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Abstract
In this paper, we revisit the notion of length measures associated to planar closed curves. 
These are a special case of area measures of hypersurfaces which were introduced early 
on in the field of convex geometry. The length measure of a curve is a measure on the 
circle �1 that intuitively represents the length of the portion of curve which tangent vector 
points in a certain direction. While a planar closed curve is not characterized by its length 
measure, the fundamental Minkowski–Fenchel–Jessen theorem states that length measures 
fully characterize convex curves modulo translations, making it a particularly useful tool 
in the study of geometric properties of convex objects. The present work, that was initially 
motivated by problems in shape analysis, introduces length measures for the general class 
of Lipschitz immersed and oriented planar closed curves, and derives some of the basic 
properties of the length measure map on this class of curves. We then focus specifically on 
the case of convex shapes and present several new results. First, we prove an isoperimetric 
characterization of the unique convex curve associated to some length measure given by 
the Minkowski–Fenchel–Jessen theorem, namely that it maximizes the signed area among 
all the curves sharing the same length measure. Second, we address the problem of con-
structing a distance with associated geodesic paths between convex planar curves. For that 
purpose, we introduce and study a new distance on the space of length measures that corre-
sponds to a constrained variant of the Wasserstein metric of optimal transport, from which 
we can induce a distance between convex curves. We also propose a primal-dual algorithm 
to numerically compute those distances and geodesics, and show a few simple simulations 
to illustrate the approach.

Keywords  Planar curves · Length measures · Convex domains · Isoperimetric inequality · 
Metrics on shape spaces · Optimal transport · Primal-dual scheme

Mathematics Subject Classification  53A04 · 28A75 · 49Q20 · 49Q22

 *	 Nicolas Charon 
	 charon@cis.jhu.edu

	 Thomas Pierron 
	 thomas.pierron@ens-paris-saclay.fr

1	 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, USA
2	 Department of Mathematics, ENS Paris-Saclay, Gif‑sur‑Yvette, France

Annals of Global Analysis and Geometry (2021) 60:863–901

/ Published online: 26 July 2021 

http://orcid.org/0000-0002-6032-247X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10455-021-09795-0&domain=pdf


	

1 3

1  Introduction

There is a long history of interactions between geometric analysis and measure theory that 
goes back to the early twentieth century alongside the development of convex geometry [2, 
23] and later on, in the 1960s, with the emergence of a whole new field known as geomet-
ric measure theory [22] from the works of Federer, Fleming and their students. Since then, 
ideas from geometric measure theory have found their way into applied mathematics most 
notably in areas such as computational geometry [1, 10, 16, 32] and shape analysis [14, 26, 
30, 43] with applications in physics, image analysis and reconstruction or computer vision 
among many others.

A key element explaining the success of measure representations in geometric analy-
sis and processing is their ability to encompass geometric structures of various regulari-
ties including smooth immersed or embedded manifolds but also discrete objects such as 
polytopes, polyhedra or simplicial complexes. They usually provide a comprehensive and 
efficient framework to capture the most essential geometric features in those objects. One 
of the earliest and most illuminating example is the use of the concept of area measures 
[2] in convex geometry which has proved instrumental to the theory of mixed volumes 
and the derivation of a multitude of geometric inequalities, in particular of isoperimet-
ric or Brunn–Minkowski types [24, 44]. Area measures are typically defined for convex 
domains in ℝn through the classical notion of support function of a convex set and can then 
be interpreted as a measure on the sphere �n−1 that represents the distribution of area of the 
domain’s boundary along its different normal directions. A fundamental property of the 
area measure, that resulted from a series of works by Minkowski, Alexandrov, Fenchel and 
Jessen, is that there is a one-to-one correspondence between convex sets (modulo transla-
tions) and area measures: in particular the area measure characterizes a convex set up to 
translation and therefore fully encodes its geometry.

In this paper, we are interested in area measures in the special and simplest case of pla-
nar curves. These are more commonly referred to as length measures and are finite meas-
ures on the unit circle �1 that represents the distribution of length of the curve along its dif-
ferent tangent directions in the plane. Yet, unlike most previous works such as [35] which 
are mainly focused on convex objects, one of our purpose is to first introduce and investi-
gate length measures of general rectifiable closed curves in the plane. Our objective is also 
to provide as elementary and self-contained of an introduction as possible to these notions 
from the point of view and framework of shape analysis without requiring preliminary con-
cepts from convex geometry. Although, in sharp contrast to the convex case, there are infi-
nitely many rectifiable curves that share the same length measure, we will emphasize some 
simple geometric properties of the underlying curve that can be recovered or connected 
to those of its length measure. Furthermore, this approach will allow us to formulate and 
prove a new characterization of the unique convex curve associated to a fixed measure on 
�
1 given by the Minkowski–Fenchel–Jessen theorem in the form of an isoperimetric ine-

quality. Specifically, we show that this convex curve is the unique maximizer of the signed 
area among all the rectifiable curves with the same length measure. This extends some pre-
viously known results about polygons [8] from the field of discrete geometry.

One of the fundamental problem of shape analysis is the construction of relevant met-
rics on spaces of shapes such as curves, surfaces, images... which is often the first and 
crucial step to subsequently extend statistical methods on those highly nonlinear and infi-
nite dimensional spaces. Considering the shape space of convex curves, the one-to-one 
representation provided by the length measure can be particularly advantageous in that 
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regard. Indeed, various types of generalized measure representations of shapes such as cur-
rents [19, 27], varifolds [14, 33] or normal cycles [43] have been used in the recent past to 
define notions of distances between geometric shapes from corresponding metrics on those 
measure spaces. A common downside of all these frameworks however is that the mapping 
that associates a shape to its measure is only injective but not surjective. This typically 
prevents those metrics to be directly associated to geodesics on the shape space without 
adding more constraints and/or exterior regularization, for example through deformation 
models. In contrast, the bijectivity of the length measure map from the space of convex 
curves modulo translations to the space of all measures on �1 satisfying only a simple lin-
ear closure constraint hints at the possibility of constructing a geodesic distance based on 
the length measure. In this paper, we propose an approach that relies on a constrained vari-
ant of the Wasserstein metric of optimal transport for probability measures on �1 which, 
as we show, turns the set of convex curves of length 1 modulo translations into a geodesic 
space. We also adapt and implement a primal-dual algorithm to numerically estimate the 
distance and geodesics.

The paper is organized as follows. In Sect. 2, we define the length measure of a Lip-
schitz regular closed oriented curve of the plane and provide a few general geometric and 
approximation properties. In Sect. 3, we discuss specifically the case of convex curves and 
recap some of the fundamental connections between convex geometry and length meas-
ures, in particular the Minkowski–Fenchel–Jessen theorem. Section 4 is dedicated to the 
statement and proof of an isoperimetric inequality for curves of prescribed length measure, 
from which we can also find again the classical isoperimetric inequality for planar curves. 
Section 5 focuses on the construction of geodesic distances on the space of convex curves 
and in particular on our proposed constrained Wasserstein distance and its numerical com-
putation. We also present and compare a few examples of estimated geodesics. Finally, 
Sect. 6 concludes the paper by discussing some current limitations of this work and poten-
tial avenues for future improvements and extensions.

2 � Length measures of Lipschitz closed curves

2.1 � Definitions

In all the paper, we will identify the 2D plane with the space of complex numbers ℂ . We 
start by introducing the space of closed, immersed oriented Lipschitz parametrized curves 
in the plane which we define by:

Depending on the context, we will identify �1 either with the interval [0, 2𝜋) ⊂ ℝ or the 
circle {ei𝜃 | 𝜃 ∈ ℝ} ⊂ ℂ . We recall that Lipschitz continuous curves are indeed differenti-
able almost everywhere and that the derivative is integrable on �1 , which implies that the 
length L(c) = ∫

�1 |c�(�)|d� is always finite. Note that we do not assume a priori that curves 
are simple. In anticipation to what follows, we also introduce the space of unparametrized 
oriented curves up to translations which we define as the quotient space

C ≐ {c ∈ Lip(𝕊1,ℂ) | c�(�) ≠ 0 for a.e. � ∈ 𝕊
1}.

C̃ ≐ C∕ ∼
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the equivalence relation being that for c1, c2 ∈ C , c1 ∼ c2 if and only if there exists z0 ∈ ℂ 
such that c2(�1) = c1(�

1) + z0 and the orientations of the curves c2 and c1 + z0 coincide. 
This will constitute the actual space of shapes, i.e., the space of oriented rectifiable closed 
curves modulo translations in the plane. Note that for simple curves, this is equivalent to 
considering parametrization functions 𝕊1 → ℂ modulo positive reparametrizations and 
translations consistent with the definition of curve space introduced in works such as [38]. 
However, these two equivalence relations are not necessarily the same for curves with 
self-intersections.

For any parametrization c of a curve in C or C̃ , we let Tc ∶ �
1 → �

1 be the Gauss map, 
i.e., for all � , Tc(�) = c�(�)∕|c�(�)| which is well-defined for almost all � ∈ �

1 . Lastly, we 
will write dsc = |c�(�)|d� the arc-length measure of c, which is a positive measure on �1 . 
In all this paper, we will denote by M+(�1) the set of all positive finite Radon measures 
on �1 and M(�1) the set of signed finite Radon measures on �1 . Also, we recall that the 
pushforward of a measure � ∈ M

+(�1) by a mapping � ∶ �
1 → �

1 is the measure denoted 
�∗� such that (�∗�)(B) = �(�−1(B)) for all Borel subset B ⊂ �

1 . Finally, we will denote by 
�n the Lebesgue measure on ℝn . We can now introduce the notion of length measure which 
is the focus of this work.

Definition 2.1  (Length measure of a curve) For c ∈ C , we define the length measure of c 
that we write �c , as the positive Radon measure on �1 obtained by taking the pushforward 
of dsc by the Gauss map Tc i.e., �c ≐ (Tc)∗dsc . In other words, for all Borel set B of �1:

For any c1, c2 such that [c1] = [c2] in C̃ , one has �c1
= �c2

 leading to the well-defined map-
ping M ∶ c ↦ �c from C̃ to the space of positive measures on �1.

The invariance of �c to the equivalence relation ∼ in Definition 2.1 is immediate from 
the fact that the arclength measure and Gauss map both only depend on the geometric 
image of the curve and are invariant to translations in the plane. In fact, the length measure 
of [c] ∈ C̃ can be also interpreted as the pushforward of the Hausdorff measure H1 on the 
plane by the mapping T ∶ c(�1) → �

1 such that for any x ∈ c(�1) , T(x) is the direction of 
the tangent vector of the curve at x. Note however that �c does depend on the orientation 
of c: more specifically, if the orientation is reversed, the associated length measure of the 
resulting č is the reflection of �c that is 𝜇č(B) = 𝜇(−B) for all Borel set B of �1 (or equiva-
lently if �1 is identified with [0, 2�) , 𝜇č(B) = 𝜇((B + 𝜋) mod 2𝜋) ). Thus �c is a geometric 
quantity associated to unparametrized oriented curves modulo translations of the plane. 
For simplicity, we will still write �c to denote the length measure associated to whole 
equivalence class [c] ∈ C̃.

Remark 2.2  The measure �c can be intuitively understood as the distribution of length 
along the different directions of tangents to the curve c, as we will further illustrate below. 
We point out that our definition of length measure departs slightly from the traditional con-
cept of length measure (or perimetric measure as it is sometimes called) introduced initially 
for convex objects by Alexandrov, Fenchel and Jessen [2, 23], in that we consider here the 
direction of unit tangent vectors rather than unit normal vectors to the planar curve. Note 
that these two definitions only differ by a simple global rotation of the measure by an angle 
of �∕2 and so have a straightforward relation to one another. The reason for choosing this 

(1)�c(B) = dsc(T
−1
c
(B)) = ∫T−1

c
(B)

|c�(�)|d�.
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alternative convention is that this work focuses on length measures of planar curves and 
not area measures for general hypersurfaces, and our presentation will become a little sim-
pler in this setting.

Lastly, thanks to the classical Riesz-Markov-Kakutani representation theorem, we also 
recall that signed measures on �1 can be alternatively interpreted as elements of the dual 
to the space of continuous functions on �1 . In the case of a length measure, the measure �c 
acts on any f ∈ C(�1) as follows:

By straightforward extension, we can also consider the action of �c on continuous com-
plex-valued functions given by the same expression as in (2). Before looking into the prop-
erties of length measures, we add a final remark on the definition itself.

Remark 2.3  Length measures can be also connected to some other concept of geometric 
measure theory, namely the 1-varifolds as introduced in [3] and more precisely the oriented 
varifold representation of curves which is discussed and analyzed for instance in [33]. 
Indeed, the oriented varifold Vc associated to a curve c ∈ C is by definition the positive 
Radon measure on the product space ℝ2 × 𝕊

1 given for all continuous compactly supported 
function � on ℝ2 × 𝕊

1 by:

and Vc is once again independent of the choice of c in the equivalence class [c] ∈ C̃ . By 
comparison to (2), the 1-varifold Vc can be thought as a spatially localized version of the 
length measure �c , that is a distribution of unit directions at different positions in the plane. 
Equivalently, the length measure is obtained by marginalizing Vc with respect to its spatial 
component. This loss in spatial localization explains the lack of injectivity of the length 
measure representation (even after quotienting out translations) that we shall discuss below.

2.2 � Basic geometric properties

Let us now examine more closely the most immediate properties of the length measure, 
in particular how it relates to various geometric quantities and transformations of the 
underlying curve. For a general smooth mapping � ∶ ℂ → ℂ , we will write � ⋅ c the curve 
� ∈ �

1 ↦ �(c(�)).

Proposition 2.4  Let c ∈ C and �c its length measure. Then 

1.	 For all �1, �2 ∈ �
1 = [0, 2�) : 

 In particular, the total length of  c is L(c) = �c(�
1).

(2)(�c|f ) = ∫
�1

f

(
c�(�)

|c�(�)|
)
|c�(�)|d�.

(Vc|�) ≐ �
�1

�

(
c(�),

c�(�)

|c�(�)|
)
|c�(�)|d�.

�c([�1, �2]) = Length
({

c(�) | �1 ≤ angle(c�(�)) ≤ �2
})

.
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2.	 For any rotation R� ∈ SO(2) of angle � ∈ �
1 , �R� ⋅c

= (R�)∗�c namely for all B ⊂ �
1 , 

�R� ⋅c
(B) = �c((B − �) mod 2�).

3.	 For any 𝜆 > 0 , ��c = ��c, where �c denotes the rescaling of c by a factor�.

Note that property (1) above implies in particular that the length measures of curves 
of length one are probability measures on �1 . Combined with property (3) on the action 
of scalings, one could further define a mapping from C̃∕Scal , the space of curves modulo 
translation and scaling, into the space of probability measures on �1 by essentially renor-
malizing curves to have length one. In all cases, by identifying �1 with [0, 2�) , a convenient 
way to represent and visualize �c is through its cumulative distribution function (cdf):

which is always a non-decreasing and right-continuous function.
There are some further constraints that length measures must satisfy. Most notably, 

since the curve c is closed, we obtain from (2) that:

In other words, all length measures are such that the expectation of ei� on �1 vanishes. 
Together with the above, this leads us to introduce the following subset of M+(�1):

Definition 2.5  We denote by M+
0
(�1) (resp. M0(�

1) ) the space of all positive (resp. 
signed) Radon measures � on �1 which are such that:

We then define the mapping M ∶ C̃ → M
+
0
 by M([c]) = �c which does not depend on the 

choice of c in the equivalence class [c].

Again, we will often replace an element of the quotient [c] ∈ C̃ by one of its representa-
tive c ∈ C and then write M(c) instead of M([c]).

Remark 2.6  Note that any positive measure � on �1 such that �(−B) = �(B) for all Borel 
subsets of �1 belongs to M+

0
 . Indeed the assumption implies that:

where the third equality follows from the change of variable � ← � + � and the fact that 
d�(� + �) = d�(�) by assumption. As a consequence, given any positive measure � on �1 , 
one can always symmetrize it by defining 𝜇̄(B) = 𝜇(B) + 𝜇(−B) and obtain a measure of 
M

+
0
 . As a side note, convex curves for which the length measure satisfy �c(−B) = �c(B) 

are called central-symmetric and are an important class of objects in convex geometry.

It is obvious that the mapping M in Definition 2.5 cannot be injective on C̃ . For instance, 
given a polygon as in Example 2.8 below, one can permute the ordering of its edges to 

F�c
∶ [0, 2�) ⟶ [0, Lc)

� ⟼ �c([0, �])

(
�c|ei�

)
= ∫

�1

ei�d�c(�) = ∫
�1

eiangle(c
�(�))|c�(�)|d� = ∫

�1

c�(�)d� = 0.

∫
�1

ei�d�(�) = 0 ⇔ ∫
�1

cos(�)d�(�) = ∫
�1

sin(�)d�(�) = 0.

∫
2�

0

ei�d�(�) = ∫
�

0

ei�d�(�) + ∫
�+�

0+�

ei�d�(�) = ∫
�

0

ei�d�(�) − ∫
�

0

ei�d�(�) = 0
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obtain a different polygon with the same length measure. In fact, given any c ∈ C̃ , there 
are infinitely many other curves that share the same length measure as c. In Fig.  1, we 
show several examples of curves having the same length measure which c.d.f is plotted 
underneath. On the other hand, M is surjective as we shall see in the next section. For now, 
we will just illustrate a few different possible types of length measures depending on the 
nature of the underlying curve through a few examples.

Example 2.7  Assume that c(�) = ei� for � ∈ [0, 2�) is the unit circle in ℂ . Then dsc(�) = d� 
and Tc(�) = � thus �c = d� is the uniform measure on �1.

Example 2.8  Consider a closed polygon with n vertices z1, z2,… , zn and the n faces 
[z1, z2], [z2, z3], … , [zn, z0] . For all j = 1,… , n , let �j = angle(zj+1 − zj) , lj = |zj+1 − zj| (by 
convention zn+1 = z0 ) and L =

∑n

j=1
lj . Then, one can construct a parametrization c ∈ C of 

the polygon as follows. We define �j = 2�(j − 1)∕n for j = 1,… , n + 1 . Then, on [�j, �j+1] , 
j = 1,… , n , take c(�) ≐ (� − �j)

n−1

2�
lje

i�j . It follows that c�(�) = n−1

2�
lje

i�j for � ∈ [�j, �j+1] 
and one can easily check that it leads to �c =

∑n

j=1
lj�ei�j . The length measure of a polygon 

is thus always a sum of Dirac masses, c.f Fig. 2 for an illustration.

Example 2.9  Lastly, we consider an example of a singular continuous length measure. To 
construct it, let’s introduce the standard Cantor distribution that we rescale to the interval 
[0, 2�] and denote it by � . Its support is the Cantor set and its cumulative distribution func-
tion F� is the well-known devil’s staircase function on [0, 2�] . The measure � is not in M+

0
 

but following Remark 2.6, we can consider instead its symmetrization 𝜎̄ ∈ M0 which c.d.f 
is given by F𝜎̄(𝜃) = F𝜎(𝜃) + 𝜎(([0, 𝜃] + 𝜋) mod 2𝜋) . Now, letting F(−1)

𝜎̄  being the pseudo-
inverse of F𝜎̄ , such that for all � ∈ [0, 2�] by F(−1)

𝜎̄ (𝜃) = inf{𝜃� | F𝜎̄(𝜃
�) ≥ 𝜃} , we define the 

curve c ∶ [0, 2�) → ℂ:

Fig. 1   Three planar curves with the same length measure �
c
 which c.d.f is plotted on the second row
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which is C1 and satisfies |c�(�)| = 1 and Tc(𝜃) = eiF
(−1)
𝜎̄ (𝜃) . As we will show more in details 

and in general in the proof of Theorem 3.2, it follows that we have F𝜇c
= F𝜎̄ and therefore 

𝜇c = 𝜎̄ is the above symmetrized Cantor distribution 𝜎̄ . We simulated such a curve using an 
approximation at level 12 of the Cantor measure, which is shown in Fig. 2.

Those examples show that length measures of curves in C may have density with respect 
to the Lebesgue measure on �1 , be singular discrete measures but also singular continu-
ous measures as the last example shows. Furthermore, we have the following connection 
between the length measure density of a sufficiently regular curve and its curvature:

Proposition 2.10  If c ∈ C is in addition twice differentiable with bounded and a.e non-
vanishing curvature then �c = �(�)d� where the density �(�) is given for a.e � ∈ �

1 by:

c(𝜃) = ∫
𝜃

0

eiF
(−1)

𝜎̄ (𝜃�)d𝜃�

(3)�(�) =
∑

u∈T−1
c
({�})

1

�c(u)

Fig. 2   Examples of closed curves (left) with their corresponding c.d.f (right)
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where �c is the curvature of c.

Proof  First, we notice that T �
c
(�) = |c�(�)| d

dsc
Tc(�) = |c�(�)|�(�) . Now, let f be a continuous 

test function 𝕊1 → ℝ . By definition, we have:

Since Tc is a Lipschitz function, by the coarea formula ([4] Theorem 2.93), the above inte-
gral can be rewritten as:

and furthermore for almost all � ∈ �
1 , T−1

c
({�}) is a finite set so we obtain:

	�  ◻

A consequence is that the c.d.f of the length measure of a curve satisfying the assump-
tions of Proposition 2.10 is given by F�c

(�) = ∫ �

0
�(��)d�� and thus does not have any 

jumps. Such jumps can only occur with the presence of flat faces in the curve, in particular 
for polygons as in Example 2.8. Note also that if the curve is smooth and strictly convex, 
the curvature is non-vanishing everywhere and the mapping Tc is a bijection which implies 
in this case that �(�) = 1

�c(T
−1
c
(�))

.

2.3 � Convergence of length measures

It will be useful for the rest of the paper to examine the topological properties of the map-
ping M ∶ c ↦ �c . Specifically, we want to determine under what notion of convergence in 
the space of curves, we can recover convergence of the corresponding length measures. We 
remind that a sequence of measures �n ∈ M(�1) is said to converge weakly to � ∈ M(�1) , 
which will be written �n ⇀ � , when for all f ∈ C(�1) , (�n|f ) → (�|f ) as n → +∞.

First, it is clear that uniform convergence cn → c in C (or equivalently convergence in 
Hausdorff distance of the unparametrized curves in C̃ ) does not imply that �cn

 converges to 
�c even weakly. Indeed it suffices to consider a sequence of staircase curves as the one dis-
played in Fig. 3 which converges in Hausdorff distance to the diamond curve in blue; how-
ever, for all n, the length measure is identical and equal to �cn

= 2(�0 + ��∕2 + �� + �3�∕2) , 
whereas �c =

√
2(��∕4 + �−�∕4 + �3�∕4 + �5�∕4).

However, assuming in addition some convergence of the derivatives, we have the 
following:

Proposition 2.11  Let (cn) be a sequence of C with uniformly bounded Lipschitz constant 
such that there exists c ∈ C for which c�

n
(�) → c�(�) for almost every � ∈ �

1. Then (�cn
) 

(�c|f ) = ∫
�1

f◦Tc(�)|c�(�)|d� = ∫
�1

f◦Tc(�)
1

�(�)
T �
c
(�)d�.

(�c|f ) = ∫
�1

(
∫u∈T−1

c
({�})

f (�)
1

�(u)
dH0(u)

)
d� = ∫

�1

(
∫u∈T−1

c
({�})

1

�(u)
dH0(u)

)
f (�)d�.

(�c�f ) = ∫
�1

⎛
⎜⎜⎝

�
u∈T−1

c
({�})

1

�c(u)

⎞
⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=�(�)

f (�)d�.
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converges weakly to �c and for all Borel set B ⊂ �
1 with �c(�B) = 0 one has �cn

(B) → �c(B)

.

Proof  Let f be a continuous real-valued function on �1.

By the assumptions above, outside a set of measure 0 in �1 , we have c�
n
(�) → c�(�) with 

c�(�) ≠ 0 and c�
n
(�) ≠ 0 for all n. Thus for almost all � in �1 , c�

n
(�)∕|c�

n
(�)| → c�(�)∕|c�(�)| 

and thus

since f is continuous. Furthermore, as f is bounded, there exists 𝛼 > 0 , such that 
f (c�

n
(�)∕|c�

n
(�)|) ≤ � for all n and by assumption, there also exists 𝛽 > 0 such that 

|c�
n
(�)| ≤ � . It results from Lebesgue dominated convergence theorem that:

and so �cn
⇀ �c . The second statement is a classical consequence of weak convergence of 

Radon measures (see [20] Theorem 1.40). 	�  ◻

Another important question is whether polygonal approximation of a curve leads to con-
sistent length measures which we answer in the particular case of piecewise smooth curves:

Proposition 2.12  Let c be a curve of C which is assumed in addition to be piecewise twice 
differentiable with bounded second derivative. If (cn) is a sequence of polygonal curves 
with kn vertices given by c(�n,0), c(�n,1),… , c(�n,kn ) with 0 = 𝜃n,0 < 𝜃n,1 < … < 𝜃n,kn = 2𝜋 
and maxi{�i+1,n − �i,n} → 0 as n → +∞, then (�cn

) converges weakly to �c.

Proof  Using Proposition 2.11, we simply need to show that c′
n
 converges pointwise to c′ a.e 

and bound the Lipschitz constant of cn uniformly. As c is piecewise smooth, we can treat 
each of the intervals separately and fix � ∈ �

1 with c being twice differentiable at � . For 

(�cn
|f ) = ∫

�1

f◦Tcn (�)|c�n(�)|d� = ∫
�1

f

(
c�
n
(�)

|c�
n
(�)|

)
|c�

n
(�)|d�.

f

(
c�
n
(�)

|c�
n
(�)|

)
|c�

n
(�)| ������������������������→

n→+∞
f

(
c�(�)

|c�(�)|
)
|c�(�)|

(�cn
|f ) ������������������������→

n→+∞ ∫
�1

f

(
c�(�)

|c�(�)|
)
|c�(�)|d� = (�c|f ).

Fig. 3   Two curves close in Haus-
dorff distance but for which the 
length measures are, respectively √
2(��∕4 + �−�∕4 + �

3�∕4 + �
5�∕4) 

(blue curve) and 
2(�

0
+ ��∕2 + �� + �

3�∕2) (red 
curve)
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n ≥ 1 , let us denote hn = maxi{�i+1,n − �i,n} . For n large enough, let 𝜃j,n ≤ 𝜃 < 𝜃j+1,n with c 
twice differentiable on [�j,n, �j+1,n) . Then we have by definition c�

n
(�) =

c(�j+1,n)−c(�j,n)

�j+1,n−�j,n
= c�(�) 

for a certain � ∈ (�j,n, �j+1,n) by Taylor’s theorem which, using the boundedness of the sec-
ond derivative of c, gives

Thus c′
n
 converges to c′ pointwise except maybe on the finite set of points where 

c is not twice differentiable. Furthermore, the above equation also implies that 
Lip(cn) ≤ ‖c��‖L∞hn + Lip(c) which is uniformly bounded in n and therefore Proposition 
2.11 leads to the conclusion. 	�  ◻

Note that the above approximation property requires more regularity on c. We will see 
in the next section that the result holds for all convex curves as well.

3 � Convex curves and length measures

As already pointed out, the length measure �c does not characterize the curve itself since 
there are in fact infinitely many curves of C̃ in the fiber M−1({�c}) for any given c. Yet, 
remarkably, it is the case if one restricts to convex curves in C̃ . This follows from the fun-
damental Minkowski–Fenchel–Jessen theorem (also in part due to Alexandrov) established 
in [2, 23] that shows in general dimension the uniqueness of a convex domain associated 
to any given area measure. For the specific case of planar curves which is the focus of this 
paper, we provide a more direct and constructive proof of this result before highlighting a 
few other well-known connections with convex geometry.

3.1 � Characterization of convex curves by their length measure

In all the following, we will denote by C̃conv the set of curves in C̃ which are simple, con-
vex and positively oriented. For technical reasons that will appear later, we will adopt the 
convention that degenerate convex curves made of two opposite segments (which length 
measures are of the form r(��0 + ��0+�) ) belong to C̃conv . For simplicity, we shall still write 
M ∶ C̃conv → M0 for the restriction of the previous length measure mapping to C̃conv . 
Before stating the main connection between curves in C̃conv and length measures, let us start 
with the following lemma.

Lemma 3.1  Let c ∈ C such that there exists 0 ≤ 𝜃1 < 𝜃2 < 2𝜋 with c(�1) = c(�2). Then 
there exist 𝜃, 𝜃 ∈ [𝜃1, 𝜃2] such that |angle(c�(𝜃)) − angle(c�(𝜃))| ≥ 𝜋 with strict equality 
unless c([�1, �2]) is a segment.

Proof  By contradiction, let’s assume that given �1, �2 as above, we have 
|angle(c�(𝜃)) − angle(c�(𝜃))| < 𝜋 for all 𝜃, 𝜃 ∈ [𝜃1, 𝜃2] where c�(�) is defined. Up to a rota-
tion and translation of the curve, we may assume that c(�1) = c(�2) = 0 and that 
angle(c�(�)) ∈ [0,�) for � ∈ [�1, �2] . Assuming that angle(c�(�)) = 0 a.e on [�1, �2] would 
lead to c(𝜃2) = ∫ 𝜃2

𝜃1
|c�(𝜃)|d𝜃 > 0 which is impossible. On the other hand, if angle(c�(�)) ≠ 0 

on a subset of [�1, �2] of nonzero measure, then we would have:

�c�
n
(�) − c�(�)� ≤ ‖c��‖L∞ �� − �� ≤ ‖c��‖L∞hn ������������������������→

n→+∞
0
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strictly positive which is again a contradiction. It results that we can find 
𝜃, 𝜃 ∈ [𝜃1, 𝜃2] such that |angle(c�(𝜃)) − angle(c�(𝜃))| ≥ 𝜋 . Furthermore, if 
max𝜃∈[𝜃1,𝜃2] |angle(c�(𝜃)) − angle(c�(𝜃))| = 𝜋 , it can be easily seen from a similar reasoning 
as above and (4) that in this case, one must have angle(c�(�)) = 0 or � a.e on [�1, �2] and 
therefore the curve is a subset of the horizontal line. 	�  ◻

The following result is a reformulation of the Minkowski–Fenchel–Jessen theorem in 
the special setting of this paper. The usual proof of this theorem in general dimensions is 
quite involved and requires many preliminary results and notions from convex geometry. 
We propose here an alternative proof specific to the case of curves which is more elemen-
tary and constructive.

Theorem 3.2  The length measure mapping M is a bijection from C̃conv to M+
0
.

Proof  1. We first show the surjectivity of M. Thus, taking � ∈ M
+
0
 , we want to construct 

c ∈ C , a parametrization of a curve in C̃conv such that M(c) = �c = � . To do so, let us first 
assume, without loss of generality thanks to Proposition 2.4 on the action of rescaling on 
length measures, that �(�1) = 2� . Then let F� ∶ [0, 2�] → [0, 2�] be the c.d.f of � as we 
defined previously and let’s introduce its pseudo-inverse F(−1)

� ∶ [0, 2�] → [0, 2�]:

Note that, as F� , the pseudo-inverse F(−1)
�  is a non-decreasing function with F(−1)

� (0) = 0 . 
We now define c ∶ [0, 2�] → ℂ as follows:

We first see that c ∈ C . Indeed, by construction, c is differentiable almost everywhere 
with c�(�) = eiF

(−1)
� (�) giving |c�(�)| = 1 thus c ∈ Lip(𝕊1,ℂ) and c is a Lipschitz immersion. 

Next, we obtain that �c = � by checking the equality F�c
= F� . This is simply a conse-

quence of the fact that F�c
(�) = �1({� | 0 ≤ F(−1)

� (�) ≤ �}) and the easy verification that 
F(−1)
� (�) ≤ � ⇔ � ≤ F�(�) so that

Incidentally, this also shows that the curve is indeed closed as:

One still needs to verify that the image of c belongs to C̃conv . As c�(�) = eiF
(−1)
� (�) and 

F(−1)
�  is non-decreasing, c is locally convex and we only need to show that c is simple 

or is supported by a straight segment. By contradiction, let us assume that there exists 
0 ≤ 𝜃1 < 𝜃2 < 2𝜋 such that c(�1) = c(�2) . As � ↦ angle(c�(�)) ∈ [0, 2�) is non-decreasing, 
the limit � = lim�↑�1

angle(c�(�)) ∈ [0, 2�) exists. Furthermore, by Lemma 3.1, we deduce 
that for all � ≥ �2 , angle(c�(𝜃2)) ≥ 𝛼 + 𝜋 < 2𝜋 . As a consequence, it also holds that for 

(4)Imag(c(�2)) = ∫
�2

�1

|c�(�)| sin(angle(c�(�)))d�

F(−1)
� (s) = inf{� ∈ [0, 2�] | F�(�) ≥ s}.

(5)c(�) = ∫
�

0

eiF
(−1)
� (s)ds.

F�c
(�) = �1({� | 0 ≤ � ≤ F�(�)}) = F�(�).

c(2�) − c(0) = ∫
2�

0

c�(�)d� = ∫
2�

0

ei�d�c(�) = ∫
2�

0

ei�d�(�) = 0.
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almost all � ∈ [0, �1] , angle(c�(𝜃)) ≤ 𝛼 < 𝜋 . We need to then consider the following two 
cases:

Case 1: If c([0, �1]) is not a segment, we have angle(c�(𝜃)) ≤ 𝛼 < 𝜋 for almost all 
� ∈ [0, �1] and angle(c�(𝜃)) < 𝛼 on a subset of nonzero measure of [0, �1] . From this we can 
deduce that c(0) is strictly “above” the line passing by c(�1) and directed by ei� . By “above” 
we mean here specifically that it belongs to the positive side of the half plane delimited by 
the line, i.e., on the side which projection along the oriented normal is positive. Indeed,

and therefore:

and given the above we know that −𝜋∕2 < 𝜋∕2 + angle(c�(𝜃)) − 𝛼 ≤ 𝜋∕2 and fur-
thermore |𝜋∕2 + angle(c�(𝜃)) − 𝛼| < 𝜋∕2 on a subset of nonzero measure of 
[0, �1] . Thus Re(e−i(𝛼+𝜋∕2)(c(0) − c(𝜃1))) > 0 . However, for all � ≥ �2 , we have 
𝛼 + 𝜋 ≤ angle(c�(𝜃)) < 2𝜋 which implies, using a similar argument as above, that for all 
� ≥ �2 , c(�) is below the line passing by c(�2) = c(�1) directed by ei� contradicting the fact 
that lim�→2�− c(�) = c(0).

Case 2: If c([0, �1]) is a segment, then we have that angle(c�(�)) ≥ angle(c�(0)) + � for all 
𝜃2 ≤ 𝜃 < 2𝜋 with even strict inequality if c([�1, �2]) is not a segment of the same direction 
as c([0, �1]) . The latter case is not possible since we would then find that for 𝜃 > 𝜃2 , c(�) 
is strictly below the line containing the segment c([0, �1]) and thus lim�→2�− c(�) ≠ c(0) . 
Finally, by a similar argument, we find that the image of c on [�2, 2�) is again a segment of 
the same direction, which shows that c(�1) is eventually a segment. Thus the curve is either 
simple, convex and positively oriented or is a segment, and in all cases belong to C̃conv.

2. Let us now prove the injectivity of M. Specifically, we show that if c is the arclength 
parametrization of a curve in C̃conv , which we assume once again to have length 2� , 
and �c = � ∈ M

+
0
 then for almost all s ∈ [0, 2�) , c�(s) = eiF

(−1)
� (s) . By assumption, 

we have |c�(s)| = 1 and since the curve is convex and positively oriented, up to a shift-
ing of the parameter, we may assume that s ↦ angle(c�(s)) is non-decreasing from 
[0, 2�) to [0, 2�) . Let us denote �(s) ≐ angle(c�(s)) ∈ [0, 2�) . From F�c

= F� we get that 
F�(�) = �1({s | 0 ≤ �(s) ≤ �}) . We need to show that �(s) = F(−1)

� (s) = inf{� | F�(�) ≥ s} . 
On the one hand, we have F𝜇(𝜈(s)) = 𝜆1({s̃ | 0 ≤ 𝜈(s̃) ≤ 𝜈(s)}) ≥ s since for any s̃ ∈ [0, s] 
we have 0 ≤ 𝜈(s̃) ≤ 𝜈(s) . This leads to F(−1)

� (s) ≤ �(s) . On the other hand, for any 𝜃 < 𝜈(s) 
we have that F𝜇(𝜃) < s by definition of �(s) and consequently F(−1)

� (s) ≥ � for all 𝜃 < 𝜈(s) 
leading to F(−1)

� (s) ≥ �(s) . 	�  ◻

Remark 3.3  Note that from the above proof, one can technically reconstruct a convex curve 
up to translation from its length measure directly based on (5). When the measure is dis-
crete i.e., � =

∑N

i=1
lj��j where lj > 0 and �j ∈ [0, 2�) for all j = 1,… ,N , the reconstruc-

tion becomes particularly simple. In this case, one can see that the corresponding convex 
polygon is obtained by selecting an initial vertex (e.g., at the origin) and ordering the edges 
lj1e

i�j1 ,… , ljN e
i�jN such that the angles 0 ≤ 𝛼j1 ≤ … ≤ 𝛼jN < 2𝜋 are in ascending order, 

which is a well-known algorithm for convex planar objects. However, this reconstruction is 

c(0) − c(�1) = −∫
�1

0

c�(�)d� = ∫
�1

0

|c�(�)|ei(angle(c�(�))+�)

Re
(
e
−i(�+ �

2
)(c(0) − c(�1))

)
= ∫

�1

0

|c�(�)| cos
(
�
2
+ angle(c�(�)) − �

)
d�
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a significantly more difficult problem for area measures in higher dimensions, c.f. the dis-
cussion in Sect. 6.

3.2 � Length measures and Minkowski sum of convex sets

The above correspondence between convex shapes and length measures has many inter-
esting consequences and applications, in particular for the study of mixed areas and 
Brunn–Minkowski theory, as developed for example in [31, 35, 44]. We will not go over all 
of these in detail but only recap in this section a few results which shall be relevant for the 
rest of the paper.

First, in the category of planar convex curves, one has the following stronger version of 
the approximation result of Proposition 2.12:

Proposition 3.4  Let C be a planar convex domain with boundary c = 𝜕C ∈ C̃conv and 
(Pn) a sequence of convex polygons of boundary pn = �Pn that converges in Hausdorff dis-
tance to C. Then �pn

⇀ �c as n → +∞. Furthermore, the area of Pn converges to the area 
of C i.e., �2(Pn) → �2(C).

This is classical property of convex sets and length measures which proof can be found 
in [44] (Theorem 1.8.16 and Theorem 4.1.1).

We now recall the definition of the Minkowski sum. If C1 and C2 are two convex planar 
domains, their Minkowski sum (also known as dilation in mathematical morphology) is 
defined by C1 + C2 = {x1 + x2 | x1 ∈ C1, x2 ∈ C2} which is also a convex planar domain. 
More generally, one can define the Minkowski combination a1C1 + a2C2 for a1, a2 ≥ 0 as 
a1C1 + a2C2 = {a1x1 + a2x2 | x1 ∈ C1, x2 ∈ C2} . This allows to view the set of all convex 
domains as a convex cone for this Minkowski addition. The length measure mapping M has 
the following interesting property ([35] Theorem 3.2):

Proposition 3.5  Let C1 and C2 be two convex domains and c1, c2 their boundary curves. 
Then, denoting c ∈ C a parametrization of the boundary of C1 + C2, it holds that 
�c = �c1

+ �c2
.

Proof  This is easily shown by approximating the convex domains C1 and C2 by sequences 
of convex polygons and using Proposition 3.4. The fact that the result holds for two convex 
polygons is well known and is actually used algorithmically for the computation of the 
Minkowski sum of polygons in the plane in linear time, c.f. for example [46] (Chap. 13). 	
� ◻

By combining the above with Theorem 3.2 and Proposition 2.4 (3), we can summarize 
the properties of the length measure mapping M as follows:

Corollary 3.6  The map M ∶ C ↦ ��C is an isomorphism of convex cones between C̃conv 
and M0.

This implies that if C1 and C2 are two convex domains with length measures ��C1
 and 

��C2
 , their Minkowski sum C = C1 + C2 is such that �C = M−1(��C1

+ ��C2
) which could 

be directly computed using the inversion formula (5) or, in the case of discrete measures 
and polygons, by adequately sorting the Diracs appearing in ��C1

+ ��C2
 with angles in 
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ascending order as explained earlier in Remark 3.3. We show an example of Minkowski 
sum computed with this approach in Fig. 4.

4 � An isoperimetric characterization

The previous section showed that there is a unique convex curve of positive orientation in 
the preimage M−1({𝜇}) ⊂ C̃ for any measure � ∈ M

+
0
 . Several previous works on length 

and area measures have investigated variational characterizations of these convex objects 
in the context of shape optimization, optimal transport and geometric inequalities, see for 
instance the survey of [12, 24, 29]. These are typically expressing some variational prop-
erty within the set of convex shapes only. We prove here a distinct characterization which 
can be rather interpreted as an isoperimetric inequality in each of the fiber M−1({�}) , 
namely the convex curve of M−1({�}) is also the one of maximal signed area among all the 
curves in C̃ of length measure � . Our result extends to the whole class of Lipschitz regular 
curves some related results on polytopes in discrete geometry that were stated in [8]. We 
will also see how the classical isoperimetric inequality on curves can be recovered as a 
consequence.

Let us first recall that the signed area of a curve in C̃ with Lipschitz parametrization 
c ∈ C is given by (cf [48] Chap 1.10):

where Nc denotes the unit normal vector to the curve. Note that for a simple and positively 
oriented curve, (6) is the usual area enclosed by this curve. We begin by reminding a few 
preliminary properties of the signed area. The first one is that the signed area is additive 
with respect to the “gluing” of two cycles, namely:

Lemma 4.1  Let c ∈ C and 0 ≤ 𝜃1 < 𝜃2 < 2𝜋. Consider any given Lipschitz open curve 
� ∶ [�1, �2] → ℂ with �(�1) = c(�1) and �(�2) = c(�2) and denote 𝛾̌ the same curve but with 
opposite orientation. Define c1 , c2 the two closed curves in C obtained by, respectively, con-
catenating c(�1�[�1, �2]) with � and c([�1, �2]) with 𝛾̌. Then:

Proof  This is just a direct verification from the definition (6). Indeed, we have 
𝛾̌(𝜃) = 𝛾(𝜃1 + 𝜃2 − 𝜃) for � ∈ [�1, �2] and:

(6)Area(c) = −
1

2 ∫
�1

⟨c(�),Nc(�)⟩�c�(�)�d� =
1

2 ∫
�1

det(c(�), c�(�))d�

Area(c) = Area(c1) + Area(c2)

Fig. 4   Minkowski sum (1 − �)C
1
+ �C

2
 for different values of � of a triangle and a disk computed based on 

the addition of their length measures
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which leads to the result. 	�  ◻

We also have the following well-known approximation property of the signed area:

Lemma 4.2  Let c ∈ C. There exists a sequence (pn) of polytopes (i.e., piecewise linear 
curves) in C such that Area(pn) → Area(c) and �pn

 converges weakly to �c.

Proof  Let c ∈ C and by invariance to translation, let’s also assume that c(0) = 0 . Then since 
c is Lipschitz regular, we have c� ∈ L∞(𝕊1,ℂ) ⊂ L1(𝕊1,ℂ) . Using the density of step func-
tions in L1 , we can construct a sequence (�n)n∈ℕ of step functions such that ‖�n − c�‖L1 → 0 
as n → +∞ . By the converse of Lebesgue’s dominated convergence theorem ([9] Theo-
rem 4.9), up to extraction of a subsequence, we can assume that �n(�) converges to c�(�) 
almost everywhere in �1 and that there exists h ∈ L1(�1) such that �n(�) ≤ h(�) for almost 
all � ∈ �

1 . Let us then define pn = ∫ �

0
�n(�)d� which is a piecewise linear curve in C such 

that:

showing that ‖pn − c‖L∞ → 0 as n → +∞ and as a consequence there exists M > 0 such 
that ‖pn‖L∞ ≤ M for all n. Now, by Proposition 2.11, we deduce that �pn

 weakly converges 
to �c . Furthermore, for any n ∈ ℕ , we have:

and for almost all � ∈ �
1 , pn(�) → c(�) , �n(�) → c�(�) , 

Npn
(�) = R�∕2(�n(�)∕|�n(�)|) → Nc(�) as n → +∞ . In addition,

As h ∈ L1(�1) , Lebesgue dominated convergence theorem leads to:

2Area(c) = ∫
�1�[𝜃1,𝜃2]

det(c(𝜃), c�(𝜃))d𝜃 + ∫
𝜃2

𝜃1

det(c(𝜃), c�(𝜃))d𝜃

= ∫
�1�[𝜃1,𝜃2]

det(c(𝜃), c�(𝜃))d𝜃 + ∫
𝜃2

𝜃1

det(𝛾(𝜃), 𝛾 �(𝜃))d𝜃 + ∫
𝜃2

𝜃1

det(c(𝜃), c�(𝜃))d𝜃

− ∫
𝜃2

𝜃1

det(𝛾(𝜃), 𝛾 �(𝜃))d𝜃

= ∫
�1�[𝜃1,𝜃2]

det(c(𝜃), c�(𝜃))d𝜃 + ∫
𝜃2

𝜃1

det(𝛾(𝜃), 𝛾 �(𝜃))d𝜃

���������������������������������������������������������������������������������
=2Area(c1)

+ ∫
𝜃2

𝜃1

det(c(𝜃), c�(𝜃))d𝜃 + ∫
𝜃2

𝜃1

det(𝛾̌(𝜃), 𝛾̌ �(𝜃))d𝜃

�������������������������������������������������������������������������
=2Area(c2)

�pn(�) − c(�)� ≤ �
�

0

��n(�) − c�(�)�d� ≤ �
�1

��n(�) − c�(�)�d� = ‖�n − c�‖L1

Area(pn) = −
1

2 ∫
�1

⟨pn(�),Npn
(�)⟩�p�

n
(�)�d� = −

1

2 ∫
�1

⟨pn(�),Npn
(�)⟩��n(�)�d�

�⟨pn(�),Npn
(�)⟩���n(�)� ≤ �pn(�)���n(�)� ≤ Mh(�).
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	�  ◻

We will also need the following which is a particular case of our main result for poly-
topes with fixed number of edges, which proof is adapted from the one outlined in [8, 
21]. We call a polytope non-degenerate if it does not lie entirely along a single line (in 
other words if its length measure is not a sum of two oppositely oriented Diracs).

Lemma 4.3  Let p be a non-degenerate polytope. Then the convex polygon p̄ such that 
𝜇p̄ = 𝜇p satisfies Area(p) ≤ Area(p̄).

Proof  Let p be a polytope that we represent by its ordered list of vertices v1, v2,… , vN and 
by convention vN+1 = v1 . Its corresponding list of edges are denoted by E = (e1, e2,… , eN) 
with ei = ��������⃗vivi+1 , where we assume the directions of the ei to be consecutively distinct. 
Recall that, from Theorem 3.2, there is a unique convex and positively oriented polygon 
p̄ such that 𝜇p̄ = 𝜇p . Let us define SE as the set of polygonal curves obtained by all the dif-
ferent permutations of the edges in E . Note that for any polygonal curve p̃ ∈ SE , we have 
𝜇p̃ = 𝜇p . Let us show that:

which will imply in particular that Area(p) ≤ Area(p̄) . Since SE is finite, the maximum is 
attained: let p̂ be a curve in SE of maximal signed area. By contradiction, assume that p̂ is 
not the convex positively oriented polygon p̄ (modulo translations).

Let us first consider the trivial cases. When N = 3 , there are only two triangles up 
to translation in SE and thus p̂ is the negatively oriented one whose signed are is clearly 
strictly smaller than the one of p̄ . For N = 4 , the polytope p̂ being distinct from p̄ , one can 
see that, up to a cyclic permutation of its edges, we can assume without loss of generality 
that det(e1, e2) < 0 , i.e., the angle is decreasing between the first and second edge. Now the 
signed area (6) of the piecewise linear curve p̂ can be written more simply as (cf [48] Chap 
1.10):

where v1 = O, v2 = e1, v3 = e1 + e2, v4 = e1 + e2 + e3 are the consecutive vertices of p̂ and 
v is any reference point in the plane. The above expression is independent of the choice of 
this reference point, thus choosing v = v1 , we obtain after simplifications:

Then we can define the quadrilateral p̃ in which the ordering of the edges e1 and e2 is 
switched. This is still a polytope of SE and we have:

Area(pn) ������������������������→
n→+∞

−
1

2 ∫
�1

⟨c(�),Nc(�)⟩�c�(�)�d� = Area(c).

(7)Area(p̄) = max
p̃∈SE

Area(p̃)

Area(p̂) =
1

2

N∑
k=1

det( ����⃗vvk, ek)

Area(p̂) =
1

2
[det(e1, e2) + det(e1, e3) + det(e2, e3)].
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which contradicts the fact that Area(p̂) is maximal.
Now, let N ≥ 5 . We first show that we can find four vertices vi, vi+1, vj, vj+1 ( i < j − 1 ) 

such that the corresponding quadrilateral with edges ��������⃗vivi+1, ��������⃗vi+1vj, ��������⃗vjvj+1, ��������⃗vj+1vi is not 
both convex and positively oriented. Let us assume the contrary and obtain a contradic-
tion with the polygon p̂ not being convex and positively oriented. In particular for any 
i = 1,… ,N − 2 , the quadrilateral vi, vi+1, vi+2, vi+3 is convex positively oriented which 
implies that the directions of the edges ei, ei+1, ei+2 are turning positively and by a direct 
recursive argument so are the directions of the entire edge sequence e1,… , eN . Thus we 
have that p̂ is non convex and, since it is locally convex from the fact that the tangents are 
turning positively, it must be self-intersecting. In other words, we can find two edges ��������⃗vivi+1 
and ��������⃗vjvj+1 ( i < j − 1 ) that are intersecting and the quadrilateral vi, vi+1, vj, vj+1 is a fortiori 
not convex which leads to the claimed contradiction.

Let us now write p1 this quadrilateral and introduce in addition the polytope p2 with suc-
cessive vertices v1,… , vi, vj+1, vj+2,… , vN and p3 the polytope with vertices vi+1, vi+2,… vj . 
This amounts in decomposing the original polygon into three distinct cycles as depicted 
in Fig. 5 (left). By the additivity property of the signed area from Lemma 4.1, this implies 
that Area(p̂) = Area(p1) + Area(p2) + Area(p3) . Now, from the case N = 4 treated above, 
we can find a permutation of the edges of p1 giving the convex positively oriented quad-
rilateral p̄1 which satisfies Area(p̄1) > Area(p1) . We then obtain the three polytopes p̄1 , p2 
and p3 shown, respectively, in green, blue and red in the example of Fig. 5. By translation 
of p3 , we can superpose the edge ��������⃗vi+1vj in p̄1 with the edge ��������⃗vjvi+1 in p3 . Similarly, by trans-
lation of p1 , we match the edge ��������⃗vj+1vi of p1 on the edge ��������⃗vivj+1 of p2 . Then, removing the 
trivial back and forth edges resulting from this superposition, one obtains a new polytope 
p̃ as shown in the right image in Fig. 5. By construction, this polytope has the same list of 
edge vectors as p̂ and thus belongs to SE . Moreover, its signed area is:

which contradicts the maximality of Area(p̂) among polytopes of SE . 	�  ◻

The convex polygon p̄ is sometimes referred to as the convexification of p (which is 
distinct from the convex hull of p). We now state and prove the main result of this section.

Area(p̃) =
1

2
[det(e2, e1) + det(e2, e3) + det(e1, e3)]

=
1

2
[− det(e1, e2) + det(e1, e3) + det(e2, e3)]

>
1

2
[det(e1, e2) + det(e1, e3) + det(e2, e3)] = Area(p̂).

Area(p̃) = Area(p̄1) + Area(p2) + Area(p3) > Area(p1) + Area(p2) + Area(p3) = Area(p̂)

Fig. 5   Illustration of the proof of Lemma 4.3: the edges of a non-convex polytope can be rearranged to 
obtain a polytope of larger signed area
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Theorem  4.4  Let � ∈ M
+
0
 such that the support of � is not of the form {�, � + �} for 

some � ∈ �
1. Among all curves in M−1({�}), the convex positively oriented curve is the 

unique maximum of the signed area and this maximum is given by:

Proof  Let � be a measure in M+
0
 satisfying the above assumption on its support. This 

means that for any curve c in M−1({�}) , the image of c does not lie within a single straight 
line. Furthermore, we have Length(c) = �(�1) ≐ L . By the standard isoperimetric inequal-
ity, this implies that the area of any simple closed curve in M−1({�}) is bounded by L

2

4�
 and 

thus the supremum of these areas Amax is indeed finite. Let us first show that this maximal 
area is achieved and by the convex positively oriented curve of M−1({�}) . We let (cn)n∈ℕ be 
a maximizing sequence i.e cn ∈ M−1({�}) and Area(cn) → Amax as n → +∞.

1. As a first step, we want to replace this maximizing sequence by a sequence of 
piecewise linear curves. For a fixed n ∈ ℕ , by Lemma 4.2, we can construct a sequence 
of polytopes (p̃n,m)m∈ℕ such that Area(p̃n,m) → Area(cn) and 𝜇p̃n,m

 weakly converges 
to �cn

= � as m → +∞ . From this, let us construct a sequence of polytopes pn such 
that �pn

⇀ �c and Area(pn) → Amax as n → +∞ . Indeed, recall that the weak conver-
gence of finite measures of �1 is metrizable, for instance by the bounded Lipschitz dis-
tance dBL(�, �) ≐ supf∈Lip1(�1) |(�|f ) − (�|f )| ([47] Chap. 6). Thus, we have for all 
n ∈ ℕ , dBL(𝜇p̃n,m

,𝜇) → 0 as m → +∞ . Since Area(cn) → Amax , for any n ∈ ℕ , we can 
find an increasing function � ∶ ℕ → ℕ such that |Area(c�(n)) − Amax| ≤ 1

n
 . In addi-

tion, we also obtain an increasing function � ∶ ℕ → ℕ such that for any n ∈ ℕ , we have 
dBL(𝜇p̃n,𝜓(n)

,𝜇) ≤ 1∕n and |Area(p̃n,𝜓(n)) − Area(cn)| ≤ 1∕n . We then set pn ≐ p̃𝜙(n),𝜓(𝜙(n)) 
which gives on the one hand:

and thus �pn
⇀ � . And on the other hand:

and therefore Area(pn) → Amax.
2. Now, using Lemma 4.3, we obtain a sequence of convex, positively oriented poly-

gons (p̄n) such that 𝜇p̄n
= 𝜇pn

⇀ 𝜇 and for all n, Area(p̄n) ≥ Area(pn) . Using once again 
the invariance to translation, we can further assume that each p̄n passes through the origin. 
We then point out that the length L(p̄n) = 𝜇p̄n

(�1) = 𝜇pn
(�1) converges to 𝜇(�1) < +∞ as 

n → +∞ since �pn
⇀ � . This implies that L(p̄n) is bounded uniformly in n by some con-

stant M > 0 . If we denote by P̄n the polygonal domain delimited by p̄n i.e., 𝜕P̄n = p̄n , it is 
then easy to see that for all n ∈ ℕ , P̄n is included in the fixed ball B(0, M). In other words, 
the sequence (P̄n) is bounded in the space of compact subsets of the plane equipped with 
the Hausdorff metric.

3. We can therefore apply Blaschke selection theorem [7] which allows to assume, up to 
extraction of a subsequence, that the sequence of convex polygonal domains P̄n converges 
in Hausdorff distance to a convex domain C which oriented boundary curve we write 
𝜕C = c ∈ C̃conv . Then by Proposition 3.4, we deduce that 𝜇p̄n

 weakly converges to �c . As a 

(8)Amax(�) =
1

4 ∫
2�

0 ∫
2�

0

sin |� − �|d�(�)d�(�).

dBL(𝜇p̃n
,𝜇) = dBL(𝜇p̃𝜙(n),𝜓(𝜙(n))

,𝜇) ≤ 1

𝜙(n)
≤ 1

n

|Area(pn) − Amax| ≤ +|Area(p̃𝜙(n),𝜓(𝜙(n))) − Area(c𝜙(n))| + |Area(c𝜙(n)) − Amax|
≤ 1

𝜙(n)
+

1

n
≤ 2

n
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consequence, �c = � and c is thus the (unique) convex curve associated to � given by The-
orem 3.2. In addition, still from Proposition 3.4, we get that 𝜆2(P̄n) → 𝜆2(C) as n → +∞ 
and since the boundary curves p̄n and c are simple and positively oriented it follows that 
Area(p̄n) → Area(c) as n → +∞ . Now, since for all n ∈ ℕ , Area(p̄n) ≥ Area(pn) → Amax , 
we conclude that Area(c) ≥ Amax and therefore c achieves the maximal area among all 
curves in M−1({�}).

4. The uniqueness of the maximum can be now showed by essentially adapt-
ing the argument used in the proof of Lemma 4.3 for polytopes. Assume by contradic-
tion that c̃ ∈ M−1(𝜇) is non-convex and that Area(c̃) = Amax(𝜇) . Then we can find 
0 ≤ 𝜃1 < 𝜃2 < 𝜃3 < 𝜃4 < 2𝜋 such that the quadrilateral Q with successive vertices 
c̃(𝜃1), c̃(𝜃2), c̃(𝜃3), c̃(𝜃4) is not convex positively oriented and is not degenerate. Let us fur-
ther introduce c1 defined as the concatenation of the portion of curve c̃([0, 𝜃1]) , the oriented 
segment [c(�1), c(�4)] and c̃([𝜃4, 2𝜋]) . In addition, let c2 be the concatenation of c̃([𝜃1, 𝜃2]) 
and the segment [c(�2), c(�1)] , c3 the curve obtained by concatenating c̃([𝜃2, 𝜃3]) and the 
segment [c̃(𝜃3), c̃(𝜃2)] and c4 the concatenation of c̃([𝜃3, 𝜃4]) and [c̃(𝜃4), c̃(𝜃3)] . See Fig. 6 for 
an illustration. Now from Lemma 4.1, we deduce that:

By reordering of the edges in Q, we obtain the convexified quadrilateral Q̄ which, with the 
same argument used in the proof of Lemma 4.3, is such that Area(Q) < Area(Q̄) . We can 
then rearrange the different cycles introduced above accordingly, as shown in Fig. 6 (right). 
This is done by translating c1, c2, c3, c4 to match the corresponding edges in Q̄ . As a result, 
we obtain a new closed curve c̄ which by construction still belongs to M−1({�}) since it is 
just obtained by interchanging sections of c̃ . Then applying again Lemma 4.1:

This contradicts the fact that Area(c̃) = Amax(𝜇).
5. Finally, the expression of the area Amax = Area(c) of the convex curve c with respect 

to its length measure is well known and can be recovered for example from [35], although 
the definition and presentation of length measures is slightly different than in the present 
paper. For completeness, we provide a direct proof. It suffices to show (8) for a convex pol-
ygon and the general case will directly follow from the above approximation argument. Let 
p̄ be a convex polygon with ordered list of edges E = (e1, e2,… , eN) and vertices 
v1 = O, v2 = e1,… , vN = e1 + e2 +…+ eN−1 . Its length measure is then � =

∑N

i=1
li��i 

where li = ‖ei‖ and �i =
ei

‖ei‖ ∈ �
1 . Since the polygon is convex and positively oriented, the 

Area(c̃) = Area(Q) + Area(c1) + Area(c2) + Area(c3) + Area(c4).

Area(c̄) = Area(Q̄) + Area(c1) + Area(c2) + Area(c3) + Area(c4) > Area(c̃).

Fig. 6   Illustration of step 4 in the proof of Theorem 4.4. By rearranging the different subcycles in the curve 
c̃ , one obtains a new curve in M−1({�}) of larger signed area
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successive angles of the edges are non-decreasing so we may assume without loss of gener-
ality that 0 ≤ 𝛼1 < 𝛼2 < … < 𝛼N < 2𝜋 . Therefore the right hand side of (8) is:

By splitting the inner sum into two sums from j = 1,… , i and j = i + 1,… ,N , after an 
easy calculation, we obtain:

since 𝛼i > 𝛼j for all j = 1,… , i − 1 . This is in turn leads to:

since 
∑i−1

j=1
ej =

�����⃗Ovi . Now the right hand side of (9) is exactly the signed area of p̄ . 	�  ◻

Another useful expression of the maximal area Amax(�) is through the Fourier coef-
ficients of the measure � . Let us define:

Proposition 4.5  For all � ∈ M
+
0
, the following holds:

Proof  Let � ∈ [0, 2�) be for now fixed and f�(�) = sin |� − �| . After some calculations 
that we skip for the sake of concision, one can show that the Fourier coefficients of f� are 
given by:

Now, writing f�(�) =
∑

n∈ℤ f̂�(n)e
in� which converges everywhere on �1 and recalling that 

∫
�1 e

i�d�(�) = ∫
�1 e

−i�d�(�) = 0 , we get that:

1

4 ∫
2�

0 ∫
2�

0

sin |� − �|d�(�)d�(�) = 1

4

N∑
i=1

N∑
j=1

lilj sin |�i − �j|.

1

4 ∫
2�

0 ∫
2�

0

sin |� − �|d�(�)d�(�) = 1

2

N∑
i=1

i−1∑
j=1

lilj sin |�i − �j| = 1

2

N∑
i=1

i−1∑
j=1

lilj sin(�i − �j)

(9)
1

4 ∫
2�

0 ∫
2�

0

sin |� − �|d�(�)d�(�) = 1

2

N∑
i=1

i−1∑
j=1

det(ej, ei) =
1

2

N∑
i=1

det(Ovi, ei)

𝜇̂(n) =
1

2𝜋 ∫
�1

e−in𝜃d𝜇(𝜃).

(10)
Amax(𝜇) =

1

4𝜋

∑
n ∈ ℤ

n ≠ ±1

|𝜇̂(n)|2
1 − n2

f̂�(n) =
1

2� �
2�

0

e−in�f�(�)d� =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

�(1 − n2)
e−in� +

1

2�

�
e−i�

n − 1
−

ei�

n + 1

�
for n ≠ ±1

−
ei�

4�
+
�

1

4�
+ i

� − �
2�

�
e−i� for n = 1

−
e−i�

4�
+
�

1

4�
+ i

� − �
2�

�
ei� for n = −1
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and since the series of functions in the above equation is uniformly converging on �1 × �
1:

	�  ◻

Note that as a direct corollary of Theorem 4.4 and Proposition 4.5, we recover the standard 
isoperimetric inequality in its general form, that is:

Corollary 4.6  For any curve c in  C̃, we have:

with equality if and only if c is a circle.

Proof  By adequate rescaling, we can first restrict the proof to the case 
where L(c) = �c(�

1) = 2� . Then, from Theorem  4.4, we have that 
Area(c) ≤ sup{Amax(�) | � ∈ M

+
0
,�(�1) = 2�} . Now, for any � ∈ M

+
0
 such that 

�(�1) = 2� , we have 𝜇̂(0) = 𝜇(�1) = 2𝜋 and:

Therefore, Area(c) ≤ � =
L(c)2

4�
 with equality if and only if Amax(�) = � which implies that 

in the above we have 𝜇̂(n) = 0 for all |n| ≠ 1 . Therefore, � is the uniform measure on �1 and 
as Area(c) = Amax(�) , by the uniqueness of the maximizer in Theorem 4.4, we obtain that c 
is the unit circle. 	�  ◻

Amax(�) =
1

4 �
2�

0 �
2�

0

∑
n ∈ ℤ

n ≠ ±1

1

�(1 − n2)
e−in�ein�d�(�)d�(�)

Amax(𝜇) =
1

4

∑
n ∈ ℤ

n ≠ ±1

1

𝜋(1 − n2) �
2𝜋

0

(
�

2𝜋

0

e−in𝜃d𝜇(𝜃)

)
ein𝛼d𝜇(𝛼)

=
1

4

∑
n ∈ ℤ

n ≠ ±1

1

𝜋(1 − n2)
(2𝜋)2𝜇̂(n)𝜇̂(n)

= 𝜋
∑

n ∈ ℤ

n ≠ ±1

|𝜇̂(n)|2
(1 − n2)

Area(c) ≤ L(c)2

4�

Amax(𝜇) =
1

4𝜋

∑
n ∈ ℤ

n ≠ ±1

|𝜇̂(n)|2
1 − n2

≤ 1

4𝜋
|𝜇̂(0)|2 = 𝜋.
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5 � A geodesic space structure on convex sets of the plane

The correspondence between convex curves and length measures that is given by Theo-
rem 3.2 also suggests the idea of comparing convex sets through their associated length 
measures. In other words, one can transpose the construction of metrics on the set of 
convex domains to that of building metrics on the measure space M+

0
 . What makes 

this advantageous is that there are already many existing and well-known distances 
between measures that can be introduced to that end, and several past works [1, 49] have 
exploited this idea for various purposes. Yet most of these works are focused on the 
computation and/or mathematical properties of the distance only. In the field of inter-
est of the authors, namely shape analysis, an often equally important aspect is to define 
distances (typically Riemannian or sub-Riemannian) which also lead to relevant geodes-
ics on the shape space: such geodesics indeed provide a way of interpolating between 
two shapes and are crucial to extend many statistical or machine learning tools to ana-
lyze shape datasets. In this section, we will therefore be interested in building numeri-
cally computable geodesic distances on M+

0
 which will in turn induce metrics and cor-

responding geodesics on C̃conv . Note that although we discuss this problem for planar 
curves as it is the focus of this paper, most of what follows can be adapted to larger 
dimensions by considering the general area measures of convex domains in ℝn . We first 
review several standard metrics on the space of measures of �1 and analyze their poten-
tial shortcomings when it comes to comparing planar convex curves. We then propose a 
new constrained optimal transport distance.

5.1 � Kernel metrics

As a dual space, the space of measures on �1 can be endowed with dual metrics based 
on a choice of norm on a set of test functions. These include classical measure metrics 
such as the Lévy-Prokhorov or the bounded Lipschitz distance. Those distances met-
rizes the weak convergence between measures and have many appealing mathematical 
properties. However, they are typically challenging to compute or even approximate in 
practice. An alternative is the class of metrics derived from reproducing kernel Hilbert 
spaces (RKHS) which have been widely used in shape analysis [19, 26, 33] and in sta-
tistics [28, 36]. We briefly recap and discuss such metrics in our context. The starting 
point is a continuous and positive definite kernel K ∶ 𝕊

1 × 𝕊
1 → ℝ to which, by Aron-

szajn theorem [5], corresponds a unique RKHS of functions on �1 . Let us denote this 
space by H and by H∗ its dual. Now taking H as our space of test functions, one can 
introduce the norm ‖ ⋅ ‖H∗ on M+

0
 defined by:

and the corresponding distance dH∗ (�0,�1) = ‖�1 − �0‖H∗ . In general, (11) only gives a 
pseudo-distance on M+

0
 but is shown in [45] Theorem  6 that a necessary and sufficient 

condition to recover a true distance is for the kernel K to satisfy a property known as C0

-universality, which includes several families of well-known kernels such as Gaussian, 
Cauchy... An important advantage of this RKHS framework is that, thanks to the reproduc-
ing kernel property, the distance can be directly expressed based on K as follows:

(11)‖�‖H∗ = sup{(��f ) � f ∈ H, ‖f‖H = 1}
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For discrete measures �0 and �1 , the above integrals become double sums and can be all 
evaluated in closed form once the kernel K is specified which makes these distances easy 
to compute in practice. However, since all are essentially dual metrics to some Hilbert 
space, it is easy to see that the resulting metric space is flat, namely the constant speed geo-
desic between two positive measures �0 and �1 on �1 is given by �(t) = (1 − t)�0 + t�1 for 
t ∈ [0, 1] . Furthermore, if both �0 and �1 belong to M+

0
 then so does �(t) for all t ∈ [0, 1] 

since:

Therefore M+
0
 is a totally geodesic space for the metric ‖ ⋅ ‖H∗.

Now if we look at the metric on C̃conv that results from the identification of convex 
curves with their length measure in M+

0
 , we see that, by the isomorphism property 

of the mapping M given by Corollary 3.6, the geodesic c(t) = M−1(�(t)) is simply the 
Minkowski combination of the two convex curves associated to �0 and �1 . Note that 
although the distance will depend on the choice of kernel K, the geodesics are however 
independent of K. While the Minkowski sum may seem like a natural way to interpolate 
between two convex sets, it may also not be the most optimal from the point of view 
of shape comparison. Figure 7 shows an example of what a geodesic looks like both in 
the space of convex sets and in the space of measures. It is for instance clear from this 
example that the measure geodesic do not involve actual transportation of mass which in 
this case would be a more natural behavior. This is the shortcoming that the metrics of 
the following sections will attempt to address.

dH∗ (�0,�1)
2 =

∬
�1×�1

K(�, ��)d�0(�)d�0(�
�) − 2∬

�1×�1

K(�, ��)d�0(�)d�1(�
�)

+∬
�1×�1

K(�, ��)d�1(�)d�1(�
�).

∫
�1

ei�d�(t)(�) = (1 − t)∫
�1

ei�d�0(�) + t ∫
�1

ei�d�1(�) = 0.

Fig. 7   Geodesic for the kernel metrics. On top, the intermediate convex curves c(t) ∈ C̃
conv

 and in the bot-
tom row are shown the associated measures �(t) ∈ M

+
0
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5.2 � Wasserstein metrics

A natural class of distances between probability measures is given by optimal transport 
and the Wasserstein metrics [47]. Let us consider the usual geodesic distance on �1 defined 
by d(�, ��) = min{|�� − �|, 2� − |�� − �|} and let us write P(�1) the space of probability 
measures on �1 . Given �0,�1 ∈ P(�1) , the 2-Wasserstein distance between them is defined 
by:

where Π(�0,�1) is the set of all transport plans between �0 and �1 i.e.,

An optimal transport plan � can be shown to exist and it is known that the Wasserstein 
metric makes P(�1) into a length space with the corresponding geodesic being given 
by 𝜇(t) = (𝜋t)♯𝛾 where for all �, �� ∈ �

1 , t ↦ �t(�, �
�) is a unit constant speed geodesic 

between � and �′ , that is specifically:

Alternatively, this means that for all continuous function f ∶ 𝕊
1 → ℝ:

Unlike in the previous kernel framework, the Wasserstein distance and geodesics cannot 
be expressed in closed form but there are many well-established and efficient approaches 
to numerically estimate those, such as combinatorial methods [18] or Sinkhorn algorithm 
[17] in the situation of discrete measures as well as methods based on the dynamical for-
mulation of optimal transport [6, 39] for densities.

When it comes to the comparison of convex shapes, the use of Wasserstein metrics 
on the length or area measures was proposed for instance in [49]. Note that since W2 is 
defined between probability measures, this amounts in restricting to convex curves of 
length 1 i.e., comparing curves modulo rescaling which is often natural in shape analy-
sis. However, an important downside of the Wasserstein metric for this problem is that 
the subspace of probability measures in M+

0
 is not totally geodesic for that metric, namely 

the above path of measures �(t) connecting �0 to �1 does not generally stay in M+
0
 when 

�0,�1 ∈ P(�1) ∩M
+
0
 . This means that the intermediate measures �(t) cannot be canon-

ically associated to a convex curve (or even to a closed curve as a matter of fact). We 
illustrate this in Fig. 8 that shows the Wasserstein geodesic between the same two discrete 
measures as in Fig. 7 and the curves obtained from the reconstruction procedure of Remark 
3.3. This issue could be addressed a posteriori: for example the authors in [49] propose to 
consider a slightly modified path defined from the optimal transport plan. Specifically, they 
introduce 𝜇̃(t) defined by:

W2(�0,�1) = min

{
∬

�1×�1

d(�, ��)2d� | � ∈ Π(�0,�1)

}

Π(𝜇0,𝜇1) = {𝛾 ∈ P(�1 × �
1) | 𝛾(A × �

1) = 𝜇0(A), 𝛾(�
1 × B)

= 𝜇1(B), for all Borel sets A,B ⊂ �
1}.

𝜋t(𝜃, 𝜃
�) =

⎧⎪⎨⎪⎩

(1 − t)𝜃 + t𝜃�, if − 𝜋 ≤ 𝜃� − 𝜃 ≤ 𝜋

(1 − t)𝜃 + t(𝜃� − 2𝜋), if 𝜋 < 𝜃� − 𝜃 < 2𝜋

(1 − t)𝜃 + t(𝜃� + 2𝜋), if − 2𝜋 < 𝜃� − 𝜃 < −𝜋

(�(t)|f ) = ∬
�1×�1

f (�t(�, �
�))d�(�, ��).
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for which it is straightforward to check that 𝜇̃(t) ∈ M
+
0
 for all t ∈ [0, 1] . A clear remaining 

downside however is that, despite relying on the optimal transport between �0 and �1 , the 
paths of measures and corresponding convex curves are not actual geodesics associated to 
a metric.

5.3 � A constrained Wasserstein distance on M+

0

In this section, we shall instead modify the formulation of the Wasserstein metric so as to 
directly enforce the constraint defining M+

0
 . To do so, we will need to shift our focus to 

the so called dynamical formulation of optimal transport which was first introduced by the 
works of Benamou and Brenier in [6] and derive a primal-dual scheme adapted from the 
work of [39] to tackle the corresponding optimization problem.

5.3.1 � Mathematical formulation

Formally, the above Wasserstein metric can be obtained by minimizing ∫ 1

0
∫
�1 |vt|2d�(t)dt 

over all vector fields vt(⋅) and path of measures �(t) ∈ M that satisfy the boundary con-
straints �(0) = �0 , �(1) = �1 and the continuity equation on �1 �t�(t) + ��(vt�(t)) = 0 . To 
make this formulation more rigorous, one has to introduce the following definitions.

Definition 5.1  Let (�,m) be a couple of measures on [0, 1] × �
1 which we will write 

�,m ∈ M([0, 1] × �
1) . We say that (�,m) satisfy the continuity equation �t� + ��m = 0 

with boundary conditions �(0) = �0 and �(1) = �1 in the distribution sense if:

for all � ∈ C1([0, 1] × �
1).

We recall the following usual property of the continuity equation

(𝜇̃(t)|f ) = ∬
�1×�1

f

(
(1 − t)ei𝜃 + tei𝜃

�

|(1 − t)ei𝜃 + tei𝜃
� |
)
|(1 − t)ei𝜃 + tei𝜃

� |d𝛾(𝜃, 𝜃�)

(12)∫[0,1]×�1

�t� d� + ∫[0,1]×�1

��� dm = ∫
�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0.

Fig. 8   Geodesic for the Wasserstein metric computed with the Sinkhorn algorithm. On top, the intermedi-
ate convex curves c(t) ∈ C̃

conv
 and in the bottom row are shown the associated measures �(t) . Note that the 

intermediate measures �(t) do not belong to M+
0
 which results in an opening of the reconstructed curves
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Property 5.2  If (�,m) satisfies the above continuity equation with boundary conditions �0 
and �1, then the time marginal of � is the Lebesgue measure on [0, 1]. In other words the 
measure � disintegrates as 𝜌 = 𝜌t ⊗ dt.

Proof  By applying the disintegration theorem on measures of [0, 1] × �
1 (cf Theorem 2.28 

in [4]), we have the existence of finite measures �t on �1 for all t ∈ [0, 1] such that we 
can write 𝜌 = 𝜌t ⊗ 𝜈 with � the measure on [0,  1] given by �(A) = �(A × �

1) . Taking 
�(t, �) = �(t) with � ∈ C1([0, 1]) , we get from (12):

Since this holds for any � ∈ C1([0, 1]) , we obtain that � is the Lebesgue measure on [0, 1]. 	
� ◻

Next we define the set B = {(a, b) ∈ ℝ
2 | a + 1

2
b2 ≤ 0} and we will denote �B its con-

vex indicator function: �B(a, b) = 0 for (a, b) ∈ B and �B(a, b) = +∞ otherwise. We also 
define f ∶ ℝ ×ℝ → ℝ+ by:

Note that f is a 1-homogeneous function and is the convex conjugate of �B . Then it has been 
shown that given two measures �0 and �1 , their Wasserstein distance is equal to:

where � is any measure on [0, 1] × �
1 such that |𝜈| ≪ 𝜆 and d�

d�
 denotes the Radon-Nykodym 

derivative (the choice of such � does not affect the value in (13) due to the homogeneity of 
f). Furthermore, the existence of optimal measures � and m can be proved and the path of 
measures t ↦ �t given by Property 5.2 is a geodesic between �0 and �1.

We now modify the above expression so as to enforce that the path �t remains in the 
subspace M+

0
.

Definition 5.3  Let �0 and �1 be two probability measures in M+
0
 . With the same conven-

tions as above, we define the constrained Wasserstein distance on M+
0
 by:

As we show next, W2 defines a distance and we also recover the existence of 
geodesics.

∫[0,1]

� �(t)d�(t) = �(1) − �(0).

f (d,m) =

⎧
⎪⎪⎨⎪⎪⎩

m2

2d
if d > 0

0 if (d,m) = (0, 0)

+ ∞ otherwise

(13)

W2(�0,�1) = inf
�=(�,m)

{
∫[0,1]×�1

f

(
d�

d�

)
d� | subj. to �0 = �0, �1 = �1, �t� + ��m = 0

}
.

(14)

W2(�0,�1) = inf
�=(�,m)

⎧
⎪⎨⎪⎩
�[0,1]×�1

f
�
d�
d�

�
d� � subj. to

⎧
⎪⎨⎪⎩

�t� + ��m = 0

�0 = �0, �1 = �1∫
�1 e

i�d�t(�) = 0, for a.e t ∈ [0, 1]

⎫⎪⎬⎪⎭
.
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Theorem  5.4  For any two probability measures �0 and �1 in M
+
0
 such that 

W2(𝜇0,𝜇1) < +∞, there exist (�,m) achieving the minimum in (14). Moreover, W2 defines a 
distance on the space P(�1) ∩M

+
0
.

Proof  The proof mainly requires adapting similar arguments developed for other variations 
of the optimal transport problem [11, 15]. For any � ∈ C

1([0, 1] × �
1) and � ∈ C([0, 1]) , let 

us define

where

One can easily check that F and G are proper convex functions and are lower semi-contin-
uous. Furthermore, taking for instance �(t, �) = at with a < 0 and �(t) = 0 , we see that F 
is continuous at A(�,�) = (a, 0) since (a, 0) is in the interior of B. We can thus apply the 
Fenchel–Rockafellar duality theorem, which leads to

We now compute for � = (�,m) ∈ M([0, 1] × �
1) ×M([0, 1] × �

1):

and we find

J(�,�1,�2) = ∫
1

0 ∫
�1

�B(�t� + cos(�)�1(t) + sin(�)�2(t), ���)d�dt + ∫
�1

�(0, ⋅)d�0 − ∫
�1

�(1, ⋅)d�1

= F◦A(�,�1,�2) + G(�,�1,�2)

F(�, �) = ∫
1

0 ∫
�1

�B(�(t, �), �(t, �))d�dt

A(�,�1,�2) = (�t� + cos(�)�1(t) + sin(�)�2(t), ���)

G(�,�1,�2) = ∫
1

0 ∫
�1

�(0, ⋅)d�0 − ∫
1

0 ∫
�1

�(1, ⋅)d�1

(15)

inf
�∈C1([0,1]×�1),�1,�2∈C([0,1])

J(�,�) = sup
�∈M([0,1]×�1)×M([0,1]×�1)

{−F∗(�) − G∗(−A∗(�))}.

G
∗(−A∗�) = sup

�,�1,�2

�
⟨�,−A(�,�1,�2)⟩ + ∫

�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0

�

= sup
�,�1,�2

�
−⟨�, (�t�, ���)⟩ − ⟨�, (cos(�)�1(t) + sin(�)�2(t), 0)⟩ + ∫

�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0

�

= sup
�,�1,�2

�
−⟨�, (�t�, ���)⟩ + ∫

�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0 − ⟨�, (cos(�)�1(t) + sin(�)�2(t), 0)⟩
�

= sup
�

�
−⟨�, (�t�,∇�)⟩ + ∫

�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0

�
+ sup

�1,�2

�
−⟨�, (cos(�)�1(t) + sin(�)�2(t), 0)⟩

�

= sup
�

�
−⟨�, (�t�, ���)⟩ + ∫

�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0

�
+ sup

�1

�
−∫[0,1]×�1 cos(�)�1(t)d�

�

+ sup
�2

�
−∫[0,1]×�1 sin(�)�2(t)d�

�
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from the definition of the weak continuity Eq. (12). It follows that the supremum on the 
right hand side of (15) can be restricted to measures � and m satisfying the continuity equa-
tion. Therefore, by Property 5.2, we obtain that

and similarly

from which we deduce that

Finally the convex conjugate of F is computed for instance in [15] based on Theorem 5 of 
[42] and can be shown to be:

This allows to conclude that (16) corresponds to −W2(�0,�1) and, since we assume that 
W2(𝜇0,𝜇1) < +∞ , we obtain by Fenchel–Rockafellar theorem the existence of a minimizer 
(�,m) to (14).

In addition, we have by construction that W2(�0,�1) ≥ W2(�0,�1) and therefore 
W2(�0,�1) = 0 implies that �0 = �1 . The symmetry of W2 is also immediate from the 
fact that for any measure path � = (�,m) satisfying the conditions in (14), one can con-
sider 𝜈̃ = (𝜌̃t = 𝜌1−t, m̃t = m1−t) the time-reversed paths which satisfy 𝜌̃0 = 𝜇1 , 𝜌̃1 = 𝜇0 , 
𝜕t𝜌̃ + 𝜕𝜃m̃ = 0 and ∫

�1 e
i𝜃d𝜌̃t(𝜃) = 0 while:

Finally, the triangular inequality can be shown in similar way as for the standard Was-
serstein metric i.e., by concatenation. Let �0,�1,�2 ∈ P(�1) ∩M

+
0
 and assume that 

W2(𝜇0,𝜇1) < +∞ and W2(𝜇1,𝜇2) < +∞ (otherwise the triangular inequality is trivi-
ally satisfied). From the above, we know that there exist � = (�,m) and �� = (��,m�) that 
achieve the minimum in the distances W2(�0,�1) and W2(�1,�2) , respectively. Letting 

sup
�

�
−⟨�, (�

t
�, ���)⟩ + ∫

�1

�(1, ⋅)d�1 − ∫
�1

�(0, ⋅)d�0

�

=

�
0 if �

t
� + ��m = 0, �(0, ⋅) = �0, �(1, ⋅) = �1

+∞ otherwise

sup
�1

{
−�[0,1]×�1

cos(�)�1(t)d�

}
= sup

�1

{
−�

1

0

(
�
�1

cos(�)d�t(�)

)
�1(t)dt

}

=

{
0 if for a.e t ∈ [0, 1], ∫

�1 cos(�)d�t = 0

+∞ otherwise

sup
�2

{
−�[0,1]×�1

sin(�)�2(t)d�

}
=

{
0 if for a.e t ∈ [0, 1], ∫

�1 sin(�)d�t = 0

+∞ otherwise

(16)

sup
�
{−F∗(�) − G∗(−A∗(�))} = −inf

�

⎧⎪⎨⎪⎩
F∗(�) � subj. to

⎧⎪⎨⎪⎩

�t� + ��m = 0

�0 = �0, �1 = �1∫
�1 e

i�d�t(�) = 0, for a.e t ∈ [0, 1]

⎫⎪⎬⎪⎭

F∗(�) = ∫[0,1]×�1

f
(
d�
d�

)
d�.

∫[0,1]×�1

f
(
d𝜈̃
d𝜆

)
d𝜆 = ∫[0,1]×�1

f
(
d𝜈
d𝜆

)
d𝜆.
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�0 ∶ (t, �) ↦ (t∕2, �) and �1 ∶ (t, �) ↦ ((t + 1)∕2, �) , we define the following concatenated 
path 𝜈̄ = (𝜌̄, m̄):

for which one can easily verify that 𝜌̄0 = 𝜇0 , 𝜌̄1 = 𝜇2 , 𝜕t𝜌̄ + 𝜕𝜃m̄ = 0 and ∫
�1 e

i𝜃d𝜌̄t(𝜃) = 0 
for almost all t ∈ [0, 1] . It follows that:

	�  ◻

In general, one cannot guarantee that the distance W2 is finite between any two meas-
ures. Nevertheless, it holds in particular when:

Proposition 5.5  Let �0 = �0(�)d� and �1 = �1(�)d� be two measures in P(�1) ∩M
+
0
 

with densities with respect to the Lebesgue measure on �1 with �0, �1 ∈ L1(�1), and 
assume that there exists c > 0 such that �0(�) ≥ c , �1(�) ≥ c for almost all � ∈ �

1 . Then 
W2(𝜇0,𝜇1) < +∞.

Proof  With the above assumptions, let us consider the linear interpolation path 
�t(�) = (1 − t)�0(�) + t�1(�) and define mt = H(�)d� where H(�) = ∫ �

0
(�1(�) − �0(�))d� . 

Then one easily checks that we have �t� + ��m = 0 in the sense of distributions. 
Furthermore,

Then, taking � the Lebesgue measure on [0, 1] × �
1 and since �t(�) ≥ c for almost all � , we 

find:

and thus W2(�0,�1) is also finite. 	�  ◻

Note that as a special case of this proposition, we deduce that the distance is finite 
between any two continuous strictly positive densities on �1.

Now, thanks to the bijection induced by M between the set of convex curves of length 
one modulo translation which we will denote C̃1

conv
 and the set of probability measures of 

M
+
0
 , we can equip C̃1

conv
 with the structure of a geodesic space by setting:

𝜈̄ =

⎧
⎪⎨⎪⎩

((𝜏0)♯𝜌, 2(𝜏
0)♯m) for 0 ≤ t <

1

2

((𝜏1)♯𝜌
�, 2(𝜏1)♯m

�) for
1

2
≤ t ≤ 1

W2(𝜇0,𝜇2) ≤ �[0,1]×�1

f
(
d𝜈̄
d𝜆

)
d𝜆 = �[0,1]×�1

f
(
d𝜈
d𝜆

)
d𝜆 + �[0,1]×�1

f

(
d𝜈�

d𝜆

)
d𝜆

= W2(𝜇0,𝜇1) +W2(𝜇1,𝜇2).

∫
�1

ei��t(�)d� = (1 − t)∫
�1

ei��0(�)d� + t ∫
�1

ei��1(�)d� = 0.

�
1

0 �
�1

f
(
𝜌t(𝜃),mt(𝜃)

)
d𝜃dt = �

1

0 �
�1

H(𝜃)2

2𝜌t(𝜃)
d𝜃dt ≤ 1

2c ��1

H(𝜃)2d𝜃 < +∞

(17)d(c0, c1) ≐ W2(M(c0),M(c1))
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for any c0, c1 ∈ C̃1
conv

 . A geodesic between the two curves is then given by c(t) = M−1(�(t)) 
where �(t) is a geodesic between the measures M(c0) and M(c1) for the metric W2.

Remark 5.6  The above distance on C̃1
conv

 is in addition equivariant to the action of rota-
tions of the plane in the sense that for any R ∈ SO(2) , we have d(R ⋅ c0,R ⋅ c1) = d(c0, c1) . 
This follows from the equivariance of the constrained Wasserstein distance W2 with 
respect to rotations. Indeed, we see that for any probability measures �0 and �1 in M+

0
 

and any R ∈ SO(2) , we have R∗M(c0) = M(R ⋅ c0) and R∗M(c1) = M(R ⋅ c1) . Further-
more, if � = (�,m) is a pair of measures satisfying the continuity equation together with 
the boundary conditions �0 = �0 , �1 = �1 and the closure condition ∫

�1 e
i�d�t(�) = 0 for 

almost all t ∈ [0, 1] then one easily verifies that 𝜈̃ = (𝜌̃, m̃) defined by 𝜌̃ = (R∗𝜌t)⊗ dt and 
m̃ = (R∗mt)⊗ dt still satisfy the continuity equation, the closure condition and that:

Then taking the infimum leads to W2(M(R ⋅ c0),M(R ⋅ c1)) = W2(M(c0),M(c1)) . This 
equivariance property allows to further quotient out rotations and obtain a distance between 
unit length convex curves modulo rigid motions that writes:

5.3.2 � Numerical approach

We now derive a numerical method to estimate the constrained Wasserstein distance W2 
between two discretized densities of �1 and thereby the distance d between convex curves 
given by (17). Our proposed approach mainly follows and adapts the first-order proximal 
methods introduced in [39] for the computation of Wasserstein metrics, specifically the 
primal-dual algorithm which itself is a special instantiation of [13]. We briefly present the 
main elements of the algorithm in the following paragraphs.

We shall consider measures on [0, 1] × �
1 discretized over two types of regular time/

angle grids: centered and a staggered grids. We define the centered grid Gc with P + 1 time 
samples and N angular samples as:

Discrete measure pairs sampled on the centered grid will be then represented as an element 
V of the space Ec ≐ ℝ

Gc ×ℝ
Gc . The staggered grids consist of time and angular samples 

shifted to the middle of the samples of Gc . Specifically, we introduce a time and a space 
staggered grid defined as follows:

∫[0,1]×�1

f
(
d𝜈̃
d𝜆

)
d𝜆 = ∫[0,1]×�1

f
(
d𝜈
d𝜆

)
d𝜆.

d�(c0, c1) ≐ min
R∈SO(2)

d(c0,R ⋅ c1).

Gc =

{(
ti =

i

P
, �j = 2�

j

N

)
| 0 ≤ i ≤ P, 0 ≤ j ≤ N − 1

}
.

G
t
s
=

{(
ti =

i + 1∕2

P
, �j = 2�

j

N

)
| − 1 ≤ i ≤ P, 0 ≤ j ≤ N − 1

}

G
�
s
=

{(
ti =

i

P
, �j = 2�

j + 1∕2

N

)
| 0 ≤ i ≤ P, −1 ≤ j ≤ N − 2

}
.
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We shall then denote U = (�,m) an element of Es ≐ ℝ
G
t
s ×ℝ

G
�
s which represents a pair of 

discretized measures of [0, 1] × �
1 on the staggered grids and we introduce the interpola-

tion operator I ∶ Es → Ec defined by I(U) = (𝜌̄, m̄) with

Note that the slight difference between the time and angular components and 
with the approach of [39] is due to the periodic boundary condition on the sam-
ples �j ∈ �

1 . We also define a discrete divergence operator div ∶ Es → ℝ
Gc as 

div(U)i,j = P(�i,j − �i−1,j) + N(mi,j − mi,j−1) for all 0 ≤ i ≤ P, 0 ≤ j ≤ N − 1 . This allows to 
write a discrete version of (14) as a convex minimization problem:

where

and �C(�0,�1)(U) = 0 if U ∈ C(�0, �1) , �C(�0,�1)(U) = +∞ if U ∉ C(�0, �1).
To solve the convex problem (18), we will use a primal-dual method adapted from the 

work of [13]. We first recall the definition of the proximal operator of a convex function 
h ∶ ℝ

k → ℝ:

as well as the convex dual of h:

The function to minimize in (18) is of the form F(I(U)) + G(U) . The primal-dual 
algorithm we implement consists of the following iterative updates on the sequences 
(U(n),V (n),Γ(n)) ∈ Es × Ec × Es starting from an initialization U(0) ∈ Es , V (0) ∈ Ec and 
Γ(0) = U(0):

𝜌̄i,j =
𝜌i−1,j + 𝜌i,j

2
, for 0 ≤ i ≤ P, 0 ≤ j ≤ N − 1.

m̄i,j =

⎧
⎪⎨⎪⎩

mi,j−1 + mi,j

2
, for 0 ≤ i ≤ P, 0 ≤ j ≤ N − 2

mi,N−2 + mi,−1

2
, for 0 ≤ i ≤ P, j = N − 1

(18)min
U=(�,m)∈Es

{
P∑
i=0

N−1∑
j=0

f
(
I(U)i,j

)
+ �C(�0,�1)(U)

}
.

C(�0, �1) ≐
⎧
⎪⎪⎨⎪⎪⎩

U ∈ Es s.t

⎧
⎪⎪⎨⎪⎪⎩

�0,j = (�0)j, �P,j = (�1)j, for all − 1 ≤ j ≤ N − 2

div(U)i,j = 0, for all 0 ≤ i ≤ P, 0 ≤ j ≤ N − 1

N−1�
j=0

cos(�j)�i,j = 0,

N−1�
j=0

sin(�j)�i,j = 0 for all − 1 ≤ i ≤ P.

⎫⎪⎪⎬⎪⎪⎭

Proxh(x) = argmin
y∈ℝk

1

2
‖x − y‖2 + h(y)

h∗(w) = max
y∈ℝk

⟨y,w⟩ − h(y).

(19)

V (n+1) = Prox�F∗ (V (n) + �IΓ(n))

U(n+1) = Prox�G(U
(n) − �I∗V (n+1))

Γ(n+1) = U(n+1) + �(U(n+1) − U(n))
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where �,� are positive step sizes and 0 ≤ � ≤ 1 an inertia parameter. It follows from the 
general result of [13] that the algorithm converges to a solution of (18) if 𝜏𝜎‖I‖2 < 1 
where ‖I‖ denotes the operator norm of I  . We typically have ‖I‖ ≈ 1 as I  is here an inter-
polation operator.

It only remains to specify the exact expressions of the proximal operators appearing in the 
first two equations of (19). First, by Moreau’s identity, one has that for all V ∈ Ec:

Now the proximal of F is computed in [39] Proposition 1 from which we obtain for all 
Ṽ ∈ Ec:

where

with r⋆(d,m) being the largest real root of the polynomial equation 
(x − d)(x + 1∕�)2 − 1

2�
m2 = 0.

To express the second update in (19), we first point out that I∗ ∶ Ec → Es is given by 
(𝜌,m) = I

∗(𝜌̄, m̄) with:

Moreover since G is here the convex indicator function of the constraint set C(�0, �1) , we 
have �G = G for any 𝜏 > 0 and Prox�G = ProxG = ProjC(�0,�1) the orthogonal projector on 
the convex set C(�0, �1) . In addition to the usual boundary and divergence constraints, 
we also have to deal with the two extra closure conditions. We introduce the operator 
Ξ ∶ Es → ℝ

Gc × (ℝN ×ℝ
N) × (ℝP+2 ×ℝ

P+2) defined for any U = (�,m) ∈ Es by:

which allows us to write C(�0, �1) =
{
U ∈ Es | Ξ(U) = b ≐ (

0, (�0, �1), (0, 0)
)}

 . Thus, we 
can express the orthogonal projection on C(�0, �1) as:

Prox�F∗ (V) = V − �ProxF∕�(V∕�).

ProxF∕𝜎(Ṽ) =
(
Proxf∕𝜎(Ṽi,j)

)
0 ≤ i ≤ P

0 ≤ j ≤ N − 1

Prox
f∕𝜎(d,m) =

⎧
⎪⎨⎪⎩

�
𝜎dr⋆(d,m)

𝜎d + 1
, r⋆(d,m)

�
&if r⋆(d,m) > 0

(0, 0) otherwise

𝜌i,j =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜌̄i+1,j

2
, for i = −1, 0 ≤ j ≤ N − 2

𝜌̄i,j + 𝜌̄i+1,j

2
, for 0 ≤ i ≤ P − 1, 0 ≤ j ≤ N − 1

𝜌̄i,j

2
, for i = P, 0 ≤ j ≤ N − 2

mi,j =

⎧
⎪⎨⎪⎩

m̄i,0 + m̄i,N−1

2
, for 0 ≤ i ≤ P, j = −1

m̄i,j + m̄i,j+1

2
, for 0 ≤ i ≤ P, 0 ≤ j ≤ N − 2

Ξ(U) =

(
div(U), (�−1,j, �P,j)0≤j≤N−1,

(
N−1∑
j=0

cos(�j)�i,j,
N−1∑
j=0

sin(�j)�i,j

)

−1≤i≤P

)
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where Δ = ΞΞ∗ can be interpreted as a modified Laplace operator on the spatial-angular 
domain, which in practice we can precompute together with its inverse before iterating (19) 
or alternatively implement in the Fourier domain.

5.3.3 � Numerical results

We present a few numerical results obtained with the above approach which we imple-
mented in Python. In all experiments, we take N = 150 angular samples on �1 = [0, 2�) 
and P = 50 time samples in [0, 1]. As for the step parameters of the primal-dual algo-
rithm, we picked � = 0.5 , � = 0.25 and � = 0.6 . We run the algorithm (19) for 1000 
iterations although we observe in practice that convergence to a minimum is typically 
reached after around 250 iterations (cf the energy plot in Fig. 10).

First, in Fig. 9, is shown the geodesic between the same polygons as in Figs. 7 and 
8 for the new constrained Wasserstein metric. Observe that unlike kernel metrics, the 
geodesic involves mass transportation rather than pure interpolation between the meas-
ures but that unlike the standard Wasserstein distance, the closure constraint is satisfied 
along the path and the corresponding shapes all stay within the set of closed convex 
curves. We further illustrate those effects with another example of a geodesic between 
two density measures and the corresponding geodesic between the convex curves in 
Fig. 10. Finally, we show with Fig. 11 an example of a geodesic between a polygon with 
discrete length measure and a Reuleaux triangle which density is a piecewise constant 
function with three steps.

6 � Some open problems and future directions

As a conclusion to this paper, we discuss a few possible topics and tracks for future 
investigation that arise as natural follow-ups to this work and the results we presented.

ProjC(�0,�1)(U) = U − Ξ∗Δ−1Ξ(U) + Ξ∗Δ−1b

Fig. 9   Geodesic for the constrained Wasserstein metric computed with the proposed primal-dual algorithm. 
On top, the intermediate convex curves c(t) ∈ C̃

conv
 and in the bottom row are shown the associated meas-

ures �(t)
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6.1 � Unbalanced optimal transport for convex shape analysis

In Sect. 5.3, we introduced a distance based on a constrained version of the Wasserstein 
metric between length measures which turns the set of convex closed curves of length one 
into a length space. There are yet several questions which are left partly unaddressed when 
it comes to this distance and its properties. In particular, it remains to be studied whether 

Fig. 10   Geodesic for the constrained Wasserstein metric between two density measures. The evolution of 
the energy throughout the iterations of the proposed primal-dual algorithm is plotted on the top row to illus-
trate the convergence. On the middle row, are shown the intermediate convex curves c(t) ∈ C̃

conv
 along the 

estimated geodesic. On the bottom row we display the final density �
1
 in red and the density �(t) along the 

geodesic in blue

Fig. 11   Geodesic for the constrained Wasserstein metric between a sum of Diracs and the piecewise con-
stant density measure associated to a Reuleaux triangle
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W2 is finite between any pair of probability measures of M+
0
 or at least if the result of Prop-

osition 5.5 could be extended to other families of measures. Besides, W2 is only defined 
for probability measures which implies that the resulting distance d in (17) requires the 
convex curves to be normalized to have unit length. This makes such a distance unadapted 
to retrieve and quantify e.g., global or local changes in scale.

We believe that both of the previous issues could be addressed by considering an unbal-
anced extension of the metric W2 to all measures of M+

0
 , along similar lines as the unbal-

anced frameworks for standard optimal transport proposed in works such as [15, 37, 40]. In 
the context of this paper, this could be done by adding a source term to the continuity equa-
tion, namely consider �t� + ��m = � with � being a signed measure of [0, 1] × �

1 that mod-
els an additional transformation of the measure � in conjunction with mass transportation. 
Then, as in [15, 37], one could penalize this extra source term based on the Fischer–Rao 
metric of � , which would lead to define the following distance between any �0,�1 ∈ M

+
0
:

where � is such that 𝜌,m, 𝜁 ≪ 𝜆 and g ∶ ℝ ×ℝ ×ℝ → ℝ+ is given by:

with 𝛿 > 0 a weighting parameter between the two components of the cost. In this case, it 
becomes easy to show that WFR(�0,�1) is finite for any measures �0,�1 ∈ M

+
0
 by simply 

considering the special path �t = (1 − t)�0 + t�1 , mt = 0 and �t = �1 − �0 for all t ∈ [0, 1] . 
Although we leave it for future work, we expect the existence of geodesics and distance 
properties to hold for WFR by extending the proof of Theorem 5.4. Moreover, the precise 
analysis of its topological properties and how the resulting metric between convex curves 
compare to other geometric distances remain to be examined.

6.2 � Generalization to higher dimension

Although this work focused on the case of planar curves, the concept of length measure 
extends to closed hypersurfaces in any dimension which is known as area measures, as 
mentioned in the introduction. Area measures, particularly of surfaces in ℝ3 , is a central 
concept in the Brunn–Minkowski theory of mixed volumes [44] but also appear in some 
applications such as object recognition [30] or surface reconstruction from computerized 
tomography [41]. The area measure of a (n − 1)-dimensional closed oriented submanifold 
(more generally rectifiable subset) S of ℝn can be defined, similarly to Definition 2.1, as 
the positive Radon measure on �n−1 given by �S(B) = Voln−1({x ∈ S | �S(x) ∈ B}) for all 
Borel subset B ⊂ �

n−1 where �S(x) ∈ �
n−1 denotes the unit normal vector to S at x and 

Voln−1 is the (n − 1) volume measure i.e., the Hausdorff measure of dimension (n − 1) . 
Importantly, the Minkowski–Fenchel–Jessen theorem still holds for general area measures, 
namely the area measure again characterizes a convex set up to translation. However, there 

WFR(�0,�1) = inf
�=(�,m,� )

⎧⎪⎨⎪⎩
�[0,1]×�1

g
�
d�
d�

�
d� � subj. to

⎧
⎪⎨⎪⎩

�t� + ��m = �
�0 = �0, �1 = �1∫
�1 e

i�d�t(�) = 0, for a.e t ∈ [0, 1]

⎫⎪⎬⎪⎭
.

g(d,m, 𝜁 ) =

⎧
⎪⎪⎨⎪⎪⎩

m2 + 𝛿2𝜁2

2d
if d > 0

0 if (d,m, 𝜁 ) = (0, 0, 0)

+ ∞ otherwise
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are two significant differences when n ≥ 3 compared to the situation of planar curves. First 
the Minkowski sum of two convex does not generally correspond to the sum of their area 
measures. Second, reconstructing the convex shape from its area measure, even for discrete 
measures and polyhedra, is no longer straightforward: it is in fact an active research topic 
and several different approaches and algorithms have been proposed, see e.g., [25, 29, 34, 
49].

In connection to the results presented in this paper, we expect for instance that an isoper-
imetric characterization of convex sets similar to Theorem 4.4 should hold for the positive 
volume enclosed by (n − 1)-dimensional non self-intersecting rectifiable sets that share the 
same area measure under the adequate regularity assumptions. Such a property has been 
shown in particular for polyhedra in [8]. As for the construction of metrics and geodes-
ics between convex shapes, the mathematical construction of the constrained Wasserstein 
metric presented in Sect. 5.3.1 can be a priori adapted to area measures in any dimension, 
by replacing the closure constraint to ∫

�n−1 xd�t(x) = 0 for almost all t ∈ [0, 1] . However, 
the numerical implementation of such metrics along the lines of the approach of Sect. 5.3.2 
would induce additional difficulties. Indeed, the computation of the operators on grids over 
higher-dimensional sphere becomes more involved and numerically intensive. Moreover, 
recovering the convex curves associated to a geodesic in the space of area measures would 
further require, as explained above, applying some reconstruction algorithm a posteriori. 
Finally, an important issue for future investigation is to derive an efficient implementation 
of the variation of the distance with respect to the discrete distributions, which could be 
then used for instance to estimate Kärcher means in the space of convex sets.
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