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ABSTRACT: An amphiphile PS-750-M that mimics dipolar-aprotic organic solvents enables N-bromo succinimide (NBS)-mediated
one-pot oxyfunctionalization of styrenes in water under mild conditions. Control experiments reveal the involvement of the radical
pathway. The radical intermediate was also trapped with butylated hydroxytoluene to obtain peroxy educt. The method is scalable
without involving any operational risk. This aqueous micellar technology for oxyfunctionalization is further applied on in-situ reduc-

tion and click chemistry to obtain f-azido alcohols and f-carbonyl triazoles.
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Introduction. Safe, sustainable, selective, and scalable (abbre-
viated as 4S) reaction methodologies are highly desirable.! In
this regard, the word “safe” implies worker safety, environmen-
tal safety, process safety, and chemical safety.? As per the Or-
ganization for Economic Co-operation and Development, sus-
tainable chemistry is a scientific concept that seeks to improve
the efficiency with which natural resources are used to meet hu-
man needs for chemical products and services.® Therefore, effi-
ciency, selectivity, and scalability of reactions heavily contrib-
ute towards a reaction’s sustainability. Along the same lines,
green chemistry and sustainable chemistry are complementary.*
The 12 Principles of Green Chemistry encourage use of safer
solvents, along with providing many other ways of minimizing

one’s environmental footprint.>

Besides its obvious natural abundance, water is usually con-
sidered among the safest of reaction solvents. It has been effi-
ciently employed in “on water” and “in water” chemistry for
many diverse transformations.*!! Aqueous micellar catalysis, a
major enabler of chemistry in water, has recently gained attrac-
tion due to its applications to 4S reaction methodologies.'*"
Many important transformations have been shown to occur in
micellar media.'>'"® Our group has recently designed an am-
phiphile PS-750-M that structurally mimics the dipolar-aprotic
solvent that enables several transformations which traditionally
require DMF, DMAc, NMP, and 1,4-dioxane.?*° Additionally,
the design hypothesis of PS-750-M assisted in gaining insight
into how micellar nano-organometallic chemistry occurs. To
date, preliminary answers to some fundamental questions are
now in hand, such as, where and how chemistry occurs in mi-
cellar media, how reaction intermediates (radical,> carbene,?
carbanion®) react under the shielding effect of micelles. To fur-
ther advance micellar catalysis, an important question remains
as to how micellar catalysis handles reactions involving sub-
strates or intermediates which are generally unstable and tradi-
tionally require dipolar-aprotic solvents. From this standpoint,
styrenes and azides are challenging due to their potential
polymerization and unsafe decomposition, respectively.

Under the shielding effect of micelles, styrene and azide can
be used safely, even when sequences involving radicals may be
involved, as depicted in Figure 1, leading to useful educts o-
azidoketones. Alternatively, other functional groups can be
safely installed with this strategy. The a-functionalized ketone

motifs, especially azidoketones and acyloxyketones, are valua-
ble intermediates due to their broad synthetic utility to the phar-
maceuticals, agrochemicals, and fine chemicals industries.>!3*
Therefore, various methods have been developed for their syn-
thesis. The traditional approaches focus on either the substitu-
tion reaction of pre-functionalized starting materials or the oxi-
dative coupling of carbonyl compounds in the presence of
strong oxidants.*>>* Among the most important synthetic meth-
odologies for preparing azidoketones from alkenes involves
TMSN;-CrO; and CAN/NaN;.**° Likewise, oxidative cou-
pling of alkenes and carboxylic acids to acyloxyketones has
been reported using I,/ TBHP catalytic system.>? Recently, Rei-
ser and co-workers have reported visible-light accelerated oxy-
azidation of styrene derivatives using [Cu(dap).Cl] as the cata-
lyst.* However, all these reported methods have limitations,
such as use of a metal catalyst,” and/or require excessive
amounts of metallic or corrosive oxidants or toxic organic sol-
vents.’'*> Organic azides and peroxides are also known to be
explosive, especially in flammable organic solvents,™ further
restricting their applications to large-scale reactions.
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Figure 1. Mimicking the dipolar-aprotic solvents for oxyazida-
tion of styrenes.



Based on these potential limitations and the importance of
azidoketones and acyloxyketones, the application of micellar
catalysis could lead to a catalyst-free, mild, safe, selective, sus-
tainable oxyazidation and oxyacyloxylation, especially when
the use of NBS in other oxyfunctionalization of styrenes is
known.>>*® We hypothesize that under the shielding effect of
micelles, styrene can safely react with N-Bromosuccinimide
(NBS) to generate bromonium ion or benzylic radical i (Figure
1), further reacting with a water molecule to generate ii. After
reacting with NBS, the intermediate ii generates iii leading to
iv, which subsequently reacts with an azide ion in one-pot gen-
erating desired a-azidoketone.

Table 1. Reaction optimization

(i) 3 wt % aq. PS-750-M 1%
©/\ Ar 60°C, 3 h ©)\/Ns
(i) NaN3, 60 °C, 2 h o
2
entry deviation from standard conditions® 2 (%)’
1 none 85
2 CH;CN instead of PS-750-M 42
3 1,4-dioxane instead of PS-750-M 82
4 neat water instead of PS-750-M 65
5 NCS instead of NBS traces
6 NIS instead of NBS 32
7 oxygen atmosphere instead of argon 22
8 20 mol % BuyNCl additive, 45 °C after 69
azide addition¢
9 20 mol % BusNCl additive, rt after azide 52
addition®

“Conditions: (i) 0.5 mmol 1, 1.25 mmol N-Bromosuccinimide, 1 mL 3
wt % aq. PS-750-M, 60 °C, 3 h, argon atmosphere; (ii) 0.75 mmol so-
dium azide, 60 °C, 2 h, argon atmosphere. “Isolated yield. ‘Bromination
step was performed at 60 °C for 3 h and azidation was performed using
20 mol % BusNCl additive and 1.5 equiv NaNj3, 2 h.

Results and Discussion. We began our investigation with a
standard reaction between styrene 1 and NBS, and subsequently
reacting the resulting intermediate with NaN3 in one-pot to ob-
tain a-azidoketone 2 (for details, see Supporting Information).
The reaction optimization involves dependence of reaction on
several variables, such as, reaction temperature, global concen-
tration, halogenating agent, and stoichiometry of reagents. A 60
°C reaction temperature, 0.5 M global concentration, NBS as a
halogenating agent, 1:2.5 stoichiometry of styrene 1 and NBS,
and 1.5 equiv NaN; were found to be the optimal (Table 1, entry
1). The reaction did not proceed efficiently when acetonitrile
was used as a solvent instead of aqueous PS-750-M (entry 2).
Notably, our amphiphile was designed to mimic the solvent po-
larity index of 1,4-dioxane, therefore, it was worth to compare
the reactivity in PS-750-M versusl,4-dioxane. Although reac-
tion was also clean in 1,4-dioxane, slightly less yield of 2 was
obtained (entry 3). Reaction in neat water was not as effective
as in aqueous PS-750-M (entry 4). The other halogenating
agents, such as, NCS (N-chlorosuccinimide) and NIS (N-
iodosuccinimide) were also not effective (entries 5, 6). Further-
more, reaction in the presence of ambient oxygen caused many
unwanted byproducts and only 22 % conversion to the desired
product was obtained (entry 7). These results indicates that the
radical pathway is involved in the desired transformation. In op-
timal conditions, a slightly elevated temperature was required
due to poor solubility of NaN; in micelles. The use of catalytic

BusNCl enables the azidation at 45 °C and rt (entries 8, 9). How-
ever, reaction rate was slower than the rate observed in opti-
mized conditions.

Table 2. Substrate scope”

0
R1©/\ + IiéN—Br
o

o o) o) o)
©)k,N3 /©)k/N3 Nj /©)‘\/N3
M Ph
2 85% (5h) o © 3 82% (5h) 4 62% (5 h) 5 65% (10 h)*
N3 o o o
/©)J\’N3 /©)J\,N3 /©)A\KN3
O F Br cl Me

(i) 3 wt % aq. PS-750-M
N, 60 °C

. ©)\,Nu

nucelophile = azide, carboxylic acid, thiocyanate, amine

(i) nucleophile, 60 °C

6 52% 15 hy* 7 67% (8h) 8 62% (8 h) 9 65% (15 h)*
10 57% (12 h) 63% (8 h) 12 45% (5h 13 65% (6 h)
i m/©
©)k/0 /©)‘\/
14 62% (6 h) 15 60% ( ) 16 60% (9 h)
r/©)k/ /©)k/
17 58% (8 h) " 18 55% (12 h) 19 60 (15 h)
20 70% (5 h) 21 67% (5h 22 64% (6 h)
23 65% 6h 24 55% (5 h) 25 78% (6 h)

“Conditions: Styrene (0.5 mmol), NBS (1.25 mmol), nucleophile =
NaNj3 (0.75 mmol) or carboxylic acid:K,COs3 (1:1, 0.75 mmol each) or
amine (0.75 mmol) or KSCN (0.75 mmol), | mL 3 wt % aq. PS-750-
M, 60 °C, argon atmosphere, overall reaction time is given for all ex-
amples. *Reactions were carried out using 3 equiv NBS (for details, see
SI).

Next, this technology's scope was examined on a wide range
of substrates including the different nucleophiles other than az-
ide (Table 2). The nucleophiles include azide (2-11), thiocya-
nate (12), carboxylic acids (13-23), and amines (24, 25). Oxy-
azidation was tolerable to electron-rich (3, 4) as well as elec-
tron-deficient styrenes (7-11). Functional groups, such as,
fluoro (7, 10), bromo (8, 10), chloro (9), and nitro (19) were
well tolerated. Notably, good yield was obtained in the styrene
substrate containing nitro group (19), and no side reaction with
the nitro group was observed. A good yield was also obtained
with internal olefin (9). Although acids are weak nucleophiles
compared to azide, a decent reactivity was observed with aro-
matic and non-aromatic acids (13-23). Electron-rich (13, 15)
and electron-deficient (16-19) styrenes displayed good-to-ex-
cellent reactivity with carboxylic acid nucleophiles. Likewise,
both the electron-rich (20, 21) and electron-deficient (23) acids
showed suitable reactivity. Notably, acid possessing alkyl
amine residue (21) and reactive allylic carbon (22) displayed
good reactivity and selectivity. No side reaction at the N-Cbz
and cyclohexene residues was observed in examples 21 and 22,



respectively. Reactivity of p-toludine and morpholine with sty-
rene was also good as illustrated in example 24 and 25.

The versatility of this aqueous technology was further ex-
plored for one-pot carbonyl reductions and copper-catalyzed
1,3-dipolar cycloaddition between resulting azides and alkynes
(Table 3).%° In other words, without isolation of a-azido-
ketones, carbonyl reduction and cycloaddition reactions were
performed in a same pot. For carbonyl reductions, azide re-
mained intact upon reaction with NaBH4 (26-28). Likewise, af-
ter initial oxyazidation, an addition of 3 mol % Cul as a catalyst
and 1.0 equivalent alkyne in a same pot affords triazole educts
29 and 30 in good yields.

Table 3. One-pot carbonyl reduction and 1,3-dipolar azide-al-
kyne cycloaddition reactions”

d A OH
conditions
A N3 -azido alcohols
Ry R4
Ro(Ar)
e} ==

+
0]
N l [keto triazole
N-Br °N
Ry
(@]

Conditions A. (i) styrene (0.5 mmol), NBS (1.25 mmol), 1 mL 3 wt % aq. PS-750-M, 60 °C, 3-12 h;
(ii) NaN3 (0.75 mmol), 60 °C, 2-3 h; (iii) NaBH, (0.6 mmol), rt, 1 h (for details, see Sl).

Conditions B. (i) styrene (0.5 mmol), NBS (1.25 mmol), 1 mL 3 wt % aq. PS-750-M, 60 °C, 3-12 h;
(ii) NaN3 (0.75 mmol), 60 °C, 2-3 h; (i) alkyne (0.5 mmol), Cul (3 mol %), 60 °C, 1 h (also see SI).

conditions B

a) a-azido alcohols

H OH OH
N3 N3 /@)\rNs
M
Me F cl ©
26 78% 27 61% 28 58%

b) f-keto triazoles

o N=N o N=N
oA e ans

29 64% 30 66%

Br

aAll yields are isolated.

Next, the technology’s robustness was further explored on
gram scale reactions using styrene 1 and azide or carboxylic
acid nucleophiles (Scheme 1). The isolated yields of 2 and 14
in gram-scale reactions were comparable with the ones per-
formed on 0.5 mmol scale (see Table 2).

Scheme 1. Gram scale reactions”

(i) 3 wt % aqg. PS-750-M Nu
Ar 60 °C
1 + N-Br - >
(19, 9.5 mmol) (i) nucleophile, 60 °C

0 Nu = Ng; 2 85% (1.3Q)
Nu = PhCO,; 14 60% (1.4 g)

Conditions: 1 (9.5 mmol), NBS (23.8 mmol), 19 mL 3 wt % aq. PS-
750-M, 60 °C for 4 h then addition of NaN3 (14.25 mmol) or PhCO,H:
K>CO; (1:1, 14.25 mmol each), 60 °C for additional 2 h (for details, see
SI).

Next, control experiments were performed to confirm
whether the reaction pathway involves radical intermediates or
not. An oxyazidation reaction of 1 in the presence of TEMPO
(2,2,6,6-tetramethyl-1-piperidinyloxy) radical or BHT (bu-
tylated hydroxytoluene) inhibits the reaction, indicating in-
volvement of radical in the reaction pathway. Only 32% and
15% desired product was obtained in the presence of TEMPO
and BHT, respectively (Scheme 2A). Most likely, a radical

intermediate is involved before the reaction with azide nucleo-
phile. For confirmation, a reaction of 1 with NBS in the pres-
ence of BHT were attempted in micellar medium without the
use of NaN3 (Scheme 2B). A GC-MS analysis of the reaction
mixture indicated the trapping of resulting radical with 31
(BHT) and formation of peroxide 32. An attempt to isolate the
pure intermediate 32 was unsuccessful due to its instability. In
GC-MS spectrum, signals at m/z 418 and 420 in 1:1 intensity
ratio confirmed the presence of bromo functional group. The
presence of m-Me signal at m/z 403 and 405 further supported
the trapping of radical.

Scheme 2. (A) Control experiments with TEMPO and BHT; (B)
Radical Trapping; (C) Plausible reaction pathway

A o (i) 1 equiv additive
3 wt % aq. PS-750-M
1+ N—Br Ar 60°C,3h
(i) NaNs, 60 °C, 2 h
o
additive? 2(%)P
TEMPO 32
BHT 15
aConditions: (i) 0.5 mmol 1, 1.25 mmol N-Bromosuccinimide, 0.5 mmol
TEMPO or BHT, 1 mL 3 wt % aq. PS-750-M, 60 °C, 3 h, argon atmosphere;
(ii) 0.75 mmol sodium azide, 60 °C, 2 h, argon atmosphere. Plsolated yield.
B [ OH 1mL Me
+Bu t-Bu 3wt % aq. PS-750-M
1 + N-Br + Ar60°C,1h
, >
+Bu t-Bu
°© Me o
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Br
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Based on control experiments (vide supra), a plausible reac-
tion pathway is described in Scheme 2C. A reaction of styrene



1 with NBS generates stable radical 1a. The hydrogen atom
transfer radical abstraction from water by succinimide radical
likely results in formation of a-hydroxy bromide 1b. A hydro-
gen atom exchange between NBS and 1b further forms Iec,
which most likely immediately converts to 1d. This event gen-
erates 1.0 equivalent HBr. An addition of sodium azide to the
reaction mixture cause slow formation of hydrazoic acid which
causes nucleophilic substitution in 1d and forms product 2. The
HBr generation after reaction completion is evidenced by drop
of pH from 3.28 to 1.68.

Conclusions. In summary, with the use of aqueous micelles of pro-
line-derived PS-750-M, azidoketones and acyloxyketones can be
accessed in a safe way. The synthetic protocol meets the safety
standard. The in-situ generation of hydrazoic acid and its antici-
pated greater solubility in micellar medium enables oxyazidation
of styrene. Likewise, safe oxyamination of styrenes is also possible
with the same approach. More similar reports on trifluoromethyla-
tion will be published in a due course.
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* mild conditions ¢ catalyst-free ¢ scalable

» water as a reaction medium ¢ one-pot chemistry

The shielding effect of micelles of commercially available PS-750-M enables sustainable and safe oxy-
functionalization (including azidation) in water.




