approximation property requires more regularity on c. We will see
in the next section that the result holds for all convex curves as well.

3 Convex curves and length measures

As already pointed out, the length measure . does not characterize the curve itself since
there are in fact infinitely many curves of C in the fiber M~!({ u.}) for any given c. Yet,
remarkably, it is the case if one restricts to convex curves in C. This follows from the fun-
damental Minkowski—Fenchel-Jessen theorem (also in part due to Alexandrov) established
in [2, 23] that shows in general dimension the uniqueness of a convex domain associated
to any given area measure. For the specific case of planar curves which is the focus of this
paper, we provide a more direct and constructive proof of this result before highlighting a
few other well-known connections with convex geometry.

3.1 Characterization of convex curves by their length measure

'ony the set of curves in C which are simple, con-
vex and positively oriented. For technical reasons that will appear later, we will adopt the
convention that degenerate convex curves made of two opposite segments (which length
measures are of the form r(6y + &g ,,)) belong to C,ony- For simplicity, we shall still write
M : C,, — M, for the restriction of the previous length measure mapping to Coomr-

Before stating the main connection between curves in C,,,,, and length measures, let us start
with the following lemma.

In all the following, we will denote by C

conv

Lemma 3.1 Let ¢ € C such that there exists 0 < 0, < 6, <2z with c(0,) = c(6,). Then
there exist 0,0 € [6,,0,] such that |angle(c’(9)) — angle(c’(9))| > x with strict equality
unless c([0,,0,]) is a segment.

Proof By contradiction, let’s assume that given 6,,6, as above, we have
|angle(c’(9)) — angle(c’(A))| < x for all §,8 € [8,,6,] where ¢/() is defined. Up to a rota-
tion and translation of the curve, we may assume that c(f;) = c(f,) =0 and that
angle(c’(9)) € [0 r) for 0 € [0,, 6,]. Assuming that angle(c’(9)) = 0 a.e on [6,,0,] would
lead to ¢(6,) = /9 *|c’(0)]d@ > 0 which is impossible. On the other hand, if angle(c’(0)) # 0
on a subset of [0, 6,] of nonzero measure, then we would have:
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0,
Imag(c(6,)) = / |’ (8)] sin(angle(c’(0)))d )
0

strictly positive which is again a contradiction. It results that we can find
0,0 €[60,,6,] such that |angle(c’(f)) — angle(c’(f))| > =.  Furthermore, if
MaXyeg, 9,) |angle(c’(0)) — angle(c’ (8| = 7, it can be easily seen from a similar reasoning
as above and (4) that in this case, one must have angle(c¢’(6)) = 0 or = a.e on [6,, 0,] and
therefore the curve is a subset of the horizontal line. O

The following result is a reformulation of the Minkowski—Fenchel-Jessen theorem in
the special setting of this paper. The usual proof of this theorem in general dimensions is
quite involved and requires many preliminary results and notions from convex geometry.
We propose here an alternative proof specific to the case of curves which is more elemen-
tary and constructive.

Theorem 3.2 The length measure mapping M is a bijection from C,.,,, to Mg,

Proof 1. We first show the surjectivity of M. Thus, taking 4 € M, we want to construct
¢ € C, a parametrization of a curve in C,,,, such that M(c) = u, = p. To do so, let us first
assume, without loss of generality thanks to Proposition 2.4 on the action of rescaling on
length measures, that u(S') = 2z. Then let F, 1 [0,27] — [0,2x] be the c.d.f of u as we
defined previously and let’s introduce its pseudo -inverse F D2 [0,27] = [0, 2x]:

Fj;“(s) = inf{6 € [0,27] | F,(6) > s}.

Note that, as F,, the pseudo-inverse Ffl‘l) is a non-decreasing function with FL‘”(O) =0
We now define ¢ : [0,27z] — C as follows:

0
() = / eFi "0 s, (5)
0

We first see that ¢ € C. Indeed, by construction, c¢ is differentiable almost everywhere

with ¢/(§) = el © giving |¢’(#)| = 1 thus ¢ € Lip(S!, C) and ¢ is a Lipschitz immersion.

Next, we obtain that y, = p by checking the equality ¥, = F,. This is simply a conse-

quence of the fact that F, (0) = AM{a|0< FS, CD(a) < 0}) and the easy verification that
( F-D(@)<Oeoa<F (9) so that

F,(0)=2({a|0<a<F,0))=F,0.

Incidentally, this also shows that the curve is indeed closed as:

2r 2r 2z
cx) — c(0) = / c'(0)do = / e?du () = / e?du(0) =0
0 0 0

One still needs to verify that the image of ¢ belongs to C,,,,. As ¢'(8) = es © and
FL‘I) is non-decreasing, c is locally convex and we only need to show that ¢ is simple
or is supported by a straight segment. By contradiction, let us assume that there exists
0 < 6, < 0, <2z such that c¢(8,) = c(6,). As 8 — angle(c’(0)) € [0,2r) is non-decreasing,
the limit @ = limé,w1 angle(c’(9)) € [0, 2x) exists. Furthermore, by Lemma 3.1, we deduce
that for all 6 > 0,, angle(c’(6,)) > a + = < 2z. As a consequence, it also holds that for
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almost all 0 € [0, 0], angle(c’(8)) < @ < . We need to then consider the following two
cases:

Case 1: If ¢([0,0,]) is not a segment, we have angle(c’()) < a < = for almost all
0 € [0, 6,] and angle(c’(9)) < a on a subset of nonzero measure of [0, §,]. From this we can
deduce that ¢(0) is strictly “above” the line passing by c(6,) and directed by ¢/*. By “above”
we mean here specifically that it belongs to the positive side of the half plane delimited by
the line, i.e., on the side which projection along the oriented normal is positive. Indeed,

0, 9, . /
0 -0y == [ ¢@ar= [ @
0 0

and therefore:

0
Re<e—"<“+§>(c(0) - c(al))) = / c'(0)] cos (g + angle(c'(9)) — a)de
0

and given the above we know that —x/2 < /2 + angle(¢’(6)) —a < x/2 and fur-
thermore |z/2 + angle(¢’(0)) —a| < #/2 on a subset of nonzero measure of
[0,6,]. Thus Re(e ™+ /2(c(0) — c(6,))) > 0. However, for all 6>86, we have
a + = < angle(¢’(0)) < 2z which implies, using a similar argument as above, that for all
0 > 6,, c(0) is below the line passing by c(8,) = c(8,) directed by ¢™® contradicting the fact
that lim,_,, .- ¢(8) = c(0).

Case 2: If ¢([0, 6,]) is a segment, then we have that angle(c’(8)) > angle(c¢’(0)) + x for all
0, < 0 < 2z with even strict inequality if ¢([8,, 6,]) is not a segment of the same direction
as ¢([0, 8,]). The latter case is not possible since we would then find that for 8 > 6,, c(6)
is strictly below the line containing the segment ([0, 8,]) and thus lim,_,, - c(8) # c(0).
Finally, by a similar argument, we find that the image of ¢ on [0,, 27) is again a segment of
the same direction, which shows that ¢(S') is eventually a segment. Thus the curve is either
simple, convex and positively oriented or is a segment, and in all cases belong to C,,,,-
2. Let us now prove the injectivity of M. Specifically, we show that if ¢ is the arclength
parametrization of a curve in C,,,,, which we assume once agaln to have length 27,
and p,=pu € My then for almost all s € [0,27), ¢'(s) =¢ £, By assumption,
we have |¢/(s)| = 1 and since the curve is convex and positively oriented, up to a shift-
ing of the parameter, we may assume that s — angle(c(s)) is non-decreasing from
[0,27) to [0,2x). Let us denote v(s) = angle(c’(s)) € [0,2x). From F, =F, we get that
F(0) = M({s]0 < v(s) £0}). We need to show that v(s) = F( D(s) = 1nf{0 | F,(0) = s}.
On the one hand, we have F (v(s)) =A{3]10<v(B) < v(s)}) > s since for any 5 € [0, s]
we have 0 < v(3) < v(s). ThlS leads to FL D(s) < v(s). On the other hand, for any 8 < v(s)
we have that F, () < s by definition of v(s) and consequently F§ D(s) > 0 for all 0 < v(s)
leading to FY; (= l)(s) > v(s). O

Remark 3.3 Note that from the above proof, one can technically reconstruct a convex curve
up to translation from its length measure directly based on (5). When the measure is dis-
crete i.e., 4 = Zf\il ljéa/ where lj > 0 and a; € [0,27x) for all j=1,...,N, the reconstruc-
tion becomes particularly simple. In this case, one can see that the corresponding convex
polygon is obtained by selecting an initial vertex (e.g., at the origin) and ordering the edges
L e lve v such that the angles 0 < a; <...<a; <2z are in ascending order,

J1 N
wh1ch is a well-known algorithm for convex planar ob_]ects However, this reconstruction is
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a significantly more difficult problem for area measures in higher dimensions, c.f. the dis-
cussion in Sect. 6.

3.2 Length measures and Minkowski sum of convex sets

The above correspondence between convex shapes and length measures has many inter-
esting consequences and applications, in particular for the study of mixed areas and
Brunn—-Minkowski theory, as developed for example in [31, 35, 44]. We will not go over all
of these in detail but only recap in this section a few results which shall be relevant for the
rest of the paper.

First, in the category of planar convex curves, one has the following stronger version of
the approximation result of Proposition 2.12:

Proposition 3.4 Let C be a planar convex domain with boundary ¢ = oC € C,,,, and
(P,) a sequence of convex polygons of boundary p, = 0P, that converges in Hausdorff dis-
tance to C. Then p, — p,as n — +oo. Furthermore, the area of P, converges to the area

of Ci.e, /12(P ) —> Az(C)

This is classical property of convex sets and length measures which proof can be found
in [44] (Theorem 1.8.16 and Theorem 4.1.1).

We now recall the definition of the Minkowski sum. If C; and C, are two convex planar
domains, their Minkowski sum (also known as dilation in mathematical morphology) is
defined by C, + C, = {x; +x, | x;, € C,,x, € C,} which is also a convex planar domain.
More generally, one can define the Minkowski combination a,C; + a,C, for a;,a, > 0 as
a,C, +a,C, = {a;x, +ax, | x, € Cy,x, € C,}. This allows to view the set of all convex
domains as a convex cone for this Minkowski addition. The length measure mapping M has
the following interesting property ([35] Theorem 3.2):

Proposition 3.5 Let C, and C, be two convex domains and c,,c, their boundary curves.
Then, denoting ¢ € C a parametrization of the boundary of C, + C,, it holds that

He = e, + Mo,

Proof This is easily shown by approximating the convex domains C, and C, by sequences
of convex polygons and using Proposition 3.4. The fact that the result holds for two convex
polygons is well known and is actually used algorithmically for the computation of the
Minkowski sum of polygons in the plane in linear time, c.f. for example [46] (Chap. 13).

O

By combining the above with Theorem 3.2 and Proposition 2.4 (3), we can summarize
the properties of the length measure mapping M as follows:

Corollary 3.6 The map M : C ~ u, is an isomorphism of convex cones between C,,,
and M,

This implies that if C; and C, are two convex domains with length measures ;. and
Hoc,> their Minkowski sum C = C; + C, is such that 0C = M~ l(ﬂac + Hac,) which could
be dlrectly computed using the inversion formula (5) or, in the case of discrete measures
and polygons, by adequately sorting the Diracs appearing in pyc, + poc, With angles in
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ascending order as explained earlier in Remark 3.3. We show an example of Minkowski
sum computed with this approach in Fig. 4.

4 An isoperimetric characterization

The previous section showed that there is a unique convex curve of positive orientation in
the preimage M~'({u}) c C for any measure u € Mar . Several previous works on length
and area measures have investigated variational characterizations of these convex objects
in the context of shape optimization, optimal transport and geometric inequalities, see for
instance the survey of [12, 24, 29]. These are typically expressing some variational prop-
erty within the set of convex shapes only. We prove here a distinct characterization which
can be rather interpreted as an isoperimetric inequality in each of the fiber M~'({u}),
namely the convex curve of M~ ({u})is also the one of maximal signed area among all the
curves in C of length measure y. Our result extends to the whole class of Lipschitz regular
curves some related results on polytopes in discrete geometry that were stated in [8]. We
will also see how the classical isoperimetric inequality on curves can be recovered as a
consequence.

Let us first recall that the signed area of a curve in C with Lipschitz parametrization
¢ € Cis given by (cf [48] Chap 1.10):

Area(c) = —%/ (c(8), N (0))|'(0)|d8 = %/ det(c(9), c'(0))do (6)
st N

where N, denotes the unit normal vector to the curve. Note that for a simple and positively
oriented curve, (6) is the usual area enclosed by this curve. We begin by reminding a few
preliminary properties of the signed area. The first one is that the signed area is additive
with respect to the “gluing” of two cycles, namely:

Lemma 4.1 Let c € C and 0 < 6, < 6, < 2x. Consider any given Lipschitz open curve
v 1 [0,,0,] = Cwithy(0,) = c(0,) and y(0,) = c(0,) and denote y the same curve but with
opposite orientation. Define c,, ¢, the two closed curves in C obtained by, respectively, con-
catenating c(S'\[0,, 6,]) with y and c([8,, 6,]) with y. Then:

Area(c) = Area(c,) + Area(c,)

Proof This is just a direct verification from the definition (6). Indeed, we have
7(0) =y, + 6, —0)for0 € [0,,0,] and:

AVATOI0

A=0 A=1/3 A=2/3 =

Fig. 4 Minkowski sum (1 — 1)C, + AC, for different values of 4 of a triangle and a disk computed based on
the addition of their length measures
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0,
2Area(c) = / det(c(0), c'(6))do + / det(c(0), c'(6))do
S'\[6;.,6,] 6,
0, 0,
= / det(c(9), ¢'(0))do + / det(y(9), y'(6))do + / det(c(8), ¢'(0))do
Sl\[gl'ez] 91 91
02
—/ det(y(6), y'(6))do
0,

'92
= / det(c(8), ' (6))do + / det(y(8), y'(6))do
SI\[6;,6,] 0,

o /

~-
=2Area(c;)

0, 0,
+ / det(c(9), ¢'(0))do + / det(y(0), 7' (6))do
0, 0,

(- /

~
=2Area(c,)

which leads to the result. O

We also have the following well-known approximation property of the signed area:

Lemma 4.2 Let ¢ € C. There exists a sequence (p,) of polytopes (i.e., piecewise linear
curves) in C such that Area(p,) — Area(c) and M, converges weakly to y,.

Proof Let c € C and by invariance to translation, let’s also assume that ¢(0) = 0. Then since
c is Lipschitz regular, we have ¢’ € L®(S',C) c L!(S!, C). Using the density of step func-
tions in L!, we can construct a sequence (p, ),y Of step functions such that||p, — ¢'||;; — 0
as n — +oo. By the converse of Lebesgue’s dominated convergence theorem ([9] Theo-
rem 4.9), up to extraction of a subsequence, we can assume that p,(6) converges to ¢’(6)
almost everywhere in S! and that there exists 4 € L'(S!) such that p,(0) < h(0) for almost
all @ € S. Let us then define p, = /00 p,(@)da which is a piecewise linear curve in C such
that:

0
19, (8) = c(0)] < / 19,(@) - (@da < / 19,(@) ¢ (@da = [lp, = 'l
0 St

showing that ||p, — c||;« = 0 as n — +oco and as a consequence there exists M > 0 such
that||p, ||~ < M for all n. Now, by Proposition 2.11, we deduce that y, weakly converges
to ... Furthermore, for any n € N, we have:

Areatp) = =3 [ (0,008, @) @100 = -1 [ (5,015, @15, 0100
St st

and for almost all 0esS!, P.(0) = ¢(6), p,(0) = ¢/ (0),
N, (0) =R /,(p,(0)/1p,(0)]) = N,(0) as n — +oo. In addition,

1pa(0), N, (OM)19,(O)] < |p,(0)]1p,(0)] < Mh(6).

As h € L(S"), Lebesgue dominated convergence theorem leads to:
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Area(pn)-y? —%/ (c(8), N.(0))|c'(8)|df = Area(c).
) sl

O

We will also need the following which is a particular case of our main result for poly-
topes with fixed number of edges, which proof is adapted from the one outlined in [8,
21]. We call a polytope non-degenerate if it does not lie entirely along a single line (in
other words if its length measure is not a sum of two oppositely oriented Diracs).

Lemma 4.3 Let p be a non-degenerate polytope. Then the convex polygon p such that
Hp = My, satisfies Area(p) < Area(p).

Proof Let p be a polytope that we represent by its ordered list of vertices vy, v,, ..., vy and
by convention vy, , = v,. Its corresponding list of edges are denoted by £ = (e, ¢,, ..., ey)
with e; = V,v;,|, where we assume the directions of the e; to be consecutively distinct.
Recall that, from Theorem 3.2, there is a unique convex and positively oriented polygon
D such that p; = p,,. Let us define S as the set of polygonal curves obtained by all the dif-
ferent permutations of the edges in £. Note that for any polygonal curve p € Sg, we have
M5 = M, Let us show that:

Area(p) = gé%x Area(p) )
which will imply in particular that Area(p) < Area(p). Since S is finite, the maximum is
attained: let p be a curve in S¢ of maximal signed area. By contradiction, assume that p is
not the convex positively oriented polygon p (modulo translations).

Let us first consider the trivial cases. When N = 3, there are only two triangles up
to translation in Sg and thus p is the negatively oriented one whose signed are is clearly
strictly smaller than the one of p. For N = 4, the polytope p being distinct from p, one can
see that, up to a cyclic permutation of its edges, we can assume without loss of generality
that det(e;, e,) < 0, i.e., the angle is decreasing between the first and second edge. Now the
signed area (6) of the piecewise linear curve p can be written more simply as (cf [48] Chap
1.10):

N
1 _
Area(p) = 5 ; det(v;, ¢;)

where vi = O,v, = e|,v; = ¢; + e,,v, = e, + e, + e; are the consecutive vertices of p and
v is any reference point in the plane. The above expression is independent of the choice of
this reference point, thus choosing v = v, we obtain after simplifications:

Area(p) = %[det(e1 ,e,) + det(e;, e3) + det(e,, e3)].

Then we can define the quadrilateral p in which the ordering of the edges e, and e, is
switched. This is still a polytope of S¢ and we have:
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Area(p) = —[det(e,, ;) + det(e,, e3) + det(e;, e3)]

N — N —

[—det(e, e,) + det(ey, e3) + det(e,, e3)]
> %[det(el, e,) + det(e, e3) + det(e,, e3)] = Area(p).

which contradicts the fact that Area(p) is maximal.

Now, let N > 5. We first show that we can find four vertices v;, vy, v, viyy (0 <j—1)
such that the corresponding quadrilateral with edges Vv 1, Vi1V, VViiy, Vipqv; is not
both convex and positively oriented. Let us assume the contrary and obtain a contradic-
tion with the polygon p not being convex and positively oriented. In particular for any
i=1,...,N—2, the quadrilateral v;,v;,,V;;,,V;;3 iS convex positively oriented which
implies that the directions of the edges e;, e;,,e;,, are turning positively and by a direct
recursive argument so are the directions of the entire edge sequence ey, ..., ey. Thus we
have that p is non convex and, since it is locally convex from the fact that the tangents are
turning positively, it must be self-intersecting. In other words, we can find two edges v;v, |
and ;v 7 (i <j—1) that are intersecting and the quadrilateral v;,v;,;,v;,v;,; is a fortiori
not convex which leads to the claimed contradiction.

Let us now write p, this quadrilateral and introduce in addition the polytope p, with suc-
Cessive VErtices vy, ..., V;, Vipy, Vi, -« » Vy and pj the polytope with vertices vy, y, vy, ... vj.
This amounts in decomposing the original polygon into three distinct cycles as depicted
in Fig. 5 (left). By the additivity property of the signed area from Lemma 4.1, this implies
that Area(p) = Area(p,) + Area(p,) + Area(p;). Now, from the case N = 4 treated above,
we can find a permutation of the edges of p, giving the convex positively oriented quad-
rilateral p, which satisfies Area(p,) > Area(p,). We then obtain the three polytopes p,, p,
and p; shown, respectively, in green, blue and red in the example of Fig. 5. By translation
of p;, we can superpose the edge \Tlv, in p, with the edge m in p;. Similarly, by trans-
lation of p,, we match the edge 17]:17,' of p, on the edge m of p,. Then, removing the
trivial back and forth edges resulting from this superposition, one obtains a new polytope
p as shown in the right image in Fig. 5. By construction, this polytope has the same list of
edge vectors as p and thus belongs to S.. Moreover, its signed area is:

Area(p) = Area(p,) + Area(p,) + Area(p;) > Area(p,) + Area(p,) + Area(p;) = Area(p)

which contradicts the maximality of Area(p) among polytopes of Sg. |

The convex polygon p is sometimes referred to as the convexification of p (which is
distinct from the convex hull of p). We now state and prove the main result of this section.

_—/

Fig.5 Illustration of the proof of Lemma 4.3: the edges of a non-convex polytope can be rearranged to
obtain a polytope of larger signed area
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Theorem 4.4 Let u € ./\/15r such that the support of u is not of the form {0,6 + '} for
some 0 € S'. Among all curves in M~'({u}), the convex positively oriented curve is the
unique maximum of the signed area and this maximum is given by:

2 2
A / / sin 0 — aldu(©)du(a). @®)

Proof Let y be a measure in M satisfying the above assumption on its support. This
means that for any curve ¢ in M~ ({u}), the image of ¢ does not lie within a single straight
line. Furthermore, we have Length(c) = u(S') = L. By the standard isoperimetric mequal—
ity, this implies that the area of any simple closed curve in M~!({x}) is bounded by = and
thus the supremum of these areas A, is indeed finite. Let us first show that this maxunal
area is achieved and by the convex positively oriented curve of M~'({u}). We let (c,)),.cy be
a maximizing sequence i.e ¢, € M~'({u}) and Area(c,) = A,y aS 1 — +00.

1. As a first step, we want to replace this maximizing sequence by a sequence of
piecewise linear curves. For a fixed n € N, by Lemma 4.2, we can construct a sequence
of polytopes (B, ,)men Such that Area(p,,) — Area(c,) and Hp, weakly converges
to p, = as m— +oo. From this, let us construct a sequence of polytopes p, such
that Hy = He and Area(p,) — Ay as n — +oo. Indeed, recall that the weak conver-
gence of finite measures of S! is metrlzable for instance by the bounded Lipschitz dis-
tance d®"(u,v) = sup;er st [(lf) = (V)| ([47] Chap. 6). Thus, we have for all
neN, dBL(/lp ,u) = 0 as m — +oo. Since Area(c,) = A,,,, for any n e N, we can
find an increasing function ¢ : N — N such that |Area(c¢( ) = Apax| < —. In addi-
tion, we also obtain an increasing function y : N — N such that for any n € N we have
dBL(#p”.W(n), #) < 1/n and |Area(p, ) — Area(c,)| < 1/n. We then set p, = Py ypmy
which gives on the one hand:

1
$(n)

<

S | =

BL _ JBL
d (”ﬁ,,’ W =d=u Bowwiom’ M )<

and thus g, — p. And on the other hand:

|Area(p,,) - Amax| < +|Area(ﬁ¢>(n),u/(¢(n))) - Area(c¢(n))| + |Area(c¢(n)) - Amax|
1 1 2

<—+-<=

¢(n)

and therefore Area(p,) — A .-

2. Now, using Lemma 4.3, we obtain a sequence of convex, positively oriented poly-
gons (p,) such that Hp =H, — H and for all n, Area(p,) > Area(p,). Using once again
the invariance to translation, we can further assume that each p, passes through the origin.
We then point out that the length L(p,) = u; (SH = Hy, (S") converges to u(S') < +oo as
n — +oo since My, = H This implies that L(pn) is bounded uniformly in n by some con-
stant M > 0. If we denote by P, the polygonal domain delimited by p,, i.e., 0P, = p,, it is
then easy to see that for all n € N, P, is included in the fixed ball B(0, M). In other words,
the sequence (P,,) is bounded in the space of compact subsets of the plane equipped with
the Hausdorff metric.

3. We can therefore apply Blaschke selection theorem [7] which allows to assume, up to
extraction of a subsequence, that the sequence of convex polygonal domains P, converges
in Hausdorff distance to a convex domain C which oriented boundary curve we write
iC=ceC Then by Proposition 3.4, we deduce that Hp, weakly converges to y,. As a

conv*
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consequence, y, = p and c is thus the (unique) convex curve associated to u given by The-
orem 3.2. In addition, still from Proposition 3.4, we get that A%(P,) — A*(C) as n — +o0
and since the boundary curves p, and ¢ are simple and positively oriented it follows that
Area(p,) — Area(c) as n — +o0. Now, since for all n € N, Area(p,) > Area(p,) = A
we conclude that Area(c) > A, and therefore ¢ achieves the maximal area among all
curves in M~ ({u}).

4. The uniqueness of the maximum can be now showed by essentially adapt-
ing the argument used in the proof of Lemma 4.3 for polytopes. Assume by contradic-
tion that ¢ € M~!(u) is non-convex and that Area(¢) = A, (#). Then we can find
0<6,<0,<0;<0,<2r such that the quadrilateral Q with successive vertices
¢(8,),¢(0,),c(85),¢(8,) is not convex positively oriented and is not degenerate. Let us fur-
ther introduce c; defined as the concatenation of the portion of curve &([0, 6, ]), the oriented
segment [c(8,), c(6,)] and &([8,, 2x]). In addition, let ¢, be the concatenation of ¢([6,, 6,])
and the segment [c(6,), c(6,)], c; the curve obtained by concatenating ¢([6,, 05]) and the
segment [¢(65), ¢(6,)] and ¢, the concatenation of ¢([05, 6,]) and [¢(6,), T(05)]. See Fig. 6 for
an illustration. Now from Lemma 4.1, we deduce that:

Area(C) = Area(Q) + Area(c,) + Area(c,) + Area(c;) + Area(c,).

By reordering of the edges in Q, we obtain the convexified quadrilateral Q which, with the
same argument used in the proof of Lemma 4.3, is such that Area(Q) < Area(Q). We can
then rearrange the different cycles introduced above accordingly, as shown in Fig. 6 (right).
This is done by translating ¢, ¢,, ¢3, ¢, to match the corresponding edges in Q. As a result,
we obtain a new closed curve ¢ which by construction still belongs to M~'({u}) since it is
just obtained by interchanging sections of ¢. Then applying again Lemma 4.1:

Area(¢) = Area(Q) + Area(c,) + Area(c,) + Area(c;) + Area(cy) > Area(C).

This contradicts the fact that Area(¢) = A, (1)

5. Finally, the expression of the area A,,,, = Area(c) of the convex curve ¢ with respect
to its length measure is well known and can be recovered for example from [35], although
the definition and presentation of length measures is slightly different than in the present
paper. For completeness, we provide a direct proof. It suffices to show (8) for a convex pol-
ygon and the general case will directly follow from the above approximation argument. Let

p be a convex polygon with ordered list of edges &= (e;,e,,...,ey) and vertices
vi=0,v,=e,..., vy =€ +e,+ ... +ey_;. Its length measure is then y = Zf\;l li6q,
where [; = ||e;|| and a; = == € S'. Since the polygon is convex and positively oriented, the

lle:l

Fig. 6 Illustration of step 4 in the proof of Theorem 4.4. By rearranging the different subcycles in the curve
¢, one obtains a new curve in M~ ({ u}) of larger signed area
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successive angles of the edges are non-decreasing so we may assume without loss of gener-
ality that 0 < a; < @, < ... < ay < 2x. Therefore the right hand side of (8) is:

2r 2r
411 / / sin |0 — a|du(0)du(a) = 221 sin [, — .
o Jo i=1 j=1

By splitting the inner sum into two sums from j=1,...,iand j=i+1,...,N, after an
easy calculation, we obtain:

2 2r N i1 N i-1
1 / / sin |0 — a|du(0)du(a) = 1 Z Zl isin |a; — =1 Z Zl i sin(a; — a;)
4Jo Jo e 2 =1 =1
since a; > a; forall j=1,...,i — 1. This is in turn leads to:
1 2r 2z 1 N -1
L[ sinio - clau@aua =1 Y 3 derte e = Z detOv.e) )
0 0 i=1 j=1
since Z]’;i e = 5\7, Now the right hand side of (9) is exactly the signed area of p. O

Another useful expression of the maximal area A, () is through the Fourier coef-

ficients of the measure u. Let us define:

~ 1 —in
ﬂ(n)zz— / e~ du(0).
T st

max

Proposition 4.5 For all y € M, the following holds:

o |am)|*
A (1) = EZ T (10)
n

n#+l1
Proof Let 6 € [0,2x) be for now fixed and f,(a) = sin |6 — a|. After some calculations

that we skip for the sake of concision, one can show that the Fourier coefficients of f, are
given by:

.
1 —ind 1 €_i9 ei@
— ey — - f +1
) ﬂ(l—nz)e 2r\n—-1 n+1 orn# +
P ! i i 1 6 — ;
= — d =4 _ e_ —_ ] r —i0 =
So(n) 27[/0 e fp(a)da yp + (47[ +1i o )e forn=1
e‘ie 1 T—0 i0
_¢e (L 0 forn=—1
ir +<4n+’ 2 ) orn

Now, writing f,(a) = Yez f;(n)ei”“ which converges everywhere on S' and recalling that
Jsi €9du(®) = [ e ®du(f) = 0, we get that:

@ Springer



884 Annals of Global Analysis and Geometry (2021) 60:863-901

2 2r 1 .y
Apax (1) = / / 71'(1— ) " du(0)du(a)

n;éil

and since the series of functions in the above equation is uniformly converging on S! x Sk

— 1 1 o o —inf ina
A () = EZ pr g /0 ( /0 e dﬂ(é’))e du(a)
n

n#+l1

=7 2 o e
nez
n#xl

_ )

=7 2 i-w

nezZ

n#+1

a

Note that as a direct corollary of Theorem 4.4 and Proposition 4.5, we recover the standard
isoperimetric inequality in its general form, that is:

Corollary 4.6 For any curve c in C, we have:

Area(c) <

L(c)?
4
with equality if and only if c is a circle.

Proof By adequate rescaling, we can first restrict the proof to the case
where  L(c) = u.(S') =2x. Then, from Theorem 4.4, we have that
Area(c) < sup{A, () | 4 € M}, u(S") =2z}. Now, for any ue ./\/lg such that
u(SYH = 2z, we have f1(0) = u(S') = 2x and:

_ 1 |a()? 2
A== Y TS - L) =
ne”z
n#=+l1

Therefore, Area(c) < 7 = % with equality if and only if A, (#) = 7 which implies that
in the above we have fi(n) = O for all |n| # 1. Therefore, u is the uniform measure on S! and
as Area(c) = A, (1), by the uniqueness of the maximizer in Theorem 4.4, we obtain that ¢
is the unit circle. O
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5 A geodesic space structure on convex sets of the plane

The correspondence between convex curves and length measures that is given by Theo-
rem 3.2 also suggests the idea of comparing convex sets through their associated length
measures. In other words, one can transpose the construction of metrics on the set of
convex domains to that of building metrics on the measure space M;. What makes
this advantageous is that there are already many existing and well-known distances
between measures that can be introduced to that end, and several past works [1, 49] have
exploited this idea for various purposes. Yet most of these works are focused on the
computation and/or mathematical properties of the distance only. In the field of inter-
est of the authors, namely shape analysis, an often equally important aspect is to define
distances (typically Riemannian or sub-Riemannian) which also lead to relevant geodes-
ics on the shape space: such geodesics indeed provide a way of interpolating between
two shapes and are crucial to extend many statistical or machine learning tools to ana-
lyze shape datasets. In this section, we will therefore be interested in building numeri-
cally computable geodesic distances on /\/l(J)r which will in turn induce metrics and cor-
responding geodesics on C,,,,. Note that although we discuss this problem for planar
curves as it is the focus of this paper, most of what follows can be adapted to larger
dimensions by considering the general area measures of convex domains in R". We first
review several standard metrics on the space of measures of S! and analyze their poten-
tial shortcomings when it comes to comparing planar convex curves. We then propose a
new constrained optimal transport distance.

5.1 Kernel metrics

As a dual space, the space of measures on S' can be endowed with dual metrics based
on a choice of norm on a set of test functions. These include classical measure metrics
such as the Lévy-Prokhorov or the bounded Lipschitz distance. Those distances met-
rizes the weak convergence between measures and have many appealing mathematical
properties. However, they are typically challenging to compute or even approximate in
practice. An alternative is the class of metrics derived from reproducing kernel Hilbert
spaces (RKHS) which have been widely used in shape analysis [19, 26, 33] and in sta-
tistics [28, 36]. We briefly recap and discuss such metrics in our context. The starting
point is a continuous and positive definite kernel K : S! x S! = R to which, by Aron-
szajn theorem [5], corresponds a unique RKHS of functions on S!. Let us denote this
space by H and by H" its dual. Now taking H as our space of test functions, one can
introduce the norm || - ||~ on /\/l(J)r defined by:

el = sup{(ulp) | f € H, |Iflly =1} 1)

and the corresponding distance dy(pg, tt;) = ||y — Holl3+- In general, (11) only gives a
pseudo-distance on M; but is shown in [45] Theorem 6 that a necessary and sufficient
condition to recover a true distance is for the kernel K to satisfy a property known as C,
-universality, which includes several families of well-known kernels such as Gaussian,
Cauchy... An important advantage of this RKHS framework is that, thanks to the reproduc-
ing kernel property, the distance can be directly expressed based on K as follows:
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dH* (M()y ”1)2 =

// K(6,60")dpy(0)dpy(6") -2 // K(6,6")duy(0)du, (8"
SIxS! SIxS!

N // K(0,6')dp,(0)dpu, (6.
SixS!

For discrete measures p, and u,, the above integrals become double sums and can be all
evaluated in closed form once the kernel K is specified which makes these distances easy
to compute in practice. However, since all are essentially dual metrics to some Hilbert
space, it is easy to see that the resulting metric space is flat, namely the constant speed geo-
desic between two positive measures y, and g, on S'is given by u(f) = (1 — )y, + tu, for
t € [0, 1]. Furthermore, if both y, and u, belong to M; then so does u(¢) for all ¢ € [0, 1]
since:

/ ePdun @) =1 —1) / e¥duy(0) +t / e?du,(0) = 0.
N St N

Therefore M; is a totally geodesic space for the metric|| - ||

Now if we look at the metric on C,,,, that results from the identification of convex
curves with their length measure in M, we see that, by the isomorphism property
of the mapping M given by Corollary 3.6, the geodesic c(f) = M~!(u(¢)) is simply the
Minkowski combination of the two convex curves associated to y, and p,. Note that
although the distance will depend on the choice of kernel K, the geodesics are however
independent of K. While the Minkowski sum may seem like a natural way to interpolate
between two convex sets, it may also not be the most optimal from the point of view
of shape comparison. Figure 7 shows an example of what a geodesic looks like both in
the space of convex sets and in the space of measures. It is for instance clear from this
example that the measure geodesic do not involve actual transportation of mass which in
this case would be a more natural behavior. This is the shortcoming that the metrics of
the following sections will attempt to address.

1 7

t=0 t=1/3 t=2/3 t=1

Fig.7 Geodesic for the kernel metrics. On top, the intermediate convex curves c(t) € C,,,, and in the bot-
tom row are shown the associated measures u(f) € Ma’
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5.2 Wasserstein metrics

A natural class of distances between probability measures is given by optimal transport
and the Wasserstein metrics [47]. Let us consider the usual geodesic distance on S' defined
by d(8,0’) = min{ |0’ — 0],27 — |#' — 0|} and let us write P(S') the space of probability
measures on S'. Given pg, u; € P(S!), the 2-Wasserstein distance between them is defined
by:

Wz(ﬂouul) = min {// d, el)zdy |y e H(llo’ﬂl)}
SIxS!

where I1(p, p,) is the set of all transport plans between i, and y, i.e.,

(g 1) = {y € PS' xS | y(A X S') = uy(A), y(S' xB)
= p,(B), for all Borel sets A, B C S'}.

An optimal transport plan y can be shown to exist and it is known that the Wasserstein
metric makes P(S') into a length space with the corresponding geodesic being given
by u(r) = (x,)sy where for all 0, 0eSs, t- 7,(6,0’) is a unit constant speed geodesic
between 6 and @', that is specifically:

(1=00+10,if —n<0 —0<n
7,0,0)={ 1 =00 +10 —27), ifr <0 —0 <2x
(1=00+10 +2n), if 27 <0 —0<-x

Alternatively, this means that for all continuous function f : S! 5 R:
(ulf) = / f(x,(0,6"))dy(8.0").
SIxS!

Unlike in the previous kernel framework, the Wasserstein distance and geodesics cannot
be expressed in closed form but there are many well-established and efficient approaches
to numerically estimate those, such as combinatorial methods [18] or Sinkhorn algorithm
[17] in the situation of discrete measures as well as methods based on the dynamical for-
mulation of optimal transport [6, 39] for densities.

When it comes to the comparison of convex shapes, the use of Wasserstein metrics
on the length or area measures was proposed for instance in [49]. Note that since W, is
defined between probability measures, this amounts in restricting to convex curves of
length 1 i.e., comparing curves modulo rescaling which is often natural in shape analy-
sis. However, an important downside of the Wasserstein metric for this problem is that
the subspace of probability measures in M is not totally geodesic for that metric, namely
the above path of measures p(f) connecting 4, to y, does not generally stay in Mg when
Hos My €E P(SHN /\/lar. This means that the intermediate measures y(f) cannot be canon-
ically associated to a convex curve (or even to a closed curve as a matter of fact). We
illustrate this in Fig. 8 that shows the Wasserstein geodesic between the same two discrete
measures as in Fig. 7 and the curves obtained from the reconstruction procedure of Remark
3.3. This issue could be addressed a posteriori: for example the authors in [49] propose to
consider a slightly modified path defined from the optimal transport plan. Specifically, they
introduce fi(¢) defined by:
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Fig.8 Geodesic for the Wasserstein metric computed with the Sinkhorn algorithm. On top, the intermedi-
ate convex curves c(t) € C,, ., and in the bottom row are shown the associated measures u(z). Note that the

conv
intermediate measures x(f) do not belong to ,/\/l:)’ which results in an opening of the reconstructed curves

(1 = 1)e' + tet? b 0’ '
Aol = //§1x§‘ < a —t)e’9+te’9’|>|(1 ne” +te” |dy(0,0")

for which it is straightforward to check that ji(¢) € ./\/l(J)r for all r € [0, 1]. A clear remaining
downside however is that, despite relying on the optimal transport between y, and y,, the
paths of measures and corresponding convex curves are not actual geodesics associated to
a metric.

5.3 A constrained Wasserstein distance on /\/lo+

In this section, we shall instead modify the formulation of the Wasserstein metric so as to
directly enforce the constraint defining /\/lar To do so, we will need to shift our focus to
the so called dynamical formulation of optimal transport which was first introduced by the
works of Benamou and Brenier in [6] and derive a primal-dual scheme adapted from the
work of [39] to tackle the corresponding optimization problem.

5.3.1 Mathematical formulation
Formally, the above Wasserstein metric can be obtained by minimizing /01 Jsi v, *du(n)de
over all vector fields v,(-) and path of measures u(f) € M that satisfy the boundary con-

straints u(0) = pg, (1) = p; and the continuity equation on S! 9,u(t) + d,(v,u(t)) = 0. To
make this formulation more rigorous, one has to introduce the following definitions.

Definition 5.1 Let (p,m) be a couple of measures on [0, 1] X S! which we will write

p,m € M([0,1] x S'). We say that (p,m) satisfy the continuity equation d,p + dym = 0
with boundary conditions p(0) = p, and p(1) = y, in the distribution sense if:

/ 0,$ dp+/ 0y dm=/ ¢(1«)du1—/ (0, -)duy. (12)
[0,1]xS! [0,1]xS! N N

forall ¢ € C'([0, 1] x S!).

We recall the following usual property of the continuity equation
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Property 5.2 If (p, m) satisfies the above continuity equation with boundary conditions
and u,, then the time marginal of p is the Lebesgue measure on [0, 1]. In other words the
measure p disintegrates as p = p, @ dt.

Proof By applying the disintegration theorem on measures of [0, 1] X S! (cf Theorem 2.28
in [4]), we have the existence of finite measures p, on S! for all ¢ € [0, 1] such that we
can write p = p, ® v with v the measure on [0, 1] given by v(A) = p(A X S!). Taking
¢(t,0) = w(t) withy € C'([0, 1]), we get from (12):

/ w'(Odv(t) = (1) = y(0).
(0,11

Since this holds for any y € C!([0, 1]), we obtain that v is the Lebesgue measure on [0, 1].
O

Next we define the set B = {(a,b) € R? | a + %bz < 0} and we will denote 1 its con-
vex indicator function: 15(a, b) = 0 for (a,b) € B and 15(a, b) = +o00 otherwise. We also
define f : RXR — R, by:

2
m .
57 ifd>0
F@dm) =90 i (d,m) = (0,0)

+ oo otherwise

Note that fis a 1-homogeneous function and is the convex conjugate of 1. Then it has been
shown that given two measures i, and yu,, their Wasserstein distance is equal to:

Wy (ug, py) = inf {/ f<%>dﬂ | subj. to py = pg, p; = Hys 0,p + Ogm = 0}-
v=(p,m) [0,11xS! dﬂ
13)

where A is any measure on [0, 1] x S' such that |v| < 1 and & denotes the Radon-Nykodym
derivative (the choice of such A does not affect the value in (13) due to the homogeneity of
/). Furthermore, the existence of optimal measures p and m can be proved and the path of
measures ¢ — p, given by Property 5.2 is a geodesic between i and y;.

We now modify the above expression so as to enforce that the path p, remains in the
subspace M.

Definition 5.3 Let 1 and y, be two probability measures in M_. With the same conven-
tions as above, we define the constrained Wasserstein distance on /\/lar by:

0,p+0ym=0

= , d ,
W, (ug, py) = _l(nf) / f(ﬁ)d/1 | subj. to 4 py = Ho, P1 = My
e 0xs! Js1 €%dp,(0) =0, foraer € [0,1]

(14)
As we show next, W, defines a distance and we also recover the existence of
geodesics.
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T_heorem 5.4 For any two probability measures u, and u, in Mg_such that
Wy (g, 4y) < 400, there exist (p, m) achieving the minimum in (14). Moreover, W, defines a
distance on the space P(S') n Mj.

Proof The proof mainly requires adapting similar arguments developed for other variations

of the optimal transport problem [11, 15]. For any ¢ € Cl([O, 11x SYHand w € C([0, 1]), let
us define

1
Jb v v) = / / 150, + oSO, (1) + sin(O)y(1), dp)d6d + / (0, )dp - / ¢ )doy
o Js s s
= FoA(¢, vy, v,) + G(d, v, w,)

where

1
F(a,p) = / / 15(a(t, 8), p(z, 0))dodr
0 St

Aoy v) = (0, + cosOw, (1) + sin(O)y, (1), 0y h)

1 1
G(. v, v,) = / / #(0, )dp, — / / é(1, )dp,
0 Jst 0o Jst

One can easily check that F and G are proper convex functions and are lower semi-contin-
uous. Furthermore, taking for instance ¢(t, 0) = at with a < 0 and w(¢) = 0, we see that F
is continuous at A(¢, w) = (a,0) since (a, 0) is in the interior of B. We can thus apply the
Fenchel-Rockafellar duality theorem, which leads to

] inf J(p,yp) = sup {=F"(v) - G*"(=A"(v))}.
PEC ([0,11xSh),y,,y, €C((0,1]) veM([0,1]1XSHx M([0,1]xS!)
(15)
We now compute for v = (p, m) € M([0,1] x S') x M([0, 1] x S!):

G*(-A"v) = sup {<v, —A@y1 ) + /§ (1. )dpy L 90, ')dﬂo}

D1 w2

= sup {—(v, (0. 09 B)) — (v, oSO (1) + Sin(@rn(1), ) + /S B0, g, - /S 0, ‘>de}

Dw1w2

= sup {—(v, 0,9, 0p)) + /l @(1,-)dp, — /§1 @(0, )dpg — (v, (cos(O)y, (1) + sin(O)y; (1), 0))}
S

Dw1w2

=sup{—<v, (0, V) + / (1, )dp; — / (0, ~>dp0} + sup {—(v. (cos@, (1) + sin(@)w (1), 0))}
¢ st st [ZR7%)

= SUP{—(V, (0,0, 09)) +/ ¢(1,)dp, — / $(0, ~)dp0} + sup{—/ cos(B)wl(t)dp}
® sl sl W [0.1]xS!

+ sup{ - / sin(8)y, (t)dp}
w2 [0,1]xS!

and we find
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Sup{—(v,(a,¢,59¢)>+/ ¢, -)dp; —/ $(0, ')dpo}
[ N st

_J 0 ifop+dym=0,p0,")=py.p(l,-) = p,
+o0o otherwise

from the definition of the weak continuity Eq. (12). It follows that the supremum on the
right hand side of (15) can be restricted to measures p and m satisfying the continuity equa-
tion. Therefore, by Property 5.2, we obtain that

1
sup{ — / cos(Q)y, (Hdp } = sup{ - / </ cos(H)dpt(0)> l[/l(t)dt}
wi [0,1]xS! W 0 st

_J0 if for a.et € [0,1], /§| cos(@)dp, =0
7\ 400 otherwise

and similarly

an{- [ ooy = [0 5 a1 <01y s =0
[0,11xS!

v +00 otherwise
2

from which we deduce that

0,p+0ym =0
sup{ —F*(v) = G*(=A*(v))} = —mf F*(v) | subj. to3 pgy = Hos P1 = My
/Sl e?dp,(0) =0, fora.et €[0,1]

(16)

Finally the convex conjugate of F is computed for instance in [15] based on Theorem 5 of

[42] and can be shown to be:
dv
F*(v) = / f( )d/l
o.axst 2 da

This allows to conclude that (16) corresponds to —Wz(ﬂo, u,) and, since we assume that
W, (g, #;) < 400, we obtain by Fenchel-Rockafellar theorem the existence of a minimizer
(p,m) to (14). .

In addition, we have by construction that W,(u, ;) = W,(uy, ;) and therefore
Wz(yo, #;) =0 implies that yy = u;. The symmetry of Wz is also immediate from the
fact that for any measure path v = (p, m) satisfying the conditions in (14), one can con-
sider V = (p, = p,_,;,/m, = m,_,) the time-reversed paths which satisfy g, = p;, p; = pp.
0,5 + 0y = 0 and [, ?dp,(0) = 0 while:

dv dv
f( >d/1 / f( >d/1
/[o,ux§l da o1xst” vd4

Finally, the triangular inequality can be shown in similar way as for the standard Was-
serstein metric i.e., by concatenation. Let ug, pi;, i, EP(S‘)OM and assume that
WZ(MO,MI) < 400 and W,(u;, 4,) < +oo (otherwise the triangular 1nequa11ty is trivi-
ally satisfied). From the above, we know that there exist v = (p,m) and v/ = (p’, m’) that
achieve the minimum in the distances Wz(ﬂo, 4;) and Wz(y,, H,), respectively. Letting
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0 (1,0~ (t/2,0) and ' : (,0) = ((t + 1)/2,6), we define the following concatenated
path v = (p, m):

((2%)4p, 2(z°)ym) for 0 <1 < %
V=
1
Dap', 2(zym'y for = <1< 1
((z")yp', 2(z " )ym') or 5 <t <

for which one can easily verify that jy = pg, §; = . 0,5 + 0pm = 0 and [, €dp,(6) =0
for almost all ¢ € [0, 1]. It follows that:

w dv dv dv'
W (u ,M)S/ f(—)d/l:/ f<_>d/1+/ f(—)dﬂ
PO Joaws” \dA oaxst” \dA oaxst” \ dA

= Wz(ﬂo, ﬂl) + Wz(ﬂl, /42)-

|

In general, one cannot guarantee that the distance Wz is finite between any two meas-
ures. Nevertheless, it holds in particular when:

Proposition 5.5 Let u, = py(0)d0 and u, = p,(0)d0 be two measures in P(S') N M0+
with densities with respect to the Lebesgue measure on S' with py, p, € L'(S"), and
assume that there exists ¢ > 0 such that py(0) > ¢, p,(0) = ¢ for almost all 6 € S!. Then
Wy (ug, py) < +o0.

Proof With the above assumptions, let us consider the linear interpolation path
p,0) = (1 —1)py(0) + tp,(0) and define m, = H(0)d0 where H(0) = /Oe(pl(a) — po(@))da.
Then one easily checks that we have 0d,p + dym =0 in the sense of distributions.
Furthermore,

/ ep,(0)d = (1 -1 / € po(0)db +t / ¢ p,(0)do = 0.
N N N

Then, taking A the Lebesgue measure on [0, 1] x S' and since p,(0) > c for almost all 6, we
find:

1 B 1 H(9)2 1 5
/0 /Slf(p,(a),m,(e))dodt_/0 /Sl md@dtsz—c g H(0)*d0 < +oo

and thus W2(/40, up) 1s also finite. O

Note that as a special case of this proposition, we deduce that the distance is finite
between any two continuous strictly positive densities on S'.

Now, thanks to the bijection induced by M between the set of convex curves of length
one modulo translation which we will denote C! and the set of probability measures of

- conv
./\/l(J)r , We can equip Cionv with the structure of a geodesic space by setting:

d(co, ¢1) = W, (M(cy), M(cy)) (17)
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for any ¢y, c, € (i’j(mv. A geodesic between the two curves is then given by c(t) = M “L(p())

where p(?) is a geodesic between the measures M(c,) and M(c,) for the metric W,.

Remark 5.6 The above distance on C‘({(}nv is in addition equivariant to the action of rota-
tions of the plane in the sense that for any R € SO(2), we have d(R - ¢y, R - ¢;) = d(cy, ¢y).
This follows from the equivariance of the constrained Wasserstein distance Wz with
respect to rotations. Indeed, we see that for any probability measures p, and yu; in M0+
and any R € SO(2), we have R .M(cy)) =M(R-c,) and R .M(c,) =M(R - c,). Further-
more, if v = (p,m) is a pair of measures satisfying the continuity equation together with
the boundary conditions p, = yy, p; = H; and the closure condition /sl eiedpt(B) =0 for
almost all ¢ € [0, 1] then one easily verifies that ¥ = (5, ) defined by p = (R, p,) ® dr and
m = (R,m,) Q dt still satisfy the continuity equation, the closure condition and that:

~/[0,1]><§'f(%>cu = /[0,1]x§1f(%>d/1'

Then taking the infimum leads to WZ(M(R cco) MR -c))) = WZ(M(CO), M(cy)). This
equivariance property allows to further quotient out rotations and obtain a distance between
unit length convex curves modulo rigid motions that writes:

d'(cy,cy) = min d(cyp,R - cy).
(co, €1) RESO2) (o D

5.3.2 Numerical approach

We now derive a numerical method to estimate the constrained Wasserstein distance V_V2
between two discretized densities of S! and thereby the distance d between convex curves
given by (17). Our proposed approach mainly follows and adapts the first-order proximal
methods introduced in [39] for the computation of Wasserstein metrics, specifically the
primal-dual algorithm which itself is a special instantiation of [13]. We briefly present the
main elements of the algorithm in the following paragraphs.

We shall consider measures on [0, 1] X S' discretized over two types of regular time/
angle grids: centered and a staggered grids. We define the centered grid G, with P + 1 time
samples and N angular samples as:

i J . .
Gg.= {<ti=1—3,0j=27rﬁ> |0<i<P, OSJSN—l}.
Discrete measure pairs sampled on the centered grid will be then represented as an element
V of the space £, = RY% x RY%. The staggered grids consist of time and angular samples

shifted to the middle of the samples of G.. Specifically, we introduce a time and a space
staggered grid defined as follows:

i+1/2 J . .
Q§={<ti= ,0j=2ﬂﬁ>|—1SlSP,OSJSN—1}

i jt1/2 . .
g9={<ti=1—3,9j=27r ) 10Si<P —1<j<N-2¢.

~v

N
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We shall then denote U = (p, m) an element of £ = RY% x RY% which represents a pair of
discretized measures of [0, 1] X S! on the staggered grids and we introduce the interpola-
tion operator Z : £, — &, defined by Z(U) = (p, i) with

B pA_l,+p,A ) )
piy=—7F— for0<i<P,0<j<N-1.

m; +m

T fr0<i<P,0<j<N-2
H iN—2 Ty

—N22 forO0<i<P,j=N-1

Note that the slight difference between the time and angular components and
with the approach of [39] is due to the periodic boundary condition on the sam-
ples 6, € SI. We also define a discrete divergence operator div : & — RY% as
div(U),-J- =P(p;j— pisr ) + NOmy; —my;_y) forall0 <i <P, 0 <j<N — 1. This allows to
write a discrete version of (14) as a convex minimization problem:

P
U= (p m)EE { Z

i=0 j=0

N-1

f I(U)’:I + IC(IJ() ﬂl)(U)} (18)

where

0j = (Po)j» ppj=(py);, forall —1 <j<N -2

div(U)iJ=0, foral0<i<P,0<j<N-1
Clpg,p1) =3U €&, st

N-1 N-1
D cos(0)p,; =0, Y sin(8))p,; =0forall —1<i<P.
j=0 Jj=0

and lc%’pl)(U) =0ifU € Clpy, py)s lC(po»ﬂl)(U) =40 if U & C(py, p))-

To solve the convex problem (18), we will use a primal-dual method adapted from the
work of [13]. We first recall the definition of the proximal operator of a convex function
h:RFSR:

Prox,,(x) = argmin l||x —yI? + A®y)
yERK 2

as well as the convex dual of A:

h*(w) = max (y,w) — h(y).
yERK

The function to minimize in (18) is of the form F(Z(U))+ G(U). The primal-dual
algorithm we implement consists of the following iterative updates on the sequences
U™,y Ty e £ x E, x E starting from an initialization U € £, V® € £, and
o — yo.

yoth — Proxt,F*(V(") + GIF("))

U = Prox, (U™ — tZ* VD) (19)

r(n+1) — U(n+1) + H(U(n+l) _ U(n))
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where o,7 are positive step sizes and 0 < 6 < 1 an inertia parameter. It follows from the
general result of [13] that the algorithm converges to a solution of (18) if zo||Z|> < 1
where || Z|| denotes the operator norm of Z. We typically have || Z|| ~ 1 as Z is here an inter-
polation operator.

It only remains to specify the exact expressions of the proximal operators appearing in the
first two equations of (19). First, by Moreau’s identity, one has that forall V € £

Prox,p.(V) = V — oProxg,(V /o).

Now the proximal of F' is computed in [39] Proposition 1 from which we obtain for all
VeE:

Prox/,(V) = (Prox;/,(Vi)) o <i<p

0<j<N-1
where
odr*(d, m)

Prox;,,(d,m) = < od+1
(0,0) otherwise

,r*(d, m)> &if r*(d,m) > 0

with  r*(d,m) being the largest real root of the polynomial equation
(x—d)x+1/c)* - szZ =0.

To express the second update in (19), we first point out that Z* : £, — &, is given by
(p, m) = I%(p, m) with:

-

ﬁizl‘i,fori=—1, 0<j<N-2
gy =1 w for0<i<P-10<j<N-1
%, fori=P, 0<j<N-2
i +2’h’¥N*1, for0<i<P,j=-1
m.o=1 2
Y %,forOSiﬁpaOSjsN_z

Moreover since G is here the convex indicator function of the constraint set C(p,, p,), we
have 7G = G for any 7 > 0 and PI“OXTG = Proxg = Projg, , , the or.thogonal projecto.r on
the convex set C(py, p,). In addition to the usual boundary and divergence constraints,
we also have to deal with the two extra closure conditions. We introduce the operator
B & = RY% x (RN x RV) x (RP*2 x RP*?) defined for any U = (p, m) € &, by:

N-1 N-1
B(U) = (div(m, (P_1j+ PP ogin-1+ (Z cos(®)pij» ). sin(e,-)p,,) )
J=0 J=0 ~1<i<P

which allows us to write C(py, p;) = {U € & | E(U) = b = (0, (py, p1), (0,0)) }. Thus, we
can express the orthogonal projection on C(p,, p,) as:
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Proj,, ,)(U) = U =E*AT'E(U) + E*A™'D
where A = EE* can be interpreted as a modified Laplace operator on the spatial-angular
domain, which in practice we can precompute together with its inverse before iterating (19)
or alternatively implement in the Fourier domain.

5.3.3 Numerical results

We present a few numerical results obtained with the above approach which we imple-
mented in Python. In all experiments, we take N = 150 angular samples on S' = [0, 27)
and P = 50 time samples in [0, 1]. As for the step parameters of the primal-dual algo-
rithm, we picked o0 = 0.5, 7 =0.25 and 6 = 0.6. We run the algorithm (19) for 1000
iterations although we observe in practice that convergence to a minimum is typically
reached after around 250 iterations (cf the energy plot in Fig. 10).

First, in Fig. 9, is shown the geodesic between the same polygons as in Figs. 7 and
8 for the new constrained Wasserstein metric. Observe that unlike kernel metrics, the
geodesic involves mass transportation rather than pure interpolation between the meas-
ures but that unlike the standard Wasserstein distance, the closure constraint is satisfied
along the path and the corresponding shapes all stay within the set of closed convex
curves. We further illustrate those effects with another example of a geodesic between
two density measures and the corresponding geodesic between the convex curves in
Fig. 10. Finally, we show with Fig. 11 an example of a geodesic between a polygon with
discrete length measure and a Reuleaux triangle which density is a piecewise constant
function with three steps.

6 Some open problems and future directions

As a conclusion to this paper, we discuss a few possible topics and tracks for future
investigation that arise as natural follow-ups to this work and the results we presented.

m— S BN

t=0 t=1/3 t=2/3

7
)

Fig.9 Geodesic for the constrained Wasserstein metric computed with the proposed primal-dual algorithm.
On top, the intermediate convex curves c(t) € C,,,, and in the bottom row are shown the associated meas-
ures p(t)
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)

500 1000
Iterations

t=0 t=1/3 t=2/3 t=1

; N

0 2 4 6

0 2 4 3

Fig. 10 Geodesic for the constrained Wasserstein metric between two density measures. The evolution of
the energy throughout the iterations of the proposed primal-dual algorithm is plotted on the top row to illus-
trate the convergence. On the middle row, are shown the intermediate convex curves c(f) € C,,,, along the

estimated geodesic. On the bottom row we display the final density p, in red and the density p(z) along the
geodesic in blue

Fig. 11 Geodesic for the constrained Wasserstein metric between a sum of Diracs and the piecewise con-
stant density measure associated to a Reuleaux triangle

6.1 Unbalanced optimal transport for convex shape analysis

In Sect. 5.3, we introduced a distance based on a constrained version of the Wasserstein
metric between length measures which turns the set of convex closed curves of length one
into a length space. There are yet several questions which are left partly unaddressed when
it comes to this distance and its properties. In particular, it remains to be studied whether
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Wz is finite between any pair of probability measures of ./\/l:)r or at least if the result of Prop-
osition 5.5 could be extended to other families of measures. Besides, W, is only defined
for probability measures which implies that the resulting distance d in (17) requires the
convex curves to be normalized to have unit length. This makes such a distance unadapted
to retrieve and quantify e.g., global or local changes in scale.

We believe that both of the previous issues could be addressed by considering an unbal-
anced extension of the metric W, to all measures of /\/lar, along similar lines as the unbal-
anced frameworks for standard optimal transport proposed in works such as [15, 37, 40]. In
the context of this paper, this could be done by adding a source term to the continuity equa-
tion, namely consider d,p + d,m = ¢ with { being a signed measure of [0, 1] X S! that mod-
els an additional transformation of the measure p in conjunction with mass transportation.
Then, as in [15, 37], one could penalize this extra source term based on the Fischer—Rao
metric of {, which would lead to define the following distance between any u,, 4, € ./\/lar:

0,p+ 0ym={¢

— . d .
oo = _int 3 [ o(S) i subitod o9 = o o1 =
=pme) 1 J10,11xs! Jsi €%dp,(8) =0, foraer € [0,1]

where Ais such that p,m,{ < Aand g : RXRXR — R, is given by:

)T
8d-m-E) =10 if (d,m.¢) = (0,0,0)

+ oo otherwise

ifd>0

with 6 > 0 a weighting parameter between the two components of the cost. In this case, it
becomes easy to show that W (. ;) is finite for any measures g, 4, € My by simply
considering the special path p, = (1 —#)p, +tp;, m, =0 and {, = p, — p, for all t € [0, 1].
Although we leave it for future work, we expect the existence of geodesics and distance
properties to hold for WFR by extending the proof of Theorem 5.4. Moreover, the precise
analysis of its topological properties and how the resulting metric between convex curves
compare to other geometric distances remain to be examined.

6.2 Generalization to higher dimension

Although this work focused on the case of planar curves, the concept of length measure
extends to closed hypersurfaces in any dimension which is known as area measures, as
mentioned in the introduction. Area measures, particularly of surfaces in R3, is a central
concept in the Brunn—-Minkowski theory of mixed volumes [44] but also appear in some
applications such as object recognition [30] or surface reconstruction from computerized
tomography [41]. The area measure of a (n — 1)-dimensional closed oriented submanifold
(more generally rectifiable subset) S of R” can be defined, similarly to Definition 2.1, as
the positive Radon measure on S"~! given by o¢(B) = VoI'!({x e § | ng(x) € B}) for all
Borel subset B C $"~! where ngy(x) € S"~! denotes the unit normal vector to S at x and
Vol"™! is the (n — 1) volume measure i.e., the Hausdorff measure of dimension (n — 1).
Importantly, the Minkowski—Fenchel-Jessen theorem still holds for general area measures,
namely the area measure again characterizes a convex set up to translation. However, there
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are two significant differences when n > 3 compared to the situation of planar curves. First
the Minkowski sum of two convex does not generally correspond to the sum of their area
measures. Second, reconstructing the convex shape from its area measure, even for discrete
measures and polyhedra, is no longer straightforward: it is in fact an active research topic
and several different approaches and algorithms have been proposed, see e.g., [25, 29, 34,
49].

In connection to the results presented in this paper, we expect for instance that an isoper-
imetric characterization of convex sets similar to Theorem 4.4 should hold for the positive
volume enclosed by (n — 1)-dimensional non self-intersecting rectifiable sets that share the
same area measure under the adequate regularity assumptions. Such a property has been
shown in particular for polyhedra in [8]. As for the construction of metrics and geodes-
ics between convex shapes, the mathematical construction of the constrained Wasserstein
metric presented in Sect. 5.3.1 can be a priori adapted to area measures in any dimension,
by replacing the closure constraint to /S,,_, xdp,(x) = 0 for almost all ¢ € [0, 1]. However,
the numerical implementation of such metrics along the lines of the approach of Sect. 5.3.2
would induce additional difficulties. Indeed, the computation of the operators on grids over
higher-dimensional sphere becomes more involved and numerically intensive. Moreover,
recovering the convex curves associated to a geodesic in the space of area measures would
further require, as explained above, applying some reconstruction algorithm a posteriori.
Finally, an important issue for future investigation is to derive an efficient implementation
of the variation of the distance with respect to the discrete distributions, which could be
then used for instance to estimate Kércher means in the space of convex sets.
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